1
|
Lubitz W, Pantazis DA, Cox N. Water oxidation in oxygenic photosynthesis studied by magnetic resonance techniques. FEBS Lett 2023; 597:6-29. [PMID: 36409002 DOI: 10.1002/1873-3468.14543] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/23/2022]
Abstract
The understanding of light-induced biological water oxidation in oxygenic photosynthesis is of great importance both for biology and (bio)technological applications. The chemically difficult multistep reaction takes place at a unique protein-bound tetra-manganese/calcium cluster in photosystem II whose structure has been elucidated by X-ray crystallography (Umena et al. Nature 2011, 473, 55). The cluster moves through several intermediate states in the catalytic cycle. A detailed understanding of these intermediates requires information about the spatial and electronic structure of the Mn4 Ca complex; the latter is only available from spectroscopic techniques. Here, the important role of Electron Paramagnetic Resonance (EPR) and related double resonance techniques (ENDOR, EDNMR), complemented by quantum chemical calculations, is described. This has led to the elucidation of the cluster's redox and protonation states, the valence and spin states of the manganese ions and the interactions between them, and contributed substantially to the understanding of the role of the protein surrounding, as well as the binding and processing of the substrate water molecules, the O-O bond formation and dioxygen release. Based on these data, models for the water oxidation cycle are developed.
Collapse
Affiliation(s)
- Wolfgang Lubitz
- Max-Planck-Institut für Chemische Energiekonversion, Mülheim/Ruhr, Germany
| | | | - Nicholas Cox
- Research School of Chemistry, Australian National University, Canberra, ACT, Australia
| |
Collapse
|
2
|
Chakrapani V, Wang C, Wang Q, Smieszek N. Direct Determination of Mn Valence States in Mixed‐valent Manganates by Photoluminescence Spectroscopy. SURF INTERFACE ANAL 2022. [DOI: 10.1002/sia.7144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Vidhya Chakrapani
- Howard P. Isermann Department of Chemical and Biological Engineering Rensselaer Polytechnic Institute Troy New York United States
| | - Chenying Wang
- Howard P. Isermann Department of Chemical and Biological Engineering Rensselaer Polytechnic Institute Troy New York United States
| | - Qi Wang
- Howard P. Isermann Department of Chemical and Biological Engineering Rensselaer Polytechnic Institute Troy New York United States
| | - Nicholas Smieszek
- Howard P. Isermann Department of Chemical and Biological Engineering Rensselaer Polytechnic Institute Troy New York United States
| |
Collapse
|
3
|
Jensen SC, Sullivan B, Hartzler DA, Pushkar Y. DIY XES - development of an inexpensive, versatile, and easy to fabricate XES analyzer and sample delivery system. X-RAY SPECTROMETRY : XRS 2019; 48:336-344. [PMID: 32606482 PMCID: PMC7326317 DOI: 10.1002/xrs.3005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 12/18/2018] [Indexed: 06/11/2023]
Abstract
The application of X-ray emission spectroscopy (XES) has grown substantially with the development of X-ray free electron lasers, third and fourth generation synchrotron sources and high-power benchtop sources. By providing the high X-ray flux required for XES, these sources broaden the availability and application of this method of probing electronic structure. As the number of sources increase, so does the demand for X-ray emission detection and sample delivery systems that are cost effective and customizable. Here, we present a detailed fabrication protocol for von Hamos X-ray optics and give details for a 3D-printed spectrometer design. Additionally, we outline an automated, externally triggered liquid sample delivery system that can be used to repeatedly deliver nanoliter droplets onto a plastic substrate for measurement. These systems are both low cost, efficient and easy to recreate or modify depending on the application. A low cost multiple X-ray analyzer system enables measurement of dilute samples, whereas the sample delivery limits sample loss and replaces spent sample with fresh sample in the same position. While both systems can be used in a wide range of applications, the design addresses several challenges associated specifically with time-resolved XES (TRXES). As an example application, we show results from TRXES measurements of photosystem II, a dilute, photoactive protein.
Collapse
Affiliation(s)
- Scott C Jensen
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907, USA
| | - Brendan Sullivan
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907, USA
| | - Daniel A Hartzler
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907, USA
| | - Yulia Pushkar
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
4
|
Stabilization of reactive Co 4O 4 cubane oxygen-evolution catalysts within porous frameworks. Proc Natl Acad Sci U S A 2019; 116:11630-11639. [PMID: 31142656 DOI: 10.1073/pnas.1815013116] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A major challenge to the implementation of artificial photosynthesis (AP), in which fuels are produced from abundant materials (water and carbon dioxide) in an electrochemical cell through the action of sunlight, is the discovery of active, inexpensive, safe, and stable catalysts for the oxygen evolution reaction (OER). Multimetallic molecular catalysts, inspired by the natural photosynthetic enzyme, can provide important guidance for catalyst design, but the necessary mechanistic understanding has been elusive. In particular, fundamental transformations for reactive intermediates are difficult to observe, and well-defined molecular models of such species are highly prone to decomposition by intermolecular aggregation. Here, we present a general strategy for stabilization of the molecular cobalt-oxo cubane core (Co4O4) by immobilizing it as part of metal-organic frameworks, thus preventing intermolecular pathways of catalyst decomposition. These materials retain the OER activity and mechanism of the molecular Co4O4 analog yet demonstrate unprecedented long-term stability at pH 14. The organic linkers of the framework allow for chemical fine-tuning of activity and stability and, perhaps most importantly, provide "matrix isolation" that allows for observation and stabilization of intermediates in the water-splitting pathway.
Collapse
|
5
|
Simulation of the isotropic EXAFS spectra for the S2 and S3 structures of the oxygen evolving complex in photosystem II. Proc Natl Acad Sci U S A 2015; 112:3979-84. [PMID: 25775575 DOI: 10.1073/pnas.1422058112] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Most of the main features of water oxidation in photosystem II are now well understood, including the mechanism for O-O bond formation. For the intermediate S2 and S3 structures there is also nearly complete agreement between quantum chemical modeling and experiments. Given the present high degree of consensus for these structures, it is of high interest to go back to previous suggestions concerning what happens in the S2-S3 transition. Analyses of extended X-ray adsorption fine structure (EXAFS) experiments have indicated relatively large structural changes in this transition, with changes of distances sometimes larger than 0.3 Å and a change of topology. In contrast, our previous density functional theory (DFT)(B3LYP) calculations on a cluster model showed very small changes, less than 0.1 Å. It is here found that the DFT structures are also consistent with the EXAFS spectra for the S2 and S3 states within normal errors of DFT. The analysis suggests that there are severe problems in interpreting EXAFS spectra for these complicated systems.
Collapse
|
6
|
Tran R, Kern J, Hattne J, Koroidov S, Hellmich J, Alonso-Mori R, Sauter NK, Bergmann U, Messinger J, Zouni A, Yano J, Yachandra VK. The Mn₄Ca photosynthetic water-oxidation catalyst studied by simultaneous X-ray spectroscopy and crystallography using an X-ray free-electron laser. Philos Trans R Soc Lond B Biol Sci 2015; 369:20130324. [PMID: 24914152 DOI: 10.1098/rstb.2013.0324] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The structure of photosystem II and the catalytic intermediate states of the Mn₄CaO₅ cluster involved in water oxidation have been studied intensively over the past several years. An understanding of the sequential chemistry of light absorption and the mechanism of water oxidation, however, requires a new approach beyond the conventional steady-state crystallography and X-ray spectroscopy at cryogenic temperatures. In this report, we present the preliminary progress using an X-ray free-electron laser to determine simultaneously the light-induced protein dynamics via crystallography and the local chemistry that occurs at the catalytic centre using X-ray spectroscopy under functional conditions at room temperature.
Collapse
Affiliation(s)
- Rosalie Tran
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jan Kern
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA LCLS, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Johan Hattne
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Sergey Koroidov
- Institutionen för Kemi, Kemiskt Biologiskt Centrum, Umeå Universitet, Umeå, Sweden
| | - Julia Hellmich
- Institut für Biologie, Humboldt-Universität Berlin, Berlin 10099, Germany
| | | | - Nicholas K Sauter
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Uwe Bergmann
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Johannes Messinger
- Institutionen för Kemi, Kemiskt Biologiskt Centrum, Umeå Universitet, Umeå, Sweden
| | - Athina Zouni
- Institut für Biologie, Humboldt-Universität Berlin, Berlin 10099, Germany
| | - Junko Yano
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Vittal K Yachandra
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
7
|
Experimental demonstration of radicaloid character in a Ru(V)=O intermediate in catalytic water oxidation. Proc Natl Acad Sci U S A 2013; 110:3765-70. [PMID: 23417296 DOI: 10.1073/pnas.1222102110] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Water oxidation is the key half reaction in artificial photosynthesis. An absence of detailed mechanistic insight impedes design of new catalysts that are more reactive and more robust. A proposed paradigm leading to enhanced reactivity is the existence of oxyl radical intermediates capable of rapid water activation, but there is a dearth of experimental validation. Here, we show the radicaloid nature of an intermediate reactive toward formation of the O-O bond by assessing the spin density on the oxyl group by Electron Paramagnetic Resonance (EPR). In the study, an (17)O-labeled form of a highly oxidized, short-lived intermediate in the catalytic cycle of the water oxidation catalyst cis,cis-[(2,2-bipyridine)2(H2O)Ru(III)ORu(III)(OH2)(bpy)2](4+) was investigated. It contains Ru centers in oxidation states [4,5], has at least one Ru(V) = O unit, and shows
Collapse
|
8
|
Energy-dispersive X-ray emission spectroscopy using an X-ray free-electron laser in a shot-by-shot mode. Proc Natl Acad Sci U S A 2012; 109:19103-7. [PMID: 23129631 DOI: 10.1073/pnas.1211384109] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ultrabright femtosecond X-ray pulses provided by X-ray free-electron lasers open capabilities for studying the structure and dynamics of a wide variety of systems beyond what is possible with synchrotron sources. Recently, this "probe-before-destroy" approach has been demonstrated for atomic structure determination by serial X-ray diffraction of microcrystals. There has been the question whether a similar approach can be extended to probe the local electronic structure by X-ray spectroscopy. To address this, we have carried out femtosecond X-ray emission spectroscopy (XES) at the Linac Coherent Light Source using redox-active Mn complexes. XES probes the charge and spin states as well as the ligand environment, critical for understanding the functional role of redox-active metal sites. Kβ(1,3) XES spectra of Mn(II) and Mn(2)(III,IV) complexes at room temperature were collected using a wavelength dispersive spectrometer and femtosecond X-ray pulses with an individual dose of up to >100 MGy. The spectra were found in agreement with undamaged spectra collected at low dose using synchrotron radiation. Our results demonstrate that the intact electronic structure of redox active transition metal compounds in different oxidation states can be characterized with this shot-by-shot method. This opens the door for studying the chemical dynamics of metal catalytic sites by following reactions under functional conditions. The technique can be combined with X-ray diffraction to simultaneously obtain the geometric structure of the overall protein and the local chemistry of active metal sites and is expected to prove valuable for understanding the mechanism of important metalloproteins, such as photosystem II.
Collapse
|
9
|
Photosynthetic water oxidation at elevated dioxygen partial pressure monitored by time-resolved X-ray absorption measurements. Proc Natl Acad Sci U S A 2008; 105:17384-9. [PMID: 18987324 DOI: 10.1073/pnas.0802596105] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The atmospheric dioxygen (O(2)) is produced at a tetramanganese complex bound to the proteins of photosystem II (PSII). To investigate product inhibition at elevated oxygen partial pressure (pO(2) ranging from 0.2 to 16 bar), we monitored specifically the redox reactions of the Mn complex in its catalytic S-state cycle by rapid-scan and time-resolved X-ray absorption near-edge spectroscopy (XANES) at the Mn K-edge. By using a pressure cell for X-ray measurements after laser-flash excitation of PSII particles, we found a clear pO(2) influence on the redox reactions of the Mn complex, with a similar half-effect pressure as determined (2-3 bar). However, XANES spectra and the time courses of the X-ray fluorescence collected with microsecond resolution suggested that the O(2) evolution transition itself (S(3)-->S(0)+O(2)) was not affected. Additional (nonstandard) oxidation of the Mn complex at high pO(2) explains our experimental findings more readily. Our results suggest that photosynthesis at ambient conditions is not limited by product inhibition of the O(2) formation step.
Collapse
|
10
|
Yano J, Kern J, Pushkar Y, Sauer K, Glatzel P, Bergmann U, Messinger J, Zouni A, Yachandra VK. High-resolution structure of the photosynthetic Mn4Ca catalyst from X-ray spectroscopy. Philos Trans R Soc Lond B Biol Sci 2008; 363:1139-47; discussion 1147. [PMID: 17954437 DOI: 10.1098/rstb.2007.2209] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The application of high-resolution X-ray spectroscopy methods to study the photosynthetic water oxidizing complex, which contains a unique hetero-nuclear catalytic Mn4Ca cluster, is described. Issues of X-ray damage, especially at the metal sites in the Mn4Ca cluster, are discussed. The structure of the Mn4Ca catalyst at high resolution, which has so far eluded attempts of determination by X-ray diffraction, X-ray absorption fine structure (EXAFS) and other spectroscopic techniques, has been addressed using polarized EXAFS techniques applied to oriented photosystem II (PSII) membrane preparations and PSII single crystals. A review of how the resolution of traditional EXAFS techniques can be improved, using methods such as range-extended EXAFS, is presented, and the changes that occur in the structure of the cluster as it advances through the catalytic cycle are described. X-ray absorption and emission techniques (XANES and Kbeta emission) have been used earlier to determine the oxidation states of the Mn4Ca cluster, and in this report we review the use of X-ray resonant Raman spectroscopy to understand the electronic structure of the Mn4Ca cluster as it cycles through the intermediate S-states.
Collapse
Affiliation(s)
- Junko Yano
- Melvin Calvin Laboratory, Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Sproviero EM, Shinopoulos K, Gascón JA, McEvoy JP, Brudvig GW, Batista VS. QM/MM computational studies of substrate water binding to the oxygen-evolving centre of photosystem II. Philos Trans R Soc Lond B Biol Sci 2008; 363:1149-56; discussion 1156. [PMID: 17971333 DOI: 10.1098/rstb.2007.2210] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This paper reports computational studies of substrate water binding to the oxygen-evolving centre (OEC) of photosystem II (PSII), completely ligated by amino acid residues, water, hydroxide and chloride. The calculations are based on quantum mechanics/molecular mechanics hybrid models of the OEC of PSII, recently developed in conjunction with the X-ray crystal structure of PSII from the cyanobacterium Thermosynechococcus elongatus. The model OEC involves a cuboidal Mn3CaO4Mn metal cluster with three closely associated manganese ions linked to a single mu4-oxo-ligated Mn ion, often called the 'dangling manganese'. Two water molecules bound to calcium and the dangling manganese are postulated to be substrate molecules, responsible for dioxygen formation. It is found that the energy barriers for the Mn(4)-bound water agree nicely with those of model complexes. However, the barriers for Ca-bound waters are substantially larger. Water binding is not simply correlated to the formal oxidation states of the metal centres but rather to their corresponding electrostatic potential atomic charges as modulated by charge-transfer interactions. The calculations of structural rearrangements during water exchange provide support for the experimental finding that the exchange rates with bulk 18 O-labelled water should be smaller for water molecules coordinated to calcium than for water molecules attached to the dangling manganese. The models also predict that the S1-->S2 transition should produce opposite effects on the two water-exchange rates.
Collapse
Affiliation(s)
- Eduardo M Sproviero
- Department of Chemistry, Yale University, PO Box 208107, New Haven, CT 06520-8107, USA
| | | | | | | | | | | |
Collapse
|
12
|
Structural changes in the Mn4Ca cluster and the mechanism of photosynthetic water splitting. Proc Natl Acad Sci U S A 2008; 105:1879-84. [PMID: 18250316 DOI: 10.1073/pnas.0707092105] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Photosynthetic water oxidation, where water is oxidized to dioxygen, is a fundamental chemical reaction that sustains the biosphere. This reaction is catalyzed by a Mn4Ca complex in the photosystem II (PS II) oxygen-evolving complex (OEC): a multiprotein assembly embedded in the thylakoid membranes of green plants, cyanobacteria, and algae. The mechanism of photosynthetic water oxidation by the Mn4Ca cluster in photosystem II is the subject of much debate, although lacking structural characterization of the catalytic intermediates. Biosynthetically exchanged Ca/Sr-PS II preparations and x-ray spectroscopy, including extended x-ray absorption fine structure (EXAFS), allowed us to monitor Mn-Mn and Ca(Sr)-Mn distances in the four intermediate S states, S0 through S3, of the catalytic cycle that couples the one-electron photochemistry occurring at the PS II reaction center with the four-electron water-oxidation chemistry taking place at the Mn4Ca(Sr) cluster. We have detected significant changes in the structure of the complex, especially in the Mn-Mn and Ca(Sr)-Mn distances, on the S2-to-S3 and S3-to-S0 transitions. These results implicate the involvement of at least one common bridging oxygen atom between the Mn-Mn and Mn-Ca(Sr) atoms in the O-O bond formation. Because PS II cannot advance beyond the S2 state in preparations that lack Ca(Sr), these results show that Ca(Sr) is one of the critical components in the mechanism of the enzyme. The results also show that Ca is not just a spectator atom involved in providing a structural framework, but is actively involved in the mechanism of water oxidation and represents a rare example of a catalytically active Ca cofactor.
Collapse
|
13
|
Affiliation(s)
- James E Penner-Hahn
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, MI 48109-1055, USA.
| | | |
Collapse
|
14
|
Yano J, Kern J, Irrgang KD, Latimer MJ, Bergmann U, Glatzel P, Pushkar Y, Biesiadka J, Loll B, Sauer K, Messinger J, Zouni A, Yachandra VK. X-ray damage to the Mn4Ca complex in single crystals of photosystem II: a case study for metalloprotein crystallography. Proc Natl Acad Sci U S A 2005; 102:12047-52. [PMID: 16103362 PMCID: PMC1186027 DOI: 10.1073/pnas.0505207102] [Citation(s) in RCA: 464] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
X-ray absorption spectroscopy was used to measure the damage caused by exposure to x-rays to the Mn(4)Ca active site in single crystals of photosystem II as a function of dose and energy of x-rays, temperature, and time. These studies reveal that the conditions used for structure determination by x-ray crystallography cause serious damage specifically to the metal-site structure. The x-ray absorption spectra show that the structure changes from one that is characteristic of a high-valent Mn(4)(III(2),IV(2)) oxo-bridged Mn(4)Ca cluster to that of Mn(II) in aqueous solution. This damage to the metal site occurs at a dose that is more than one order of magnitude lower than the dose that results in loss of diffractivity and is commonly considered safe for protein crystallography. These results establish quantitative x-ray dose parameters that are applicable to redox-active metalloproteins. This case study shows that a careful evaluation of the structural intactness of the active site(s) by spectroscopic techniques can validate structures derived from crystallography and that it can be a valuable complementary method before structure-function correlations of metalloproteins can be made on the basis of high-resolution x-ray crystal structures.
Collapse
Affiliation(s)
- Junko Yano
- Melvin Calvin Laboratory, Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Yachandra VK. Structure of the manganese complex in photosystem II: insights from X-ray spectroscopy. Philos Trans R Soc Lond B Biol Sci 2002; 357:1347-57; discussion 1357-8, 1367. [PMID: 12437873 PMCID: PMC1693049 DOI: 10.1098/rstb.2002.1133] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We have used Mn K-edge absorption and Kbeta emission spectroscopy to determine the oxidation states of the Mn complex in the various S states. We have started exploring the new technique of resonant inelastic X-ray scattering spectroscopy; this technique can be characterized as a Raman process that uses K-edge energies (1s to 4p, ca. 6550 eV) to obtain L-edge-like spectra (2p to 3d, ca. 650 eV). The relevance of these data to the oxidation states and structure of the Mn complex is presented. We have obtained extended X-ray absorption fine structure data from the S(0) and S(3) states and observed heterogeneity in the Mn-Mn distances leading us to conclude that there may be three rather than two di-mu-oxo-bridged units present per tetranuclear Mn cluster. In addition, we have obtained data using Ca and Sr X-ray spectroscopy that provide evidence for a heteronuclear Mn-Ca cluster. The possibility of three di-mu-oxo-bridged Mn-Mn moieties and the proximity of Ca is incorporated into developing structural models for the Mn cluster. The involvement of bridging and terminal O ligands of Mn in the mechanism of oxygen evolution is discussed in the context of our X-ray spectroscopy results.
Collapse
Affiliation(s)
- Vittal K Yachandra
- Melvin Calvin Laboratory, Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
16
|
Junge W, Haumann M, Ahlbrink R, Mulkidjanian A, Clausen J. Electrostatics and proton transfer in photosynthetic water oxidation. Philos Trans R Soc Lond B Biol Sci 2002; 357:1407-17; discussion 1417-20. [PMID: 12437879 PMCID: PMC1693046 DOI: 10.1098/rstb.2002.1137] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Photosystem II (PSII) oxidizes two water molecules to yield dioxygen plus four protons. Dioxygen is released during the last out of four sequential oxidation steps of the catalytic centre (S(0) --> S(1), S(1) --> S(2), S(2) --> S(3), S(3) --> S(4) --> S(0)). The release of the chemically produced protons is blurred by transient, highly variable and electrostatically triggered proton transfer at the periphery (Bohr effect). The extent of the latter transiently amounts to more than one H(+)/e(-) under certain conditions and this is understood in terms of electrostatics. By kinetic analyses of electron-proton transfer and electrochromism, we discriminated between Bohr-effect and chemically produced protons and arrived at a distribution of the latter over the oxidation steps of 1 : 0 : 1 : 2. During the oxidation of tyr-161 on subunit D1 (Y(Z)), its phenolic proton is not normally released into the bulk. Instead, it is shared with and confined in a hydrogen-bonded cluster. This notion is difficult to reconcile with proposed mechanisms where Y(Z) acts as a hydrogen acceptor for bound water. Only in manganese (Mn) depleted PSII is the proton released into the bulk and this changes the rate of electron transfer between Y(Z) and the primary donor of PSII P(+)(680) from electron to proton controlled. D1-His190, the proposed centre of the hydrogen-bonded cluster around Y(Z), is probably further remote from Y(Z) than previously thought, because substitution of D1-Glu189, its direct neighbour, by Gln, Arg or Lys is without effect on the electron transfer from Y(Z) to P(+)(680) (in nanoseconds) and from the Mn cluster to Y(ox)(Z).
Collapse
Affiliation(s)
- Wolfgang Junge
- Abteilung Biophysik, Universität Osnabrück, D-49069 Osnabrück, Germany.
| | | | | | | | | |
Collapse
|
17
|
Goussias C, Boussac A, Rutherford AW. Photosystem II and photosynthetic oxidation of water: an overview. Philos Trans R Soc Lond B Biol Sci 2002; 357:1369-81; discussion 1419-20. [PMID: 12437876 PMCID: PMC1693055 DOI: 10.1098/rstb.2002.1134] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Conceptually, photosystem II, the oxygen-evolving enzyme, can be divided into two parts: the photochemical part and the catalytic part. The photochemical part contains the ultra-fast and ultra-efficient light-induced charge separation and stabilization steps that occur when light is absorbed by chlorophyll. The catalytic part, where water is oxidized, involves a cluster of Mn ions close to a redox-active tyrosine residue. Our current understanding of the catalytic mechanism is mainly based on spectroscopic studies. Here, we present an overview of the current state of knowledge of photosystem II, attempting to delineate the open questions and the directions of current research.
Collapse
Affiliation(s)
- Charilaos Goussias
- Service de Bioénergétique, URA CNRS 2096, Bat 532, CEA Saclay, 91191 Gif-sur-Yvette, France
| | | | | |
Collapse
|
18
|
Sauer K, Yachandra VK. A possible evolutionary origin for the Mn4 cluster of the photosynthetic water oxidation complex from natural MnO2 precipitates in the early ocean. Proc Natl Acad Sci U S A 2002; 99:8631-6. [PMID: 12077302 PMCID: PMC124339 DOI: 10.1073/pnas.132266199] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The photosynthetic water oxidation complex consists of a cluster of four Mn atoms bridged by O atoms, associated with Ca2+ and Cl-, and incorporated into protein. The structure is similar in higher plants and algae, as well as in cyanobacteria of more ancient lineage, dating back more than 2.5 billion years ago on Earth. It has been proposed that the proto-enzyme derived from a component of a natural early marine manganese precipitate that contained a CaMn4O9 cluster. A variety of MnO2 minerals are found in nature. Three major classes are spinels, sheet-like layered structures, and three-dimensional networks that contain parallel tunnels. These relatively open structures readily incorporate cations (Na+, Li+, Mg2+, Ca2+, Ba2+, H+, and even Mn2+) and water. The minerals have different ratios of Mn(III) and Mn(IV) octahedrally coordinated to oxygens. Using x-ray spectroscopy we compare the chemical structures of Mn in the minerals with what is known about the arrangement in the water oxidation complex to define the parameters of a structural model for the photosynthetic catalytic site. This comparison provides for the structural model a set of candidate Mn(4) clusters-some previously proposed and considered and others entirely novel.
Collapse
Affiliation(s)
- Kenneth Sauer
- Melvin Calvin Laboratory, Physical Biosciences Division, Lawrence Berkeley National Laboratory, and Department of Chemistry, University of California, Berkeley, CA 94720, USA.
| | | |
Collapse
|