1
|
Faintich B, Parsons T, Balduf T, Caricato M. Theoretical Study of the Isotope Effect in Optical Rotation. J Phys Chem A 2024; 128:8045-8059. [PMID: 39259613 DOI: 10.1021/acs.jpca.4c03728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
In this work, the isotope effect in optical rotation (OR) is examined by exploring structure-property relationships for H → D substitutions in chiral molecules. While electronic effects serve as the dominant source of optical activity, there is a non-negligible contribution from nuclear vibrations, which changes with isotopic substitution. We employ a test set of 50 small organic molecules: three-membered rings with varying heteroatoms (PCl, PH, S, NCl, NH, O, and NBr) and functional groups (Me, F), and simulations were run at the B3LYP/aug-cc-pVDZ level of theory. The objectives of this work are to determine locations of isotopic substitution that result in significant changes in the vibrational correction to the OR and to evaluate which vibrational modes and electronic response are the major contributors to the isotope effect. Molecules with more polarizable heteroatoms in the ring (e.g., S and P) have the largest change in the vibrational correction compared to the unsubstituted parent molecules. In many cases, isotopic substitution made to the hydrogens on the opposite side of the ring from the functional group provides the largest change in the OR. H/D wagging modes and C vibrations (for D-C centers) are the largest contributors to the isotope effect. This is explained with a molecular orbital decomposition analysis of the OR. The relevant vibrational modes affect the orbital transitions that are already significant at the equilibrium geometry. However, this effect is only large when polarizable heteroatoms are involved because the electron density surrounding them is diffuse enough to feel the subtle effect of change in mass due to isotopic substitution on the relevant vibrational modes.
Collapse
Affiliation(s)
- Brian Faintich
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Taylor Parsons
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Ty Balduf
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Marco Caricato
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| |
Collapse
|
2
|
Franzke YJ, Bruder F, Gillhuber S, Holzer C, Weigend F. Paramagnetic Nuclear Magnetic Resonance Shifts for Triplet Systems and Beyond with Modern Relativistic Density Functional Methods. J Phys Chem A 2024; 128:670-686. [PMID: 38195394 DOI: 10.1021/acs.jpca.3c07093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
An efficient framework for the calculation of paramagnetic NMR (pNMR) shifts within exact two-component (X2C) theory and (current-dependent) density functional theory (DFT) up to the class of local hybrid functionals (LHFs) is presented. Generally, pNMR shifts for systems with more than one unpaired electron depend on the orbital shielding contribution and a temperature-dependent term. The latter includes zero-field splitting (ZFS), hyperfine coupling (HFC), and the g-tensor. For consistency, we calculate these three tensors at the same level of theory, i.e., using scalar-relativistic X2C augmented with spin-orbit perturbation theory. Results for pNMR chemical shifts of transition-metal complexes reveal that this X2C-DFT framework can yield good results for both the shifts and the individual tensor contributions of metallocenes and related systems, especially if the HFC constant is large. For small HFC constants, the relative error is often large, and sometimes the sign may be off. 4d and 5d complexes with more complicated structures demonstrate the limitations of a fully DFT-based approach. Additionally, a Co-based complex with a very large ZFS and pronounced multireference character is not well described. Here, a hybrid DFT-multireference framework is necessary for accurate results. Our results show that X2C is sufficient to describe relativistic effects and computationally cheaper than a fully relativistic approach. Thus, it allows use of large basis sets for converged HFCs. Overall, current-dependent meta-generalized gradient approximations and LHFs show some potential; however, the currently available functionals leave a lot to be desired, and the predictive power is limited.
Collapse
Affiliation(s)
- Yannick J Franzke
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany
| | - Florian Bruder
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany
| | - Sebastian Gillhuber
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstraße 15, 76131 Karlsruhe, Germany
| | - Christof Holzer
- Institute of Theoretical Solid State Physics, Karlsruhe Institute of Technology (KIT), Wolfgang-Gaede-Straße 1, 76131 Karlsruhe, Germany
| | - Florian Weigend
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany
| |
Collapse
|
3
|
Rusakov YY, Rusakova IL. New pecJ- n ( n = 1, 2) Basis Sets for Selenium Atom Purposed for the Calculations of NMR Spin-Spin Coupling Constants Involving Selenium. Int J Mol Sci 2023; 24:ijms24097841. [PMID: 37175548 PMCID: PMC10178039 DOI: 10.3390/ijms24097841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
We present new compact pecJ-n (n = 1, 2) basis sets for the selenium atom developed for the quantum-chemical calculations of NMR spin-spin coupling constants (SSCCs) involving selenium nuclei. These basis sets were obtained at the second order polarization propagator approximation with coupled cluster singles and doubles amplitudes (SOPPA(CCSD)) level with the property-energy consistent (PEC) method, which was introduced in our previous papers. The existing SSCC-oriented selenium basis sets are rather large in size, while the PEC method gives more compact basis sets that are capable of providing accuracy comparable to that reached using the property-oriented basis sets of larger sizes generated with a standard even-tempered technique. This is due to the fact that the PEC method is very different in its essence from the even-tempered approaches. It generates new exponents through the total optimization of angular spaces of trial basis sets with respect to the property under consideration and the total molecular energy. New basis sets were tested on the coupled cluster singles and doubles (CCSD) calculations of SSCCs involving selenium in the representative series of molecules, taking into account relativistic, solvent, and vibrational corrections. The comparison with the experiment showed that the accuracy of the results obtained with the pecJ-2 basis set is almost the same as that provided by a significantly larger basis set, aug-cc-pVTZ-J, while that achieved with a very compact pecJ-1 basis set is only slightly inferior to the accuracy provided by the former.
Collapse
Affiliation(s)
- Yuriy Yu Rusakov
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Favorsky St. 1, 664033 Irkutsk, Russia
| | - Irina L Rusakova
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Favorsky St. 1, 664033 Irkutsk, Russia
| |
Collapse
|
4
|
Rzepiela K, Kaminský J, Buczek A, Broda MA, Kupka T. Electron Correlation or Basis Set Quality: How to Obtain Converged and Accurate NMR Shieldings for the Third-Row Elements? Molecules 2022; 27:8230. [PMID: 36500321 PMCID: PMC9737175 DOI: 10.3390/molecules27238230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
The quality of theoretical NMR shieldings calculated at the quantum-chemical level depends on various theoretical aspects, of which the basis set type and size are among the most important factors. Nevertheless, not much information is available on the basis set effect on theoretical shieldings of the NMR-active nuclei of the third row. Here, we report on the importance of proper basis set selection to obtain accurate and reliable NMR shielding parameters for nuclei from the third row of the periodic table. All calculations were performed on a set of eleven compounds containing the elements Na, Mg, Al, Si, P, S, or Cl. NMR shielding tensors were calculated using the SCF-HF, DFT-B3LYP, and CCSD(T) methods, combined with the Dunning valence aug-cc-pVXZ, core-valence aug-cc-pCVXZ, Jensen polarized-convergent aug-pcSseg-n and Karlsruhe x2c-Def2 basis set families. We also estimated the complete basis set limit (CBS) values of the NMR parameters. Widely scattered nuclear shieldings were observed for the Dunning polarized-valence basis set, which provides irregular convergence. We show that the use of Dunning core-valence or Jensen basis sets effectively reduces the scatter of theoretical NMR results and leads to their exponential-like convergence to CBS. We also assessed the effect of vibrational, temperature, and relativistic corrections on the predicted shieldings. For systems with single bonds, all corrections are relatively small, amounting to less than 4% of the CCSD(T)/CBS value. Vibrational and temperature corrections were less reliable for H3PO and HSiCH due to the high anharmonicity of the molecules. An abnormally high relativistic correction was observed for phosphorus in PN, reaching ~20% of the CCSD(T)/CBS value, while the correction was less than 7% for other tested molecules.
Collapse
Affiliation(s)
- Kacper Rzepiela
- Faculty of Chemistry, University of Opole, 48 Oleska Street, 46-052 Opole, Poland
| | - Jakub Kaminský
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo nám. 2, 166 10 Prague, Czech Republic
| | - Aneta Buczek
- Faculty of Chemistry, University of Opole, 48 Oleska Street, 46-052 Opole, Poland
| | - Małgorzata A. Broda
- Faculty of Chemistry, University of Opole, 48 Oleska Street, 46-052 Opole, Poland
| | - Teobald Kupka
- Faculty of Chemistry, University of Opole, 48 Oleska Street, 46-052 Opole, Poland
| |
Collapse
|
5
|
Poidevin C, Stoychev GL, Riplinger C, Auer AA. High Level Electronic Structure Calculation of Molecular Solid-State NMR Shielding Constants. J Chem Theory Comput 2022; 18:2408-2417. [PMID: 35353527 PMCID: PMC9009078 DOI: 10.1021/acs.jctc.1c01095] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Indexed: 11/29/2022]
Abstract
In this work, we present a quantum mechanics/molecular mechanics (QM/MM) approach for the computation of solid-state nuclear magnetic resonance (SS-NMR) shielding constants (SCs) for molecular crystals. Besides applying standard-DFT functionals like GGAs (PBE), meta-GGAs (TPSS), and hybrids (B3LYP), we apply a double-hybrid (DSD-PBEP86) functional as well as MP2, using the domain-based local pair natural orbital (DLPNO) formalism, to calculate the NMR SCs of six amino acid crystals. All the electronic structure methods used exhibit good correlation of the NMR shieldings with respect to experimental chemical shifts for both 1H and 13C. We also find that local electronic structure is much more important than the long-range electrostatic effects for these systems, implying that cluster approaches using all-electron/Gaussian basis set methods might offer great potential for predictive computations of solid-state NMR parameters for organic solids.
Collapse
Affiliation(s)
- Corentin Poidevin
- Institut
des Sciences Chimiques de Rennes, Av. Général Leclerc, 357000 Rennes, France
| | - Georgi L. Stoychev
- Max-Planck-Institut
für Kohlenforschung, 45470 Mülheim an der Ruhr, Germany
| | | | - Alexander A. Auer
- Max-Planck-Institut
für Kohlenforschung, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
6
|
Crittenden DL. A new double-reference correction scheme for accurate and efficient computation of NMR chemical shieldings. Phys Chem Chem Phys 2022; 24:27055-27063. [DOI: 10.1039/d2cp03992c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Our novel correction procedure yields high-accuracy DFT predictions of absolute NMR shieldings and enables outliers due to relativistic effects or manifestly inadequate modelling of electron correlation to be easily and unambiguously identified.
Collapse
Affiliation(s)
- Deborah L. Crittenden
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch, 8140, New Zealand
| |
Collapse
|
7
|
Payard PA, Perego LA, Grimaud L, Ciofini I. A DFT Protocol for the Prediction of 31P NMR Chemical Shifts of Phosphine Ligands in First-Row Transition-Metal Complexes. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00309] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Pierre-Adrien Payard
- Laboratoire des Biomolécules, LBM, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Luca Alessandro Perego
- Laboratoire des Biomolécules, LBM, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
- PSL University, Institute of Chemistry for Health and Life Sciences, I-CLeHS, CNRS-Chimie ParisTech, 11 rue P. et M. Curie, F-75005 Paris 05, France
| | - Laurence Grimaud
- Laboratoire des Biomolécules, LBM, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Ilaria Ciofini
- PSL University, Institute of Chemistry for Health and Life Sciences, I-CLeHS, CNRS-Chimie ParisTech, 11 rue P. et M. Curie, F-75005 Paris 05, France
| |
Collapse
|
8
|
15N NMR Shifts of Eumelanin Building Blocks in Water: A Combined Quantum Mechanics/Statistical Mechanics Approach. Molecules 2020; 25:molecules25163616. [PMID: 32784827 PMCID: PMC7465604 DOI: 10.3390/molecules25163616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 02/05/2023] Open
Abstract
Theoretical results for the magnetic shielding of protonated and unprotonated nitrogens of eumelanin building blocks including monomers, dimers, and tetramers in gas phase and water are presented. The magnetic property in water was determined by carrying out Monte Carlo statistical mechanics sampling combined with quantum mechanics calculations based on the gauge-including atomic orbitals approach. The results show that the environment polarization can have a marked effect on nitrogen magnetic shieldings, especially for the unprotonated nitrogens. Large contrasts of the oligomerization effect on magnetic shielding show a clear distinction between eumelanin building blocks in solution, which could be detected in nuclear magnetic resonance experiments. Calculations for a π-stacked structure defined by the dimer of a tetrameric building block indicate that unprotonated N atoms are significantly deshielded upon π stacking, whereas protonated N atoms are slightly shielded. The results stress the interest of NMR experiments for a better understanding of the eumelanin complex structure.
Collapse
|
9
|
Rusakov YY, Rusakova IL. What Most Affects the Accuracy of 125Te NMR Chemical Shift Calculations. J Phys Chem A 2020; 124:6714-6725. [DOI: 10.1021/acs.jpca.0c05780] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yu. Yu. Rusakov
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Favorsky St. 1, 664033 Irkutsk, Russian Federation
| | - I. L. Rusakova
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Favorsky St. 1, 664033 Irkutsk, Russian Federation
| |
Collapse
|
10
|
Casabianca LB. Calculating nuclear magnetic resonance chemical shifts in solvated systems. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2020; 58:611-624. [PMID: 31916612 DOI: 10.1002/mrc.4994] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 12/30/2019] [Accepted: 01/02/2020] [Indexed: 06/10/2023]
Abstract
The nuclear magnetic resonance (NMR) chemical shift is extremely sensitive to molecular geometry, hydrogen bonding, solvent, temperature, pH, and concentration. Calculated magnetic shielding constants, converted to chemical shifts, can be valuable aids in NMR peak assignment and can also give detailed information about molecular geometry and intermolecular effects. Calculating chemical shifts in solution is complicated by the need to include solvent effects and conformational averaging. Here, we review the current state of NMR chemical shift calculations in solution, beginning with an introduction to the theory of calculating magnetic shielding in general, then covering methods for inclusion of solvent effects and conformational averaging, and finally discussing examples of applications using calculated chemical shifts to gain detailed structural information.
Collapse
Affiliation(s)
- Leah B Casabianca
- Department of Chemistry, Clemson University, Clemson, South Carolina
| |
Collapse
|
11
|
Socha O, Dračínský M. Dimerization of Acetic Acid in the Gas Phase-NMR Experiments and Quantum-Chemical Calculations. Molecules 2020; 25:molecules25092150. [PMID: 32375390 PMCID: PMC7248931 DOI: 10.3390/molecules25092150] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/28/2020] [Accepted: 04/30/2020] [Indexed: 11/24/2022] Open
Abstract
Due to the nature of the carboxylic group, acetic acid can serve as both a donor and acceptor of a hydrogen bond. Gaseous acetic acid is known to form cyclic dimers with two strong hydrogen bonds. However, trimeric and various oligomeric structures have also been hypothesized to exist in both the gas and liquid phases of acetic acid. In this work, a combination of gas-phase NMR experiments and advanced computational approaches were employed in order to validate the basic dimerization model of gaseous acetic acid. The gas-phase experiments performed in a glass tube revealed interactions of acetic acid with the glass surface. On the other hand, variable-temperature and variable-pressure NMR parameters obtained for acetic acid in a polymer insert provided thermodynamic parameters that were in excellent agreement with the MP2 (the second order Møller–Plesset perturbation theory) and CCSD(T) (coupled cluster with single, double and perturbative triple excitation) calculations based on the basic dimerization model. A slight disparity between the theoretical dimerization model and the experimental data was revealed only at low temperatures. This observation might indicate the presence of other, entropically disfavored, supramolecular structures at low temperatures.
Collapse
Affiliation(s)
- Ondřej Socha
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague, Czech Republic;
- Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 166 10 Prague, Czech Republic
| | - Martin Dračínský
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague, Czech Republic;
- Correspondence: ; Tel./Fax: +42-02-2018-3139
| |
Collapse
|
12
|
Baryshnikov GV, Valiev RR, Li Q, Li C, Xie Y, Ågren H. Computational study of aromaticity, 1H NMR spectra and intermolecular interactions of twisted thia-norhexaphyrin and its multiply annulated polypyrrolic derivatives. Phys Chem Chem Phys 2019; 21:25334-25343. [PMID: 31701970 DOI: 10.1039/c9cp04819g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The recently synthesized twisted thia-norhexaphyrin and its multiply annulated polypyrrolic derivatives have been studied computationally. Gauge-including magnetically induced current calculations predict a global nonaromatic character of the initial thia-norhexaphyrin due to the highly-twisted conformation of the macrocycle. Upon the oxidation of the thia-norhexaphyrin four multiply annulated polypyrrolic aromatic macrocycles are formed for which the global aromatic character is confirmed in agreement with experimentally measured 1H NMR spectra. The calculation of the proton chemical shifts for the studied compounds by direct comparison with the tetramethylsilane standard leads to a significant mean absolute error. At the same time a linear regression procedure for the two selected groups of protons (CH and NH protons) provides much better values of calculated chemical shifts and tight correlation with experiment. The separate consideration of NH protons is motivated by the numerous intermolecular hydrogen bonds in which the protons are involved, which induce considerable upfield shifts, leading to a significant underestimation of the corresponding chemical shifts. Such a selected correlation can be used for accurate estimation of proton chemical shifts of the related porphyrinoids. Bader's theory of Atoms in Molecules has been applied for the studied twisted thia-norhexaphyrin and its multiply annulated polypyrrolic derivatives to characterize intramolecular H-bonds and other non-covalent interactions.
Collapse
Affiliation(s)
- Gleb V Baryshnikov
- Division of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 10691, Stockholm, Sweden. and Department of Chemistry and Nanomaterials Science, Bohdan Khmelnytsky National University, 18031, Cherkasy, Ukraine
| | - Rashid R Valiev
- Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Lenin Avenue 30, Tomsk 634050, Russia and Department of Chemistry, University of Helsinki, FIN-00014, Helsinki, Finland
| | - Qizhao Li
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Chengjie Li
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Yongshu Xie
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Hans Ågren
- Division of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 10691, Stockholm, Sweden. and College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, P. R. China
| |
Collapse
|
13
|
Kupka T, Mnich A, Broda MA. Performance of revised STO(1M)-3G basis set for prediction of 5-fluorocytosine chemical shifts. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2019; 57:489-498. [PMID: 31013546 DOI: 10.1002/mrc.4879] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/14/2019] [Accepted: 04/15/2019] [Indexed: 06/09/2023]
Abstract
Nuclear shieldings and chemical shifts of 5-fluorocytosine (5FC) were predicted in the gas phase and DMSO solution modeled by polarizable continuum model using B3LYP density functional and revised STO(1M)-3G basis set. For comparison, eight arbitrary selected basis sets including STO-3G and medium-size Pople-type and larger dedicated Jensen-type ones were applied. The former basis sets were significantly smaller, but the calculated structural parameters, harmonic vibrational frequencies, were very accurate and close to those obtained with larger, polarization-consistent ones. The predicted 13 C and 1 H chemical shieldings of 5FC and cytosine, selected as parent molecule, were acceptable (root mean square for 13 C chemical shifts in DMSO of about 5 ppm and less) though less accurate than those calculated with large basis sets, dedicated for prediction of nuclear magnetic resonance parameters.
Collapse
Affiliation(s)
- Teobald Kupka
- Faculty of Chemistry, University of Opole, 48, Oleska Street, 46-052, Opole, Poland
| | - Adrianna Mnich
- Faculty of Chemistry, University of Opole, 48, Oleska Street, 46-052, Opole, Poland
| | - Małgorzata A Broda
- Faculty of Chemistry, University of Opole, 48, Oleska Street, 46-052, Opole, Poland
| |
Collapse
|
14
|
Dračínský M, Buchta M, Buděšínský M, Vacek-Chocholoušová J, Stará IG, Starý I, Malkina OL. Dihydrogen contacts observed by through-space indirect NMR coupling. Chem Sci 2018; 9:7437-7446. [PMID: 30319744 PMCID: PMC6180313 DOI: 10.1039/c8sc02859a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 08/11/2018] [Indexed: 11/21/2022] Open
Abstract
"Through-space" indirect spin-spin couplings between hydrogen atoms formally separated by up to 18 covalent bonds have been detected by NMR experiments in model helical molecules. It is demonstrated that this coupling can provide crucial structural information on the molecular conformation in solution. The coupling pathways have been visualised and analysed by computational methods. The conformational dependence of the coupling is explained in terms of orbital interactions.
Collapse
Affiliation(s)
- Martin Dračínský
- Institute of Organic Chemistry and Biochemistry , Czech Academy of Sciences , Flemingovo nám. 2 , 166 10 Prague 6 , Czech Republic .
| | - Michal Buchta
- Institute of Organic Chemistry and Biochemistry , Czech Academy of Sciences , Flemingovo nám. 2 , 166 10 Prague 6 , Czech Republic .
| | - Miloš Buděšínský
- Institute of Organic Chemistry and Biochemistry , Czech Academy of Sciences , Flemingovo nám. 2 , 166 10 Prague 6 , Czech Republic .
| | - Jana Vacek-Chocholoušová
- Institute of Organic Chemistry and Biochemistry , Czech Academy of Sciences , Flemingovo nám. 2 , 166 10 Prague 6 , Czech Republic .
| | - Irena G Stará
- Institute of Organic Chemistry and Biochemistry , Czech Academy of Sciences , Flemingovo nám. 2 , 166 10 Prague 6 , Czech Republic .
| | - Ivo Starý
- Institute of Organic Chemistry and Biochemistry , Czech Academy of Sciences , Flemingovo nám. 2 , 166 10 Prague 6 , Czech Republic .
| | - Olga L Malkina
- Institute of Inorganic Chemistry , Slovak Academy of Sciences , Dúbravská cesta 9 , SK-84536 Bratislava , Slovakia .
| |
Collapse
|
15
|
Abstract
We investigate by explicit parameter optimization to what extent basis sets of polarized double-ζ quality can introduce compensating errors in five different density functional methods. It is shown that minor changes in the contraction coefficients of the valence functions in the basis sets can have a significant impact and allow different density functional methods to achieve very similar performances. This holds for nuclear magnetic shielding constants and for isomerization energies, barrier heights, and noncovalent interactions. It is furthermore shown that errors due to neglect of vibrational and solvent effects can be absorbed in the combined method and basis set errors. These findings hold for data sets consisting of 50-150 data points. This raises the question of whether the common practice of identifying combinations of density functional methods and basis sets that have a good performance against a selected set of reference data should be considered as data fitting in the combined parameter space spanned by the method and basis set.
Collapse
Affiliation(s)
- Frank Jensen
- Department of Chemistry , Aarhus University , DK-8000 Aarhus , Denmark
| |
Collapse
|
16
|
Kupka T, Buczek A, Broda MA, Gajda Ł, Ignasiak M. Convergence of nuclear magnetic shieldings and one-bond 1 J( 11 B 1 H) indirect spin-spin coupling constants in small boron molecules. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2018; 56:338-351. [PMID: 29361201 DOI: 10.1002/mrc.4714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 01/10/2018] [Accepted: 01/13/2018] [Indexed: 06/07/2023]
Abstract
Self-consistent field Hartree-Fock, density functional theory, and coupled-cluster calculations of the nuclear magnetic shielding constants of BH and BH3 molecules have been conducted to characterize the convergence of individual results obtained with correlation-consistent and polarization-consistent basis sets. The individual 11 B and 1 H NMR parameters were estimated in the complete basis set limit and compared with benchmark results. Only the KT3 density functional accurately reproduced 11 B shielding in BH molecule.
Collapse
Affiliation(s)
- Teobald Kupka
- Faculty of Chemistry, University of Opole, 48, Oleska Street, 46-052, Opole, Poland
| | - Aneta Buczek
- Faculty of Chemistry, University of Opole, 48, Oleska Street, 46-052, Opole, Poland
| | - Małgorzata A Broda
- Faculty of Chemistry, University of Opole, 48, Oleska Street, 46-052, Opole, Poland
| | - Łukasz Gajda
- Faculty of Chemistry, University of Opole, 48, Oleska Street, 46-052, Opole, Poland
| | - Monika Ignasiak
- Faculty of Chemistry, University of Opole, 48, Oleska Street, 46-052, Opole, Poland
| |
Collapse
|
17
|
Gajda Ł, Kupka T, Broda MA, Leszczyńska M, Ejsmont K. Method and basis set dependence of the NICS indexes of aromaticity for benzene. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2018; 56:265-275. [PMID: 29211311 DOI: 10.1002/mrc.4690] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 11/21/2017] [Accepted: 11/24/2017] [Indexed: 05/24/2023]
Abstract
The role of theory level in prediction of benzene magnetic indexes of aromaticity is analysed and compared with calculated nuclear magnetic shieldings of 3 He used as NMR probe. Three closely related nucleus-independent chemical shift (NICS) based indexes were calculated for benzene at SCF-HF, MP2, and DFT levels of theory and the impact of basis set on these quantities was studied. The changes of benzene NICS(0), NICS(1), and NICS(1)zz parameters calculated using SCF-HF, MP2 and several density functionals were within 1 to 3 ppm. Similar deviations between magnetic indexes of aromaticity were observed for values calculated with selected basis sets. Only very small effect of polar solvent on benzene aromaticity was predicted. The 3 He nuclear magnetic isotropic shielding (σ) and its zz-components (σzz ) of helium atom approaching the centre of benzene ring from above produced similar curves versus benzene-He distance to NICS parameters calculated for similarly moving Bq ghost atom. We also propose an experimental verification of NICS calculations by designing the 3 He NMR measurement for benzene saturated with helium gas or in low temperature matrices.
Collapse
Affiliation(s)
- Łukasz Gajda
- Faculty of Chemistry, University of Opole, 48, Oleska Street, 45-052, Opole, Poland
| | - Teobald Kupka
- Faculty of Chemistry, University of Opole, 48, Oleska Street, 45-052, Opole, Poland
| | - Małgorzata A Broda
- Faculty of Chemistry, University of Opole, 48, Oleska Street, 45-052, Opole, Poland
| | | | - Krzysztof Ejsmont
- Faculty of Chemistry, University of Opole, 48, Oleska Street, 45-052, Opole, Poland
| |
Collapse
|
18
|
Buzari B, Sabzyan H. Effect of torsional motion on the 13C, 1H and 19F NMR chemical shifts in 2,2′-difluorobiphenyl. COMPUT THEOR CHEM 2018. [DOI: 10.1016/j.comptc.2018.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Stoychev GL, Auer AA, Izsák R, Neese F. Self-Consistent Field Calculation of Nuclear Magnetic Resonance Chemical Shielding Constants Using Gauge-Including Atomic Orbitals and Approximate Two-Electron Integrals. J Chem Theory Comput 2018; 14:619-637. [DOI: 10.1021/acs.jctc.7b01006] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Georgi L. Stoychev
- Max Planck Institute for Chemical Energy Conversion, 45470 Mülheim an der Ruhr, Germany
| | - Alexander A. Auer
- Max Planck Institute for Chemical Energy Conversion, 45470 Mülheim an der Ruhr, Germany
| | - Róbert Izsák
- Max Planck Institute for Chemical Energy Conversion, 45470 Mülheim an der Ruhr, Germany
| | - Frank Neese
- Max Planck Institute for Chemical Energy Conversion, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
20
|
|
21
|
Grimme S, Bannwarth C, Dohm S, Hansen A, Pisarek J, Pracht P, Seibert J, Neese F. Vollautomatisierte quantenchemische Berechnung von Spin-Spin- gekoppelten magnetischen Kernspinresonanzspektren. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201708266] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Stefan Grimme
- Mulliken Center for Theoretical Chemistry; Institut für Physikalische und Theoretische Chemie der Universität Bonn; Beringstraße 4 53115 Bonn Deutschland
| | - Christoph Bannwarth
- Mulliken Center for Theoretical Chemistry; Institut für Physikalische und Theoretische Chemie der Universität Bonn; Beringstraße 4 53115 Bonn Deutschland
| | - Sebastian Dohm
- Mulliken Center for Theoretical Chemistry; Institut für Physikalische und Theoretische Chemie der Universität Bonn; Beringstraße 4 53115 Bonn Deutschland
| | - Andreas Hansen
- Mulliken Center for Theoretical Chemistry; Institut für Physikalische und Theoretische Chemie der Universität Bonn; Beringstraße 4 53115 Bonn Deutschland
| | - Jana Pisarek
- Mulliken Center for Theoretical Chemistry; Institut für Physikalische und Theoretische Chemie der Universität Bonn; Beringstraße 4 53115 Bonn Deutschland
| | - Philipp Pracht
- Mulliken Center for Theoretical Chemistry; Institut für Physikalische und Theoretische Chemie der Universität Bonn; Beringstraße 4 53115 Bonn Deutschland
| | - Jakob Seibert
- Mulliken Center for Theoretical Chemistry; Institut für Physikalische und Theoretische Chemie der Universität Bonn; Beringstraße 4 53115 Bonn Deutschland
| | - Frank Neese
- Max-Planck-Institut für Chemische Energiekonversion; Stiftstraße 32-34 45470 Mülheim an der Ruhr Deutschland
| |
Collapse
|
22
|
Grimme S, Bannwarth C, Dohm S, Hansen A, Pisarek J, Pracht P, Seibert J, Neese F. Fully Automated Quantum-Chemistry-Based Computation of Spin-Spin-Coupled Nuclear Magnetic Resonance Spectra. Angew Chem Int Ed Engl 2017; 56:14763-14769. [PMID: 28906074 PMCID: PMC5698732 DOI: 10.1002/anie.201708266] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Indexed: 11/27/2022]
Abstract
We present a composite procedure for the quantum‐chemical computation of spin–spin‐coupled 1H NMR spectra for general, flexible molecules in solution that is based on four main steps, namely conformer/rotamer ensemble (CRE) generation by the fast tight‐binding method GFN‐xTB and a newly developed search algorithm, computation of the relative free energies and NMR parameters, and solving the spin Hamiltonian. In this way the NMR‐specific nuclear permutation problem is solved, and the correct spin symmetries are obtained. Energies, shielding constants, and spin–spin couplings are computed at state‐of‐the‐art DFT levels with continuum solvation. A few (in)organic and transition‐metal complexes are presented, and very good, unprecedented agreement between the theoretical and experimental spectra was achieved. The approach is routinely applicable to systems with up to 100–150 atoms and may open new avenues for the detailed (conformational) structure elucidation of, for example, natural products or drug molecules.
Collapse
Affiliation(s)
- Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie der Universität Bonn, Beringstrasse 4, 53115, Bonn, Germany
| | - Christoph Bannwarth
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie der Universität Bonn, Beringstrasse 4, 53115, Bonn, Germany
| | - Sebastian Dohm
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie der Universität Bonn, Beringstrasse 4, 53115, Bonn, Germany
| | - Andreas Hansen
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie der Universität Bonn, Beringstrasse 4, 53115, Bonn, Germany
| | - Jana Pisarek
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie der Universität Bonn, Beringstrasse 4, 53115, Bonn, Germany
| | - Philipp Pracht
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie der Universität Bonn, Beringstrasse 4, 53115, Bonn, Germany
| | - Jakob Seibert
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie der Universität Bonn, Beringstrasse 4, 53115, Bonn, Germany
| | - Frank Neese
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 32-34, 45470, Mülheim an der Ruhr, Germany
| |
Collapse
|
23
|
Yamamoto K, Kanematsu Y, Nagashima U, Ueda A, Mori H, Tachikawa M. Multicomponent DFT study of geometrical H/D isotope effect on hydrogen-bonded organic conductor, κ-H 3 (Cat EDT-ST) 2. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.02.073] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
24
|
Faber R, Buczek A, Kupka T, Sauer SPA. On the convergence of zero-point vibrational corrections to nuclear shieldings and shielding anisotropies towards the complete basis set limit in water. Mol Phys 2016. [DOI: 10.1080/00268976.2016.1210831] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Rasmus Faber
- Department of Chemistry, University of Copenhagen, Copenhagen Ø, Denmark
| | - Aneta Buczek
- Faculty of Chemistry, University of Opole, Opole, Poland
| | - Teobald Kupka
- Faculty of Chemistry, University of Opole, Opole, Poland
| | | |
Collapse
|
25
|
Dračínský M, Bouř P, Hodgkinson P. Temperature Dependence of NMR Parameters Calculated from Path Integral Molecular Dynamics Simulations. J Chem Theory Comput 2016; 12:968-73. [PMID: 26857802 DOI: 10.1021/acs.jctc.5b01131] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The influence of temperature on NMR chemical shifts and quadrupolar couplings in model molecular organic solids is explored using path integral molecular dynamics (PIMD) and density functional theory (DFT) calculations of shielding and electric field gradient (EFG) tensors. An approach based on convoluting calculated shielding or EFG tensor components with probability distributions of selected bond distances and valence angles obtained from DFT-PIMD simulations at several temperatures is used to calculate the temperature effects. The probability distributions obtained from the quantum PIMD simulations, which includes nuclear quantum effects, are significantly broader and less temperature dependent than those obtained with conventional DFT molecular dynamics or with 1D scans through the potential energy surface. Predicted NMR observables for the model systems were in excellent agreement with experimental data.
Collapse
Affiliation(s)
- Martin Dračínský
- Institute of Organic Chemistry and Biochemistry , Flemingovo nám. 2, 16610 Prague, Czech Republic
| | - Petr Bouř
- Institute of Organic Chemistry and Biochemistry , Flemingovo nám. 2, 16610 Prague, Czech Republic
| | - Paul Hodgkinson
- Department of Chemistry, Durham University , South Road, DH1 3LE Durham, United Kingdom
| |
Collapse
|
26
|
Faber R, Kaminsky J, Sauer SPA. Rovibrational and Temperature Effects in Theoretical Studies of NMR Parameters. GAS PHASE NMR 2016. [DOI: 10.1039/9781782623816-00218] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The demand for high precision calculations of NMR shieldings (or their related values, chemical shifts δ) and spin–spin coupling constants facilitating and supporting detailed interpretations of NMR spectra increases hand in hand with the development of computational techniques and hardware resources. Highly sophisticated calculations including even relativistic effects are nowadays possible for these properties. However, NMR parameters depend not only on molecular structure and environment but also on molecular flexibility and temperature and the apparent success of theoretical predictions for molecular equilibrium geometries creates a demand for zero-point vibrational and temperature corrections. In this chapter we describe briefly the theory behind rovibrational corrections and review then some important contributions to this field.
Collapse
Affiliation(s)
- Rasmus Faber
- Department of Chemistry, University of Copenhagen Universitetsparken 5 DK-2100 Copenhagen Ø Denmark
| | - Jakub Kaminsky
- Department of Molecular Spectroscopy, Institute of Organic Chemistry and Biochemistry 166 10 Prague Czech Republic
| | - Stephan P. A. Sauer
- Department of Chemistry, University of Copenhagen Universitetsparken 5 DK-2100 Copenhagen Ø Denmark
| |
Collapse
|
27
|
Kupka T, Wieczorek PP. Theoretical and experimental NMR studies on muscimol from fly agaric mushroom (Amanita muscaria). SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2016; 153:216-225. [PMID: 26312739 DOI: 10.1016/j.saa.2015.08.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 07/13/2015] [Accepted: 08/12/2015] [Indexed: 06/04/2023]
Abstract
In this article we report results of combined theoretical and experimental NMR studies on muscimol, the bioactive alkaloid from fly agaric mushroom (Amanita muscaria). The assignment of (1)H and (13)C NMR spectra of muscimol in DMSO-d6 was supported by additional two-dimensional heteronuclear correlated spectra (2D NMR) and gauge independent atomic orbital (GIAO) NMR calculations using density functional theory (DFT). The effect of solvent in theoretical calculations was included via polarized continuum model (PCM) and the hybrid three-parameter B3LYP density functional in combination with 6-311++G(3df,2pd) basis set enabled calculation of reliable structures of non-ionized (neutral) molecule and its NH and zwitterionic forms in the gas phase, chloroform, DMSO and water. GIAO NMR calculations, using equilibrium and rovibrationally averaged geometry, at B3LYP/6-31G* and B3LYP/aug-cc-pVTZ-J levels of theory provided muscimol nuclear magnetic shieldings. The theoretical proton and carbon chemical shifts were critically compared with experimental NMR spectra measured in DMSO. Our results provide useful information on its structure in solution. We believe that such data could improve the understanding of basic features of muscimol at atomistic level and provide another tool in studies related to GABA analogs.
Collapse
Affiliation(s)
- Teobald Kupka
- Faculty of Chemistry, Opole University, Oleska 48, 45-052 Opole, Poland.
| | - Piotr P Wieczorek
- Faculty of Chemistry, Opole University, Oleska 48, 45-052 Opole, Poland.
| |
Collapse
|
28
|
Yamamoto K, Kanematsu Y, Nagashima U, Ueda A, Mori H, Tachikawa M. Theoretical study of the H/D isotope effect on phase transition of hydrogen-bonded organic conductor κ-H3(Cat-EDT-TTF)2. Phys Chem Chem Phys 2016; 18:29673-29680. [DOI: 10.1039/c6cp05414e] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
κ-H3(Cat-EDT-TTF)2 (H-TTF) is a hydrogen-bonded π-electron system. Only its isotopologue, D-TTF, shows the phase transition. We obtained a symmetric single-well effective-PEC for H-TTF and low-barrier effective-PEC for D-TTF.
Collapse
Affiliation(s)
- Kaichi Yamamoto
- Graduate School of Nanobioscience
- Yokohama City University
- Yokohama-City
- Japan
| | - Yusuke Kanematsu
- Faculty of Information Sciences
- Hiroshima City University
- Hiroshima
- Japan
| | | | - Akira Ueda
- The Institute for Solid State Physics
- The University of Tokyo
- Kashiwa
- Japan
| | - Hatsumi Mori
- The Institute for Solid State Physics
- The University of Tokyo
- Kashiwa
- Japan
| | - Masanori Tachikawa
- Graduate School of Nanobioscience
- Yokohama City University
- Yokohama-City
- Japan
| |
Collapse
|
29
|
Bühl M, Reimann C, Pantazis DA, Bredow T, Neese F. Geometries of Third-Row Transition-Metal Complexes from Density-Functional Theory. J Chem Theory Comput 2015; 4:1449-59. [PMID: 26621431 DOI: 10.1021/ct800172j] [Citation(s) in RCA: 358] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A set of 41 metal-ligand bond distances in 25 third-row transition-metal complexes, for which precise structural data are known in the gas phase, is used to assess optimized and zero-point averaged geometries obtained from DFT computations with various exchange-correlation functionals and basis sets. For a given functional (except LSDA) Stuttgart-type quasi-relativistic effective core potentials and an all-electron scalar relativistic approach (ZORA) tend to produce very similar geometries. In contrast to the lighter congeners, LSDA affords reasonably accurate geometries of 5d-metal complexes, as it is among the functionals with the lowest mean and standard deviations from experiment. For this set the ranking of some other popular density functionals, ordered according to decreasing standard deviation, is BLYP > VSXC > BP86 ≈ BPW91 ≈ TPSS ≈ B3LYP ≈ PBE > TPSSh > B3PW91 ≈ B3P86 ≈ PBE hybrid. In this case hybrid functionals are superior to their nonhybrid variants. In addition, we have reinvestigated the previous test sets for 3d- (Bühl M.; Kabrede, H. J. Chem. Theory Comput. 2006, 2, 1282-1290) and 4d- (Waller, M. P.; Bühl, M. J. Comput. Chem. 2007, 28, 1531-1537) transition-metal complexes using all-electron scalar relativistic DFT calculations in addition to the published nonrelativistic and ECP results. For this combined test set comprising first-, second-, and third-row metal complexes, B3P86 and PBE hybrid are indicated to perform best. A remarkably consistent standard deviation of around 2 pm in metal-ligand bond distances is achieved over the entire set of d-block elements.
Collapse
Affiliation(s)
- Michael Bühl
- School of Chemistry, North Haugh, University of St. Andrews, St. Andrews, Fife KY16 9ST, U.K., and Institut für Physikalische und Theoretische Chemie, Universität Bonn, Wegelerstrasse 12, D-53115 Bonn, Germany
| | - Christoph Reimann
- School of Chemistry, North Haugh, University of St. Andrews, St. Andrews, Fife KY16 9ST, U.K., and Institut für Physikalische und Theoretische Chemie, Universität Bonn, Wegelerstrasse 12, D-53115 Bonn, Germany
| | - Dimitrios A Pantazis
- School of Chemistry, North Haugh, University of St. Andrews, St. Andrews, Fife KY16 9ST, U.K., and Institut für Physikalische und Theoretische Chemie, Universität Bonn, Wegelerstrasse 12, D-53115 Bonn, Germany
| | - Thomas Bredow
- School of Chemistry, North Haugh, University of St. Andrews, St. Andrews, Fife KY16 9ST, U.K., and Institut für Physikalische und Theoretische Chemie, Universität Bonn, Wegelerstrasse 12, D-53115 Bonn, Germany
| | - Frank Neese
- School of Chemistry, North Haugh, University of St. Andrews, St. Andrews, Fife KY16 9ST, U.K., and Institut für Physikalische und Theoretische Chemie, Universität Bonn, Wegelerstrasse 12, D-53115 Bonn, Germany
| |
Collapse
|
30
|
On novel magnetic probe for fullerene characterization: Theoretical studies on NMR parameters of free and confined in fullerenes HD and H 2 molecules. J Mol Graph Model 2015; 62:26-37. [DOI: 10.1016/j.jmgm.2015.08.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 08/05/2015] [Accepted: 08/24/2015] [Indexed: 11/22/2022]
|
31
|
Kanematsu Y, Tachikawa M. Theoretical analysis of geometry and NMR isotope shift in hydrogen-bonding center of photoactive yellow protein by combination of multicomponent quantum mechanics and ONIOM scheme. J Chem Phys 2015; 141:185101. [PMID: 25399161 DOI: 10.1063/1.4900987] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Multicomponent quantum mechanical (MC_QM) calculation has been extended with ONIOM (our own N-layered integrated molecular orbital + molecular mechanics) scheme [ONIOM(MC_QM:MM)] to take account of both the nuclear quantum effect and the surrounding environment effect. The authors have demonstrated the first implementation and application of ONIOM(MC_QM:MM) method for the analysis of the geometry and the isotope shift in hydrogen-bonding center of photoactive yellow protein. ONIOM(MC_QM:MM) calculation for a model with deprotonated Arg52 reproduced the elongation of O-H bond of Glu46 observed by neutron diffraction crystallography. Among the unique isotope shifts in different conditions, the model with protonated Arg52 with solvent effect reasonably provided the best agreement with the corresponding experimental values from liquid NMR measurement. Our results implied the availability of ONIOM(MC_QM:MM) to distinguish the local environment around hydrogen bonds in a biomolecule.
Collapse
Affiliation(s)
- Yusuke Kanematsu
- Quantum Chemistry Division, Yokohama City University, Seto 22-2, Kanazawa-ku, Yokohama 236-0027, Japan
| | - Masanori Tachikawa
- Quantum Chemistry Division, Yokohama City University, Seto 22-2, Kanazawa-ku, Yokohama 236-0027, Japan
| |
Collapse
|
32
|
Kwan EE, Liu RY. Enhancing NMR Prediction for Organic Compounds Using Molecular Dynamics. J Chem Theory Comput 2015; 11:5083-9. [PMID: 26574306 DOI: 10.1021/acs.jctc.5b00856] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
NMR spectroscopy is a crucial tool in organic chemistry for the routine characterization of small molecules, structural elucidation of natural products, and study of reaction mechanisms. Although there is evidence that thermal motions strongly affect observed resonances, conventional predictions are performed only on stationary structures. Here we show that quasiclassical molecular dynamics provides a highly accurate and broadly applicable method for improving shielding predictions. Gas-phase values of the absolute shieldings of protons and carbons are predicted to nearly within experimental uncertainty, while the chemical shifts of large systems such as natural products are closely reproduced. Importantly, these results are obtained without the use of any empirical corrections. Our analysis suggests that the linear scaling factors currently employed are primarily a correction for vibrational effects. As a result, our method extends the reach of prediction methods to the study of molecules with unusual dynamics such as the iconic and controversial [18]annulene. Our predictions agree closely with experiment at both low and high temperatures and provide strong evidence that the equilibrium structure of [18]annulene is planar and aromatic.
Collapse
Affiliation(s)
- Eugene E Kwan
- Department of Chemistry & Chemical Biology, Harvard University , Cambridge, Massachusetts 02138, United States
| | - Richard Y Liu
- Department of Chemistry & Chemical Biology, Harvard University , Cambridge, Massachusetts 02138, United States
| |
Collapse
|
33
|
Kanematsu Y, Tachikawa M. Performance Test of Multicomponent Quantum Mechanical Calculation with Polarizable Continuum Model for Proton Chemical Shift. J Phys Chem A 2015; 119:4933-8. [PMID: 25915075 DOI: 10.1021/jp512877a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yusuke Kanematsu
- Quantum Chemistry Division, Yokohama City University, Seto 22-2, Kanazawa-ku, Yokohama 236-0027, Japan
| | - Masanori Tachikawa
- Quantum Chemistry Division, Yokohama City University, Seto 22-2, Kanazawa-ku, Yokohama 236-0027, Japan
| |
Collapse
|
34
|
Jaremko Ł, Jaremko M, Buczek A, Broda MA, Kupka T, Jackowski K. 1H and 13C shielding measurements in comparison with DFT calculations performed for two 2-(acetyloamino)-N,N-dimethyl-3-phenylacrylamide isomers. Chem Phys Lett 2015. [DOI: 10.1016/j.cplett.2015.03.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
35
|
Density functional theory (DFT) prediction of structural and spectroscopic parameters of cytosine using harmonic and anharmonic approximations. Struct Chem 2015. [DOI: 10.1007/s11224-015-0573-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
36
|
Rusakova IL, Rusakov YY, Krivdin LB. Nonempirical calculations of the one-bond (29)Si-(13)C spin-spin coupling constants taking into account relativistic and solvent corrections. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2014; 52:413-421. [PMID: 24796525 DOI: 10.1002/mrc.4080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 04/08/2014] [Accepted: 04/09/2014] [Indexed: 06/03/2023]
Abstract
The computational study of the one-bond (29)Si-(13)C spin-spin coupling constants has been performed at the second-order polarization propagator approximation (SOPPA) level in the series of 60 diverse silanes with a special focus on the main factors affecting the accuracy of the calculation including the level of theory, the quality of the basis set, and the contribution of solvent and relativistic effects. Among three SOPPA-based methods, SOPPA(MP2), SOPPA(CC2), and SOPPA(CCSD), the best result was achieved with SOPPA(CCSD) when used in combination with Sauer's basis set aug-cc-pVTZ-J characterized by the mean absolute error of calculated coupling constants against the experiment of ca 2 Hz in the range of ca 200 Hz. The SOPPA(CCSD)/aug-cc-pVTZ-J method is recommended as the most accurate and effective computational scheme for the calculation of (1)J(Si,C). The slightly less accurate but essentially more economical SOPPA(MP2)/aug-cc-pVTZ-J and/or SOPPA(CC2)/aug-cc-pVTZ-J methods are recommended for larger molecular systems. It was shown that solvent and relativistic corrections do not play a major role in the computation of the total values of (1)J(Si,C); however, taking them into account noticeably improves agreement with the experiment. The rovibrational corrections are estimated to be of about 1 Hz or 1-1.5% of the total value of (1)J(Si,C).
Collapse
Affiliation(s)
- Irina L Rusakova
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Favorsky St 1, 664033, Irkutsk, Russia
| | | | | |
Collapse
|
37
|
Kanematsu Y, Tachikawa M. Development of multicomponent hybrid density functional theory with polarizable continuum model for the analysis of nuclear quantum effect and solvent effect on NMR chemical shift. J Chem Phys 2014; 140:164111. [DOI: 10.1063/1.4872006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
38
|
Nozirov F, Kupka T, Stachów M. Theoretical prediction of nuclear magnetic shieldings and indirect spin-spin coupling constants in 1,1-, cis-, and trans-1,2-difluoroethylenes. J Chem Phys 2014; 140:144303. [DOI: 10.1063/1.4870396] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
39
|
Rusakov YY, Krivdin LB. One-bond 29Si-1H spin-spin coupling constants in the series of halosilanes: benchmark SOPPA and DFT calculations, relativistic effects, and vibrational corrections. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2013; 51:557-561. [PMID: 23836682 DOI: 10.1002/mrc.3986] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 06/02/2013] [Accepted: 06/10/2013] [Indexed: 06/02/2023]
Abstract
A number of most representative second order polarization propagator approach (SOPPA) based wavefunction methods, SOPPA, SOPPA(CC2) and SOPPA(CCSD), and density functional theory (DFT) based methods, B3LYP, PBE0, KT2, and KT3, have been benchmarked in the calculation of the one-bond (29)Si-(1)H spin-spin coupling constants in the series of halosilanes SiH(n)X(4-n) (X = F, Cl, Br, I), both at the non-relativistic and full four-parameter Dirac's relativistic levels taking into account vibrational corrections. At the non-relativistic level, the wavefunction methods showed much better results as compared with those of DFT. At the DFT level, out of four tested functionals, the Perdew, Burke, and Ernzerhof's PBE0 showed best performance. Taking into account, relativistic effects and vibrational corrections noticeably improves wavefunction methods results, but generally worsens DFT results.
Collapse
Affiliation(s)
- Yury Yu Rusakov
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Favorsky St. 1, 664033 Irkutsk, Russia
| | | |
Collapse
|
40
|
Davis JC, Bühl M, Koch KR. Probing isotope shifts in 103Rh and 195Pt NMR spectra with density functional theory. J Phys Chem A 2013; 117:8054-64. [PMID: 23862753 DOI: 10.1021/jp405453c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Zero-point vibrationally averaged (rg(0)) structures were computed at the PBE0/SDD/6-31G* level for the [Pt(35)Cln(37)Cl5-n(H2(18)O)](-) (n = 0-5), cis-Pt(35)Cln(37)Cl4-n(H2(18)O)(H2(16)O) (n = 0-4), fac-[Pt(35)Cln(37)Cl3-n(H2(18)O)(H2(16)O)2](+) (n = 0-3), [Pt(35)Cln(37)Cl5-n((16/18)OH)](2-) (n = 0-5), cis-[Pt(35)Cln(37)Cl4-n((16/18)OH)2](2-) (n = 0-4), fac-[Pt(35)Cln(37)Cl3-n((16/18)OH)3](2-) (n = 0-3), cis-[Pt(35)Cln(37)Cl2-n((16/18)OH)4](2-) (n = 0-2), [Pt(35)Cln(37)Cl1-n((16/18)OH)5](2-) (n = 0-1), [Rh(35)Cln(37)Cl5-n(H2O)](2-) (n = 0-5), cis-[Rh(35)Cln(37)Cl4-n(H2O)2](-) (n = 0-4), and fac-Rh(35)Cln(37)Cl3-n(H2O)3 (n = 0-3) isotopologues and isotopomers. Magnetic shielding constants, computed at the ZORA-SO/PW91/QZ4P/TZ2P level, were used to evaluate the corresponding (35/37)Cl isotope shifts on the (195)Pt and (103)Rh NMR spectra, which are known experimentally. While the observed effects are reproduced reasonably well computationally in terms of qualitative trends and the overall order of magnitude (ca. 1 ppm), quantitative agreement with experiment is not yet achieved. Only small changes in M-Cl and M-O bonds upon isotopic substitution, on the order of femtometers, are necessary to produce the observed isotope shifts.
Collapse
Affiliation(s)
- John C Davis
- School of Chemistry, University of St. Andrews, North Haugh, St. Andrews, Fife KY16 9ST, United Kingdom
| | | | | |
Collapse
|
41
|
Kupka T, Stachów M, Kaminsky J, Sauer SPA. Estimation of isotropic nuclear magnetic shieldings in the CCSD(T) and MP2 complete basis set limit using affordable correlation calculations. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2013; 51:482-489. [PMID: 23749459 DOI: 10.1002/mrc.3974] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 05/12/2013] [Accepted: 05/14/2013] [Indexed: 06/02/2023]
Abstract
A linear correlation between isotropic nuclear magnetic shielding constants for seven model molecules (CH2 O, H2 O, HF, F2 , HCN, SiH4 and H2 S) calculated with 37 methods (34 density functionals, RHF, MP2 and CCSD(T)), with affordable pcS-2 basis set and corresponding complete basis set results, estimated from calculations with the family of polarization-consistent pcS-n basis sets is reported. This dependence was also supported by inspection of profiles of deviation between CBS estimated nuclear shieldings and shieldings obtained with the significantly smaller basis sets pcS-2 and aug-cc-pVTZ-J for the selected set of 37 calculation methods. It was possible to formulate a practical approach of estimating the values of isotropic nuclear magnetic shielding constants at the CCSD(T)/CBS and MP2/CBS levels from affordable CCSD(T)/pcS-2, MP2/pcS-2 and DFT/CBS calculations with pcS-n basis sets. The proposed method leads to a fairly accurate estimation of nuclear magnetic shieldings and considerable saving of computational efforts.
Collapse
Affiliation(s)
- Teobald Kupka
- University of Opole, Faculty of Chemistry, 45-052 Opole, Poland.
| | | | | | | |
Collapse
|
42
|
Egidi F, Bloino J, Cappelli C, Barone V, Tomasi J. Tuning of NMR and EPR parameters by vibrational averaging and environmental effects: an integrated computational approach. Mol Phys 2013. [DOI: 10.1080/00268976.2013.796413] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Franco Egidi
- a Scuola Normale Superiore , Piazza dei Cavalieri , Pisa , Italy
| | - Julien Bloino
- a Scuola Normale Superiore , Piazza dei Cavalieri , Pisa , Italy
- b CNR, Consiglio Nazionale delle Ricerche , Istituto di Chimica dei Composti Organometallici , UOS di Pisa, Via G. Moruzzi, Pisa , Italy
| | - Chiara Cappelli
- a Scuola Normale Superiore , Piazza dei Cavalieri , Pisa , Italy
- c Dipartimento di Chimica e Chimica Industriale , Università di Pisa , via Risorgimento, Pisa , Italy
| | - Vincenzo Barone
- a Scuola Normale Superiore , Piazza dei Cavalieri , Pisa , Italy
| | - Jacopo Tomasi
- c Dipartimento di Chimica e Chimica Industriale , Università di Pisa , via Risorgimento, Pisa , Italy
| |
Collapse
|
43
|
Chen X, Rinkevicius Z, Ruud K, Ågren H. Role of zero-point vibrational corrections to carbon hyperfine coupling constants in organic π radicals. J Chem Phys 2013; 138:054310. [PMID: 23406122 DOI: 10.1063/1.4789769] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
By analyzing a set of organic π radicals, we demonstrate that zero-point vibrational corrections give significant contributions to carbon hyperfine coupling constants, in one case even inducing a sign reversal for the coupling constant. We discuss the implications of these findings for the computational analysis of electron paramagnetic spectra based on hyperfine coupling constants evaluated at the equilibrium geometry of radicals. In particular, we note that a dynamical description that involves the nuclear motion is in many cases necessary in order to achieve a semi-quantitatively predictive theory for carbon hyperfine coupling constants. In addition, we discuss the implications of the strong dependence of the carbon hyperfine coupling constants on the zero-point vibrational corrections for the selection of exchange-correlation functionals in density functional theory studies of these constants.
Collapse
Affiliation(s)
- X Chen
- KTH Royal Institute of Technology, School of Biotechnology, Division of Theoretical Chemistry and Biology, S-106 91 Stockholm, Sweden
| | | | | | | |
Collapse
|
44
|
Garbacz P, Jackowski K, Makulski W, Wasylishen RE. Nuclear Magnetic Shielding for Hydrogen in Selected Isolated Molecules. J Phys Chem A 2012; 116:11896-904. [DOI: 10.1021/jp309820v] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Piotr Garbacz
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warszawa,
Poland
| | - Karol Jackowski
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warszawa,
Poland
| | | | | |
Collapse
|
45
|
Press DJ, McNeil NMR, Rauk A, Back TG. NMR and Computational Studies of the Configurational Properties of Spirodioxyselenuranes. Are Dynamic Exchange Processes or Temperature-Dependent Chemical Shifts Involved? J Org Chem 2012; 77:9268-76. [DOI: 10.1021/jo301846a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- David J. Press
- Department
of Chemistry, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| | - Nicole M. R. McNeil
- Department
of Chemistry, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| | - Arvi Rauk
- Department
of Chemistry, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| | - Thomas G. Back
- Department
of Chemistry, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| |
Collapse
|
46
|
Davis JC, Bühl M, Koch KR. On the Origin of 35/37Cl Isotope Effects on 195Pt NMR Chemical Shifts. A Density Functional Study. J Chem Theory Comput 2012; 8:1344-50. [DOI: 10.1021/ct300105q] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- John C. Davis
- School of Chemistry, University of St. Andrews, North Haugh, St. Andrews,
Fife KY16 9ST, U.K
- Department
of Chemistry and
Polymer Science, University of Stellenbosch, P Bag X1, Matieland, 7602, South Africa
| | - Michael Bühl
- School of Chemistry, University of St. Andrews, North Haugh, St. Andrews,
Fife KY16 9ST, U.K
| | - Klaus R. Koch
- Department
of Chemistry and
Polymer Science, University of Stellenbosch, P Bag X1, Matieland, 7602, South Africa
| |
Collapse
|
47
|
Charnock GTP, Krzystyniak M, Kuprov I. Molecular structure refinement by direct fitting of atomic coordinates to experimental ESR spectra. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2012; 216:62-68. [PMID: 22300803 DOI: 10.1016/j.jmr.2012.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 01/04/2012] [Accepted: 01/06/2012] [Indexed: 05/31/2023]
Abstract
An attempt is made to bypass spectral analysis and fit internal coordinates of radicals directly to experimental liquid- and solid-state electron spin resonance (ESR) spectra. We take advantage of the recently introduced large-scale spin dynamics simulation algorithms and of the fact that the accuracy of quantum mechanical calculations of ESR parameters has improved to the point of quantitative correctness. Partial solutions are offered to the local minimum problem in spectral fitting and to the problem of spin interaction parameters (hyperfine couplings, chemical shifts, etc.) being very sensitive to vibrational excursions from the equilibrium geometry.
Collapse
Affiliation(s)
- G T P Charnock
- Oxford e-Research Centre, University of Oxford, 7 Keble Road, Oxford OX1 3QG, UK
| | | | | |
Collapse
|
48
|
Dračínský M, Bouř P. Vibrational averaging of the chemical shift in crystalline α-glycine. J Comput Chem 2012; 33:1080-9. [PMID: 22410968 DOI: 10.1002/jcc.22940] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 01/04/2012] [Accepted: 01/04/2012] [Indexed: 11/06/2022]
Abstract
Averaging of the chemical shift over the molecular motion improves the simulated data and provides additional information about the temperature dependence and system dynamics. However, crystal modeling is difficult due to the limited precision of the plane-wave density functional theory (DFT) methods and approximate vibrational schemes. On the glycine example, we investigate how the averaging can be achieved within the periodic boundary conditions at the DFT level. The nuclear motion is modeled with the vibrational configuration interaction, with other simplified quantum anharmonic schemes, and the classical Born-Oppenheimer molecular dynamics (BOMD). The results confirm a large vibrational contribution to the isotropic shielding values. Both the first and second derivatives of the shielding were found important for the quantum averaging. The first derivatives influence the shielding mostly due to the anharmonic character of the CH and NH stretching modes, whereas second derivatives produce most vibrational corrections associated with the lower-frequency vibrational modes. Temperature excitations of the lowest-frequency vibrational states and the expansion of the crystal cell both determine the temperature dependence of nuclear magnetic resonance parameters. The vibrational quantum approach as well as classical BOMD schemes provided temperature dependencies of the chemical shifts that are consistent with the previous experimental data.
Collapse
Affiliation(s)
- Martin Dračínský
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Flemingovo náměstí 2, Prague 166 10, Czech Republic.
| | | |
Collapse
|
49
|
Helgaker T, Coriani S, Jørgensen P, Kristensen K, Olsen J, Ruud K. Recent Advances in Wave Function-Based Methods of Molecular-Property Calculations. Chem Rev 2012; 112:543-631. [DOI: 10.1021/cr2002239] [Citation(s) in RCA: 463] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Trygve Helgaker
- Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway
| | - Sonia Coriani
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste, Via Giorgieri 1, I-34127 Trieste, Italy
| | - Poul Jørgensen
- Lundbeck Center for Theoretical Chemistry, Department of Chemistry, Aarhus University, 8000 Aarhus C, Denmark
| | - Kasper Kristensen
- Lundbeck Center for Theoretical Chemistry, Department of Chemistry, Aarhus University, 8000 Aarhus C, Denmark
| | - Jeppe Olsen
- Lundbeck Center for Theoretical Chemistry, Department of Chemistry, Aarhus University, 8000 Aarhus C, Denmark
| | - Kenneth Ruud
- Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Tromsø, N-9037 Tromsø, Norway
| |
Collapse
|
50
|
Arapiraca AFC, Jonsson D, Mohallem JR. Vibrationally averaged post Born-Oppenheimer isotopic dipole moment calculations approaching spectroscopic accuracy. J Chem Phys 2011; 135:244313. [DOI: 10.1063/1.3671940] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|