1
|
Semi-reversible collapse of preformed cobalt stearate Langmuir monolayer on water surface. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
2
|
Foster AJ, Kodar K, Timmer MSM, Stocker BL. ortho-Substituted lipidated Brartemicin derivative shows promising Mincle-mediated adjuvant activity. Org Biomol Chem 2020; 18:1095-1103. [DOI: 10.1039/c9ob02397f] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Structure activity relationship studies of lipidated Brartemicin analogues have revealed the potent adjuvant activity of ortho-substituted Brartemicin analogue 5a, which was better than that of p-OC18 (5c) and C18dMeBrar (4).
Collapse
Affiliation(s)
- Amy J. Foster
- School of Chemical and Physical Sciences
- Victoria University of Wellington
- Wellington
- New Zealand
- Centre for Biodiscovery
| | - Kristel Kodar
- School of Chemical and Physical Sciences
- Victoria University of Wellington
- Wellington
- New Zealand
- Centre for Biodiscovery
| | - Mattie S. M. Timmer
- School of Chemical and Physical Sciences
- Victoria University of Wellington
- Wellington
- New Zealand
- Centre for Biodiscovery
| | - Bridget L. Stocker
- School of Chemical and Physical Sciences
- Victoria University of Wellington
- Wellington
- New Zealand
- Centre for Biodiscovery
| |
Collapse
|
3
|
Stefaniu C, Wölk C, Brezesinski G, Schneck E. Relationship between structure and molecular interactions in monolayers of specially designed aminolipids. NANOSCALE ADVANCES 2019; 1:3529-3536. [PMID: 36133531 PMCID: PMC9418614 DOI: 10.1039/c9na00355j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 07/23/2019] [Indexed: 05/05/2023]
Abstract
Artificial cationic lipids are already recognized as highly efficient gene therapy tools. Here, we focus on another potential use of aminolipids, in their electrically-uncharged state, for the formation of covalently cross-linked, one-molecule-thin films at interfaces. Such films are envisioned for future (bio-)materials applications. To this end, Langmuir monolayers of structurally different aminolipids are comprehensively characterized with the help of highly sensitive surface characterization techniques. Pressure-area isotherms, Brewster angle microscopy, grazing-incidence X-ray diffraction and infrared reflection-absorption spectrometry experiments provide a detailed, comparative molecular picture of the formed monolayers. This physico-chemical study highlights the relationship between chemical structures and intermolecular interactions, which can serve as a basis for the rational design of cross-linked thin films with precisely controlled properties.
Collapse
Affiliation(s)
- Cristina Stefaniu
- Departments of Biomaterials and Biomolecular Systems, Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany
| | - Christian Wölk
- Institute of Pharmacy, Research Group Biochemical Pharmacy, Martin-Luther-University Wolfgang-Langenbeck-Strasse 4 06120 Halle (Saale) Germany
| | - Gerald Brezesinski
- Departments of Biomaterials and Biomolecular Systems, Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany
| | - Emanuel Schneck
- Departments of Biomaterials and Biomolecular Systems, Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 14476 Potsdam Germany
| |
Collapse
|
4
|
Stefaniu C, Latza VM, Gutowski O, Fontaine P, Brezesinski G, Schneck E. Headgroup-Ordered Monolayers of Uncharged Glycolipids Exhibit Selective Interactions with Ions. J Phys Chem Lett 2019; 10:1684-1690. [PMID: 30908061 PMCID: PMC6727371 DOI: 10.1021/acs.jpclett.8b03865] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 03/25/2019] [Indexed: 05/22/2023]
Abstract
Selective interactions of ions with charge-neutral saccharides can have far-reaching consequences in biological and wet-technological contexts but have so far been observed only indirectly. Here, we directly quantify by total-reflection X-ray fluorescence the preferential accumulation of ions near uncharged saccharide surfaces in the form of glycolipid Langmuir monolayers at air/water interfaces exhibiting different levels of structural ordering. Selective interactions with ions from the aqueous subphase are observed for monolayers featuring crystalline ordering of the saccharide headgroups, as determined by grazing-incidence X-ray diffraction. The attracted ion species depend on the structural motifs displayed by the ordered saccharide layer. Our results may constitute a basis to understand the salt-specific swelling of wood materials and various phenomena in membrane biophysics.
Collapse
Affiliation(s)
- Cristina Stefaniu
- Departments
of Biomaterials and Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Victoria M. Latza
- Departments
of Biomaterials and Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Olof Gutowski
- Deutsches
Elektronen-Synchrotron (DESY), 22607 Hamburg, Germany
| | | | - Gerald Brezesinski
- Departments
of Biomaterials and Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Emanuel Schneck
- Departments
of Biomaterials and Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- E-mail: . Phone: +49-331567-9404. Fax: +49-331567-9402
| |
Collapse
|
5
|
Stefaniu C, Zaffalon PL, Carmine A, Verolet Q, Fernandez S, Wesolowski TA, Brezesinski G, Zumbuehl A. Rigid urea and self-healing thiourea ethanolamine monolayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:1296-1302. [PMID: 25594235 DOI: 10.1021/la5039987] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A series of long-tail alkyl ethanolamine analogs containing amide-, urea-, and thiourea moieties was synthesized and the behavior of the corresponding monolayers was assessed on the Langmuir-Pockels trough combined with grazing incidence X-ray diffraction experiments and complemented by computer simulations. All compounds form stable monolayers at the soft air/water interface. The phase behavior is dominated by strong intermolecular headgroup hydrogen bond networks. While the amide analog forms well-defined monolayer structures, the stronger hydrogen bonds in the urea analogs lead to the formation of small three-dimensional crystallites already during spreading due to concentration fluctuations. The hydrogen bonds in the thiourea case form a two-dimensional network, which ruptures temporarily during compression and is recovered in a self-healing process, while in the urea clusters the hydrogen bonds form a more planar framework with gliding planes keeping the structure intact during compression. Because the thiourea analogs are able to self-heal after rupture, such compounds could have interesting properties as tight, ordered, and self-healing monolayers.
Collapse
Affiliation(s)
- Cristina Stefaniu
- Max Planck Institute of Colloids and Interfaces , 14476 Potsdam, Germany
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Topete A, Alatorre-Meda M, Villar-Álvarez EM, Cambón A, Barbosa S, Taboada P, Mosquera V. Simple control of surface topography of gold nanoshells by a surfactant-less seeded-growth method. ACS APPLIED MATERIALS & INTERFACES 2014; 6:11142-11157. [PMID: 24959918 DOI: 10.1021/am500989e] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We report the synthesis of branched gold nanoshells (BGNS) through a seeded-growth surfactant-less method. This was achieved by decorating chitosan-Pluronic F127 stabilized poly(lactic-co-gycolic) acid nanoparticles (NPs) with Au seeds (NP-seed), using chitosan as an electrostatic self-assembling agent. Branched shells with different degrees of anisotropy and optical response were obtained by modulating the ratios of HAuCl4/K2CO3 growth solution, ascorbic acid (AA) and NP-seed precursor. Chitosan and AA were crucial in determining the BGNS size and structure, acting both as coreductants and structure directing growth agents. Preliminary cytotoxicity experiments point to the biocompatibility of the obtained BGNS, allowing their potential use in biomedical applications. In particular, these nanostructures with "hybrid" compositions, which combine the features of gold nanoshells and nanostars showed a better performance as surface enhanced Raman spectroscopy probes in detecting intracellular cell components than classical smoother nanoshells.
Collapse
Affiliation(s)
- Antonio Topete
- Grupo de Física de Coloides y Polímeros, Departamento de Física de la Materia Condensada, Universidad de Santiago de Compostela , Santiago de Compostela 15782, Spain
| | | | | | | | | | | | | |
Collapse
|
7
|
Brewster angle microscopy: A preferential method for mesoscopic characterization of monolayers at the air/water interface. Curr Opin Colloid Interface Sci 2014. [DOI: 10.1016/j.cocis.2014.02.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Bao H, Bihr T, Smith AS, Klupp Taylor RN. Facile colloidal coating of polystyrene nanospheres with tunable gold dendritic patches. NANOSCALE 2014; 6:3954-3966. [PMID: 24253323 DOI: 10.1039/c3nr04016j] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Patchy particles comprise regions of differing material or chemical functionality on otherwise isotropic cores. To meet the great potential of these anisotropic structures in a wide range of application fields, completely new approaches are sought for the scalable and tunable production of patchy particles, particularly those with nanoscale dimensions. In this paper the synthesis of patchy particles via a simple colloidal route is investigated. Using surfactant-free cationic polystyrene nanospheres as core particles, gold patches are produced through the in situ reduction of chloroauric acid with ascorbic acid. The fact that such nanostructured metal patches can be heterogeneously nucleated on polymer nanospheres is related to the electrostatic interaction between core and metal precursor. Furthermore, the lateral expansion of the gold patches over the polystyrene surface is facilitated by an excess of ascorbic acid. The morphology of the patches is highly dendritic and process-induced variations in the structure are related to gold surface mobility using Monte Carlo simulations based on the diffusion limited aggregation principle. Considering the pH dependent behaviour of ascorbic acid it is possible to predict the moiety which most likely adsorbs to the polymer surface and promotes gold surface diffusion. This enables the judicious adjustment of the pH to also obtain non-dendritic patches. On account of the plasmonic behaviour of gold, the patchy particles have morphology-dependent optical properties. The systematic development of the synthetic approach described here is expected to lay a foundation for the development of functional materials based on the self- or directed-assembly of nanoscale building blocks with anisotropic interactions and properties.
Collapse
Affiliation(s)
- Huixin Bao
- Institute of Particle Technology, FAU Erlangen-Nürnberg, Cauerstr. 4, 91058 Erlangen, Germany.
| | | | | | | |
Collapse
|
9
|
Portalone G. Supramolecular association in proton-transfer adducts containing benzamidinium cations. III. Three molecular salts of 3-methoxy-, 4-methoxy- and 3,4,5-trimethoxybenzoates with benzamidine. Acta Crystallogr C 2014; 70:225-9. [PMID: 24508975 DOI: 10.1107/s2053229614001090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 01/15/2014] [Indexed: 11/10/2022] Open
Abstract
Three molecular salts, benzamidinium 3-methoxybenzoate, C7H9N2(+)·C8H7O3(-), (I), benzamidinium 4-methoxybenzoate, C7H9N2(+)·C8H7O3(-), (II), and benzamidinium 3,4,5-trimethoxybenzoate monohydrate, C7H9N2(+)·C10H11O5(-)·H2O, (III), were formed from the proton-transfer reactions of 3-methoxy, 4-methoxy- and 3,4,5-trimethoxybenzoic acids with benzamidine (benzenecarboximidamide, benzam). Monoclinic salts (I) and (II) have a 1:1 ratio of cation to anion. In monoclinic salt (III), two cation-anion pairs and two water molecules constitute the asymmetric unit. In all three molecular salts, the amidinium fragments and the carboxylate groups are completely delocalized, and the delocalization favours the aggregation of the molecular components into nonplanar dimers with an R(2)(2)(8) graph-set motif by N(+)-H···O(-) (±) charge-assisted hydrogen bonding (CAHB). Of the three molecular salts, (I) and (II) show similar conformations of the anionic components and exhibit bidimensional isostructurality, which consists of alternating R(2)(2)(8) and R(6)(4)(16) rings resulting in a corrugated sheet propagated parallel to the crystallographic ab plane. In molecular salt (III), the R(2)(2)(8) synthon is retained but the supramolecular structure is different, due to the presence of three bulky methoxy substituents and a water molecule. The structures reported here further demonstrate the robustness of R(2)(2)(8) hydrogen-bonded synthons having the benzamidinium cation as a building block, whereas N(+)-H···O(-) hydrogen bonds external to the salt bridge contribute to the overall structure organization.
Collapse
Affiliation(s)
- Gustavo Portalone
- Chemistry Department, University of Rome I `La Sapienza', P.le A. Moro 5, I-00185 Rome, Italy
| |
Collapse
|
10
|
Ni L, Rigolet S, Chemtob A, Croutxé-Barghorn C, Brendlé J, Vidal L. Head-to-head and head-to-tail multilayer n-alkylsilsesquioxane films. CR CHIM 2013. [DOI: 10.1016/j.crci.2013.05.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
11
|
Ramesh N, Sarangi NK, Patnaik A. Establishing the ellipsoidal geometry of a benzoic acid-based amphiphile via dimer switching: insights from intramolecular rotation and facial H-bond torsion. J Phys Chem B 2013; 117:5345-54. [PMID: 23534676 DOI: 10.1021/jp400854x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Soft molecular ellipsoids conceived from 3,4-di(dodecyloxy)benzoic acid (DDBA) amphiphile draw attention to monomer structure design, intramolecular -COOH headgroup twist (ϕ°) and cyclic-acyclic dimer switching through facial H-bond torsion (ψ°). Generically, precipitation in hydrogen bonded systems has been the prime phenomenon once the critical aggregation concentrations were reached in the bulk solution. DDBA was no exception to this generalization. It formed precipitates in chloroform and methanol with no specific geometry but with cyclic dimer motifs in them. On the contrary, surface pressure modulated interfacial aggregation with ellipsoidal geometry followed acyclic dimerization (catemer motif) with various levels of headgroup torsion, established through real-time polarization modulated infrared reflection-absorption spectroscopy (IRRAS) and density functional theory (DFT) calculations, that estimated the energy costs for these unexplored pathways. The reaction coordinates ϕ° and ψ° in consonance with 2D surface pressure modulation thus directed the shape anisotropy during the dynamic self-assembly of DDBA. Changes in subphase pH and metal ionic environment had a derogatory effect on the ellipsoid formation, the structural requirement for which strictly followed a stringent need for twin alkyl chains in an asymmetric unit cell, as 4-dodecyloxybenzoic acid (MABA) with a single alkyl chain formed exclusively spherical assemblies with no dimer modulation. The investigation thus reports unexplored energy pathways toward ellipsoidal geometry of the amphiphile in the course of its interfacial aggregation.
Collapse
Affiliation(s)
- Nivarthi Ramesh
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India
| | | | | |
Collapse
|
12
|
Stefaniu C, Vilotijevic I, Santer M, Varón Silva D, Brezesinski G, Seeberger PH. Subgelphasenstruktur in Monoschichten von Glycosylphosphatidylinositol-Glycolipiden. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201205825] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
13
|
Stefaniu C, Vilotijevic I, Santer M, Varón Silva D, Brezesinski G, Seeberger PH. Subgel phase structure in monolayers of glycosylphosphatidylinositol glycolipids. Angew Chem Int Ed Engl 2012; 51:12874-8. [PMID: 23135766 DOI: 10.1002/anie.201205825] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 09/17/2012] [Indexed: 11/12/2022]
Affiliation(s)
- Cristina Stefaniu
- Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14424 Potsdam, Germany.
| | | | | | | | | | | |
Collapse
|
14
|
Ottosson N, Romanova AO, Söderström J, Björneholm O, Öhrwall G, Fedorov MV. Molecular Sinkers: X-ray Photoemission and Atomistic Simulations of Benzoic Acid and Benzoate at the Aqueous Solution/Vapor Interface. J Phys Chem B 2012; 116:13017-23. [DOI: 10.1021/jp300956j] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Niklas Ottosson
- Department of Physics and Astronomy, Uppsala University, SE-751 20 Uppsala, Sweden
| | - Anastasia O. Romanova
- Max Planck Institute for Mathematics in the Sciences, Inselstrasse 22, D
04103, Leipzig, Germany
| | - Johan Söderström
- Department of Physics and Astronomy, Uppsala University, SE-751 20 Uppsala, Sweden
| | - Olle Björneholm
- Department of Physics and Astronomy, Uppsala University, SE-751 20 Uppsala, Sweden
| | - Gunnar Öhrwall
- MAX-lab, Lund University, Box 118, SE-221 00 Lund, Sweden
| | - Maxim V. Fedorov
- Max Planck Institute for Mathematics in the Sciences, Inselstrasse 22, D
04103, Leipzig, Germany
| |
Collapse
|
15
|
Martin SM, Kjaer K, Weygand MJ, Weissbuch I, Ward MD. Hydrogen-Bonded Monolayers and Interdigitated Multilayers at the Air−Water Interface. J Phys Chem B 2006; 110:14292-9. [PMID: 16854135 DOI: 10.1021/jp056310r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Crystalline monolayers of octadecylsulfonate amphiphiles (C18S) separated by hydrophilic guanidinium (G) spacer molecules were formed at the air-water interface at a surface coverage that was consistent with that expected for a fully condensed monolayer self-assembled by hydrogen bonding between the G ions and the sulfonate groups. The surface pressure-area isotherms reflected reinforcement of this monolayer by hydrogen bonding between the G ions and the sulfonate groups, and grazing incidence X-ray diffraction (GIXD) measurements, performed in-situ at the air-water interface, revealed substantial tilt of the alkyl hydrophobes (t = 49 degrees with respect to the surface normal), which allowed the close packing of the C18 chains needed for a stable crystalline monolayer. This property contrasts with behavior observed previously for monolayers of hexadecylbiphenylsulfonate (C16BPS) and G, which only formed crystallites upon compression, accompanied by ejection of the G ions from the air-water interface. Upon compression to higher surface pressures, GIXD revealed that the highly tilted (G)C18S monolayer crystallites transformed to a self-interdigitated (G)C18S crystalline multilayer accompanied by a new crystalline monolayer phase with slightly tilted alkyl chains and disordered sulfonate headgroups. This transformation was dependent on the rate of compression, suggesting kinetic limitations for the "zipper-like" transformation from the crystalline monolayer to the self-interdigitated (G)C18S crystalline multilayer.
Collapse
Affiliation(s)
- Stephen M Martin
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | |
Collapse
|
16
|
Ha B, Char K, Jeon HS. Intercalation Mechanism and Interlayer Structure of Hexadecylamines in the Confined Space of Layered α-Zirconium Phosphates. J Phys Chem B 2005; 109:24434-40. [PMID: 16375444 DOI: 10.1021/jp055563h] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Well-defined hexadecylamine (HDA) intercalated structures, either interdigitated layers, bilayers, or hybrid layers of both, in a confined space of highly functionalized layered alpha-zirconium phosphates (alpha-ZrPs) have been prepared based on the two-step intercalation mechanism and these distinct intercalated structures can serve as a model system to investigate the interactions of two monolayers whose amphiphilic tails are adjacent to each other. At the first intercalation step, the electrostatic interaction between HDAs and alpha-ZrP is dominant and results in an interdigitated layer structure (d(001) = 3.0 nm) and the interdigitated layer is saturated at around phi = 50%, where phi is the weight fraction of intercalated HDAs in the intergallery of alpha-ZrP. For phi higher than 50%, the bilayer structure (d(001) = 4.3 nm) emerges due to further hydrophobic interaction between HDAs initially grafted to alpha-ZrP and unanchored HDAs and the relative fraction of the bilayer structure over the interdigitated layer increases with the increase in the intercalated amount of HDAs. The intriguing morphology of alpha-ZrP tactoids intercalated with HDAs in coexisting bilayers and interdigitated layers is observed by using microtomed TEM and the two-step intercalation has also been verified with TGA and FT-IR. Also, a structural transition from the bilayers to the interdigitated layers is monitored by using in situ synchrotron WAXS showing that the hydrophobically intercalated HDAs are selectively deintercalated at a relatively low decomposition temperature around 220 degrees C.
Collapse
Affiliation(s)
- Bongwoo Ha
- School of Chemical and Biological Engineering and Polymer Thin Films National Research Laboratory, Seoul National University, San 56-1, Shillim-dong, Kwanak-gu, Seoul 151-744, Korea
| | | | | |
Collapse
|
17
|
Vollhardt D. Effect of interfacial molecular recognition of non-surface-active species on the main characteristics of monolayers. Adv Colloid Interface Sci 2005; 116:63-80. [PMID: 16122691 DOI: 10.1016/j.cis.2005.03.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2005] [Accepted: 03/15/2005] [Indexed: 11/19/2022]
Abstract
Recent progress in studies of the main characteristics of supramolecular assemblies formed by interfacial molecular recognition between an amphiphilic monolayer and a non-surface-active species, which is dissolved in the aqueous subphase, by complementary hydrogen bonding and/or electrostatic interaction at the air-water interface is reviewed. Systems consisting of an amphiphilic melamine-type monolayer and an pyrimidine derivative dissolved in the aqueous subphase are representative model systems for molecular recognition on the basis of complementary hydrogen bonding. Most of the studies have been performed with 2,4-di(n-undecylamino)-6-amino-1,3,5-triazine (2C11H23-melamine) monolayers as host component and thymine, uracil or barbituric acid as dissolved non-surface-active pyrimidine derivatives. The combination of surface pressure studies with Brewster angle microscopy (BAM) imaging and Grazing incidence X-ray diffraction (GIXD) measurements is optimal for the characterization of the change in structure and phase behavior at the interfacial recognition process. The molecular recognition of all pyrimidine derivatives dissolved in the aqueous subphase changes drastically and in a specific way the characteristic features (pi-A isotherms, morphology of the condensed phase domains) of the 2C11H23-melamine monolayer. The small condensed phase domains of the pure 2C11H23-melamine monolayer are compact without an inner texture. The monolayers of the supramolecular 2C11H23-melamine entities with thymine or uracil form specifically well-shaped condensed phase domains with an inner alkyl chain texture essentially oriented parallel to the periphery. The completely different morphology of the 2C11H23-melamine-barbituric acid monolayers is characterized by the formation of large homogeneous areas of condensed phase that transfer at smaller areas per molecule to a homogeneous condensed monolayer. The striking differences in the main characteristics between the supramolecular entities are related to their different chemical structures: complementary hydrogen bonding of two thymine or uracil molecules by one 2C11H23-melamine molecule and a linearly extended hydrogen bonding network between 2C11H23-melamine and barbituric acid. The high values of hydrogen bonding energy obtained by quantum chemical calculations on the basis of the semi-empirical PM3 method state the high stability of the supramolecular entities. The GIXD results reveal that the formation of hydrogen-bond based superstructures between the polar head groups of the amphiphilic 2C11H23-melamine monolayer and the non-surface-active pyrimidine derivatives gives rise only to quantitative changes in the two-dimensional lattice structure of the alkyl chains. The alternative possibility to construct interfacial molecular recognition systems on the basis of acid-base interaction is demonstrated by the experimental results obtained by molecular recognition of the heptadecyl-benzamidinium chloride monolayers with dissolved non-surface-active phenylacetate ions. The formation of supramolecular assemblies causes also drastical changes of the surface features in these systems. Here, the development of a substructure in the condensed phase domains consisting of long filigree strings and the favoured formation of bilayers overgrowing the strings indicates a linearly extended amidinium-carboxylate interfacial structure of the base and acid component in alternating sequence.
Collapse
Affiliation(s)
- D Vollhardt
- Max Planck Institute of Colloids and Interfaces, D-14424 Potsdam, Germany.
| |
Collapse
|
18
|
Chen X, Wiehle S, Weygand M, Brezesinski G, Klenz U, Galla HJ, Fuchs H, Haufe G, Chi L. Unconventional Air-Stable Interdigitated Bilayer Formed by 2,3-Disubstituted Fatty Acid Methyl Esters. J Phys Chem B 2005; 109:19866-75. [PMID: 16853569 DOI: 10.1021/jp054788p] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A single-chain fatty acid methyl ester, racemic anti-3-fluoro-2-hydroxyeicosanoic acid methyl ester (beta-FHE), forms an unconventional air-stable interdigitated bilayer at the air-water interface. The interdigitated bilayer transferred onto solid substrate by the Langmuir-Blodgett (LB) technique keeps air-stable without any substrate modification or protein inclusion. There are two visible plateaus in the surface pressure-molecular area (pi-A) isotherms of beta-FHE Langmuir film during continuous compression. According to Brewster angle microscopy (BAM), grazing incidence X-ray diffraction (GIXD), X-ray reflectivity (XR), fluorescence microscopy (FM), and atomic force microscopy (AFM) measurements, the first plateau is attributed to the coexistence of liquid expanded (LE) and liquid condensed (LC) phases in the monolayer, while the second plateau is interpreted as the transition from LC monolayer to interdigitated bilayer. The coupling between tilt and curvature associated with the packing mismatch between headgroup and chain gives rise to buckling and folding of the monolayer, leading to the transition of the LC monolayer to a bilayer structure. The diffusion-limited aggregation (DLA) model is applied to describe the formation of the fractal structures of the bilayer as observed in the second plateau. In addition, the transition between monolayer and bilayer is reversible. The present works are interesting for understanding biological processes, for example, the behavior of lung surfactants.
Collapse
Affiliation(s)
- Xiaodong Chen
- Physikalisches Institut, Westfälische Wilhelms-Universität, Wilhelm-Klemm-Str. 10, 48149 Münster, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Talhout R, Stafforst T, Engberts JBFN. Aggregation behavior of p-n-alkylbenzamidinium chloride surfactants. J Colloid Interface Sci 2004; 276:212-20. [PMID: 15219451 DOI: 10.1016/j.jcis.2004.03.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2003] [Accepted: 03/11/2004] [Indexed: 11/23/2022]
Abstract
The aggregation behavior of a novel class of surfactants, p-n-alkylbenzamidinium chlorides, has been investigated. The thermodynamics of aggregation of p-n-decylbenzamidinium chloride mixed with cationic and anionic cosurfactants has been studied using isothermal titration calorimetry. For mixtures of p-n-decylbenzamidinium chloride with n-alkyltrimethylammonium chlorides, the aggregation process is enthalpically more favorable than for the pure n-alkyltrimethylammonium chlorides, probably caused by diminished headgroup repulsion due to charge delocalization in the amidinium headgroup. A critical aggregation concentration between 3 and 4 mM has been extrapolated for p-n-decylbenzamidinium chloride at 40 degrees C, around two times lower than that of similar surfactants without charge delocalization in the headgroup and well comparable to that of similar surfactants with charge delocalization in the headgroup. In mixtures of p-n-decylbenzamidinium chloride with either sodium n-alkylsulfates or sodium dodecylbenzenesulfonate, evidence is found for the formation of bilayer aggregates by the pseudo-double-tailed catanionic surfactants composed of p-n-decylbenzamidinium and the anionic surfactant. These aggregates are solubilized to mixed micelles by excess free anionic surfactant at the measured critical aggregation concentration.
Collapse
Affiliation(s)
- Reinskje Talhout
- Physical Organic Chemistry Unit, Stratingh Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | | | | |
Collapse
|
20
|
Hosseini MW, Tsiourvas D, Planeix JM, Sideratou Z, Thomas N, Paleos CM. Molecular Networks Forming Crystalline and Liquid Crystalline Phases by Combined Hydrogen-Bonding and Ionic Interactions. ACTA ACUST UNITED AC 2004. [DOI: 10.1135/cccc20041161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Molecular recognition of cyclic bisamidinium dication with a series of 4-alkoxybenzoates afforded materials exhibiting lamellar crystalline structures at low temperatures and highly ordered smectic phases at higher temperatures. The liquid crystalline behaviour was investigated by differential scanning calorimetry, polarized optical microscopy and established by X-ray diffraction. Combined hydrogen-bonding and ionic interactions resulted in supramolecular networks which have sufficient stability to maintain their structure at high temperatures following the melting of the long alkyl chains.
Collapse
|
21
|
Plaut DJ, Martin SM, Kjaer K, Weygand MJ, Lahav M, Leiserowitz L, Weissbuch I, Ward MD. Structural Characterization of Crystalline Ternary Inclusion Compounds at the Air−Water Interface. J Am Chem Soc 2003; 125:15922-34. [PMID: 14677984 DOI: 10.1021/ja0371404] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Crystalline ternary inclusion monolayers consisting of a two-dimensional hydrogen-bonded host network of guanidinium (G) ions and organosulfonate (S) amphiphiles, and biphenylalkane guests, can be generated at the air-water interface through synergistic structural enforcement by hydrogen bonding and host-guest packing. Surface pressure-area isotherms of the 4'-hexadecylbiphenyl-4-sulfonate (C16BPS) amphiphile in the presence of G, with or without guest, are characterized by lift-off molecular areas expected for the GS sheet based on single-crystal X-ray structures of homologous bulk crystals. Intercalation of biphenylalkane guests (4-C(n)()H(2)(n)()(+1)-C(6)H(4)-C(6)H(5), n = 1, 4, 6, 10, 16; denoted CnBP) between organosulfonate hydrophobes, which define pocketlike cavities in the GS monolayer host, afford ternary inclusion monolayers with a 1:1 host-guest stoichiometry. These inclusion monolayers are less compressible than the guest-free host, consistent with dense packing of the biphenylalkane moieties of the host and the biphenylalkane guests. The inclusion monolayers are distinguished from the amorphous guest-free host and from selected guanidinium-free mixed monolayers by structural characterization with grazing-angle incidence X-ray diffraction (GIXD). The GIXD data for the ternary (G)C16BPS:C16BP and (G)C16BPS:C6BP inclusion monolayers obtained upon compression are consistent with a rectangular unit cell. The dimensions of these unit cells and refinement of the GIXD data suggest a "rotated shifted ribbon" GS hydrogen-bonding motif similar to that observed in some bulk GS crystals, including (G)(ethylbiphenylsulfonate). GIXD reveals that (G)C16BPS:C16BP and (G)C16BPS:C6BP are more crystalline than the corresponding guanidinium-free mixed monolayers. The (G)C16BPS:C6BP inclusion monolayer is stable upon compression, even though the alkyl-alkyl host-guest interactions are reduced due to the shorter hexyl substituents of the guest, demonstrating an important reinforcing role for the hydrogen-bonded GS sheet. The structure of a C16BPS:tetracosane (C24) mixed monolayer is independent of G; the unit cell symmetry and dimensions suggest a structure governed by alkyl-alkane interactions that prohibit formation of a GS network. These results illustrate that the existence of ternary inclusion monolayers with an intact GS network requires guest molecules that are structurally homologous with the hydrophobes of the host, in this case biphenylalkanes. The observation of these inclusion compounds suggests an approach for introducing functional nonamphiphilic molecules to an air-water interface through inclusion in a well-defined host.
Collapse
Affiliation(s)
- David J Plaut
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Kuzmenko I, Rapaport H, Kjaer K, Als-Nielsen J, Weissbuch I, Lahav M, Leiserowitz L. Design and characterization of crystalline thin film architectures at the air-liquid interface: simplicity to complexity. Chem Rev 2001; 101:1659-96. [PMID: 11709995 DOI: 10.1021/cr990038y] [Citation(s) in RCA: 246] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- I Kuzmenko
- Department of Materials and Interfaces, Weizmann Institute of Science, 76100 Rehovot, Israel
| | | | | | | | | | | | | |
Collapse
|