1
|
Karwowski BT. The Influence of Oxidized Imino-Allantoin in the Presence of OXOG on Double Helix Charge Transfer: A Theoretical Approach. Int J Mol Sci 2024; 25:5962. [PMID: 38892152 PMCID: PMC11172559 DOI: 10.3390/ijms25115962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/19/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
The genome is continuously exposed to a variety of harmful factors that result in a significant amount of DNA damage. This article examines the influence of a multi-damage site containing oxidized imino-allantoin (OXIa) and 7,8-dihydro-8-oxo-2'-deoxyguanosine (OXOdG) on the spatial geometry, electronic properties, and ds-DNA charge transfer. The ground stage of a d[A1OXIa2A3OXOG4A5]*d[T5C4T3C2T1] structure was obtained at the M06-2X/6-D95**//M06-2X/sto-3G level of theory in the condensed phase, with the energies obtained at the M06-2X/6-31++G** level. The non-equilibrated and equilibrated solvent-solute interactions were also considered. Theoretical studies reveal that the radical cation prefers to settle on the OXOG moiety, irrespective of the presence of OXIa in a ds-oligo. The lowest vertical and adiabatic ionization potential values were found for the OXOG:::C base pair (5.94 and 5.52 [eV], respectively). Conversely, the highest vertical and adiabatic electron affinity was assigned for OXIaC as follows: 3.15 and 3.49 [eV]. The charge transfers were analyzed according to Marcus' theory. The highest value of charge transfer rate constant for hole and excess electron migration was found for the process towards the OXOGC moiety. Surprisingly, the values obtained for the driving force and activation energy of electro-transfer towards OXIa2C4 located this process in the Marcus inverted region, which is thermodynamically unfavorable. Therefore, the presence of OXIa can slow down the recognition and removal processes of other DNA lesions. However, with regard to anticancer therapy (radio/chemo), the presence of OXIa in the structure of clustered DNA damage can result in improved cancer treatment outcomes.
Collapse
Affiliation(s)
- Boleslaw T Karwowski
- DNA Damage Laboratory of Food Science Department, Faculty of Pharmacy, Medical University of Lodz, ul. Muszynskiego 1, 90-151 Lodz, Poland
| |
Collapse
|
2
|
Karwowski BT. FapydG in the Shadow of OXOdG—A Theoretical Study of Clustered DNA Lesions. Int J Mol Sci 2023; 24:ijms24065361. [PMID: 36982436 PMCID: PMC10049008 DOI: 10.3390/ijms24065361] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023] Open
Abstract
Genetic information, irrespective of cell type (normal or cancerous), is exposed to a range of harmful factors, which can lead to more than 80 different types of DNA damage. Of these, oxoG and FapyG have been identified as the most abundant in normoxic and hypoxic conditions, respectively. This article considers d[AFapyGAOXOGA]*[TCTCT] (oligo-FapyG) with clustered DNA lesions (CDLs) containing both the above types of damage at the M06-2x/6-31++G** level of theory in the condensed phase. Furthermore, the electronic properties of oligo-FapyG were analysed in both equilibrated and non-equilibrated solvation–solute interaction modes. The vertical/adiabatic ionization potential (VIP, AIP) and electron affinity (VEA, AEA) of the investigated ds-oligo were found as follows in [eV]: 5.87/5.39 and −1.41/−2.09, respectively. The optimization of the four ds-DNA spatial geometries revealed that the transFapydG was energetically privileged. Additionally, CDLs were found to have little influence on the ds-oligo structure. Furthermore, for the FapyGC base-pair isolated from the discussed ds-oligo, the ionization potential and electron affinity values were higher than those assigned to OXOGC. Finally, a comparison of the influence of FapyGC and OXOGC on charge transfer revealed that, in contrast to the OXOGC base-pair, which, as expected, acted as a radical cation/anion sink in the oligo-FapyG structure, FapyGC did not significantly affect charge transfer (electron–hole and excess–electron). The results presented below indicate that 7,8-dihydro-8-oxo-2′-deoxyguanosine plays a significant role in charge transfer through ds-DNA containing CDL and indirectly has an influence on the DNA lesion recognition and repair process. In contrast, the electronic properties obtained for 2,6-diamino-4-hydroxy-5-foramido-2′deoxypyrimidine were found to be too weak to compete with OXOG to influence charge transfer through the discussed ds-DNA containing CDL. Because increases in multi-damage site formation are observed during radio- or chemotherapy, understanding their role in the above processes can be crucial for the efficiency and safety of medical cancer treatment.
Collapse
Affiliation(s)
- Bolesław T Karwowski
- DNA Damage Laboratory of Food Science Department, Faculty of Pharmacy, Medical University of Lodz, ul. Muszynskiego 1, 90-151 Lodz, Poland
| |
Collapse
|
3
|
Sun S, Qin C, Liu H, Jiang C. Excitation wavelength dependent ICT character and ISC efficiency in a photocleavage agent of 1-aminoanthraquinone. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 234:118200. [PMID: 32172187 DOI: 10.1016/j.saa.2020.118200] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 02/12/2020] [Accepted: 02/26/2020] [Indexed: 06/10/2023]
Abstract
Anthraquinone derivatives have been widely used as photocleavage agents and dyes. Here, photoinduced excited state intramolecular charge transfer (ICT) dynamics of 1-aminoanthraquinone in ethanol are studied by femtosecond transient absorption (fs-TA) spectroscopy and quantum chemical (QC) calculations. Four decay associated difference spectra and corresponding lifetime components were obtained by singular value decomposition and global fitting analysis from the fs-TA spectra. The QC calculations prove that the S1 state has obvious ICT character. Planar ICT (PICT) and twisted ICT (TICT) reaction coordinates are observed. On the PICT coordinate, vibrational relaxation (VR) and intersystem crossing (ISC) processes are observed. The ISC efficiency is dependent on excitation wavelength, which elucidates that T'2 state participates in the ISC process on a higher-level than the S'1 state. On the TICT coordinate, the TICT process is dependent on excitation wavelength, which elucidates a direct experimental evidence of an energy barrier in excited state TICT potential energy.
Collapse
Affiliation(s)
- Simei Sun
- School of Physics, Henan Normal University, Xinxiang 453007, China; Huangshi Key Laboratory of Photoelectric Technology and Materials, College of Physics and Electronic Science, Hubei Normal University, Huangshi 435002, China
| | - Chaochao Qin
- School of Physics, Henan Normal University, Xinxiang 453007, China; Henan Key Laboratory of Infrared Materials & Spectrum Measures and Applications, Henan Normal University, Xinxiang 453007, China.
| | - Hua Liu
- School of Physics, Henan Normal University, Xinxiang 453007, China; Henan Key Laboratory of Infrared Materials & Spectrum Measures and Applications, Henan Normal University, Xinxiang 453007, China
| | - Chao Jiang
- Huangshi Key Laboratory of Photoelectric Technology and Materials, College of Physics and Electronic Science, Hubei Normal University, Huangshi 435002, China
| |
Collapse
|
4
|
Cheng X, Zhang Y, Jónsson E, Jónsson H, Weber PM. Charge localization in a diamine cation provides a test of energy functionals and self-interaction correction. Nat Commun 2016; 7:11013. [PMID: 26980327 PMCID: PMC4799366 DOI: 10.1038/ncomms11013] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 02/10/2016] [Indexed: 01/12/2023] Open
Abstract
Density functional theory (DFT) is widely applied in calculations of molecules and materials. Yet, it suffers from a well-known over-emphasis on charge delocalization arising from self-interaction error that destabilizes localized states. Here, using the symmetric diamine N,N'-dimethylpiperazine as a model, we have experimentally determined the relative energy of a state with positive charge localized on one of the two nitrogen atoms, and a state with positive charge delocalized over both nitrogen atoms. The charge-localized state was found to be 0.33 (0.04) eV higher in energy than the charge-delocalized state. This provides an important test of theoretical approaches to electronic structure calculations. Calculations with all DFT functionals commonly used today, including hybrid functionals with exact exchange, fail to predict a stable charge-localized state. However, the application of an explicit self-interaction correction to a semi-local functional identifies both states and gives relative energy in excellent agreement with both experiment and CCSD(T) calculations.
Collapse
Affiliation(s)
- Xinxin Cheng
- Department of Chemistry, Brown University, 324 Brook Street, Providence, Rhode Island 02912, USA
| | - Yao Zhang
- Department of Chemistry, Brown University, 324 Brook Street, Providence, Rhode Island 02912, USA
| | - Elvar Jónsson
- COMP, Department of Applied Physics, Aalto University, FIN-00076 Espoo, Finland
| | - Hannes Jónsson
- Department of Chemistry, Brown University, 324 Brook Street, Providence, Rhode Island 02912, USA
- COMP, Department of Applied Physics, Aalto University, FIN-00076 Espoo, Finland
- Faculty of Physical Sciences, VR-III, University of Iceland, 107 Reykjavík, Iceland
| | - Peter M. Weber
- Department of Chemistry, Brown University, 324 Brook Street, Providence, Rhode Island 02912, USA
| |
Collapse
|
5
|
Cheng CCW, Ma C, Chan CTL, Ho KYF, Kwok WM. The solvent effect and identification of a weakly emissive state in nonradiative dynamics of guanine nucleosides and nucleotides--a combined femtosecond broadband time-resolved fluorescence and transient absorption study. Photochem Photobiol Sci 2014; 12:1351-65. [PMID: 23538894 DOI: 10.1039/c3pp25450j] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A combined method of femtosecond broadband time-resolved fluorescence (fs-TRF) and transient absorption (fs-TA) was employed to investigate the excited state dynamics of 2'-deoxyguanosine (dG) and 2'-deoxyguanosine 5'-monophosphate (dGMP). Comparative fs-TRF and fs-TA measurements were conducted on dG and dGMP in neutral water, deuterated water, and methanol with excitation wavelengths of 245, 267 and 285 nm. Very similar results were observed with dG and dGMP. The data provide compelling evidence for the co-existence of two nonradiative pathways. One is the generally recognized Laππ* mediated channel, the other involves an unprecedented weakly emissive state which plays a significant role in the overall deactivation processes. The Laππ* channel features biphasic dynamics with time constants (τ1/τ2) of ~0.2/0.8 ps in water and ~0.25/1.0 ps in methanol. The biphasic decay arises due to a partial transfer with τ1 of the Laππ* population to the newly identified state followed by conversion in τ2 of the remaining Laππ* molecules into the electronic ground state. The channel mediated by the weakly emissive species shows solvent-dependent dynamics with time constants (τ3) of ~2.0 ps in water, ~2.3 ps in deuterated water, and ~4.1 ps in methanol. The species features absorption at UV wavelengths (~300-400 nm) and exhibits deeply red-shifted fluorescence (λmax ~ 520 nm) with polarization direction varied markedly from that of the Laππ* but close to the Lbππ*. This species acts as an effective quenching state to the radiative decay of the brightly emissive Laππ* and Lbππ*. It sets in promptly (<~50 fs) after the photoexcitation and is further populated through nonadiabatic coupling with the Laππ*. The overall involvement of this state is facilitated with excitation at high energy and is favoured in methanol over water. According to the spectral character and the solvent effect in particular the kinetic isotope effect, the species is tentatively associated to the πσ* state with charge transfer (CT) character which is considered to be preferentially stabilized by hydrogen-bonding between the guanine amino and surrounding solvent molecules. The result of this study leads to a dramatically different picture of guanine deactivation. It demonstrates a crucial role of the solvent in shaping the nonradiative dynamics of guanine nucleosides and nucleotides. The data presented are important for understanding the detailed photophysics of not only the monomeric guanine but also DNA assemblies that contain guanine in base pairs or have a guanine tetrad as the structural motif.
Collapse
Affiliation(s)
- Chopen Chan-Wut Cheng
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | | | | | | | | |
Collapse
|
6
|
Cheng X, Zhang Y, Deb S, Minitti MP, Gao Y, Jónsson H, Weber PM. Ultrafast structural dynamics in Rydberg excited N,N,N′,N′-tetramethylethylenediamine: conformation dependent electron lone pair interaction and charge delocalization. Chem Sci 2014. [DOI: 10.1039/c4sc01646g] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Time-resolved Rydberg fingerprint spectroscopy and quantum calculations reveal the structure dependent electron lone pair interaction and charge delocalization in real time.
Collapse
Affiliation(s)
- Xinxin Cheng
- Department of Chemistry
- Brown University
- Providence, USA
| | - Yao Zhang
- Department of Chemistry
- Brown University
- Providence, USA
| | | | - Michael P. Minitti
- Linac Coherent Light Source (LCLS)
- SLAC National Accelerator Laboratory
- Menlo Park, USA
| | - Yan Gao
- Department of Chemistry
- Brown University
- Providence, USA
| | - Hannes Jónsson
- Department of Chemistry
- Brown University
- Providence, USA
- Faculty of Physical Sciences
- University of Iceland
| | | |
Collapse
|
7
|
Photoinduced Charge-Separation in DNA. PHOTOINDUCED PHENOMENA IN NUCLEIC ACIDS II 2014; 356:165-82. [DOI: 10.1007/128_2013_525] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
8
|
Berlin YA, Voityuk AA, Ratner MA. DNA base pair stacks with high electric conductance: a systematic structural search. ACS NANO 2012; 6:8216-8225. [PMID: 22901272 DOI: 10.1021/nn3030139] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
We report a computational search for DNA π-stack structures exhibiting high electric conductance in the hopping regime, based on the INDO/S calculations of electronic coupling and the method of data analysis called k-means clustering. Using homogeneous poly(G)-poly(C) and poly(A)-poly(T) stacks as the simplest structural models, we identify the configurations of neighboring G:C and A:T pairs that allow strong electronic coupling and, therefore, molecular electric conductance much larger than the values reported for the corresponding reference systems in the literature. A computational approach for modeling the impact of thermal fluctuations on the averaged dimer structure was also proposed and applied to the [(G:C),(G:C)] and [(A:T),(A:T)] duplexes. The results of this work may provide guidance for the construction of DNA devices and DNA-based elements of nanoscale molecular circuits. Several factors that cause changes of step parameters favorable to the formation of the predicted stack conformation with high electric conductance of DNA molecules are also discussed; favorable geometries may enhance the conductivity by factors as large as 15.
Collapse
Affiliation(s)
- Yuri A Berlin
- Department of Chemistry, Northwestern University, 1145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | | | | |
Collapse
|
9
|
Carmieli R, Smeigh AL, Mickley Conron SM, Thazhathveetil AK, Fuki M, Kobori Y, Lewis FD, Wasielewski MR. Structure and Dynamics of Photogenerated Triplet Radical Ion Pairs in DNA Hairpin Conjugates with Anthraquinone End Caps. J Am Chem Soc 2012; 134:11251-60. [DOI: 10.1021/ja303721j] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Raanan Carmieli
- Department of Chemistry and Argonne-Northwestern
Solar Energy Research (ANSER) Center, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Amanda L. Smeigh
- Department of Chemistry and Argonne-Northwestern
Solar Energy Research (ANSER) Center, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Sarah M. Mickley Conron
- Department of Chemistry and Argonne-Northwestern
Solar Energy Research (ANSER) Center, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Arun K. Thazhathveetil
- Department of Chemistry and Argonne-Northwestern
Solar Energy Research (ANSER) Center, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Masaaki Fuki
- Department of Chemistry, Faculty of Science, Shizuoka University, 836 Ohya Surugaku, Shizuoka 422-8529,
Japan
| | - Yasuhiro Kobori
- Department of Chemistry, Faculty of Science, Shizuoka University, 836 Ohya Surugaku, Shizuoka 422-8529,
Japan
- PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho
Kawaguchi, Saitama 332-0012, Japan
| | - Frederick D. Lewis
- Department of Chemistry and Argonne-Northwestern
Solar Energy Research (ANSER) Center, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Michael R. Wasielewski
- Department of Chemistry and Argonne-Northwestern
Solar Energy Research (ANSER) Center, Northwestern University, Evanston, Illinois 60208-3113, United States
| |
Collapse
|
10
|
Osakada Y, Kawai K, Tachikawa T, Fujitsuka M, Tainaka K, Tero-Kubota S, Majima T. Generation of Singlet Oxygen during Photosensitized One-Electron Oxidation of DNA. Chemistry 2011; 18:1060-3. [DOI: 10.1002/chem.201101964] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2011] [Indexed: 11/12/2022]
|
11
|
Olmon ED, Hill MG, Barton JK. Using metal complex reduced states to monitor the oxidation of DNA. Inorg Chem 2011; 50:12034-44. [PMID: 22043853 PMCID: PMC3277451 DOI: 10.1021/ic201511y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Metallointercalating photooxidants interact intimately with the base stack of double-stranded DNA and exhibit rich photophysical and electrochemical properties, making them ideal probes for the study of DNA-mediated charge transport (CT). The complexes [Rh(phi)(2)(bpy')](3+) (phi = 9,10-phenanthrenequinone diimine; bpy' = 4-methyl-4'-(butyric acid)-2,2'-bipyridine), [Ir(ppy)(2)(dppz')](+) (ppy = 2-phenylpyridine; dppz' = 6-(dipyrido[3,2-a:2',3'-c]phenazin-11-yl)hex-5-ynoic acid), and [Re(CO)(3)(dppz)(py')](+) (dppz = dipyrido[2,3-a:2',3'-c]phenazine; py' = 3-(pyridin-4-yl)-propanoic acid) were each covalently tethered to DNA to compare their photooxidation efficiencies. Biochemical studies show that upon irradiation, the three complexes oxidize guanine by long-range DNA-mediated CT with the efficiency: Rh > Re > Ir. Comparison of spectra obtained by spectroelectrochemistry after bulk reduction of the free metal complexes with those obtained by transient absorption (TA) spectroscopy of the conjugates suggests that the reduced metal states form following excitation of the conjugates at 355 nm. Electrochemical experiments and kinetic analysis of the TA decays indicate that the thermodynamic driving force for CT, variations in the efficiency of back electron transfer, and coupling to DNA are the primary factors responsible for the trend observed in the guanine oxidation yields of the three complexes.
Collapse
Affiliation(s)
- Eric D. Olmon
- Division of Chemistry and Chemical Engineering, California Institute of Technology Pasadena, California 91125, USA
| | - Michael G. Hill
- Department of Chemistry, Occidental College, Los Angeles, California 90041, USA
| | - Jacqueline K. Barton
- Division of Chemistry and Chemical Engineering, California Institute of Technology Pasadena, California 91125, USA
| |
Collapse
|
12
|
Kawai K, Kodera H, Majima T. Photocatalytic formation of I-I bonds using DNA which enables detection of single nucleotide polymorphisms. J Am Chem Soc 2011; 132:14216-20. [PMID: 20860356 DOI: 10.1021/ja105850d] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
By decreasing the HOMO energy gap between the base-pairs to increase the charge conductivity of DNA, the positive charge photochemically generated in DNA can be made to migrate along the π-way of DNA over long distances to form a long-lived charge-separated state. By fine-tuning the kinetics of the charge-transfer reactions, we designed a functionalized DNA system in which absorbed photon energy is converted into chemical energy to form I-I covalent bonds, where more than 100 I(2) molecules were produced per functionalized DNA. Utilizing the fact that charge-transfer kinetics through DNA is sensitive to the presence of a single mismatch that causes the perturbation of the π-stacks, single nucleotide polymorphisms (SNPs) in genomic sequences were detected by measuring the photon energy conversion efficiency in DNA by a conventional starch iodine method.
Collapse
Affiliation(s)
- Kiyohiko Kawai
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan.
| | | | | |
Collapse
|
13
|
Fluorescence quenching and the binding interaction of lumichrome with nucleic acids. CHINESE SCIENCE BULLETIN-CHINESE 2010. [DOI: 10.1007/s11434-010-4008-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Kawai K, Osakada Y, Matsutani E, Majima T. Charge Separation and Photosensitized Damage in DNA Mediated by Naphthalimide, Naphthaldiimide, and Anthraquinone. J Phys Chem B 2010; 114:10195-9. [DOI: 10.1021/jp102483k] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Kiyohiko Kawai
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| | - Yasuko Osakada
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| | - Eri Matsutani
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| | - Tetsuro Majima
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| |
Collapse
|
15
|
Affiliation(s)
- Joseph C. Genereux
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Jacqueline K. Barton
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125
| |
Collapse
|
16
|
Lewis FD, Thazhathveetil AK, Zeidan TA, Vura-Weis J, Wasielewski MR. Dynamics of Ultrafast Singlet and Triplet Charge Transfer in Anthraquinone−DNA Conjugates. J Am Chem Soc 2009; 132:444-5. [DOI: 10.1021/ja908470d] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Frederick D. Lewis
- Department of Chemistry and Argonne−Northwestern Solar Energy Research (ANSER) Center, Northwestern University, Evanston, Illinois 60208-3113
| | - Arun K. Thazhathveetil
- Department of Chemistry and Argonne−Northwestern Solar Energy Research (ANSER) Center, Northwestern University, Evanston, Illinois 60208-3113
| | - Tarek A. Zeidan
- Department of Chemistry and Argonne−Northwestern Solar Energy Research (ANSER) Center, Northwestern University, Evanston, Illinois 60208-3113
| | - Josh Vura-Weis
- Department of Chemistry and Argonne−Northwestern Solar Energy Research (ANSER) Center, Northwestern University, Evanston, Illinois 60208-3113
| | - Michael R. Wasielewski
- Department of Chemistry and Argonne−Northwestern Solar Energy Research (ANSER) Center, Northwestern University, Evanston, Illinois 60208-3113
| |
Collapse
|
17
|
Vura-Weis J, Wasielewski MR, Thazhathveetil AK, Lewis FD. Efficient charge transport in DNA diblock oligomers. J Am Chem Soc 2009; 131:9722-7. [PMID: 19558185 DOI: 10.1021/ja9015217] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The realization of highly efficient photoinduced charge separation across the pi-stacked base pairs in duplex DNA remains elusive. The low efficiencies (<5%) typically observed for charge separation over a dozen or more base pairs are a consequence of slow charge transport and rapid charge recombination. We report here a significant (5-fold or greater) enhancement in the efficiency of charge separation in diblock purine oligomers consisting of two or three adenines followed by several guanines, when compared to oligomers consisting of a single purine or alternating base sequences. This approach to wire-like behavior is attributed to both slower charge recombination and faster charge transport once the charge reaches the G-block in these diblock systems.
Collapse
Affiliation(s)
- Josh Vura-Weis
- Department of Chemistry and Argonne-Northwestern Solar Energy Research Center, Northwestern University, Evanston, Illinois 60208, USA
| | | | | | | |
Collapse
|
18
|
Zhao Y, Liang W. Non-Condon nature of fluctuating bridges on nonadiabatic electron transfer: Analytical interpretation. J Chem Phys 2009; 130:034111. [PMID: 19173514 DOI: 10.1063/1.3063095] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Yi Zhao
- Department of Chemistry and State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China.
| | | |
Collapse
|
19
|
Genereux JC, Augustyn KE, Davis ML, Shao F, Barton JK. Back-electron transfer suppresses the periodic length dependence of DNA-mediated charge transport across adenine tracts. J Am Chem Soc 2008; 130:15150-6. [PMID: 18855390 PMCID: PMC2663386 DOI: 10.1021/ja8052738] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
DNA-mediated charge transport (CT) is exquisitely sensitive to the integrity of the bridging pi-stack and is characterized by a shallow distance dependence. These properties are obscured by poor coupling between the donor/acceptor pair and the DNA bridge, or by convolution with other processes. Previously, we found a surprising periodic length dependence for the rate of DNA-mediated CT across adenine tracts monitored by 2-aminopurine fluorescence. Here we report a similar periodicity by monitoring N 2-cyclopropylguanosine decomposition by rhodium and anthraquinone photooxidants. Furthermore, we find that this periodicity is attenuated by consequent back-electron transfer (BET), as observed by direct comparison between sequences that allow and suppress BET. Thus, the periodicity can be controlled by engineering the extent of BET across the bridge. The periodic length dependence is not consistent with a periodicity predicted by molecular wire theory but is consistent with a model where multiples of four to five base pairs form an ideal CT-active length of a bridging adenine domain.
Collapse
Affiliation(s)
- Joseph C. Genereux
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125
| | - Katherine E. Augustyn
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125
| | - Molly L. Davis
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125
| | - Fangwei Shao
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125
| | - Jacqueline K. Barton
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125
| |
Collapse
|
20
|
Ivanova A, Shushkov P, Rösch N. Systematic Study of the Influence of Base-Step Parameters on the Electronic Coupling between Base-Pair Dimers: Comparison of A-DNA and B-DNA Forms. J Phys Chem A 2008; 112:7106-14. [DOI: 10.1021/jp8031513] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Anela Ivanova
- Department Chemie, Theoretische Chemie, Technische Universität München, 85747 Garching, Germany
| | - Philip Shushkov
- Department Chemie, Theoretische Chemie, Technische Universität München, 85747 Garching, Germany
| | - Notker Rösch
- Department Chemie, Theoretische Chemie, Technische Universität München, 85747 Garching, Germany
| |
Collapse
|
21
|
Fukuzumi S, Miyao H, Ohkubo K, Suenobu T. Electron-transfer oxidation properties of DNA bases and DNA oligomers. J Phys Chem A 2007; 109:3285-94. [PMID: 16833661 DOI: 10.1021/jp0459763] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Kinetics for the thermal and photoinduced electron-transfer oxidation of a series of DNA bases with various oxidants having the known one-electron reduction potentials (E(red)) in an aqueous solution at 298 K were examined, and the resulting electron-transfer rate constants (k(et)) were evaluated in light of the free energy relationship of electron transfer to determine the one-electron oxidation potentials (E(ox)) of DNA bases and the intrinsic barrier of the electron transfer. Although the E(ox) value of GMP at pH 7 is the lowest (1.07 V vs SCE) among the four DNA bases, the highest E(ox) value (CMP) is only 0.19 V higher than that of GMP. The selective oxidation of GMP in the thermal electron-transfer oxidation of GMP results from a significant decrease in the pH dependent oxidation potential due to the deprotonation of GMP*+. The one-electron reduced species of the photosensitizer produced by photoinduced electron transfer are observed as the transient absorption spectra when the free energy change of electron transfer is negative. The rate constants of electron-transfer oxidation of the guanine moieties in DNA oligomers with Fe(bpy)3(3+) and Ru(bpy)3(3+) were also determined using DNA oligomers containing different guanine (G) sequences from 1 to 10 G. The rate constants of electron-transfer oxidation of the guanine moieties in single- and double-stranded DNA oligomers with Fe(bpy)3(2+) and Ru(bpy)3(3+) are dependent on the number of sequential guanine molecules as well as on pH.
Collapse
Affiliation(s)
- Shunichi Fukuzumi
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, SORST, Japan Science and Technology Agency, Suita, Osaka 565-0871, Japan.
| | | | | | | |
Collapse
|
22
|
Juskowiak B, Dominiak A, Takenaka S, Takagi M. Isomerization of DNA-bound Distilbazolium Ligand Induced by Electron Transfer from Photoexcited Tris(1,10-phenanthroline)Ru(II)†¶. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2001)0740391iodbdl2.0.co2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
23
|
Kawai K, Osakada Y, Fujitsuka M, Majima T. Hole transfer in DNA and photosensitized DNA damage: importance of adenine oxidation. J Phys Chem B 2007; 111:2322-6. [PMID: 17291027 DOI: 10.1021/jp0661847] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Photosensitized DNA damage reactions were investigated for two well-known DNA-damaging photosensitizers (Sens), naphthalimide (NI) and napthaldiimide (NDI), which have similar photophysical properties but differ in their redox properties. NI and NDI derivatives (NIN, NDIN), which have cationic side chains and electrostatically binding to DNA due to favorable electrostatic interactions between the negatively charged phosphate groups of DNA and cationic groups, and NIP and NDIP, which possess phosphate groups and do not bind to DNA, were synthesized. NIN and NDIN can oxidize A and G via their singlet excited state, and NDIP oxidizes A and G via its triplet excited state, whereas NIP oxidizes only G. A combination of laser flash photolysis kinetic studies and quantitative HPLC analyses of photosensitized DNA damage was performed for several DNA sequences in the presence of Sens. NIN, NDIN, and NDIP, which oxidizes A, caused significant DNA damage upon photoirradiation, and DNA damage yield increased with the length of the consecutive A stretch. In contrast, NIP, which oxidizes only G, caused only moderate damage to DNA and showed no preference for the consecutive A sequences. These results clearly demonstrate the importance of A-oxidation, especially in consecutive A sequences, which triggers the rapid hole transfer between A's.
Collapse
Affiliation(s)
- Kiyohiko Kawai
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan.
| | | | | | | |
Collapse
|
24
|
|
25
|
Joy A, Guler G, Ahmed S, McLaughlin LW, Schuster GB. Polaronic semiconductor behavior of long-range charge transfer in DNA oligomers in solution: controlling barriers to long-distance radical cation migration in DNA with thymine analogs. Faraday Discuss 2006; 131:357-65; discussion 393-402. [PMID: 16512383 DOI: 10.1039/b505550d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of anthraquinone-linked DNA oligonucleotides was prepared and the efficiency of long-distance radical cation migration was measured. In one set of oligonucleotides, two GG steps are separated by either a TATA or an ATAT bridge. In these two compounds, the efficiency of radical cation migration from GG to GG differs by more than an order of magnitude. Replacement of the thymines in the TATA or ATAT bridges with 3-methyl-2-pyridone (t, a thymine analog) results in the much more efficient radical cation migration across the bridge in both cases. This is attributed to a decrease in the oxidation potential of t to a value below that of A. In contrast, replacement of the thymines in the TATA or ATAT bridges with difluorotoluene (f, a thymine analog with high oxidation potential) does not measurably affect radical cation migration. These findings are readily accommodated by the phonon-assisted polaron-hopping mechanism for long-distance charge transfer in duplex DNA and indicate that DNA in solution behaves as a polaronic semiconductor.
Collapse
Affiliation(s)
- Abraham Joy
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | | | | | | | | |
Collapse
|
26
|
Hussein YHA, Anderson N, Lian TT, Abdou IM, Strekowski L, Timoshchuk VA, Vaghefi MM, Netzel TL. Solvent and Linker Influences on AQ•-/dA•+Charge-Transfer State Energetics and Dynamics in Anthraquinonyl-Linker-Deoxyadenosine Conjugates. J Phys Chem A 2006; 110:4320-8. [PMID: 16571034 DOI: 10.1021/jp054395q] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The goal of this work is to produce high yields of long-lived AQ(*-)/dA(*+) charge transfer (CT) excited states (or photoproducts). This goal fits within a larger context of trying generally to produce high yields of long-lived CT excited states within DNA nucleoside conjugates that can be incorporated into DNA duplexes. Depending upon the energetics of the anthraquinonyl (AQ) (3)(pi,pi) state as well as the reduction potentials of the subunits in particular anthraquinonyl-adenine conjugates, CT quenching of the AQ (3)(pi,pi*) state may or may not occur in polar organic solvents. In MeOH, bis(3',5'-O-acetyl)-N(6)-(anthraquinone-2-carbonyl)-2'-deoxyadenosine (AQCOdA) behaves as intended and forms a (3)(AQ(*-)/dA(*+)) CT state with a lifetime of 3 ns. However, in nonpolar THF the AQ(*-)/dA(*+) CT states of AQCOdA are too high in energy to be formed, and in DMSO a (1)(AQ(*-)/dA(*+)) CT state is formed but lives only 6 ps. Although the lowest energy excited state for AQCOdA in MeOH is a (3)(AQ(*-)/dA(*+)) CT state, for N(6)-(anthraquinone-2-methylenyl)-2'-deoxyadenosine (AQMedA) in the same solvent it is a (3)(pi,pi*) state. Changing the linking carbonyl in AQCOdA to methylene in AQMedA makes the anthraquinonyl subunit harder to reduce by 166 mV. This raises the energy of the (3)(AQ(*-)/dA(*+)) CT state above that of the (3)(pi,pi*) in AQMedA. The conclusion is that anthraquinonyl-dA conjugates will not have lowest energy AQ(*-)/dA(*+) CT states in polar organic solvents unless the anthraquinonyl subunit is also substituted with an electron-withdrawing group that raises the AQ-subunit's reduction potential above that of AQ. A key finding in this work is that the lifetime of the (3)(AQ(*-)/dA(*+)) CT excited state (ca. 3 ns) is ca. 500-times longer than that of the corresponding (1)(AQ(*-)/dA(*+)) CT excited state (ca. 6 ps).'
Collapse
Affiliation(s)
- Yasser H A Hussein
- Department of Chemistry, Georgia State University, P.O. Box 4098, Atlanta, Georgia 30302-4098, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Wagenknecht HA. Electron transfer processes in DNA: mechanisms, biological relevance and applications in DNA analytics. Nat Prod Rep 2006; 23:973-1006. [PMID: 17119642 DOI: 10.1039/b504754b] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In principle, DNA-mediated charge transfer processes can be categorized as oxidative hole transfer and reductive electron transfer. With respect to the routes of DNA damage most of the past research has been focused on the investigation of oxidative hole transfer or transport. On the other hand, the transport or transfer of excess electrons has a large potential for biomedical applications, mainly for DNA chip technology.
Collapse
Affiliation(s)
- Hans-Achim Wagenknecht
- University of Regensburg, Institute for Organic Chemistry, D-93040, Regensburg, Germany.
| |
Collapse
|
28
|
Kawai K, Osakada Y, Fujitsuka M, Majima T. Effects of reaction rate of radical anion of a photosensitizer with molecular oxygen on the photosensitized DNA damage. Chem Commun (Camb) 2006:3918-20. [PMID: 17268670 DOI: 10.1039/b608027h] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Based on the synthesis of DNA modified with photosensitizers, direct spectroscopic measurements of the hole transfer in DNA, and quantification of the yield of the DNA oxidative damage, the reaction rate of the radical anion of the photosensitizer was demonstrated to be critically important in determining the efficiency of photosensitized DNA damage.
Collapse
Affiliation(s)
- Kiyohiko Kawai
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan.
| | | | | | | |
Collapse
|
29
|
|
30
|
Abou-Elkhair RAI, Netzel TL. Synthesis of two 8-[(anthraquinone-2-yl)-linked]-2'-deoxyadenosine 3'-benzyl hydrogen phosphates for studies of photoinduced hole transport in DNA. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2005; 24:85-110. [PMID: 15822616 DOI: 10.1081/ncn-51894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The challenge in working with anthraquinone-2'-deoxyadenosine (AQ-dA) conjugates is that they are insoluble in water and only sparingly soluble in most organic solvents. However, water-soluble AQ-dA conjugates with short linkers are required for study of their electrochemical and intramolecular electron transfer properties in this solvent prior to their use in laser kinetics investigations of photoinduced hole (cation) transport in DNA. This article first describes the synthesis of a water-soluble, ethynyl-linked AQ-dA conjugate, 8-[(anthraquinone-2-yl)ethynyl]-2'-deoxyadenosine 3'-benzyl hydrogen phosphate, based on initial formation of a 5'-O-(4,4'-dimethoxytrityl) (5'-O-DMTr) intermediate. Because intended H2 over Pd/C reduction of the ethynyl linker in 5'-O-DMTr-protected 2'-deoxyadenosines cleaves the DMTr protecting group and precipitates multiple side products, this work also describes the synthesis of an ethylenyl-linked AQ-dA conjugate, 8-[2-(anthraquinone-2-yl)ethyl]-2'-deoxyadenosine 3'-benzyl hydrogen phosphate, starting with a 5'-O-tert-butyldiphenylsilyl protecting group.
Collapse
|
31
|
Pothukuchy A, Mazzitelli CL, Rodriguez ML, Tuesuwan B, Salazar M, Brodbelt JS, Kerwin SM. Duplex and quadruplex DNA binding and photocleavage by trioxatriangulenium ion. Biochemistry 2005; 44:2163-72. [PMID: 15697242 DOI: 10.1021/bi0485981] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The stable trioxatriangulenium ion (TOTA) has previously been shown to bind to and photooxidize duplex DNA, leading to cleavage at G residues, particularly 5'-GG-3' repeats. Telomeric DNA consists of G-rich sequences that may exist in either duplex or G-quadruplex forms. We have employed electrospray ionization mass spectrometry (ESI-MS) to investigate the interactions between TOTA and duplex DNA or G-quadruplex DNA. A variety of duplex decamer oligodeoxynucleotides form complexes with TOTA that can be detected by ESI-MS, and the stoichiometry and fragmentation patterns observed are commensurate with an intercalative binding mode. TOTA also forms complexes with four-stranded and hairpin-dimer G-quadruplex oligodeoxynucleotides that can be detected by ESI-MS. Both the stoichiometry and the fragmentation patterns observed by ESI-MS are different than those observed for G-tetrad end-stacking binding ligands. We have carried out (1)H NMR titrations of a four-stranded G-quadruplex in the presence of TOTA. Addition of up to 1 equiv of TOTA is accompanied by pronounced upfield shifts of the G-tetrad imino proton resonances in the NMR, which is similar to the effect observed for G-tetrad end-stacking ligands. At higher ratios of added TOTA, there is evidence for additional binding modes. Duplex DNA containing either human telomeric repeats (T(2)AG(3))(4) or the Tetrahymena telomeric repeats (T(2)G(4))(4) are readily photooxidized by TOTA, the major sites of oxidation being the central guanine residues in each telomeric repeat. These telomeric repeats were incorporated into duplex/quadruplex chimeras in which the repeats adopt a G-quadruplex structure. Analysis by denaturing polyacrylamide gel electrophoresis reveals significantly less TOTA photocleavage of these quadruplex telomeric repeats when compared to the duplex repeats.
Collapse
Affiliation(s)
- Arti Pothukuchy
- Division of Medicinal Chemistry and Institute for Cellular and Molecular Biology, The University of Texas, Austin, Texas 78712, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Joy A, Schuster GB. Long-range radical cation migration in DNA: Investigation of the mechanism. Chem Commun (Camb) 2005:2778-84. [PMID: 15928756 DOI: 10.1039/b500412h] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
During the past decade, long-range radical cation migration in DNA has been an area of extensive experimental and theoretical examination. The motivations for the vigorous investigation of this topic are its potential to yield a deeper understanding of the processes that cause oxidative damage of genomic DNA and the potential for use of DNA architectures in molecular electronics. This investigation has revealed the mechanisms of charge transport and the limitations of DNA as a functional element in devices. In this article we discuss various aspects of the radical cation migration process and present the plausible mechanism by which this process occurs.
Collapse
Affiliation(s)
- Abraham Joy
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | |
Collapse
|
33
|
Shukla LI, Pazdro R, Huang J, DeVreugd C, Becker D, Sevilla MD. The formation of DNA sugar radicals from photoexcitation of guanine cation radicals. Radiat Res 2004; 161:582-90. [PMID: 15161365 DOI: 10.1667/rr3167] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In this investigation of radical formation and reaction in gamma- irradiated DNA and model compounds, we report the conversion of the guanine cation radical (one-electron oxidized guanine, G(.+)) to the C1' sugar radical and another sugar radical at the C3' or C4' position (designated C3'(.)/C4'(.)) by visible and UV photolysis. Electron spin resonance (ESR) spectroscopic investigations were performed on salmon testes DNA as well as 5'-dGMP, 3'-dGMP, 2'-deoxyguanosine and other nucleosides/nucleotides as model systems. DNA samples (25- 150 mg/ml D(2)O) were prepared with Tl(3+) or Fe(CN)(3-)(6) as electron scavengers. Upon gamma irradiation of such samples at 77 K, the electron-gain path in the DNA is strongly suppressed and predominantly G(.+) is found; after UV or visible photolysis, the fraction of the C1' sugar radical increases with a concomitant reduction in the fraction of G(.+). In model systems, 3'- dGMP(+.) and 5'-dGMP(+.) were produced by attack of Cl(.-)(2) on the parent nucleotide in 7 M LiCl glass. Subsequent visible photolysis of the 3'-dGMP(+.) (77 K) results predominantly in formation of C1'(.) whereas photolysis of 5'-dGMP(+.) results predominantly in formation of C3'(.)/C4'(.). We propose that sugar radical formation is a result of delocalization of the hole in the electronically excited base cation radical into the sugar ring, followed by deprotonation at specific sites on the sugar.
Collapse
Affiliation(s)
- Lata I Shukla
- Department of Chemistry, Oakland University, Rochester, Michigan 48309, USA
| | | | | | | | | | | |
Collapse
|
34
|
Troisi A, Ratner MA, Zimmt MB. Dynamic nature of the intramolecular electronic coupling mediated by a solvent molecule: a computational study. J Am Chem Soc 2004; 126:2215-24. [PMID: 14971957 DOI: 10.1021/ja038905a] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
We present a combined Molecular Dynamics/Quantum Chemical study of the solvent-mediated electronic coupling between an electron donor and acceptor in a C-clamp molecule. We characterize the coupling fluctuations due to the solvent motion for different solvents (acetonitrile, benzene, 1,3-diisopropyl-benzene) for the charge separation and the charge recombination processes. The time scale for solvent-induced coupling fluctuation is approximately 0.1 ps. The effect of these fluctuations on the observed rate is discussed using a recently developed theoretical model. We show that, while the microscopic charge transfer process is very complicated and its computational modeling very subtle, the macroscopic phenomenology can be captured by the standard models. Analyzing the contribution to the coupling given by different solvent orbitals, we find that many solvent orbitals mediate the electron transfer and that paths through different solvent orbitals can interfere constructively or destructively. A relatively small subset of substrate-solvent configurations dominate contributions to solvent-mediated coupling. This subset of configurations is related to the electronic structure of the C-clamp molecule.
Collapse
Affiliation(s)
- Alessandro Troisi
- Department of Chemistry, Materials Research Center and Center for Nanofabrication and Molecular Self-Assembly, Northwestern University, Evanston, Illinois, USA.
| | | | | |
Collapse
|
35
|
Kawai K, Takada T, Nagai T, Cai X, Sugimoto A, Fujitsuka M, Majima T. Long-lived charge-separated state leading to DNA damage through hole transfer. J Am Chem Soc 2004; 125:16198-9. [PMID: 14692755 DOI: 10.1021/ja038309g] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The hole transfer causes the long-lived charge-separated state in DNA during the photosensitized one-electron oxidation of DNA. The combination of the transient absorption measurement and DNA damage quantification by HPLC clearly demonstrated that the yield of the DNA damage correlates well with the lifetime of the charge-separated state.
Collapse
Affiliation(s)
- Kiyohiko Kawai
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan.
| | | | | | | | | | | | | |
Collapse
|
36
|
Friedman KA, Heller A. Guanosine Distribution and Oxidation Resistance in Eight Eukaryotic Genomes. J Am Chem Soc 2004; 126:2368-71. [PMID: 14982441 DOI: 10.1021/ja038217r] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Reactive oxygen species that attack DNA are continuously generated in living cells. Both the guanosine (G) mole fraction and its distribution should affect the stability of genomes and their parts to oxidation. At a lesser G content, genomes should be more oxidation resistant or "ennobled". Oxidant scavenging by G's in nonessential parts of introns and intergenic domains should decrease G oxidation in the essential exons. To determine whether genomes are indeed ennobled and whether oxidant-scavenging domains exist in genomes, the relative rates of guanosine oxidation in average exons, introns, and intergenic domains were estimated. Comparison among genomes indicated that average exons are ennobled in the genomes of Caenorhabditis (worm), Arabidopsis (plant), Saccharomyces (yeast), Schizosaccharomyces (yeast), and Plasmodium (malaria parasite), and that average introns and intergenic domains are ennobled in these genomes and in the genome of Drosophila (fly). The exon oxidation rates estimated for these genomes were less than the rate for the hypothetical "standard" genome, with a 0.25 mole fraction of uniformly distributed G. For Plasmodium the rate was half of that estimated for the standard genome. Average exons were not ennobled in the human or fly genomes; their G distributions were comparable to that in the standard genome. Instead, their exons were situated between introns and intergenic domains that could protect them by oxidant scavenging, the G's of their introns and intergenic domains outnumbering those of their exons 50-fold in humans and 4-fold in flies. The G distribution in the Encephalitozoon (parasite) genome was not protective relative to that of the standard genome.
Collapse
Affiliation(s)
- Keith A Friedman
- Department of Chemical Engineering and the Texas Materials Institute, University of Texas at Austin, Austin, Texas 78712-0231, USA.
| | | |
Collapse
|
37
|
Senthilkumar K, Grozema FC, Guerra CF, Bickelhaupt FM, Siebbeles LDA. Mapping the sites for selective oxidation of guanines in DNA. J Am Chem Soc 2004; 125:13658-9. [PMID: 14599193 DOI: 10.1021/ja037027d] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The effective energy of a positive charge when it is localized at a specific guanine nucleobase in DNA was calculated using density functional theory. The results demonstrate that the efficiency of a guanine to act as a hole-trap in DNA strongly depends on the nature of the flanking nucleobases. The presence of a pyrimidine base at the 3' position adjacent to a guanine significantly increases the localization energy of the positive charge. The calculated distributions of a positive charge in sequences of two or three adjacent guanines, flanked by other nucleobases, provide an explanation for experimental literature data on the site-selective oxidation of DNA.
Collapse
Affiliation(s)
- K Senthilkumar
- Radiation Chemistry Department, Interfaculty Reactor Institute, Delft University of Technology, Mekelweg 15, NL-2629 JB Delft, The Netherlands
| | | | | | | | | |
Collapse
|
38
|
Tibodeau JD, Thorp HH. Probing the Solvent Accessibility and Electron Density of Adenine: Oxidation of 7-Deazaadenine in Bent DNA and Purine Doublets. Inorg Chem 2003; 43:408-10. [PMID: 14731001 DOI: 10.1021/ic034989c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The effect of DNA bending on nucleobase electron transfer was investigated by studying the oxidation of double-stranded sequences containing seven repeats of the known bent sequence d(GGCA(1)A(2)A(3)A(4)A(5)A(6)C) where 7-deazaadenine (zA) was substituted at the A(3) position. Native gel electrophoresis was used to show that the sequence remained bent upon substitution of zA, which provides for oxidation of the sequence by Ru(bpy)(3)(3+) (bpy = 2,2'-bipyridine). The Ru(III) oxidant was generated by photolysis of Ru(bpy)(3)(2+) in the presence of ferricyanide, and the oxidation was visualized by high-resolution gel electrophoresis of the radiolabeled DNA sequence following base treatment. Cleavage of the DNA strand at the guanine residues and at the zA residues was observed. Comparison of the oxidation of zA in bent DNA versus the normal B form showed that hybridization of the B form sequence to its Watson-Crick complement produced a reduction in cleavage by a factor of 5.19 +/- 0.46 while hybridization of the bent sequence only reduced cleavage by a factor of 1.58 +/- 0.23. This result implies that the zA in the double-stranded, bent sequence is much more solvent-exposed than in normal B-form DNA. When the zA occurred in a B-form 5'-zA-G doublet, the reactivity was 6.63 +/- 0.10 times higher for the zA compared to the G. This implies an even greater effect of a 3'-guanine on the oxidation potential of zA than in the well-known 5'-GG doublet.
Collapse
Affiliation(s)
- Jennifer D Tibodeau
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599-3290, USA
| | | |
Collapse
|
39
|
Troisi A, Nitzan A, Ratner MA. A rate constant expression for charge transfer through fluctuating bridges. J Chem Phys 2003. [DOI: 10.1063/1.1601600] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
40
|
Abstract
The stack of base pairs within double helical DNA has been shown to mediate charge transport reactions. Charge transport through DNA can result in chemistry at a distance, yielding oxidative DNA damage at a site remote from the bound oxidant. Since DNA charge transport chemistry depends on coupling within the stacked base pair array, this chemistry is remarkably sensitive to sequence-dependent DNA structure and dynamics. Here, we discuss different features of DNA charge transport chemistry, including applications as well as possible biological consequences and opportunities.
Collapse
Affiliation(s)
- Sarah Delaney
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | | |
Collapse
|
41
|
Yoo J, Delaney S, Stemp EDA, Barton JK. Rapid radical formation by DNA charge transport through sequences lacking intervening guanines. J Am Chem Soc 2003; 125:6640-1. [PMID: 12769567 DOI: 10.1021/ja034326u] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Using the flash-quench technique to probe DNA charge transport in assemblies containing a tethered ruthenium intercalator, the kinetics and yield of methylindole radical formation as a function of DNA sequence were studied by laser spectroscopy and biochemical methods. In these assemblies, the methylindole moiety serves as an artificial base of low oxidation potential. Hole injection and subsequent formation of the methylindole radical cation were observed at a distance of over 30 A at rates >/=107 s-1 in assemblies containing no guanine bases intervening the ruthenium intercalator and GMG oxidation site. Radical yield was, however, strikingly sensitive to an intervening base mismatch; no significant methylindole radical formation was evident with an intervening AA mismatch. Also critical is the sequence at the injection site; this sequence determines initial hole localization and hence the probability of hole propagation. With guanine rather than inosine near the site of hole injection, decreased yields of radicals and long-range oxidative damage are observed. The presence of the low-energy guanine site in this case serves to localize the hole and therefore diminish charge transport through the base pair stack.
Collapse
Affiliation(s)
- Jae Yoo
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | | |
Collapse
|
42
|
Liu CS, Schuster GB. Base sequence effects in radical cation migration in duplex DNA: support for the polaron-like hopping model. J Am Chem Soc 2003; 125:6098-102. [PMID: 12785840 DOI: 10.1021/ja029333h] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of anthraquinone-linked (AQ) duplex DNA oligomers were prepared and investigated. Irradiation of the AQ injects a radical cation into the DNA. The radical cation migrates through the DNA and reacts selectively at GG steps, which leads to strand cleavage after treatment with piperidine. The oligomers investigated in this work were selected to assess the effect on long-distance charge transport of placing a T base (or bases) in a strand of repeating purine bases. With notable exceptions, the amount of strand scission decreases with the distance between the AQ and the GG step. The results are consistent only with models for long-distance transport, such as thermally activated polaron-like hopping, that incorporate radical cation delocalization over two or more adjacent bases.
Collapse
Affiliation(s)
- Chu-Sheng Liu
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta 30332, USA
| | | |
Collapse
|
43
|
Gaballah ST, Netzel TL. Synthesis of 5-(pyridinyl and pyridiniumyl)-2'-deoxyuridine nucleosides: reversible electron traps for DNA. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2002; 21:681-94. [PMID: 12502283 DOI: 10.1081/ncn-120015725] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The desire to produce reversible electron traps for direct, room temperature studies of excess electron transport in DNA duplexes and hairpins motivated our efforts first to link pyridines to 2'-deoxyuridine (pyridinyl-dU) and then to convert these new conjugates into pyridiniumyl-dU nucleosides. Base sensitivity studies presented here rule out general use of bipyridinediiumyl compounds, but show that pyridiniumyl compounds are suitable for use under the strand cleavage and base deprotection procedures required for automated solid-phase oligonucleotide synthesis. This paper presents the synthesis of four 5'-O-DMT-protected 5-(N-methylpyridiniumyl)-dU conjugates using either ethynyl or ethylenyl linkers to join the pyridiniumyl and dU subunits.
Collapse
Affiliation(s)
- Samir T Gaballah
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | | |
Collapse
|
44
|
Abstract
A large fraction of the presently mass-manufactured (> 10(8) units/year) electrochemical biosensors, used mostly by diabetic people to monitor their blood glucose levels, have screen-printed carbon working electrodes. An earlier study (Campbell, C. N., et al. Anal. Chem. 2002, 74, 158-162) showed that nucleic acids can be assayed at 1 nM concentrations by a sandwich-type amperometric method. The assay was performed with vitreous carbon working electrodes on which an electron-conducting polycationic redox polymer and avidin were coelectrodeposited. Because the rate of the electrodeposition increases with the surface density of the polycationic redox polymer, its practicality depends on pretreatment of the surface, which adds anionic functions. (Gao, Z., et al. Angew. Chem. Int. Ed. 2002, 41, 810-813). Here it is shown that the required conducting redox polymer films can be electrodeposited on potentially mass manufacturable electrodes made by screen-printing hydrophilic carbon inks on polyester sheets. The modified electrodes are made in two steps. First a polycationic electron-conducting redox polymer is cross-linked and electrodeposited by applying a negative potential. Next, an amine-terminated 20-base single-stranded oligonucleotide is electrodeposited by ligand-exchange. Both steps involve exchange of a labile inner sphere chloride ligand of the polymer-bound osmium-complex: Cross-linking and electrodeposition of the redox polymer result when inner-sphere chloride anions of the osmium complexes are exchanged by imidazole functions of neighboring chains. Incorporation of the oligonucleotide in the redox polymer results in the formation of a coordinative bond between the terminal amine (attached through a spacer to the oligonucleotide) and the osmium complex. In testing for the presence of a 38-base oligonucleotide, the analyte, in a 15- or 25-microL droplet of hybridization solution, is hybridized with and captured by the 20-base electrode-bound sequence; then it is hybridized with an 18-base horseradish peroxidase labeled sequence. When the HRP label electrically contacts the redox polymer, the film becomes an electrocatalyst for the reduction of H2O2 to water at 0.10 V (Ag/AgCl). Flow of the H2O2-reduction current indicates the presence of the assayed sequence.
Collapse
Affiliation(s)
- Murielle Dequaire
- Department of Chemical Engineering and Texas Materials Institute, The University of Texas at Austin, 78712, USA
| | | |
Collapse
|
45
|
|
46
|
|
47
|
Fu PKL, Bradley PM, van Loyen D, Dürr H, Bossmann SH, Turro C. DNA photocleavage by a supramolecular Ru(II)-viologen complex. Inorg Chem 2002; 41:3808-10. [PMID: 12132903 DOI: 10.1021/ic020136t] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A novel Ru(II) complex possessing two sequentially linked viologen units, Ru-V(1)-V(2)(6+), was synthesized and characterized. Upon excitation of the Ru(II) unit (lambda(exc) = 532 nm, fwhm approximately 10 ns), a long-lived charge-separated (CS) state is observed (tau = 1.7 micros) by transient absorption spectroscopy. Unlike Ru(bpy)(3)(2+), which cleaves DNA upon photolysis through the formation of reactive oxygen species, such as (1)O(2) and O(2)(-), the photocleavage of plasmid DNA by Ru-V(1)-V(2)(6+) is observed both in air and under N(2) atmosphere (lambda(irr) > 395 nm).
Collapse
Affiliation(s)
- Patty K-L Fu
- Department of Chemistry, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | |
Collapse
|
48
|
Jortner J, Bixon M, Voityuk AA, Rösch N. Superexchange Mediated Charge Hopping in DNA. J Phys Chem A 2002. [DOI: 10.1021/jp014232b] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Joshua Jortner
- School of Chemistry, Tel Aviv University, Ramat Aviv, 69978 Tel Aviv, Israel, and Institut für Physikalische und Theoretische Chemie, Technische Universität München, 85747 Garching, Germany
| | - M. Bixon
- School of Chemistry, Tel Aviv University, Ramat Aviv, 69978 Tel Aviv, Israel, and Institut für Physikalische und Theoretische Chemie, Technische Universität München, 85747 Garching, Germany
| | - Alexander A. Voityuk
- School of Chemistry, Tel Aviv University, Ramat Aviv, 69978 Tel Aviv, Israel, and Institut für Physikalische und Theoretische Chemie, Technische Universität München, 85747 Garching, Germany
| | - Notker Rösch
- School of Chemistry, Tel Aviv University, Ramat Aviv, 69978 Tel Aviv, Israel, and Institut für Physikalische und Theoretische Chemie, Technische Universität München, 85747 Garching, Germany
| |
Collapse
|
49
|
Fahlman RP, Sen D. DNA conformational switches as sensitive electronic sensors of analytes. J Am Chem Soc 2002; 124:4610-6. [PMID: 11971708 DOI: 10.1021/ja012618u] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The electrical conductivity of DNA is dependent on its conformational state. We demonstrate here that such a dependence may be harnessed for the electronic sensing of external analytes, for instance, adenosine. Such a DNA sensor incorporates an analyte "receptor", whose altered conformation in the presence of bound analyte switches the conformation, and hence, the conductive path between two DNA double-helical stems. Two distinct designs for such sensors are described here, that permit significant electrical conduction through a "detector" double-helical stem only in the presence of the bound analyte. In the first design, current flows through the analyte receptor itself, whereas in the second, current flows in a path adjacent to the receptor. The former design may be especially suitable for certain categories of analytes, including heterocycle-containing compounds such as adenosine, whereas the latter design should be generally applicable to the detection of any molecular analyte, large or small. Since analyte detection in these DNA sensors is electronic, the potential exists for their application in rapid and automated chip-based detection of small molecules as well as of proteins and other macromolecules.
Collapse
Affiliation(s)
- Richard P Fahlman
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | | |
Collapse
|
50
|
Tong GSM, Kurnikov IV, Beratan DN. Tunneling Energy Effects on GC Oxidation in DNA. J Phys Chem B 2002. [DOI: 10.1021/jp013387g] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Glenna S. M. Tong
- Departments of Chemistry and Biochemistry, Box 90346, Duke University, Durham, North Carolina 27708-0346
| | - Igor V. Kurnikov
- Departments of Chemistry and Biochemistry, Box 90346, Duke University, Durham, North Carolina 27708-0346
| | - David N. Beratan
- Departments of Chemistry and Biochemistry, Box 90346, Duke University, Durham, North Carolina 27708-0346
| |
Collapse
|