1
|
Wannipurage DC, Yang ES, Chivington AD, Fletcher J, Ray D, Yamamoto N, Pink M, Goicoechea JM, Smith JM. A Transient Iron Carbide Generated by Cyaphide Cleavage. J Am Chem Soc 2024; 146:27173-27178. [PMID: 39287969 DOI: 10.1021/jacs.4c10704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Despite their potential relevance as molecular models for industrial and biological catalysis, well-defined mononuclear iron carbide complexes are unknown, in part due to the limited number of appropriate C1 synthons. Here, we show the ability of the cyaphide anion (C≡P-) to serve as a C1 source. The high spin (S = 2) cyaphide complex PhB(tBuIm)3Fe-C≡P (PhB(tBuIm)3- = phenyl(tris(3-tert-butylimidazol-2-ylidene)borate) is readily accessed using the new cyaphide transfer reagent [Mg(DippNacNac)(CP)]2 (DippNacNac = CH{C(CH3)N(Dipp)}2 and Dipp = 2,6-di(iso-propyl)phenyl). Phosphorus atom abstraction is effected by the three-coordinate Mo(III) complex Mo(NtBuAr)3 (Ar = 3,5-Me2C6H3), which produces the known phosphide (tBuArN)3Mo≡P along with a transient iron carbide complex PhB(tBuIm)3Fe≡C. Electronic structure calculations reveal that PhB(tBuIm)3Fe≡C adopts a doublet ground state with nonzero spin density on the carbide ligand. While isolation of this complex is thwarted by rapid dimerization to afford the corresponding diiron ethynediyl complex, the carbide can be intercepted by styrene to provide an iron alkylidene.
Collapse
Affiliation(s)
- Duleeka C Wannipurage
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Eric S Yang
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Austin D Chivington
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Jess Fletcher
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Debanik Ray
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Nobuyuki Yamamoto
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Maren Pink
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Jose M Goicoechea
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Jeremy M Smith
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
2
|
Kakiuchi Y, Docherty SR, Berkson ZJ, Yakimov AV, Wörle M, Copéret C, Aghazada S. Origin of Reactivity Trends of an Elusive Metathesis Intermediate from NMR Chemical Shift Analysis of Surrogate Analogues. J Am Chem Soc 2024; 146:20168-20182. [PMID: 38980045 DOI: 10.1021/jacs.4c05193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Olefin metathesis has become an efficient tool in synthetic organic chemistry to build carbon-carbon bonds, thanks to the development of Grubbs- and Schrock-type catalysts. Olefin coordination, a key and often rate-determining elementary step for d0 Schrock-type catalysts, has been rarely explored due to the lack of accessible relevant molecular analogues. Herein, we present a fully characterized surrogate of this key olefin-coordination intermediate, namely, a cationic d0 tungsten oxo-methylidene complex bearing two N-heterocyclic carbene ligands─[WO(CH2)Cl(IMes)2](OTf) (1) (IMes = 1,3-dimesitylimidazole-2-ylidene, OTf-triflate counteranion), resulting in a trigonal bipyramidal (TBP) geometry, along with its neutral octahedral analogue [WO(CH2)Cl2(IMes)2] (2)─and an isostructural oxo-methylidyne derivative [WO(CH)Cl(IMes)2] (3). The analysis of their solid-state 13C and 183W MAS NMR signatures, along with computed 17O NMR parameters, helps to correlate their electronic structures with NMR patterns and evidences the importance of the competition among the three equatorial ligands in the TBP complexes. Anchored on experimentally obtained NMR parameters for 1, computational analysis of a series of olefin coordination intermediates highlights the interplay between σ- and π-donating ligands in modulating their stability and further paralleling their reactivity. NMR spectroscopy descriptors reveal the origin for the advantage of the dissymmetry in σ-donating abilities of ancillary ligands in Schrock-type catalysts: weak σ-donors avoid the orbital-competition with the oxo ligand upon formation of a TBP olefin-coordination intermediate, while stronger σ-donors compromise M≡O triple bonding and thus render olefin coordination step energy demanding.
Collapse
Affiliation(s)
- Yuya Kakiuchi
- Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich CH-8093, Switzerland
| | - Scott R Docherty
- Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich CH-8093, Switzerland
| | - Zachariah J Berkson
- Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich CH-8093, Switzerland
| | - Alexander V Yakimov
- Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich CH-8093, Switzerland
| | - Michael Wörle
- Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich CH-8093, Switzerland
| | - Christophe Copéret
- Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich CH-8093, Switzerland
| | - Sadig Aghazada
- Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich CH-8093, Switzerland
| |
Collapse
|
3
|
Dey Baksi S, Aggrey JO, Bhuvanesh N, Gladysz JA. Reactions of Platinum Terminal Polyynyl Complexes trans-(C 6F 5)( p-tol 3P) 2Pt(C≡C) nH ( n = 2-4) and n-BuLi, Generation of Functional Equivalents of Pt(C≡C) nLi Species, and Derivatization with Organic and Inorganic Electrophiles. Organometallics 2024; 43:1041-1050. [PMID: 38756992 PMCID: PMC11094795 DOI: 10.1021/acs.organomet.4c00098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/01/2024] [Accepted: 04/09/2024] [Indexed: 05/18/2024]
Abstract
Reactions of the title complexes and n-BuLi (1.5 equiv, -45 °C) afford functional equivalents of the deprotonated species trans-(C6F5)(p-tol3P)2Pt(C≡C)nLi (n = 2-4), as assayed by subsequent additions of MeI or Me3SiCl to give trans-(C6F5)(p-tol3P)2Pt(C≡C)nMe (66-52%) or trans-(C6F5)(p-tol3P)2Pt(C≡C)nSiMe3 (63-49%). However, 31P NMR data suggest more complicated mechanistic scenarios, and small amounts of the hydride complex trans-(C6F5)(p-tol3P)2PtH (independently synthesized from the chloride complex, AgClO4, and NaBH4) are detected in most cases. Analogous sequences involving trans-(C6F5)(p-tol3P)2Pt(C≡C)2H and benzyl bromide, D2O, or W(CO)6/Me3O+ BF4- similarly afford products with Pt(C≡C)2Bn, Pt(C≡C)2D, or Pt(C≡C)2C(OCH3)=W(CO)5 linkages. The crystal structures of the tungsten and corresponding SiMe3 adduct, the three Pt(C≡C)nMe species, and hydride complex are determined.
Collapse
Affiliation(s)
- Sourajit Dey Baksi
- Department
of Chemistry, Texas A&M University, PO Box 30012, College Station, Texas 77842-3012, United States
| | - Joshua O. Aggrey
- Department
of Chemistry, East Tennessee State University, 1276 Gilbreath Drive, Johnson City, Tennessee 37614, United States
| | - Nattamai Bhuvanesh
- Department
of Chemistry, Texas A&M University, PO Box 30012, College Station, Texas 77842-3012, United States
| | - John A. Gladysz
- Department
of Chemistry, Texas A&M University, PO Box 30012, College Station, Texas 77842-3012, United States
| |
Collapse
|
4
|
Guan R, Huang J, Xin J, Chen M, Du P, Li Q, Tan YZ, Yang S, Xie SY. A stabilization rule for metal carbido cluster bearing μ 3-carbido single-atom-ligand encapsulated in carbon cage. Nat Commun 2024; 15:150. [PMID: 38167842 PMCID: PMC10761991 DOI: 10.1038/s41467-023-44567-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
Metal carbido complexes bearing single-carbon-atom ligand such as nitrogenase provide ideal models of adsorbed carbon atoms in heterogeneous catalysis. Trimetallic μ3-carbido clusterfullerenes found recently represent the simplest metal carbido complexes with the ligands being only carbon atoms, but only few are crystallographically characterized, and its formation prerequisite is unclear. Herein, we synthesize and isolate three vanadium-based μ3-CCFs featuring V = C double bonds and high valence state of V (+4), including VSc2C@Ih(7)-C80, VSc2C@D5h(6)-C80 and VSc2C@D3h(5)-C78. Based on a systematic theoretical study of all reported μ3-carbido clusterfullerenes, we further propose a supplemental Octet Rule, i.e., an eight-electron configuration of the μ3-carbido ligand is needed for stabilization of metal carbido clusters within μ3-carbido clusterfullerenes. Distinct from the classic Effective Atomic Number rule based on valence electron count of metal proposed in the 1920s, this rule counts the valence electrons of the single-carbon-atom ligand, and offers a general rule governing the stabilities of μ3-carbido clusterfullerenes.
Collapse
Affiliation(s)
- Runnan Guan
- Key Laboratory of Precision and Intelligent Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Jing Huang
- Hefei National Laboratory for Physical Sciences at Microscale, Department of Chemical Physics, Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, 230026, China
- School of Materials and Chemical Engineering, Anhui Jianzhu University, Hefei, 230601, China
| | - Jinpeng Xin
- Key Laboratory of Precision and Intelligent Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Muqing Chen
- Key Laboratory of Precision and Intelligent Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Pingwu Du
- Key Laboratory of Precision and Intelligent Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Qunxiang Li
- Hefei National Laboratory for Physical Sciences at Microscale, Department of Chemical Physics, Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, 230026, China.
| | - Yuan-Zhi Tan
- State Key Lab for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| | - Shangfeng Yang
- Key Laboratory of Precision and Intelligent Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, China.
| | - Su-Yuan Xie
- State Key Lab for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
5
|
Cui M, Jia G. Organometallic Chemistry of Transition Metal Alkylidyne Complexes Centered at Metathesis Reactions. J Am Chem Soc 2022; 144:12546-12566. [PMID: 35793547 DOI: 10.1021/jacs.2c01192] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Transition metals form a variety of alkylidyne complexes with either a d0 metal center (high-valent) or a non-d0 metal center (low-valent). One of the most interesting properties of alkylidyne complexes is that they can undergo or mediate metathesis reactions. The most well-studied metathesis reactions are alkyne metathesis involving high-valent alkylidynes. High-valent alkylidynes can also undergo metathesis reactions with heterotriple bonded species such as N≡CR, P≡CR, and N≡NR+. Metathesis reactions involving low-valent alkylidynes are less known. Highly efficient alkyne metathesis catalysts have been developed based on Mo(VI) and W(VI) alkylidynes. Catalytic cross-metathesis of nitriles with alkynes has also been achieved with M(VI) (M = W, Mo) alkylidyne or nitrido complexes. The metathesis activity of alkylidyne complexes is sensitively dependent on metals, supporting ligands and substituents of alkylidynes. Beyond metathesis, metal alkylidynes can also promote other reactions including alkyne polymerization. The remaining shortcomings and opportunities in the field are assessed.
Collapse
Affiliation(s)
- Mingxu Cui
- Department of Chemistry, The Hong Kong University of Science and Technology, Kowloon, SAR, Hong Kong, China
| | - Guochen Jia
- Department of Chemistry, The Hong Kong University of Science and Technology, Kowloon, SAR, Hong Kong, China.,HKUST Shenzhen Research Institute, Shenzhen, 518057, China
| |
Collapse
|
6
|
Abstract
The reactivity of the tungsten diphenylarsinocarbyne [W(CAsPh2)(CO)2(Tp*)] (1; Tp* = hydrotris(dimethylpyrazolyl)borato) is described. The pyramidal arsenic coordinates to a selection of 5d metal centres, forming heterobi- or trimetallic complexes with osmium(II), iridium(III), platinum(II) and gold(I). In the latter case, the WC bond provides a competitive site for gold(I) coordination. Treatment with MeOSO2CF3 results in methylation at arsenic to give the first example of an arsoniocarbyne, [W(CAsPh2CH3)(CO)2(Tp*)]O3SCF3, for which only the WC bond remains available for gold(I) coordination.
Collapse
Affiliation(s)
- Benjamin J Frogley
- Research School of Chemistry, The Australian National University, Canberra, ACT 0200, Australia.
| | - Anthony F Hill
- Research School of Chemistry, The Australian National University, Canberra, ACT 0200, Australia.
| |
Collapse
|
7
|
Conradie J, Alemayehu AB, Ghosh A. Iridium(VII)-Corrole Terminal Carbides Should Exist as Stable Compounds. ACS ORGANIC & INORGANIC AU 2021; 2:159-163. [PMID: 36855452 PMCID: PMC9955125 DOI: 10.1021/acsorginorgau.1c00029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Scalar-relativistic DFT calculations with multiple exchange-correlation functionals and large basis sets foreshadow the existence of stable iridium(VII)-corrole terminal carbide derivatives. For the parent compound Ir[Cor](C), OLYP/STO-TZ2P calculations predict a short Ir-C bond distance of 1.69 Å, a moderately domed macrocycle with no indications of ligand noninnocence, a surprisingly low electron affinity of ∼1.1 eV, and a substantial singlet-triplet gap of ∼1.8 eV. These results, and their essential invariance with respect to the choice of the exchange-correlation functional, lead us to posit that Ir(VII)-corrole terminal carbide complexes should be isolable and indefinitely stable under ambient conditions.
Collapse
Affiliation(s)
- Jeanet Conradie
- Department
of Chemistry, UiT The Arctic University
of Norway, N-9037 Tromsø, Norway,Department
of Chemistry, University of the Free State, P.O. Box 339, Bloemfontein 9300, Republic of South Africa
| | - Abraham B. Alemayehu
- Department
of Chemistry, UiT The Arctic University
of Norway, N-9037 Tromsø, Norway
| | - Abhik Ghosh
- Department
of Chemistry, UiT The Arctic University
of Norway, N-9037 Tromsø, Norway,
| |
Collapse
|
8
|
Abstract
Carbide complexes remain a rare class of molecules. Their paucity does not reflect exceptional instability but is rather due to the generally narrow scope of synthetic procedures for constructing carbide complexes. The preparation of carbide complexes typically revolves around generating LnM-CEx fragments, followed by cleavage of the C-E bonds of the coordinated carbon-based ligands (the alternative being direct C atom transfer). Prime examples involve deoxygenation of carbonyl ligands and deprotonation of methyl ligands, but several other p-block fragments can be cleaved off to afford carbide ligands. This Review outlines synthetic strategies toward terminal carbide complexes, bridging carbide complexes, as well as carbide-carbonyl cluster complexes. It then surveys the reactivity of carbide complexes, covering stoichiometric reactions where the carbide ligands act as C1 reagents, engage in cross-coupling reactions, and enact Fischer-Tropsch-like chemistry; in addition, we discuss carbide complexes in the context of catalysis. Finally, we examine spectroscopic features of carbide complexes, which helps to establish the presence of the carbide functionality and address its electronic structure.
Collapse
Affiliation(s)
- Anders Reinholdt
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
| | - Jesper Bendix
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
| |
Collapse
|
9
|
Yuvaraj K, Paparo A, Matthews AJR, Jones C. Magnesium(I) Reduction of CO and N
2
Complexes of Cummins’ Molybdenum(III) Tris(anilide), [Mo(L){N(Ar’)Bu
t
}
3
] (L=CO or N
2
; Ar’=3,5‐dimethylphenyl). Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100815] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- K. Yuvaraj
- School of Chemistry Monash University PO Box 23 VIC 3800 Australia
| | - Albert Paparo
- School of Chemistry Monash University PO Box 23 VIC 3800 Australia
| | | | - Cameron Jones
- School of Chemistry Monash University PO Box 23 VIC 3800 Australia
| |
Collapse
|
10
|
Bailey GA, Buss JA, Oyala PH, Agapie T. Terminal, Open-Shell Mo Carbide and Carbyne Complexes: Spin Delocalization and Ligand Noninnocence. J Am Chem Soc 2021; 143:13091-13102. [PMID: 34379389 DOI: 10.1021/jacs.1c03806] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Open-shell compounds bearing metal-carbon triple bonds, such as carbides and carbynes, are of significant interest as plausible intermediates in the reductive catenation of C1 oxygenates. Despite the abundance of closed-shell carbynes reported, open-shell variants are very limited, and an open-shell carbide has yet to be reported. Herein, we report the synthesis of the first terminal, open-shell carbide complexes, [K][1] and [1][BArF4] (1 = P2Mo(≡C:)(CO), P2 = a terphenyl diphosphine ligand), which differ by two redox states, as well as a series of related open-shell carbyne complexes. The complexes are characterized by single-crystal X-ray diffraction and NMR, EPR, and IR spectroscopies, while the electronic structures are probed by EPR studies and DFT calculations to assess spin delocalization. In the d1 complexes, the spin is primarily localized on the metal (∼55-77% Mo dxy) with delocalization on the triply bonded carbon of ∼0.05-0.09 e-. In the reduced carbide [K][1], a direct metal-arene interaction enables ancillary ligand reduction, resulting in reduced radical character on the terminal carbide (⩽0.02 e-). Reactivity studies with [K][1] reveal the formation of mixed-valent C-C coupled products at -40 °C, illustrating how productive reactivity manifolds can be engendered through the manipulation of redox states. Combined, the results inform on the electronic structure and reactivity of a new and underrepresented class of compounds with potential significance to a wide array of reactions involving open-shell species.
Collapse
Affiliation(s)
- Gwendolyn A Bailey
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Joshua A Buss
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Paul H Oyala
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Theodor Agapie
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
11
|
Bailey GA, Agapie T. Terminal Mo Carbide and Carbyne Reactivity: H2 Cleavage, B–C Bond Activation, and C–C Coupling. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00336] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Gwendolyn A. Bailey
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Theodor Agapie
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
12
|
Frogley BJ, Hill AF, Kirk RM. Heterocyclic arsinocarbynes via tandem transmetallation. Chem Commun (Camb) 2021; 57:8770-8773. [PMID: 34378572 DOI: 10.1039/d1cc03015a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Gold(i)-catalysed tandem transmetallation (Sn→Au→As) of the stannylcarbyne [W(≡CSnnBu3)(CO)2(Tp*)] (Tp* = hydrotris-(dimethylpyrazolyl)borate) with haloarsines gives direct access to a range of novel arsinocarbyne complexes, LnM≡CAsR2, including unusual heterocyclic phenarsazininyl and arsolyl examples.
Collapse
Affiliation(s)
- Benjamin J Frogley
- Research School of Chemistry, Australian National University, Australian Capital Territory, Canberra, ACT 2601, Australia.
| | | | | |
Collapse
|
13
|
Transue WJ, Dai Y, Riu MLY, Wu G, Cummins CC. 31P NMR Chemical Shift Tensors: Windows into Ruthenium Phosphinidene Complex Electronic Structures. Inorg Chem 2021; 60:9254-9258. [PMID: 34152768 DOI: 10.1021/acs.inorgchem.1c01099] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A series of octamethylcalix[4]pyrrole/ruthenium phosphinidene complexes (Na2[1=PR]) can be accessed by phosphinidene transfer from the corresponding RPA (A = C14H10, anthracene) compounds (R = tBu, iPr, OEt, NH2, NMe2, NEt2, NiPr2, NA, dimethylpiperidino). Isolation of the tert-butyl and dimethylamino derivatives allowed comparative studies of their 31P nuclear shielding tensors by magic-angle-spinning solid-state nuclear magnetic resonance spectroscopy. Density functional theory and natural chemical shielding analyses reveal the relationship between the 31P chemical shift tensor and the local ruthenium/phosphorus electronic structure. The general trend observed in the 31P isotropic chemical shifts for the ruthenium phosphinidene complexes was controlled by the degree of deshielding in the δ11 principal tensor component, which can be linked to the σRuP/πRuP* energy gap. A "δ22-δ33 crossover" effect for R = tBu was also observed, which was caused by different degrees of deshielding associated with polarizations of the σPR and σPR* natural bond orbitals.
Collapse
Affiliation(s)
- Wesley J Transue
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Yizhe Dai
- Department of Chemistry, Queen's University, Kingston, Ontario K7L3N6, Canada
| | - Martin-Louis Y Riu
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Gang Wu
- Department of Chemistry, Queen's University, Kingston, Ontario K7L3N6, Canada
| | - Christopher C Cummins
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
14
|
Colebatch AL, Frogley BJ, Hill AF, Onn CS. Pnictogen‐Functionalised C
1
Ligands: MC‐AR
n
(
n
=0, 1, 2, 3). Chemistry 2021; 27:5322-5343. [DOI: 10.1002/chem.202004280] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Indexed: 11/09/2022]
Affiliation(s)
- Annie L. Colebatch
- Research School of Chemistry Australian National University Canberra ACT 2601 Australia
| | - Benjamin J. Frogley
- Research School of Chemistry Australian National University Canberra ACT 2601 Australia
| | - Anthony F. Hill
- Research School of Chemistry Australian National University Canberra ACT 2601 Australia
| | - Chee S. Onn
- Research School of Chemistry Australian National University Canberra ACT 2601 Australia
| |
Collapse
|
15
|
Manzano RA, Hill AF, Georgelin RL. Tetrel and pnictogen functionalised propargylidynes. Chem Commun (Camb) 2020; 56:14597-14600. [PMID: 33155585 DOI: 10.1039/d0cc06196d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reaction of [W([triple bond, length as m-dash]CC[triple bond, length as m-dash]CSiMe3)(CO)2(Tp*)] (Tp* = tris(dimethylpyrazolyl)borate) with AgNO3 affords {[W([triple bond, length as m-dash]CC[triple bond, length as m-dash]CAg)-(CO)2(Tp*)][AgNO3]}n while [Hg{C[triple bond, length as m-dash]CC[triple bond, length as m-dash]W(CO)2(Tp*)}2] with nBuLi affords [W([triple bond, length as m-dash]CC[triple bond, length as m-dash]CLi)(CO)2(Tp*)]. These anhydrous reagents allow the installation of main group elements (e.g., Si, Sn, Pb, P, As) as propargylidyne termini.
Collapse
Affiliation(s)
- Richard A Manzano
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory ACT 2601, Australia.
| | | | | |
Collapse
|
16
|
Frogley BJ, Hill AF, Watson LJ. Advances in Transition Metal Seleno‐ and Tellurocarbonyl Chemistry. Chemistry 2020; 26:12706-12716. [DOI: 10.1002/chem.202001588] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Indexed: 11/12/2022]
Affiliation(s)
- Benjamin J. Frogley
- Research School of Chemistry Australian National University Canberra ACT 2601 Australia
| | - Anthony F. Hill
- Research School of Chemistry Australian National University Canberra ACT 2601 Australia
| | - Lachlan J. Watson
- Research School of Chemistry Australian National University Canberra ACT 2601 Australia
| |
Collapse
|
17
|
Sergentu DC, Kent GT, Staun SL, Yu X, Cho H, Autschbach J, Hayton TW. Probing the Electronic Structure of a Thorium Nitride Complex by Solid-State 15N NMR Spectroscopy. Inorg Chem 2020; 59:10138-10145. [DOI: 10.1021/acs.inorgchem.0c01263] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Dumitru-Claudiu Sergentu
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
| | - Greggory T. Kent
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Selena L. Staun
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Xiaojuan Yu
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
| | - Herman Cho
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, 908 Battelle Boulevard, Richland, Washington 99354, United States
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
| | - Trevor W. Hayton
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
18
|
Suzuki A, Mutoh Y, Tsuchida N, Fung CW, Kikkawa S, Azumaya I, Saito S. Synthesis and Systematic Structural Analysis of Cationic Half-Sandwich Ruthenium Chalcogenocarbonyl Complexes. Chemistry 2020; 26:3795-3802. [PMID: 31925839 DOI: 10.1002/chem.201904600] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Indexed: 11/07/2022]
Abstract
Although the chemistry of transition-metal complexes with carbonyl (CO) and thiocarbonyl (CS) ligands has been well developed, their heavier analogues, namely selenocarbonyl (CSe) and tellurocarbonyl (CTe) complexes remain scarce. The limited availability of such CSe and CTe complexes has so far hampered our understanding of the differences between such chalcogenocarbonyl (CE: E=O, S, Se, Te) ligands. Herein, we report the synthesis and properties of a series of cationic half-sandwich ruthenium CE complexes of the type [CpRu(CE)(H2 IMes)(CNCH2 Ts)][BArF 4 ] (Cp=η5 -C5 H5 - ; H2 IMes=1,3-dimesitylimidazolin-2-ylidene; ArF =3,5-(CF3 )2 C6 H3 ). A combination of X-ray diffraction analyses, NMR spectroscopic analyses, and DFT calculations revealed an increasing π-accepting ability of the CE ligands in the order O<S<Se<Te. A variable-temperature NMR analysis of the thus obtained chiral-at-metal CE complexes indicated high stereochemical stability.
Collapse
Affiliation(s)
- Ayumi Suzuki
- Department of Chemistry, Faculty of Science, Tokyo University of Science, 1-3, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Yuichiro Mutoh
- Department of Chemistry, Faculty of Science, Tokyo University of Science, 1-3, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Noriko Tsuchida
- Department of Liberal Arts, Faculty of Medicine, Saitama Medical University, 38 Morohongo, Moroyama-machi, Iruma-gun, Saitama, 350-0495, Japan
| | - Chi-Wai Fung
- Department of Chemistry, Faculty of Science, Tokyo University of Science, 1-3, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Shoko Kikkawa
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-3 Miyama, Funabashi-shi, Chiba, 274-8510, Japan
| | - Isao Azumaya
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-3 Miyama, Funabashi-shi, Chiba, 274-8510, Japan
| | - Shinichi Saito
- Department of Chemistry, Faculty of Science, Tokyo University of Science, 1-3, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| |
Collapse
|
19
|
Barnett HJ, Hill AF. Dimetalla-heterocyclic carbenes: the interconversion of chalcocarbonyl and carbido ligands. Chem Commun (Camb) 2020; 56:12593-12596. [DOI: 10.1039/d0cc05106c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Different classes of dirhodium μ-carbido complexes cleave CS2 to afford mono- and bi-nuclear CS complexes, the CSe analogues of which are also described.
Collapse
Affiliation(s)
| | - Anthony F. Hill
- Research School of Chemistry
- Australian National University
- Canberra
- Australia
| |
Collapse
|
20
|
Frogley BJ, Hill AF, Onn CS, Watson LJ. Bi‐ and Polynuclear Transition‐Metal Carbon Tellurides. Angew Chem Int Ed Engl 2019; 58:15349-15353. [DOI: 10.1002/anie.201909333] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/21/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Benjamin J. Frogley
- Research School of ChemistryThe Australian National University Canberra ACT 2601 Australia
| | - Anthony F. Hill
- Research School of ChemistryThe Australian National University Canberra ACT 2601 Australia
| | - Chee S. Onn
- Research School of ChemistryThe Australian National University Canberra ACT 2601 Australia
| | - Lachlan J. Watson
- Research School of ChemistryThe Australian National University Canberra ACT 2601 Australia
| |
Collapse
|
21
|
Wu G. 17O NMR studies of organic and biological molecules in aqueous solution and in the solid state. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2019; 114-115:135-191. [PMID: 31779879 DOI: 10.1016/j.pnmrs.2019.06.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/11/2019] [Accepted: 06/11/2019] [Indexed: 06/10/2023]
Abstract
This review describes the latest developments in the field of 17O NMR spectroscopy of organic and biological molecules both in aqueous solution and in the solid state. In the first part of the review, a general theoretical description of the nuclear quadrupole relaxation process in isotropic liquids is presented at a mathematical level suitable for non-specialists. In addition to the first-order quadrupole interaction, the theory also includes additional relaxation mechanisms such as the second-order quadrupole interaction and its cross correlation with shielding anisotropy. This complete theoretical treatment allows one to assess the transverse relaxation rate (thus the line width) of NMR signals from half-integer quadrupolar nuclei in solution over the entire range of motion. On the basis of this theoretical framework, we discuss general features of quadrupole-central-transition (QCT) NMR, which is a particularly powerful method of studying biomolecules in the slow motion regime. Then we review recent advances in 17O QCT NMR studies of biological macromolecules in aqueous solution. The second part of the review is concerned with solid-state 17O NMR studies of organic and biological molecules. As a sequel to the previous review on the same subject [G. Wu, Prog. Nucl. Magn. Reson. Spectrosc. 52 (2008) 118-169], the current review provides a complete coverage of the literature published since 2008 in this area.
Collapse
Affiliation(s)
- Gang Wu
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario K7L 3N6, Canada.
| |
Collapse
|
22
|
Frogley BJ, Hill AF, Onn CS, Watson LJ. Bi‐ and Polynuclear Transition‐Metal Carbon Tellurides. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201909333] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Benjamin J. Frogley
- Research School of Chemistry The Australian National University Canberra ACT 2601 Australia
| | - Anthony F. Hill
- Research School of Chemistry The Australian National University Canberra ACT 2601 Australia
| | - Chee S. Onn
- Research School of Chemistry The Australian National University Canberra ACT 2601 Australia
| | - Lachlan J. Watson
- Research School of Chemistry The Australian National University Canberra ACT 2601 Australia
| |
Collapse
|
23
|
Buss JA, Bailey GA, Oppenheim J, VanderVelde DG, Goddard WA, Agapie T. CO Coupling Chemistry of a Terminal Mo Carbide: Sequential Addition of Proton, Hydride, and CO Releases Ethenone. J Am Chem Soc 2019; 141:15664-15674. [DOI: 10.1021/jacs.9b07743] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Joshua A. Buss
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard MC 127-72, Pasadena, California 91125, United States
| | - Gwendolyn A. Bailey
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard MC 127-72, Pasadena, California 91125, United States
| | - Julius Oppenheim
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard MC 127-72, Pasadena, California 91125, United States
| | - David G. VanderVelde
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard MC 127-72, Pasadena, California 91125, United States
| | - William A. Goddard
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard MC 127-72, Pasadena, California 91125, United States
| | - Theodor Agapie
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard MC 127-72, Pasadena, California 91125, United States
| |
Collapse
|
24
|
Reinholdt A, Majer SH, Gelardi RM, MacMillan SN, Hill AF, Wendt OF, Lancaster KM, Bendix J. An Approach to Carbide-Centered Cluster Complexes. Inorg Chem 2019; 58:4812-4819. [DOI: 10.1021/acs.inorgchem.8b03222] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Anders Reinholdt
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
| | - Sean H. Majer
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
| | - Rikke M. Gelardi
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
| | - Samantha N. MacMillan
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
| | - Anthony F. Hill
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Ola F. Wendt
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, P.O. Box 124, 22100 Lund, Sweden
| | - Kyle M. Lancaster
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
| | - Jesper Bendix
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
| |
Collapse
|
25
|
Frogley BJ, Hill AF, Watson LJ. New binding modes for CSe: coinage metal coordination to a tungsten selenocarbonyl complex. Dalton Trans 2019; 48:12598-12606. [DOI: 10.1039/c9dt02958c] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reaction of the new tungsten selenocarbonylate [Et4N][W(CSe)(CO)2(Tp*)] (Tp* = hydrotris(dimethyl-pyrazolyl)borate) with coinage metal based electrophiles provides access to a range of new bridging modes for the selenocarbonyl ligand.
Collapse
Affiliation(s)
| | - Anthony F. Hill
- Research School of Chemistry
- Australian National University
- Canberra
- Australia
| | - Lachlan J. Watson
- Research School of Chemistry
- Australian National University
- Canberra
- Australia
| |
Collapse
|
26
|
Abstract
The salt elimination reactions of [NEt4][Mo(CSe)(CO)2(Tp*)] ([NEt4][2], Tp* = hydrotris(3,5-dimethylpyrazol-1-yl)borate) with a range of metal halide complexes (ClMLn) have been investigated as a possible route to isoselenocarbonyl complexes [Mo(CSeMLn)(CO)2(Tp*)].
Collapse
Affiliation(s)
- Ian A. Cade
- Research School of Chemistry
- The Australian National University
- Canberra
- Australia
| | - Anthony F. Hill
- Research School of Chemistry
- The Australian National University
- Canberra
- Australia
| | | |
Collapse
|
27
|
Affiliation(s)
- Takashi Kurogi
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Balazs Pinter
- Department of Chemistry, Universidad Técnica Federico Santa María, Valparaíso 2390123, Chile
| | - Daniel J. Mindiola
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
28
|
NMR chemical shift analysis decodes olefin oligo- and polymerization activity of d 0 group 4 metal complexes. Proc Natl Acad Sci U S A 2018; 115:E5867-E5876. [PMID: 29891699 DOI: 10.1073/pnas.1803382115] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
d0 metal-alkyl complexes (M = Ti, Zr, and Hf) show specific activity and selectivity in olefin polymerization and oligomerization depending on their ligand set and charge. Here, we show by a combined experimental and computational study that the 13C NMR chemical shift tensors of the α-carbon of metal alkyls that undergo olefin insertion signal the presence of partial alkylidene character in the metal-carbon bond, which facilitates this reaction. The alkylidene character is traced back to the π-donating interaction of a filled orbital on the alkyl group with an empty low-lying metal d-orbital of appropriate symmetry. This molecular orbital picture establishes a connection between olefin insertion into a metal-alkyl bond and olefin metathesis and a close link between the Cossee-Arlmann and Green-Rooney polymerization mechanisms. The 13C NMR chemical shifts, the α-H agostic interaction, and the low activation barrier of ethylene insertion are, therefore, the results of the same orbital interactions, thus establishing chemical shift tensors as a descriptor for olefin insertion.
Collapse
|
29
|
Gordon CP, Yamamoto K, Searles K, Shirase S, Andersen RA, Eisenstein O, Copéret C. Metal alkyls programmed to generate metal alkylidenes by α-H abstraction: prognosis from NMR chemical shift. Chem Sci 2018; 9:1912-1918. [PMID: 29675237 PMCID: PMC5890791 DOI: 10.1039/c7sc05039a] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 01/04/2018] [Indexed: 12/24/2022] Open
Abstract
Metal alkylidenes, which are key organometallic intermediates in reactions such as olefination or alkene and alkane metathesis, are typically generated from metal dialkyl compounds [M](CH2R)2 that show distinctively deshielded chemical shifts for their α-carbons. Experimental solid-state NMR measurements combined with DFT/ZORA calculations and a chemical shift tensor analysis reveal that this remarkable deshielding originates from an empty metal d-orbital oriented in the M-Cα-Cα' plane, interacting with the Cα p-orbital lying in the same plane. This π-type interaction inscribes some alkylidene character into Cα that favors alkylidene generation via α-H abstraction. The extent of the deshielding and the anisotropy of the alkyl chemical shift tensors distinguishes [M](CH2R)2 compounds that form alkylidenes from those that do not, relating the reactivity to molecular orbitals of the respective molecules. The α-carbon chemical shifts and tensor orientations thus predict the reactivity of metal alkyl compounds towards alkylidene generation.
Collapse
Affiliation(s)
- Christopher P Gordon
- Department of Chemistry and Applied Biosciences , ETH Zürich , Vladimir Prelog Weg 1-5 , 8093 , Zürich , Switzerland .
| | - Keishi Yamamoto
- Department of Chemistry and Applied Biosciences , ETH Zürich , Vladimir Prelog Weg 1-5 , 8093 , Zürich , Switzerland .
| | - Keith Searles
- Department of Chemistry and Applied Biosciences , ETH Zürich , Vladimir Prelog Weg 1-5 , 8093 , Zürich , Switzerland .
| | - Satoru Shirase
- Department of Chemistry and Applied Biosciences , ETH Zürich , Vladimir Prelog Weg 1-5 , 8093 , Zürich , Switzerland . .,Department of Chemistry , Graduate School of Engineering Science , Osaka University , Toyonaka , Osaka 560-8531 , Japan
| | - Richard A Andersen
- Department of Chemistry , University of California , Berkeley , California 94720 , USA .
| | - Odile Eisenstein
- Institut Charles Gerhardt , UMR 5253 CNRS-UM-ENSCM , Université de Montpellier , 34095 Montpellier , France . .,Hylleraas Centre for Quantum Molecular Sciences , Department of Chemistry , University of Oslo , P.O. Box 1033, Blindern , 0315 Oslo , Norway
| | - Christophe Copéret
- Department of Chemistry and Applied Biosciences , ETH Zürich , Vladimir Prelog Weg 1-5 , 8093 , Zürich , Switzerland .
| |
Collapse
|
30
|
Li Y, Zhu XQ. Theoretical Prediction of Activation Free Energies of Various Hydride Self-Exchange Reactions in Acetonitrile at 298 K. ACS OMEGA 2018; 3:872-885. [PMID: 31457934 PMCID: PMC6641257 DOI: 10.1021/acsomega.7b01911] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 01/08/2018] [Indexed: 05/30/2023]
Abstract
Hydride transfer reactions are very important chemical reactions in organic chemistry. It has been a chemist's dream to predict the rate constants of hydride transfer reactions by only using the physical parameters of the reactants. To realize this dream, we have developed a kinetic equation (Zhu equation) in our previous papers to predict the activation free energies of various chemical reactions using the activation free energies of the corresponding self-exchange reactions and the related bond dissociation energies or redox potentials of the reactants. Because the activation free energy of the hydride self-exchange reaction is difficult to measure using the experimental method, in this study, the activation free energies of 159 hydride self-exchange reactions in acetonitrile at 298 K were systematically computed using an accurately benchmarked density functional theory method with a precision of 1.1 kcal mol-1. The results show that the range of the activation free energies of the 159 hydride self-exchange reactions is from 16.1 to 46.6 kcal mol-1. The activation free energies of 25 122 hydride transfer reactions in acetonitrile at 298 K can be estimated using the activation free energies of the 159 hydride self-exchange reactions and the corresponding heterolytic bond dissociation free energies of the reactants. The effects of the heteroatom, substituent, and aromaticity on the activation free energies of hydride self-exchange reactions were examined. The results show that heteroatoms, substituents at the reaction center, and the aromaticity of reactants, all have remarkable effects on the activation free energy of hydride self-exchange reactions. All kinetic information provided in this work on the hydride self-exchange reactions in acetonitrile at 298 K should be very useful in chemical labs and chemical industry.
Collapse
Affiliation(s)
- Yang Li
- The State Key Laboratory of Elemento-Organic Chemistry, College of
Chemistry, and Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, P. R. China
| | - Xiao-Qing Zhu
- The State Key Laboratory of Elemento-Organic Chemistry, College of
Chemistry, and Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
31
|
Frogley BJ, Hill AF. A complete set of pnictocarbynes: [M(CAPh2)(CO)2(Tp*)] (M = Mo, W; A = N, P, As, Sb, Bi; Tp* = hydrotris(dimethylpyrazolyl)-borate). Chem Commun (Camb) 2018; 54:2126-2129. [DOI: 10.1039/c8cc00143j] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The first two complete series of pnictogen functionalised carbyne complexes, [M(CAPh2)(CO)2(Tp*)] (M = Mo, W; A = N, P, As, Sb, Bi; Tp* = hydrotris(3,5-dimethylpyrazol-1-yl)borate), have been prepared.
Collapse
Affiliation(s)
| | - Anthony F. Hill
- Research School of Chemistry
- Australian National University
- Canberra
- Australia
| |
Collapse
|
32
|
Frogley BJ, Hill AF. Alkynylbis(alkylidynyl)phosphines: {LnMC}2PCCR. Chem Commun (Camb) 2018; 54:12373-12376. [DOI: 10.1039/c8cc07166g] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Synthetic strategies are presented for the formation of alkynylbis(alkylidynyl)phosphines which represent promising building blocks for unsaturated 2- and 3-dimensional assemblies. Parent ethynyl derivatives provide a means for installing further donor functionalities, e.g., AsPh2 as shown.
Collapse
Affiliation(s)
- Benjamin J. Frogley
- Research School of Chemistry, Australian National University
- Canberra
- Australia
| | - Anthony F. Hill
- Research School of Chemistry, Australian National University
- Canberra
- Australia
| |
Collapse
|
33
|
Abstract
The synthesis and characterization of the first examples of bimetallic bis(alkylidynyl)arsines are described. For the tungsten complexes, these may be prepared by a potentially generalizable route: successive treatment of [W(CBr)(CO)2(Tp*)] with nBuLi, ACl3 (A = P, As) and a nucleophilic source of R−via the inferred intermediacy of [ClA{CW(CO)2(Tp*)}2].
Collapse
Affiliation(s)
| | - Anthony F. Hill
- Research School of Chemistry
- Australian National University
- Canberra
- Australia
| |
Collapse
|
34
|
Free methylidyne? CCC-NHC tantalum bis(imido) reactivity: protonation, rearrangement to a mixed unsymmetrical CCC-N-heterocyclic carbene/N-heterocyclic dicarbene (CCC-NHC/NHDC) pincer tantalum bis(imido) complex. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2017.08.050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
35
|
Reinholdt A, Hill AF, Bendix J. Synthons for carbide complex chemistry. Chem Commun (Camb) 2018; 54:5708-5711. [DOI: 10.1039/c8cc03596b] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Harnessing lability, the miniaturized ligand sphere in a [RuC–Pt] complex establishes a straightforward building-block approach to carbide complexes.
Collapse
Affiliation(s)
- Anders Reinholdt
- Department of Chemistry
- University of Copenhagen
- 2100 Copenhagen
- Denmark
- Research School of Chemistry
| | - Anthony F. Hill
- Research School of Chemistry
- Australian National University
- Canberra
- Australia
| | - Jesper Bendix
- Department of Chemistry
- University of Copenhagen
- 2100 Copenhagen
- Denmark
| |
Collapse
|
36
|
Frogley BJ, Hill AF, Manzano RA, Sharma M. Bis(alkylidynyl)tellurides and ditellurides. Chem Commun (Camb) 2018; 54:1702-1705. [DOI: 10.1039/c7cc08776d] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The tellurocarbonylates [M(CTe)(CO)2(Tp*)]− (M = Mo, W; obtained from [M(CBr)(CO)2(Tp*)] and Li2Te or [M(CLi)(CO)2(Tp*)] and Te) react with an additional equivalent of [M(CBr)(CO)2(Tp*)] to give bis(alkylidynyl)tellurides, [M2(μ-CTeC)(CO)4(Tp*)2], whilst oxidation with [Fe(η-C5H5)2]PF6 affords the corresponding ditellurides [M2(μ-CTe2C)(CO)4(Tp*)2].
Collapse
Affiliation(s)
| | - Anthony F. Hill
- Research School of Chemistry
- Australian National University
- Canberra
- Australia
| | - Richard A. Manzano
- Research School of Chemistry
- Australian National University
- Canberra
- Australia
| | - Manab Sharma
- Research School of Chemistry
- Australian National University
- Canberra
- Australia
| |
Collapse
|
37
|
Martinez JL, Lin HJ, Lee WT, Pink M, Chen CH, Gao X, Dickie DA, Smith JM. Cyanide Ligand Assembly by Carbon Atom Transfer to an Iron Nitride. J Am Chem Soc 2017; 139:14037-14040. [PMID: 28933864 DOI: 10.1021/jacs.7b08704] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The new iron(IV) nitride complex PhB(iPr2Im)3Fe≡N reacts with 2 equiv of bis(diisopropylamino)cyclopropenylidene (BAC) to provide PhB(iPr2Im)3Fe(CN)(N2)(BAC). This unusual example of a four-electron reaction involves carbon atom transfer from BAC to create a cyanide ligand along with the alkyne iPr2N-C≡C-NiPr2. The iron complex is in equilibrium with an N2-free species. Further reaction with CO leads to formation of a CO analogue, which can be independently prepared using NaCN as the cyanide source, while reaction with B(C6F5)3 provides the cyanoborane derivative.
Collapse
Affiliation(s)
- Jorge L Martinez
- Department of Chemistry, Indiana University , 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Hsiu-Jung Lin
- Department of Chemistry, Indiana University , 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Wei-Tsung Lee
- Department of Chemistry, Indiana University , 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Maren Pink
- Department of Chemistry, Indiana University , 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Chun-Hsing Chen
- Department of Chemistry, Indiana University , 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Xinfeng Gao
- Department of Chemistry, Indiana University , 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Diane A Dickie
- Department of Chemistry and Chemical Biology, University of New Mexico , Albuquerque, New Mexico 87131, United States
| | - Jeremy M Smith
- Department of Chemistry, Indiana University , 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
38
|
Reinholdt A, Bendix J. Weakening of Carbide–Platinum Bonds as a Probe for Ligand Donor Strengths. Inorg Chem 2017; 56:12492-12497. [DOI: 10.1021/acs.inorgchem.7b01956] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Anders Reinholdt
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Jesper Bendix
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| |
Collapse
|
39
|
Abstract
The reaction of the methylidyne complex [W([triple bond, length as m-dash]CH)Br(CO)2(dcpe)] (dcpe = 1,2-bis(dicyclohexylphosphino)ethane) with tBuLi affords the intermediate anionic neopentylidyne complex Li[W([triple bond, length as m-dash]CtBu)(CO)2(dcpe)] which acts as a metal-based nucleophile towards tBuCl, tBuBr, Ph2E2 (E = S, Se, Te) and ClSnMe3 to afford the new carbyne complexes [W([triple bond, length as m-dash]CtBu)(X)(CO)2(dcpe)] (X = Cl, Br, EPh, SnMe3).
Collapse
Affiliation(s)
- Anthony F Hill
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory ACT 2601, Australia.
| | - Richard Y Kong
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory ACT 2601, Australia.
| |
Collapse
|
40
|
Grant LN, Pinter B, Kurogi T, Carroll ME, Wu G, Manor BC, Carroll PJ, Mindiola DJ. Molecular titanium nitrides: nucleophiles unleashed. Chem Sci 2017; 8:1209-1224. [PMID: 28451262 PMCID: PMC5369542 DOI: 10.1039/c6sc03422e] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 09/19/2016] [Indexed: 12/30/2022] Open
Abstract
In this contribution we present reactivity studies of a rare example of a titanium salt, in the form of [μ2-K(OEt2)]2[(PN)2Ti[triple bond, length as m-dash]N]2 (1) (PN- = N-(2-(diisopropylphosphino)-4-methylphenyl)-2,4,6-trimethylanilide) to produce a series of imide moieties including rare examples such as methylimido, borylimido, phosphonylimido, and a parent imido. For the latter, using various weak acids allowed us to narrow the pK a range of the NH group in (PN)2Ti[triple bond, length as m-dash]NH to be between 26-36. Complex 1 could be produced by a reductively promoted elimination of N2 from the azide precursor (PN)2TiN3, whereas reductive splitting of N2 could not be achieved using the complex (PN)2Ti[double bond, length as m-dash]N[double bond, length as m-dash]N[double bond, length as m-dash]Ti(PN)2 (2) and a strong reductant. Complete N-atom transfer reactions could also be observed when 1 was treated with ClC(O)tBu and OCCPh2 to form NCtBu and KNCCPh2, respectively, along with the terminal oxo complex (PN)2Ti[triple bond, length as m-dash]O, which was also characterized. A combination of solid state 15N NMR (MAS) and theoretical studies allowed us to understand the shielding effect of the counter cation in dimer 1, the monomer [K(18-crown-6)][(PN)2Ti[triple bond, length as m-dash]N], and the discrete salt [K(2,2,2-Kryptofix)][(PN)2Ti[triple bond, length as m-dash]N] as well as the origin of the highly downfield 15N NMR resonance when shifting from dimer to monomer to a terminal nitride (discrete salt). The upfield shift of 15Nnitride resonance in the 15N NMR spectrum was found to be linked to the K+ induced electronic structural change of the titanium-nitride functionality by using a combination of MO analysis and quantum chemical analysis of the corresponding shielding tensors.
Collapse
Affiliation(s)
- Lauren N Grant
- Department of Chemistry , University of Pennsylvania , 231 South 34th Street , Philadelphia , PA 19104 , USA .
| | - Balazs Pinter
- Eenheid Algemene Chemie (ALGC) , Vrije Universiteit Brussel (VUB) , Pleinlaan 2 , 1050 , Brussels , Belgium
| | - Takashi Kurogi
- Department of Chemistry , University of Pennsylvania , 231 South 34th Street , Philadelphia , PA 19104 , USA .
| | - Maria E Carroll
- Department of Chemistry , University of Pennsylvania , 231 South 34th Street , Philadelphia , PA 19104 , USA .
| | - Gang Wu
- Department of Chemistry , Queen's University , Kingston , Ontario , Canada K7L 3N6
| | - Brian C Manor
- Department of Chemistry , University of Pennsylvania , 231 South 34th Street , Philadelphia , PA 19104 , USA .
| | - Patrick J Carroll
- Department of Chemistry , University of Pennsylvania , 231 South 34th Street , Philadelphia , PA 19104 , USA .
| | - Daniel J Mindiola
- Department of Chemistry , University of Pennsylvania , 231 South 34th Street , Philadelphia , PA 19104 , USA .
| |
Collapse
|
41
|
Colebatch AL, Han YS, Hill AF, Sharma M, Shang R, Ward JS. Rearrangement of bis(alkylidynyl)phosphines to phospha-acyls. Chem Commun (Camb) 2017; 53:1832-1835. [DOI: 10.1039/c6cc09764b] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A range of bis(alkylidynyl)phosphines RP{CM(CO)2(Tp*)}2 (M = Mo, W; R = Cl, Ph, Cy; Tp* = hydrotris(dimethylpyrazolyl)borate) are obtained from the reactions of [M(CLi)(CO)2(Tp*)] with Cl2PR or alternatively via the palladium(0)-mediated reactions of [W(CBr)(CO)2(Tp*)] with RPH2 (R = Py, Cy).
Collapse
Affiliation(s)
- Annie L. Colebatch
- Research School of Chemistry
- Australian National University
- Canberra
- Australian Capital Territory
- Australia
| | - Yong-Shen Han
- Research School of Chemistry
- Australian National University
- Canberra
- Australian Capital Territory
- Australia
| | - Anthony F. Hill
- Research School of Chemistry
- Australian National University
- Canberra
- Australian Capital Territory
- Australia
| | - Manab Sharma
- Research School of Chemistry
- Australian National University
- Canberra
- Australian Capital Territory
- Australia
| | - Rong Shang
- Research School of Chemistry
- Australian National University
- Canberra
- Australian Capital Territory
- Australia
| | - Jas S. Ward
- Research School of Chemistry
- Australian National University
- Canberra
- Australian Capital Territory
- Australia
| |
Collapse
|
42
|
Joost M, Nava M, Transue WJ, Cummins CC. An exploding N-isocyanide reagent formally composed of anthracene, dinitrogen and a carbon atom. Chem Commun (Camb) 2017; 53:11500-11503. [DOI: 10.1039/c7cc06516g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
An anthracene-based N-isocyanide was synthesized and its reactivity studied. This sensitive compound was structurally characterized as a free species and as a ligand in a ruthenium complex, and underwent C-atom transfer upon treatment with an O-atom donor to evolve CO.
Collapse
Affiliation(s)
- Maximilian Joost
- Department of Chemistry
- Massachusetts Institute of Technology
- Cambridge
- USA
| | - Matthew Nava
- Department of Chemistry
- Massachusetts Institute of Technology
- Cambridge
- USA
| | - Wesley J. Transue
- Department of Chemistry
- Massachusetts Institute of Technology
- Cambridge
- USA
| | | |
Collapse
|
43
|
Suzuki A, Arai T, Ikenaga K, Mutoh Y, Tsuchida N, Saito S, Ishii Y. A ruthenium tellurocarbonyl (CTe) complex with a cyclopentadienyl ligand: systematic studies of a series of chalcogenocarbonyl complexes [CpRuCl(CE)(H2IMes)] (E = O, S, Se, Te). Dalton Trans 2017; 46:44-48. [DOI: 10.1039/c6dt04440a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first tellurocarbonyl complex with a half-sandwich structure [CpRuCl(CTe)(H2IMes)] was synthesized and compared with its CE (E = O, S, Se) analogs.
Collapse
Affiliation(s)
- Ayumi Suzuki
- Department of Chemistry
- Faculty of Science
- Tokyo University of Science
- Tokyo 162-8601
- Japan
| | - Takahiro Arai
- Department of Applied Chemistry
- Faculty of Science and Engineering
- Chuo University
- Tokyo 112-8551
- Japan
| | - Kota Ikenaga
- Department of Applied Chemistry
- Faculty of Science and Engineering
- Chuo University
- Tokyo 112-8551
- Japan
| | - Yuichiro Mutoh
- Department of Chemistry
- Faculty of Science
- Tokyo University of Science
- Tokyo 162-8601
- Japan
| | - Noriko Tsuchida
- Department of Liberal Arts
- Faculty of Medicine
- Saitama Medical University
- Saitama 350-0495
- Japan
| | - Shinichi Saito
- Department of Chemistry
- Faculty of Science
- Tokyo University of Science
- Tokyo 162-8601
- Japan
| | - Youichi Ishii
- Department of Applied Chemistry
- Faculty of Science and Engineering
- Chuo University
- Tokyo 112-8551
- Japan
| |
Collapse
|
44
|
Buss JA, Agapie T. Mechanism of Molybdenum-Mediated Carbon Monoxide Deoxygenation and Coupling: Mono- and Dicarbyne Complexes Precede C-O Bond Cleavage and C-C Bond Formation. J Am Chem Soc 2016; 138:16466-16477. [PMID: 27936655 DOI: 10.1021/jacs.6b10535] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Deoxygenative coupling of CO to value-added C≥2 products is challenging and mechanistically poorly understood. Herein, we report a mechanistic investigation into the reductive coupling of CO, which provides new fundamental insights into a multielectron bond-breaking and bond-making transformation. In our studies, the formation of a bis(siloxycarbyne) complex precedes C-O bond cleavage. At -78 °C, over days, C-C coupling occurs without C-O cleavage. However, upon warming to 0 °C, C-O cleavage is observed from this bis(siloxycarbyne) complex. A siloxycarbyne/CO species undergoes C-O bond cleavage at lower temperatures, indicating that monosilylation, and a more electron-rich Mo center, favors deoxygenative pathways. From the bis(siloxycarbyne), isotopic labeling experiments and kinetics are consistent with a mechanism involving unimolecular silyl loss or C-O cleavage as rate-determining steps toward carbide formation. Reduction of Mo(IV) CO adducts of carbide and silylcarbyne species allowed for the spectroscopic detection of reduced silylcarbyne/CO and mixed silylcarbyne/siloxycarbyne complexes, respectively. Upon warming, both of these silylcarbynes undergo C-C bond formation, releasing silylated C2O1 fragments and demonstrating that the multiple bonded terminal Mo≡C moiety is an intermediate on the path to deoxygenated, C-C coupled products. The electronic structures of Mo carbide and carbyne species were investigated quantum mechanically. Overall, the present studies establish the elementary reactions steps by which CO is cleaved and coupled at a single metal site.
Collapse
Affiliation(s)
- Joshua A Buss
- Division of Chemistry and Chemical Engineering, California Institute of Technology , 1200 East California Boulevard MC 127-72, Pasadena, California 91125, United States
| | - Theodor Agapie
- Division of Chemistry and Chemical Engineering, California Institute of Technology , 1200 East California Boulevard MC 127-72, Pasadena, California 91125, United States
| |
Collapse
|
45
|
Reinholdt A, Vosch T, Bendix J. Modification of σ-Donor Properties of Terminal Carbide Ligands Investigated Through Carbide-Iodine Adduct Formation. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201606551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Anders Reinholdt
- Department of Chemistry; University of Copenhagen; Universitetsparken 5 2100 Copenhagen Denmark
| | - Tom Vosch
- Department of Chemistry; University of Copenhagen; Universitetsparken 5 2100 Copenhagen Denmark
| | - Jesper Bendix
- Department of Chemistry; University of Copenhagen; Universitetsparken 5 2100 Copenhagen Denmark
| |
Collapse
|
46
|
Reinholdt A, Vosch T, Bendix J. Modification of σ-Donor Properties of Terminal Carbide Ligands Investigated Through Carbide-Iodine Adduct Formation. Angew Chem Int Ed Engl 2016; 55:12484-7. [DOI: 10.1002/anie.201606551] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Anders Reinholdt
- Department of Chemistry; University of Copenhagen; Universitetsparken 5 2100 Copenhagen Denmark
| | - Tom Vosch
- Department of Chemistry; University of Copenhagen; Universitetsparken 5 2100 Copenhagen Denmark
| | - Jesper Bendix
- Department of Chemistry; University of Copenhagen; Universitetsparken 5 2100 Copenhagen Denmark
| |
Collapse
|
47
|
Affiliation(s)
- Annie L. Colebatch
- Research
School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Anthony F. Hill
- Research
School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
48
|
Affiliation(s)
- Takashi Kurogi
- Department of Chemistry, University of Pennsylvania, 231 South
34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Patrick J. Carroll
- Department of Chemistry, University of Pennsylvania, 231 South
34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Daniel J. Mindiola
- Department of Chemistry, University of Pennsylvania, 231 South
34th Street, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
49
|
Wu G. Solid-State ¹⁷O NMR studies of organic and biological molecules: Recent advances and future directions. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2016; 73:1-14. [PMID: 26651417 DOI: 10.1016/j.ssnmr.2015.11.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 11/20/2015] [Accepted: 11/24/2015] [Indexed: 05/04/2023]
Abstract
This Trends article highlights the recent advances published between 2012 and 2015 in solid-state (17)O NMR for organic and biological molecules. New developments in the following areas are described: (1) new oxygen-containing functional groups, (2) metal organic frameworks, (3) pharmaceuticals, (4) probing molecular motion in organic solids, (5) dynamic nuclear polarization, and (6) paramagnetic coordination compounds. For each of these areas, the author offers his personal views on important problems to be solved and possible future directions.
Collapse
Affiliation(s)
- Gang Wu
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario, Canada K7L 3N6
| |
Collapse
|
50
|
Reinholdt A, Herbst K, Bendix J. Delivering carbide ligands to sulfide-rich clusters. Chem Commun (Camb) 2016; 52:2015-8. [DOI: 10.1039/c5cc08918b] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The propensity of the terminal ruthenium carbide Ru(C)Cl2(PCy3)2 (RuC) to form carbide bridges to electron-rich transition metals enables synthetic routes to metal clusters with coexisting carbide and sulfide ligands.
Collapse
Affiliation(s)
- Anders Reinholdt
- Department of Chemistry
- University of Copenhagen
- DK-2100 Copenhagen
- Denmark
| | | | - Jesper Bendix
- Department of Chemistry
- University of Copenhagen
- DK-2100 Copenhagen
- Denmark
| |
Collapse
|