1
|
Nakao T, Takasu R, Tsuchida H, Saito M, Majima T. Delayed fragmentation of isolated nucleobases induced by MeV ions. J Chem Phys 2024; 161:054302. [PMID: 39087542 DOI: 10.1063/5.0215222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/17/2024] [Indexed: 08/02/2024] Open
Abstract
We evaluated the dissociation of isolated gas-phase nucleobase molecules induced by mega electron volt (MeV)-energy ions to gain fundamental insights into the reactions of nucleobases upon fast ion irradiation. We studied five nucleobase molecules-adenine, guanine, cytosine, thymine, and uracil-as gas-phase targets. We compared the fragmentation patterns obtained from carbon ion impacts with those obtained from proton impacts to clarify the effect of heavy ion irradiation. We also compared the results with electron impact and photoionization results. In addition, we identified several delayed fragmentation pathways by analyzing the correlation between fragment pairs generated from singly and doubly charged intermediate ions. To determine the lifetimes of delayed fragmentation from singly charged intermediate ions, we evaluated the detection efficiencies of the microchannel plate detector for the neutral fragment HCN as a function of kinetic energy using a new methodology. As the first demonstration of this method, we estimated the lifetimes of C5H5N5+ generated by 1.2-MeV C+ and 0.5-MeV H+ collisions to be 0.87 ± 0.43 and 0.67 ± 0.09 µs, respectively. These lifetimes were approximately one order of magnitude longer than those of the doubly charged intermediate ion C5H5N52+.
Collapse
Affiliation(s)
- T Nakao
- Department of Nuclear Engineering, Kyoto University, Kyoto 615-8540, Japan
| | - R Takasu
- Department of Nuclear Engineering, Kyoto University, Kyoto 615-8540, Japan
| | - H Tsuchida
- Department of Nuclear Engineering, Kyoto University, Kyoto 615-8540, Japan
- Quantum Science and Engineering Center, Kyoto University, Uji 611-0011, Japan
| | - M Saito
- Department of Nuclear Engineering, Kyoto University, Kyoto 615-8540, Japan
- Quantum Science and Engineering Center, Kyoto University, Uji 611-0011, Japan
| | - T Majima
- Department of Nuclear Engineering, Kyoto University, Kyoto 615-8540, Japan
| |
Collapse
|
2
|
Wang S, Dauletyarov Y, Krüger P, Horke DA. High-throughput UV-photofragmentation studies of thymine and guanine. Phys Chem Chem Phys 2023; 25:12322-12330. [PMID: 37083208 PMCID: PMC10155487 DOI: 10.1039/d3cp00328k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/15/2023] [Indexed: 04/22/2023]
Abstract
High-throughput photofragmentation studies of thymine and guanine were performed at 257 and 343 nm and for a wide range of ionisation laser intensities. Combining a continuous laser-based thermal desorption source with femtosecond multiphoton ionisation using a 50 kHz repetition rate laser allowed us to produce detailed 2D maps of fragmentation as a function of incident laser intensity. The fragmentation was distinctly soft, the parent ions being at least an order of magnitude more abundant than fragment ions. For thymine there was a single dominant fragmentation channel, which involves consecutive HNCO and CO losses. In contrast, for guanine there were several competing ones, the most probable channel corresponding to CH2N2 loss through opening of the pyrimidine ring. The dependence of parent ion abundance on the ionisation laser intensity showed that at 257 nm the ionisation of thymine is a 1 + 1 resonance enhanced process through its open-shell singlet state.
Collapse
Affiliation(s)
- Siwen Wang
- Institute for Molecules and Materials, Radboud University, Heijendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| | - Yerbolat Dauletyarov
- Institute for Molecules and Materials, Radboud University, Heijendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| | - Peter Krüger
- Institute for Molecules and Materials, Radboud University, Heijendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| | - Daniel A Horke
- Institute for Molecules and Materials, Radboud University, Heijendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| |
Collapse
|
3
|
Pavan ME, Movilla F, Pavan EE, Di Salvo F, López NI, Pettinari MJ. Guanine crystal formation by bacteria. BMC Biol 2023; 21:66. [PMID: 37013555 PMCID: PMC10071637 DOI: 10.1186/s12915-023-01572-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/17/2023] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND Guanine crystals are organic biogenic crystals found in many organisms. Due to their exceptionally high refractive index, they contribute to structural color and are responsible for the reflective effect in the skin and visual organs in animals such as fish, reptiles, and spiders. Occurrence of these crystals in animals has been known for many years, and they have also been observed in eukaryotic microorganisms, but not in prokaryotes. RESULTS In this work, we report the discovery of extracellular crystals formed by bacteria and reveal that they are composed of guanine monohydrate. This composition differs from that of biogenic guanine crystals found in other organisms, mostly composed of β anhydrous guanine. We demonstrate the formation of these crystals by Aeromonas and other bacteria and investigate the metabolic traits related to their synthesis. In all cases studied, the presence of the bacterial guanine crystals correlates with the absence of guanine deaminase, which could lead to guanine accumulation providing the substrate for crystal formation. CONCLUSIONS Our finding of the hitherto unknown guanine crystal occurrence in prokaryotes extends the range of organisms that produce these crystals to a new domain of life. Bacteria constitute a novel and more accessible model to study the process of guanine crystal formation and assembly. This discovery opens countless chemical and biological questions, including those about the functional and adaptive significance of their production in these microorganisms. It also paves the road for the development of simple and convenient processes to obtain biogenic guanine crystals for diverse applications.
Collapse
Affiliation(s)
- María Elisa Pavan
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Federico Movilla
- Departamento de Química Inorgánica, Analítica y Química Física e INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Esteban E Pavan
- Biomedical Technologies Laboratory, Department of Electronics, Information and Bioengineering, Politecnico Di Milano, Milan, Italy
| | - Florencia Di Salvo
- Departamento de Química Inorgánica, Analítica y Química Física e INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Nancy I López
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- IQUIBICEN-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - M Julia Pettinari
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
- IQUIBICEN-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
4
|
Electron Impact Ionization of Adenine: Partial Cross Sections. ATOMS 2022. [DOI: 10.3390/atoms10040100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Electron ionization of a genetically important nucleobase, adenine, was investigated from threshold to 500 eV using crossed electron beam–effusive molecular beam geometry and time-of-flight mass spectrometry. We measured the complete set of absolute partial cross sections for adenine using the relative flow technique (RFT) up to an electron energy of 500 eV. Normalization to absolute values was performed using electron ionization cross sections for argon and the vapor pressure data of adenine. The total cross sections obtained by summing the partial cross sections were compared with the existing theoretical and experimental data. The appearance energies of various fragment ions were also measured and compared with the reported data. The prominence of ions with mass (HCN)n+ (n = 1 to 5) indicated a possible pathway to form adenine in the interstellar medium through aggregation of HCN units. Analysis of the partial cross sections for various groups of fragment ions as a function of electron energy was found to give insights into their composition.
Collapse
|
5
|
Lee J, Kind T, Tantillo DJ, Wang LP, Fiehn O. Evaluating the Accuracy of the QCEIMS Approach for Computational Prediction of Electron Ionization Mass Spectra of Purines and Pyrimidines. Metabolites 2022; 12:68. [PMID: 35050190 PMCID: PMC8779335 DOI: 10.3390/metabo12010068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/08/2022] [Accepted: 01/09/2022] [Indexed: 12/04/2022] Open
Abstract
Mass spectrometry is the most commonly used method for compound annotation in metabolomics. However, most mass spectra in untargeted assays cannot be annotated with specific compound structures because reference mass spectral libraries are far smaller than the complement of known molecules. Theoretically predicted mass spectra might be used as a substitute for experimental spectra especially for compounds that are not commercially available. For example, the Quantum Chemistry Electron Ionization Mass Spectra (QCEIMS) method can predict 70 eV electron ionization mass spectra from any given input molecular structure. In this work, we investigated the accuracy of QCEIMS predictions of electron ionization (EI) mass spectra for 80 purine and pyrimidine derivatives in comparison to experimental data in the NIST 17 database. Similarity scores between every pair of predicted and experimental spectra revealed that 45% of the compounds were found as the correct top hit when QCEIMS predicted spectra were matched against the NIST17 library of >267,000 EI spectra, and 74% of the compounds were found within the top 10 hits. We then investigated the impact of matching, missing, and additional fragment ions in predicted EI mass spectra versus ion abundances in MS similarity scores. We further include detailed studies of fragmentation pathways such as retro Diels-Alder reactions to predict neutral losses of (iso)cyanic acid, hydrogen cyanide, or cyanamide in the mass spectra of purines and pyrimidines. We describe how trends in prediction accuracy correlate with the chemistry of the input compounds to better understand how mechanisms of QCEIMS predictions could be improved in future developments. We conclude that QCEIMS is useful for generating large-scale predicted mass spectral libraries for identification of compounds that are absent from experimental libraries and that are not commercially available.
Collapse
Affiliation(s)
- Jesi Lee
- Department of Chemistry, University of California, Davis, CA 95616, USA
- West Coast Metabolomics Center, University of California, Davis, CA 95616, USA
| | - Tobias Kind
- West Coast Metabolomics Center, University of California, Davis, CA 95616, USA
| | | | - Lee-Ping Wang
- Department of Chemistry, University of California, Davis, CA 95616, USA
| | - Oliver Fiehn
- West Coast Metabolomics Center, University of California, Davis, CA 95616, USA
| |
Collapse
|
6
|
Semmeq A, Badawi M, Dziurla MA, Ouaskit S, Monari A. Nucleic Acids under Stress: Understanding and Simulating Nucleobase Fragmentation Pathways. Chempluschem 2021; 86:1426-1435. [PMID: 34637193 DOI: 10.1002/cplu.202100323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 09/24/2021] [Indexed: 11/10/2022]
Abstract
The effects of radiations on nucleic acids and their constituents is widely studied across several research fields using different experimental and theoretical protocols. While a large number of studies were performed in this context, many fundamental physical and chemical effects are still being investigated, particularly involving the effect of the biological environment. As an example, the interpretation of experimental nucleic acid bases mass spectra, and hence inferring their reactivity in complex environment still poses great challenge. This Minireview summarizes recent theoretical advancements aiming to predict and interpret the reactivity of nucleic acid bases. We focus not only on the understanding of the inherent fragmentation pathways of isolated nucleobases but also on the modeling of a realistic nano-environments highlighting the importance of molecular dynamics simulations and the non-innocent role of the environment and also the possibility to open novel fragmentation pathways.
Collapse
Affiliation(s)
| | - Michael Badawi
- Université de Lorraine and CNRS, UMR 7019 LPCT, 54000, Nancy, France
| | | | - Said Ouaskit
- Laboratoire de Physique de la Matière Condensée, Faculté de Sciences Ben M'sick, University Hassan II of Casablanca, Morocco
| | - Antonio Monari
- Université de Lorraine and CNRS, UMR 7019 LPCT, 54000, Nancy, France
- Université de Paris and CNRS, ITODYS, 75006, Paris, France
| |
Collapse
|
7
|
Balasubramaniyam T, Oh KI, Jin HS, Ahn HB, Kim BS, Lee JH. Non-Canonical Helical Structure of Nucleic Acids Containing Base-Modified Nucleotides. Int J Mol Sci 2021; 22:9552. [PMID: 34502459 PMCID: PMC8430589 DOI: 10.3390/ijms22179552] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/27/2021] [Accepted: 08/29/2021] [Indexed: 12/12/2022] Open
Abstract
Chemically modified nucleobases are thought to be important for therapeutic purposes as well as diagnosing genetic diseases and have been widely involved in research fields such as molecular biology and biochemical studies. Many artificially modified nucleobases, such as methyl, halogen, and aryl modifications of purines at the C8 position and pyrimidines at the C5 position, are widely studied for their biological functions. DNA containing these modified nucleobases can form non-canonical helical structures such as Z-DNA, G-quadruplex, i-motif, and triplex. This review summarizes the synthesis of chemically modified nucleotides: (i) methylation, bromination, and arylation of purine at the C8 position and (ii) methylation, bromination, and arylation of pyrimidine at the C5 position. Additionally, we introduce the non-canonical structures of nucleic acids containing these modifications.
Collapse
Affiliation(s)
- Thananjeyan Balasubramaniyam
- Department of Chemistry, Gyeongsang National University, Jinju 52828, Gyeongnam, Korea; (T.B.); (K.-I.O.); (H.-S.J.); (H.-B.A.)
- The Research Institute of Natural Science, Gyeongsang National University, Jinju 52828, Gyeongnam, Korea
| | - Kwnag-Im Oh
- Department of Chemistry, Gyeongsang National University, Jinju 52828, Gyeongnam, Korea; (T.B.); (K.-I.O.); (H.-S.J.); (H.-B.A.)
- The Research Institute of Natural Science, Gyeongsang National University, Jinju 52828, Gyeongnam, Korea
| | - Ho-Seong Jin
- Department of Chemistry, Gyeongsang National University, Jinju 52828, Gyeongnam, Korea; (T.B.); (K.-I.O.); (H.-S.J.); (H.-B.A.)
| | - Hye-Bin Ahn
- Department of Chemistry, Gyeongsang National University, Jinju 52828, Gyeongnam, Korea; (T.B.); (K.-I.O.); (H.-S.J.); (H.-B.A.)
| | - Byeong-Seon Kim
- The Research Institute of Natural Science, Gyeongsang National University, Jinju 52828, Gyeongnam, Korea
- Department of Chemistry Education, Gyeongsang National University, Jinju 52828, Gyeongnam, Korea
| | - Joon-Hwa Lee
- Department of Chemistry, Gyeongsang National University, Jinju 52828, Gyeongnam, Korea; (T.B.); (K.-I.O.); (H.-S.J.); (H.-B.A.)
- The Research Institute of Natural Science, Gyeongsang National University, Jinju 52828, Gyeongnam, Korea
| |
Collapse
|
8
|
Moe MM, Tsai M, Liu J. Singlet Oxygen Oxidation of the Radical Cations of 8-Oxo-2'-deoxyguanosine and Its 9-Methyl Analogue: Dynamics, Potential Energy Surface, and Products Mediated by C5-O 2 -Addition. Chempluschem 2021; 86:1243-1254. [PMID: 34268890 DOI: 10.1002/cplu.202100238] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/02/2021] [Indexed: 01/24/2023]
Abstract
8-Oxo-2'-deoxyguanosine (OG) is the most common DNA lesion. Notably, OG becomes more susceptible to oxidative damage than the undamaged nucleoside, forming mutagenic products in vivo. Herein the reactions of singlet O2 with the radical cations of 8-oxo-2'-deoxyguanosine (OG.+ ) and 9-methyl-8-oxoguanine (9MOG.+ ) were investigated using ion-molecule scattering mass spectrometry, from which barrierless, exothermic O2 -addition products were detected for both reaction systems. Corroborated by static reaction potential energy surface constructed using multi-reference CASPT2 theory and molecular dynamics simulated in the presence of the reactants' kinetic and internal energies, the C5-terminal O2 -addition was pinpointed as the most probable reaction pathway. By elucidating the reaction mechanism, kinetics and dynamics, and reaction products and energetics, this work constitutes the first report unraveling the synergetic damage of OG by ionizing radiation and singlet O2 .
Collapse
Affiliation(s)
- May Myat Moe
- Department of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Blvd., Queens, NY, 11367, USA.,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 5th Ave., New York, NY, 10016, USA
| | - Midas Tsai
- Department of Natural Sciences, LaGuardia Community College, 31-10 Thomson Ave., Long Island City, NY, 11101, USA
| | - Jianbo Liu
- Department of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Blvd., Queens, NY, 11367, USA.,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 5th Ave., New York, NY, 10016, USA
| |
Collapse
|
9
|
Zhao HY, Lau KC, Garcia GA, Nahon L, Carniato S, Poisson L, Schwell M, Al-Mogren MM, Hochlaf M. Unveiling the complex vibronic structure of the canonical adenine cation. Phys Chem Chem Phys 2018; 20:20756-20765. [PMID: 29989120 DOI: 10.1039/c8cp02930j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Adenine, a DNA base, exists as several tautomers and isomers that are closely lying in energy and that may form a mixture upon vaporization of solid adenine. Indeed, it is challenging to bring adenine into the gas phase, especially as a unique tautomer. The experimental conditions were tuned to prepare a jet-cooled canonical adenine (9H-adenine). This isolated DNA base was ionized by single VUV photons from a synchrotron beamline and the corresponding slow photoelectron spectrum was compared to ab initio computations of the neutral and ionic species. We report the vibronic structure of the X+ 2A'' (D0), A+ 2A' (D1) and B+ 2A'' (D2) electronic states of the 9H adenine cation, from the adiabatic ionization energy (AIE) up to AIE + 1.8 eV. Accurate AIEs are derived for the 9H-adenine (X[combining tilde] 1A') + hν → 9H-adenine+ (X+ 2A'', A+ 2A', B+ 2A'') + e- transitions. Close to the AIE, we fully assign the rich vibronic structure solely to the 9H-adenine (X 1A') + hν → 9H-adenine+ (X+ 2A'') transition. Importantly, we show that the lowest cationic electronic states of canonical adenine are coupled vibronically. The present findings are important for understanding the effects of ionizing radiation and the charge distribution on this elementary building block of life, at ultrafast, short, and long timescales.
Collapse
Affiliation(s)
- Hong Yan Zhao
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Sun Y, Zhou W, Moe MM, Liu J. Reactions of water with radical cations of guanine, 9-methylguanine, 2′-deoxyguanosine and guanosine: keto–enol isomerization, C8-hydroxylation, and effects of N9-substitution. Phys Chem Chem Phys 2018; 20:27510-27522. [DOI: 10.1039/c8cp05453c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reactions of D2O with guanine radical cations in nucleobases and nucleosides were studied in the gas phase using the guided-ion-beam experiment and computational modeling.
Collapse
Affiliation(s)
- Yan Sun
- Department of Chemistry and Biochemistry
- Queens College of the City University of New York
- Queens
- USA
- PhD Program in Chemistry
| | - Wenjing Zhou
- Department of Chemistry and Biochemistry
- Queens College of the City University of New York
- Queens
- USA
| | - May Myat Moe
- Department of Chemistry and Biochemistry
- Queens College of the City University of New York
- Queens
- USA
| | - Jianbo Liu
- Department of Chemistry and Biochemistry
- Queens College of the City University of New York
- Queens
- USA
- PhD Program in Chemistry
| |
Collapse
|
11
|
Mondal S, Puranik M. Ultrafast Nuclear Dynamics of Photoexcited Guanosine-5'-Monophosphate in Three Singlet States. J Phys Chem B 2017; 121:7095-7107. [PMID: 28653848 DOI: 10.1021/acs.jpcb.7b05735] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report measurement of resonance Raman (RR) spectra of guanosine-5'-monophosphate (GMP), a DNA nucleotide at excitation wavelengths throughout its ππ* absorption band (Bb) in the 210-230 nm range. From these data, we constructed wavelength-dependent Raman intensity excitation profiles (REPs) for all observed modes. These profiles and the absorption spectrum were then modeled using self-consistent simulations based on the time-dependent wave packet propagation formalism. We inferred the initial structural dynamics of GMP immediately after photoexcitation in terms of dimensionless displacements. The simulations also provide linewidth-broadening parameters that in turn report on the time scale of dynamics. We compared deduced structural changes in the purine ring upon photoabsorption into the Bb state with those deduced for the two lowest lying ππ* (La and Lb at 280 and 248 nm, respectively) excited states of GMP. We find that excitation to the Lb state lengthens C6-N1 and C2═N3 bonds, which lie along the formation coordinate of various oxidative adducts but Bb excitation does not. We also find that photoabsorption by the Bb state weakens the C8-N9 bond and thus might assist imidazole ring opening via cleavage of the same bond. Electronic excitation to different ππ* states of the guanine chromophore results in contrasting structural changes; although absorption by the La and Lb states induces expansion of pyrimidine and contraction of imidazole rings, excitation results in overall shrinkage of both the rings. Computed absolute changes in internal coordinates imply that photoexcitation to any of the three singlet states of GMP does not lead directly to the formation of a cation radical of guanine.
Collapse
Affiliation(s)
- Sayan Mondal
- Indian Institute of Science Education and Research , Pune 411008, India
| | - Mrinalini Puranik
- Indian Institute of Science Education and Research , Pune 411008, India
| |
Collapse
|
12
|
Lesslie M, Lawler JT, Dang A, Korn JA, Bím D, Steinmetz V, Maître P, Tureček F, Ryzhov V. Cytosine Radical Cations: A Gas‐Phase Study Combining IRMPD Spectroscopy, UVPD Spectroscopy, Ion–Molecule Reactions, and Theoretical Calculations. Chemphyschem 2017; 18:1293-1301. [DOI: 10.1002/cphc.201700281] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Michael Lesslie
- Department of Chemistry and Biochemistry Northern Illinois University DeKalb IL 60115 USA
| | - John T. Lawler
- Department of Chemistry and Biochemistry Northern Illinois University DeKalb IL 60115 USA
| | - Andy Dang
- Department of Chemistry University of Washington Bagley Hall, Box 351700 Seattle Washington 98195 USA
| | - Joseph A. Korn
- Department of Chemistry University of Washington Bagley Hall, Box 351700 Seattle Washington 98195 USA
| | - Daniel Bím
- Institute of Organic Chemistry and Biochemistry Academy of Sciences of the Czech Republic 166 10 Prague 6 Czech Republic
| | - Vincent Steinmetz
- Laboratoire de Chimie Physique Université Paris-Sud UMR8000 CNRS 91405 Orsay France
| | - Philippe Maître
- Laboratoire de Chimie Physique Université Paris-Sud UMR8000 CNRS 91405 Orsay France
| | - Frantisek Tureček
- Department of Chemistry University of Washington Bagley Hall, Box 351700 Seattle Washington 98195 USA
| | - Victor Ryzhov
- Department of Chemistry and Biochemistry Northern Illinois University DeKalb IL 60115 USA
| |
Collapse
|
13
|
Yari A, Saidikhah M. Trithiane silver-nanoparticles-decorated polyaniline nanofibers as sensing element for electrochemical determination of Adenine and Guanine in DNA. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.10.063] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
14
|
Sadr-Arani L, Mignon P, Chermette H, Abdoul-Carime H, Farizon B, Farizon M. Fragmentation mechanisms of cytosine, adenine and guanine ionized bases. Phys Chem Chem Phys 2016; 17:11813-26. [PMID: 25869111 DOI: 10.1039/c5cp00104h] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The different fragmentation channels of cytosine, adenine and guanine have been studied through DFT calculations. The electronic structure of bases, their cations, and the fragments obtained by breaking bonds provides a good understanding of the fragmentation process that can complete the experimental approach. The calculations allow assigning various fragments to the given peaks. The comparison between the energy required for the formation of fragments and the peak intensity in the mass spectrum is used. For cytosine and guanine the elimination of the HNCO molecule is a major route of dissociation, while for adenine multiple loss of HCN or HNC can be followed up to small fragments. For cytosine, this corresponds to the initial bond cleavage of N3-C4/N1-C2, which represents the main dissociation route. For guanine the release of HNCO is obtained through the N1-C2/C5-C6 bond cleavage (reverse order also possible) leading to the largest peak of the spectrum. The corresponding energies of 3.5 and 3.9 eV are typically in the range available in the experiments. The loss of NH3 or HCN is also possible but requires more energy. For adenine, fragmentation consists of multiple loss of the HCN molecule and the main route corresponding to HC8N9 loss is followed by the release of HC2N1.
Collapse
Affiliation(s)
- Leila Sadr-Arani
- Université de Lyon, Université Claude Bernard Lyon1, Institut des Sciences Analytiques, CNRS UMR 5280, 5 Rue de la Doua, 69100 Villeurbanne, France.
| | | | | | | | | | | |
Collapse
|
15
|
Markush P, Bolognesi P, Cartoni A, Rousseau P, Maclot S, Delaunay R, Domaracka A, Kocisek J, Castrovilli MC, Huber BA, Avaldi L. The role of the environment in the ion induced fragmentation of uracil. Phys Chem Chem Phys 2016; 18:16721-9. [DOI: 10.1039/c6cp01940d] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The fragmentation of uracil molecules and pure and nano-hydrated uracil clusters by 12C4+ ion impact is investigated.
Collapse
Affiliation(s)
| | | | - Antonella Cartoni
- CNR-ISM
- Monterotondo Scalo
- Italy
- Dipartimento di Chimica
- Sapienza Università di Roma
| | - Patrick Rousseau
- Normandie Université
- CIMAP (UMR6252 CEA/CNRS/ENSICAEN/UNICAEN)
- 14070 Caen Cedex 5
- France
| | - Sylvain Maclot
- Normandie Université
- CIMAP (UMR6252 CEA/CNRS/ENSICAEN/UNICAEN)
- 14070 Caen Cedex 5
- France
| | - Rudy Delaunay
- Normandie Université
- CIMAP (UMR6252 CEA/CNRS/ENSICAEN/UNICAEN)
- 14070 Caen Cedex 5
- France
| | - Alicja Domaracka
- Normandie Université
- CIMAP (UMR6252 CEA/CNRS/ENSICAEN/UNICAEN)
- 14070 Caen Cedex 5
- France
| | - Jaroslav Kocisek
- Normandie Université
- CIMAP (UMR6252 CEA/CNRS/ENSICAEN/UNICAEN)
- 14070 Caen Cedex 5
- France
- J. Heyrovský Institute of Physical Chemistry
| | | | - Bernd A. Huber
- Normandie Université
- CIMAP (UMR6252 CEA/CNRS/ENSICAEN/UNICAEN)
- 14070 Caen Cedex 5
- France
| | | |
Collapse
|
16
|
Minaev BF, Shafranyosh MI, Svida YY, Sukhoviya MI, Shafranyosh II, Baryshnikov GV, Minaeva VA. Fragmentation of the adenine and guanine molecules induced by electron collisions. J Chem Phys 2015; 140:175101. [PMID: 24811665 DOI: 10.1063/1.4871881] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Secondary electron emission is the most important stage in the mechanism of radiation damage to DNA biopolymers induced by primary ionizing radiation. These secondary electrons ejected by the primary electron impacts can produce further ionizations, initiating an avalanche effect, leading to genome damage through the energy transfer from the primary objects to sensitive biomolecular targets, such as nitrogenous bases, saccharides, and other DNA and peptide components. In this work, the formation of positive and negative ions of purine bases of nucleic acids (adenine and guanine molecules) under the impact of slow electrons (from 0.1 till 200 eV) is studied by the crossed electron and molecular beams technique. The method used makes it possible to measure the molecular beam intensity and determine the total cross-sections for the formation of positive and negative ions of the studied molecules, their energy dependences, and absolute values. It is found that the maximum cross section for formation of the adenine and guanine positive ions is reached at about 90 eV energy of the electron beam and their absolute values are equal to 2.8 × 10(-15) and 3.2 × 10(-15) cm(2), respectively. The total cross section for formation of the negative ions is 6.1 × 10(-18) and 7.6 × 10(-18) cm(2) at the energy of 1.1 eV for adenine and guanine, respectively. The absolute cross-section values for the molecular ions are measured and the cross-sections of dissociative ionization are determined. Quantum chemical calculations are performed for the studied molecules, ions and fragments for interpretation of the crossed beams experiments.
Collapse
Affiliation(s)
- B F Minaev
- Bohdan Khmelnitsky National University, 18031 Cherkasy, Ukraine
| | | | - Yu Yu Svida
- Uzhgorod National University, 88000 Uzhgorod, Ukraine
| | - M I Sukhoviya
- Uzhgorod National University, 88000 Uzhgorod, Ukraine
| | | | - G V Baryshnikov
- Bohdan Khmelnitsky National University, 18031 Cherkasy, Ukraine
| | - V A Minaeva
- Bohdan Khmelnitsky National University, 18031 Cherkasy, Ukraine
| |
Collapse
|
17
|
Cole CA, Wang ZC, Snow TP, Bierbaum VM. Deprotonated Purine Dissociation: Experiments, Computations, and Astrobiological Implications. J Phys Chem A 2015; 119:334-43. [DOI: 10.1021/jp509012s] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Callie A. Cole
- Department
of Chemistry and Biochemistry, University of Colorado, 215 UCB, Boulder, Colorado 80309, United States
| | - Zhe-Chen Wang
- Department
of Chemistry and Biochemistry, University of Colorado, 215 UCB, Boulder, Colorado 80309, United States
| | - Theodore P. Snow
- Department
of Astrophysical and Planetary Sciences, University of Colorado, 391 UCB, Boulder, Colorado 80309, United States
- Center
for Astrophysics and Space Astronomy, University of Colorado, 389 UCB, Boulder, Colorado 80309, United States
| | - Veronica M. Bierbaum
- Department
of Chemistry and Biochemistry, University of Colorado, 215 UCB, Boulder, Colorado 80309, United States
- Center
for Astrophysics and Space Astronomy, University of Colorado, 389 UCB, Boulder, Colorado 80309, United States
| |
Collapse
|
18
|
Grimme S, Bauer CA. Automated quantum chemistry based molecular dynamics simulations of electron ionization induced fragmentations of the nucleobases Uracil, Thymine, Cytosine, and Guanine. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2015; 21:125-140. [PMID: 26307693 DOI: 10.1255/ejms.1313] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The gas-phase decomposition pathways of electron ionization (EI)-induced radical cations of the nucleobases uracil, thymine, cytosine, and guanine are investigated by means of mixed quantum-classical molecular dynamics. No preconceived fragmentation channels are used in the calculations. The results compare well to a plethora of experimental and theoretical data for these important biomolecules. With our combined stochastic and dynamic approach, one can access in an unbiased way the energetically available decomposition mechanisms. Additionally, we are able to separate the EI mass spectra of different tautomers of cytosine and guanine. Our method (previously termed quantum chemistry electron ionization mass spectra) reproduces free nucleobase experimental mass spectra well and provides detailed mechanistic in-sight into high-energy unimolecular decomposition processes.
Collapse
Affiliation(s)
- Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie der Rheinischen Friedrich- Wilhelms-Universität Bonn, Beringstr. 4, D-53115, Bonn, Germany. - bonn.de
| | - Christopher Alexander Bauer
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie der Rheinischen Friedrich-Wilhelms-Universität Bonn, Beringstr. 4, D-53115, Bonn, Germany.
| |
Collapse
|
19
|
Bauer CA, Grimme S. Elucidation of Electron Ionization Induced Fragmentations of Adenine by Semiempirical and Density Functional Molecular Dynamics. J Phys Chem A 2014; 118:11479-84. [DOI: 10.1021/jp5096618] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Christoph Alexander Bauer
- Mulliken Center for Theoretical
Chemistry, Institut für Physikalische und Theoretische Chemie der Rheinischen Friedrich-Wilhelms-Universität Bonn, Beringstrasse 4, D-53115 Bonn, Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical
Chemistry, Institut für Physikalische und Theoretische Chemie der Rheinischen Friedrich-Wilhelms-Universität Bonn, Beringstrasse 4, D-53115 Bonn, Germany
| |
Collapse
|
20
|
Dawley MM, Tanzer K, Cantrell WA, Plattner P, Brinkmann NR, Scheier P, Denifl S, Ptasińska S. Electron ionization of the nucleobases adenine and hypoxanthine near the threshold: a combined experimental and theoretical study. Phys Chem Chem Phys 2014; 16:25039-53. [DOI: 10.1039/c4cp03452j] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Wolff W, Luna H, Sigaud L, Tavares AC, Montenegro EC. Absolute total and partial dissociative cross sections of pyrimidine at electron and proton intermediate impact velocities. J Chem Phys 2014; 140:064309. [PMID: 24527917 DOI: 10.1063/1.4864322] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Absolute total non-dissociative and partial dissociative cross sections of pyrimidine were measured for electron impact energies ranging from 70 to 400 eV and for proton impact energies from 125 up to 2500 keV. MOs ionization induced by coulomb interaction were studied by measuring both ionization and partial dissociative cross sections through time of flight mass spectrometry and by obtaining the branching ratios for fragment formation via a model calculation based on the Born approximation. The partial yields and the absolute cross sections measured as a function of the energy combined with the model calculation proved to be a useful tool to determine the vacancy population of the valence MOs from which several sets of fragment ions are produced. It was also a key point to distinguish the dissociation regimes induced by both particles. A comparison with previous experimental results is also presented.
Collapse
Affiliation(s)
- Wania Wolff
- Instituto de Física, Universidade Federal do Rio de Janeiro, PO 68528, 21941-972 Rio de Janeiro, RJ, Brazil
| | - Hugo Luna
- Instituto de Física, Universidade Federal do Rio de Janeiro, PO 68528, 21941-972 Rio de Janeiro, RJ, Brazil
| | - Lucas Sigaud
- Instituto de Física, Universidade Federal do Rio de Janeiro, PO 68528, 21941-972 Rio de Janeiro, RJ, Brazil
| | - Andre C Tavares
- Departamento de Física, Pontificia Universidade Católica do Rio de Janeiro, PO 38071, Rua Marquês de São Vicente 225, 22453-900 Rio de Janeiro, RJ, Brazil
| | - Eduardo C Montenegro
- Instituto de Física, Universidade Federal do Rio de Janeiro, PO 68528, 21941-972 Rio de Janeiro, RJ, Brazil
| |
Collapse
|
22
|
Schwell M, Hochlaf M. Photoionization Spectroscopy of Nucleobases and Analogues in the Gas Phase Using Synchrotron Radiation as Excitation Light Source. Top Curr Chem (Cham) 2014; 355:155-208. [DOI: 10.1007/128_2014_550] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
23
|
Baldridge KC, Contreras LM. Functional implications of ribosomal RNA methylation in response to environmental stress. Crit Rev Biochem Mol Biol 2013; 49:69-89. [PMID: 24261569 DOI: 10.3109/10409238.2013.859229] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The study of post-transcriptional RNA modifications has long been focused on the roles these chemical modifications play in maintaining ribosomal function. The field of ribosomal RNA modification has reached a milestone in recent years with the confirmation of the final unknown ribosomal RNA methyltransferase in Escherichia coli in 2012. Furthermore, the last 10 years have brought numerous discoveries in non-coding RNAs and the roles that post-transcriptional modification play in their functions. These observations indicate the need for a revitalization of this field of research to understand the role modifications play in maintaining cellular health in a dynamic environment. With the advent of high-throughput sequencing technologies, the time is ripe for leaps and bounds forward. This review discusses ribosomal RNA methyltransferases and their role in responding to external stress in Escherichia coli, with a specific focus on knockout studies and on analysis of transcriptome data with respect to rRNA methyltransferases.
Collapse
Affiliation(s)
- Kevin C Baldridge
- McKetta Department of Chemical Engineering, The University of Texas at Austin , Austin, TX , USA
| | | |
Collapse
|
24
|
|
25
|
Krzeminski J, Kropachev K, Reeves D, Kolbanovskiy A, Kolbanovskiy M, Chen KM, Sharma AK, Geacintov N, Amin S, El-Bayoumy K. Adenine-DNA adduct derived from the nitroreduction of 6-nitrochrysene is more resistant to nucleotide excision repair than guanine-DNA adducts. Chem Res Toxicol 2013; 26:1746-54. [PMID: 24112095 DOI: 10.1021/tx400296x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Previous studies in rats, mice, and in vitro systems showed that 6-NC can be metabolically activated by two major pathways: (1) the formation of N-hydroxy-6-aminochrysene by nitroreduction to yield three major adducts, N-(dG-8-yl)-6-AC, 5-(dG-N(2)-yl)-6-AC, and N-(dA-8-yl)-6-AC, and (2) the formation of trans-1,2-dihydroxy-1,2-dihydro-6-hydroxylaminochrysene (1,2-DHD-6-NHOH-C) by a combination of nitroreduction and ring oxidation pathways to yield N-(dG-8-yl)-1,2-DHD-6-AC, 5-(dG-N(2)-yl)-1,2-DHD-6-AC and N-(dA-8-yl)-1,2-DHD-6-AC. These DNA lesions are likely to cause mutations if they are not removed by cellular defense mechanisms before DNA replication occurs. Here, we compared for the first time, in HeLa cell extracts in vitro, the relative nucleotide excision repair (NER) efficiencies of DNA lesions derived from simple nitroreduction and from a combination of nitroreduction and ring oxidation pathways. We show that the N-(dG-8-yl)-1,2-DHD-6-AC adduct is more resistant to NER than the N-(dG-8-yl)-6-AC adduct by a factor of ∼2. Furthermore, the N-(dA-8-yl)-6-AC is much more resistant to repair since its NER efficiency is ∼8-fold lower than that of the N-(dG-8-yl)-6-AC adduct. On the basis of our previous study and the present investigation, lesions derived from 6-NC and benzo[a]pyrene can be ranked from the most to the least resistant lesion as follows: N-(dA-8-yl)-6-AC > N-(dG-8-yl)-1,2-DHD-6-AC > 5-(dG-N(2)-yl)-6-AC ≃ N-(dG-8-yl)-6-AC ≃ (+)-7R,8S,9S,10S-benzo[a]pyrene diol epoxide-derived trans-anti-benzo[a]pyrene-N(2)-dG adduct. The slow repair of the various lesions derived from 6-NC and thus their potential persistence in mammalian tissue could in part account for the powerful carcinogenicity of 6-NC as compared to B[a]P in the rat mammary gland.
Collapse
Affiliation(s)
- Jacek Krzeminski
- Department of Biochemistry and Molecular Biology, and ‡Department of Pharmacology, College of Medicine, Pennsylvania State University , Hershey, Pennsylvania 17033, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Brovarets’ OO, Hovorun DM. Prototropic tautomerism and basic molecular principles of hypoxanthine mutagenicity: an exhaustive quantum-chemical analysis. J Biomol Struct Dyn 2013; 31:913-36. [PMID: 22962845 DOI: 10.1080/07391102.2012.715041] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
27
|
Huang M, Blair IA, Penning TM. Identification of stable benzo[a]pyrene-7,8-dione-DNA adducts in human lung cells. Chem Res Toxicol 2013; 26:685-92. [PMID: 23587017 PMCID: PMC3660951 DOI: 10.1021/tx300476m] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
![]()
Metabolic
activation of the proximate carcinogen benzo[a]pyrene-7,8-trans-dihydrodiol (B[a]P-7,8-trans-dihydrodiol) by aldo-keto
reductases (AKRs) leads to B[a]P-7,8-dione that is
both electrophilic and redox-active. B[a]P-7,8-dione
generates reactive oxygen species resulting in oxidative DNA damage
in human lung cells. However, information on the formation of stable
B[a]P-7,8-dione-DNA adducts in these cells is lacking.
We studied stable DNA adduct formation of B[a]P-7,8-dione
in human lung adenocarcinoma A549 cells, human bronchoalveolar H358
cells, and immortalized human bronchial epithelial HBEC-KT cells.
After treatment with 2 μM B[a]P-7,8-dione,
the cellular DNA was extracted from the cell pellets subjected to
enzyme hydrolysis and subsequent analysis by LC-MS/MS. Several stable
DNA adducts of B[a]P-7,8-dione were only detected
in A549 and HBEC-KT cells. In A549 cells, the structures of stable
B[a]P-7,8-dione-DNA adducts were identified as hydrated-B[a]P-7,8-dione-N2-2′-deoxyguanosine
and hydrated-B[a]P-7,8-dione-N1-2′-deoxyguanosine.
In HBEC-KT cells, the structures of stable B[a]P-7,8-dione-DNA
adducts were identified as hydrated-B[a]P-7,8-dione-2′-deoxyadenosine,
hydrated-B[a]P-7,8-dione-N1- or N3-2′-deoxyadenosine,
and B[a]P-7,8-dione-N1- or N3-2′-deoxyadenosine.
In each case, adduct structures were characterized by MSn spectra. Adduct structures were also compared to
those synthesized from reactions of B[a]P-7,8-dione
with either deoxyribonucleosides or salmon testis DNA in vitro but were found to be different.
Collapse
Affiliation(s)
- Meng Huang
- Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania 19104-6160, United States
| | | | | |
Collapse
|
28
|
Touboul D, Gaie-Levrel F, Garcia GA, Nahon L, Poisson L, Schwell M, Hochlaf M. VUV photoionization of gas phase adenine and cytosine: A comparison between oven and aerosol vaporization. J Chem Phys 2013; 138:094203. [DOI: 10.1063/1.4793734] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
29
|
Tamuliene J, Romanova L, Vukstich V, Snegursky A. Mechanisms of the electron-impact-induced methionine molecule fragmentation. Chem Phys 2012. [DOI: 10.1016/j.chemphys.2012.02.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
30
|
Huang M, Liu X, Basu SS, Zhang L, Kushman ME, Harvey RG, Blair IA, Penning TM. Metabolism and distribution of benzo[a]pyrene-7,8-dione (B[a]P-7,8-dione) in human lung cells by liquid chromatography tandem mass spectrometry: detection of an adenine B[a]P-7,8-dione adduct. Chem Res Toxicol 2012; 25:993-1003. [PMID: 22480306 DOI: 10.1021/tx200463s] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Benzo[a]pyrene-7,8-dione (B[a]P-7,8-dione) is produced in human lung cells by the oxidation of (±)-B[a]P-7,8-trans-dihydrodiol, which is catalyzed by aldo-keto reductases (AKRs). However, information relevant to the cell-based metabolism of B[a]P-7,8-dione is lacking. We studied the metabolic fate of 2 μM 1,3-[(3)H(2)]-B[a]P-7,8-dione in human lung adenocarcinoma A549 cells, human bronchoalveolar H358 cells, and immortalized human bronchial epithelial HBEC-KT cells. In these three cell lines, 1,3-[(3)H(2)]-B[a]P-7,8-dione was rapidly consumed, and radioactivity was distributed between the organic and aqueous phase of ethyl acetate-extracted media, as well as in the cell lysate pellets. After acidification of the media, several metabolites of 1,3-[(3)H(2)]-B[a]P-7,8-dione were detected in the organic phase of the media by high performance liquid chromatography-ultraviolet-radioactivity monitoring (HPLC-UV-RAM). The structures of B[a]P-7,8-dione metabolites varied in the cell lines and were identified as B[a]P-7,8-dione conjugates with glutathione (GSH) and N-acetyl-l-cysteine (NAC), 8-O-monomethylated-catechol, catechol monosulfate, and monoglucuronide, and monohydroxylated-B[a]P-7,8-dione by liquid chromatography-tandem mass spectrometry (LC-MS/MS). We also obtained evidence for the first time for the formation of an adenine adduct of B[a]P-7,8-dione. Among these metabolites, the identity of the GSH-B[a]P-7,8-dione and the NAC-B[a]P-7,8-dione was further validated by comparison to authentic synthesized standards. The pathways of B[a]P-7,8-dione metabolism in the three human lung cell lines are formation of GSH and NAC conjugates, reduction to the catechol followed by phase II conjugation reactions leading to its detoxification, monohydroxylation, as well as formation of the adenine adduct.
Collapse
Affiliation(s)
- Meng Huang
- Center of Excellence in Environmental Toxicology and Center for Cancer Pharmacology, Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Chen L, Brédy R, Bernard J, Montagne G, Allouche AR, Martin S. Fragmentation of singly charged adenine induced by neutral fluorine beam impact at 3 keV. J Chem Phys 2011; 135:114309. [DOI: 10.1063/1.3621713] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
32
|
Li SB, Guo HJ, Zhang LD, Qi F. Dissociation Pathway Analysis of Thymine under Low Energy VUV Photon Excitation. CHINESE J CHEM PHYS 2011. [DOI: 10.1088/1674-0068/24/03/275-283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
33
|
Sagoo S, Beach DG, Manderville RA, Gabryelski W. Tautomerization in gas-phase ion chemistry of isomeric C-8 deoxyguanosine adducts from phenol-induced DNA damage. JOURNAL OF MASS SPECTROMETRY : JMS 2011; 46:41-9. [PMID: 21184435 DOI: 10.1002/jms.1869] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Collision-induced dissociation (CID) of 8-(4''-hydroxyphenyl)-2'-deoxyguanosine and 8-(2''-hydroxyphenyl)-2'-deoxyguanosine was investigated using sequential tandem mass spectrometry. These adducts represent biomarkers of DNA damage linked to phenolic radicals and were investigated to gain insight into the effects of chemical structure of a C-8 modification on fragmentation pathways of modified 2'-deoxyguanosine (dG). CID in MS(2) of the deprotonated molecules of both the isomers generated the same product ion having the same m/z values. CID in MS(3) of the product ion at m/z 242 and CID in MS(4) experiments carried out on the selected product ions at m/z 225 and m/z 218 afford distinct fragmentation patterns. The conformational properties of isomeric product ions from CID showed that the ortho-isomers possess the unique ability to tautomerize through an intramolecular proton transfer between the phenolic OH group and the imine nitrogen (N7). Tautomerization of ortho-isomers to their keto-tautomers led to differences in their system of conjugated double bonds compared with either their enol-tautomer or the para-isomer. The charge redistribution through the N-7 site on the imidazole ring is a critical step in guanosine adduct fragmentation which is disrupted by the formation of the keto-tautomer. For this reason, different reaction pathways are observed for 8-(4''-hydroxyphenyl)-2'-deoxyguanosine and 8-(2''-hydroxyphenyl)-2'-deoxyguanosine. We present herein the dissociation and the gas-phase ion-molecule reactions for highly conjugated ions involved in the CID ion chemistry of the investigated adducts. These will be useful for those using tandem mass spectrometry for structural elucidation of C-8 modified dG adducts. This study demonstrates that the modification at the C-8 site of dG has the potential to significantly alter the reactivity of adducts. We also show the ability of tandem mass spectrometry to completely differentiate between the isomeric dG adducts investigated.
Collapse
Affiliation(s)
- Sandeep Sagoo
- Department of Chemistry, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | | | | | | |
Collapse
|
34
|
Rao RN, Vali RM, Ramachandra B, Raju SS. Separation and characterization of forced degradation products of abacavir sulphate by LC–MS/MS. J Pharm Biomed Anal 2011; 54:279-85. [DOI: 10.1016/j.jpba.2010.08.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2010] [Revised: 08/12/2010] [Accepted: 08/20/2010] [Indexed: 12/01/2022]
|
35
|
Pris AD, Ostrowski SG, Garaas SD. Simultaneous optimization of monolayer formation factors, including temperature, to significantly improve nucleic acid hybridization efficiency on gold substrates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:5655-5660. [PMID: 20345116 DOI: 10.1021/la903699f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Past literature investigations have optimized various single factors used in the formation of thiolated, single stranded DNA (ss-DNA) monolayers on gold. In this study a more comprehensive approach is taken, where a design of experiment (DOE) is employed to simultaneously optimize all of the factors involved in construction of the capture monolayer used in a fluorescence-based hybridization assay. Statistical analysis of the fluorescent intensities resulting from the DOE provides empirical evidence for the importance and the optimal levels of traditional and novel factors included in this investigation. We report on the statistical importance of a novel factor, temperature of the system during monolayer formation of the capture molecule and lateral spacer molecule, and how proper usage of this temperature factor increased the hybridization signal 50%. An initial theory of how the physical factor of heat is mechanistically supplementing the function of the lateral spacer molecule is provided.
Collapse
Affiliation(s)
- Andrew D Pris
- General Electric-Global Research Center, One Research Circle, Niskayuna, New York 12309, USA.
| | | | | |
Collapse
|
36
|
Kostko O, Bravaya K, Krylov A, Ahmed M. Ionization of cytosine monomer and dimer studied by VUV photoionization and electronic structure calculations. Phys Chem Chem Phys 2010; 12:2860-72. [DOI: 10.1039/b921498d] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
37
|
Cheng P, Li Y, Li S, Zhang M, Zhou Z. Collision-induced dissociation (CID) of guanine radical cation in the gas phase: an experimental and computational study. Phys Chem Chem Phys 2010; 12:4667-77. [DOI: 10.1039/b919513k] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
38
|
Dudley E, Yousef M, Wang Y, Griffiths WJ. Targeted metabolomics and mass spectrometry. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2010; 80:45-83. [PMID: 21109217 DOI: 10.1016/b978-0-12-381264-3.00002-3] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
While a great emphasis has been placed on global metabolomic analysis in recent years, the application of metabolomic style analyses to specific subsets of compounds (targeted metabolomics) also has merits in addressing biological questions in a more hypothesis-driven manner. These analyses are designed to selectively extract information regarding a group of related metabolites from the complex mixture of biomolecules present in most metabolomic samples. Furthermore, targeted metabolomics can also be applied to metabolism within macromolecules, hence furthering the systems biology impact of the analysis. This chapter describes the difference between the global metabolomics approach and the undertaking of metabolomics in a targeted manner and describes the application of this type of analysis in a number of biologically and medically relevant fields.
Collapse
Affiliation(s)
- E Dudley
- Institute of Mass Spectrometry, Swansea University, United Kingdom
| | | | | | | |
Collapse
|
39
|
Crean C, Geacintov NE, Shafirovich V. Methylation of 2'-deoxyguanosine by a free radical mechanism. J Phys Chem B 2009; 113:12773-81. [PMID: 19719172 PMCID: PMC2754879 DOI: 10.1021/jp903554n] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The mechanistic aspects of the methylation of guanine in DNA initiated by methyl radicals that are derived from the metabolic oxidation of some chemical carcinogens remain poorly understood. In this work, we investigated the kinetics and the formation of methylated guanine products by two methods: (i) the combination of *CH3 radicals and guanine neutral radicals, G(-H)*, and (ii) the direct addition of *CH3 radicals to guanine bases. The simultaneous generation of *CH3 and dG(-H)* radicals was triggered by the competitive one-electron oxidation of dimethyl sulfoxide (DMSO) and 2'-deoxyguanosine (dG) by photochemically generated sulfate radicals in deoxygenated aqueous buffer solutions (pH 7.5). The photolysis of methylcob(III)alamin to form *CH3 radicals was used to investigate the direct addition of these radicals to guanine bases. The major end products of the radical combination reactions are the 8-methyl-dG and N2-methyl-dG products formed in a ratio of 1:0.7. In contrast, the methylation of dG by *CH3 radicals generates mostly the 8-methyl-dG adduct and only minor quantities of N2-methyl-dG (1:0.13 ratio). The methylation of the self-complementary 5'-d(AACGCGAATTCGCGTT) duplexes was achieved by the selective oxidation of the guanines with carbonate radical anions in the presence of DMSO as the precursor of *CH3 radicals. The methyl-G lesions formed were excised by the enzymatic digestion and identified by LC-MS/MS methods using uniformly 15N-labeled 8-methyl-dG and N2-methyl-dG adducts as internal standards. The ratios of 8-methyl-G/N2-methyl-G lesions derived from the combination of methyl radicals with G(-H)* radicals positioned in double-stranded DNA or that with the free nucleoside dG(-H)* radicals were found to be similar. Utilizing the photochemical method and dipropyl or dibutyl sulfoxides as sources of alkyl radicals, the corresponding 8-alkyl-dG and N2-alkyl-dG adducts were also generated in ratios similar to those obtained with DMSO.
Collapse
Affiliation(s)
- Conor Crean
- Chemistry Department and Radiation and Solid State Laboratory, New York University, 31 Washington Place, New York, New York 10003-5180, USA
| | | | | |
Collapse
|
40
|
Brédy R, Bernard J, Chen L, Montagne G, Li B, Martin S. Fragmentation of adenine under energy control. J Chem Phys 2009; 130:114305. [DOI: 10.1063/1.3080162] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
41
|
Feyer V, Plekan O, Richter R, Coreno M, Prince KC. Photoion mass spectroscopy and valence photoionization of hypoxanthine, xanthine and caffeine. Chem Phys 2009. [DOI: 10.1016/j.chemphys.2008.12.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
42
|
W. Fitch R, R. Chase R, F. Spande T, Martin Garraffo H, W. Daly J, A. Parkes D, Reed R, A. Clinedinst M, F. Whittaker N. Dioicine: A Novel Prenylated Purine Alkaloid from Gymnocladus dioicus. HETEROCYCLES 2009. [DOI: 10.3987/com-08-s(d)19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
43
|
VUV photophysics and dissociative photoionization of pyrimidine, purine, imidazole and benzimidazole in the 7–18eV photon energy range. Chem Phys 2008. [DOI: 10.1016/j.chemphys.2008.08.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
44
|
Qian M, Yang S, Wu H, Majumdar P, Leigh N, Glaser R. Ammonia elimination from protonated nucleobases and related synthetic substrates. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2007; 18:2040-57. [PMID: 17920289 PMCID: PMC2080854 DOI: 10.1016/j.jasms.2007.08.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Revised: 08/28/2007] [Accepted: 08/28/2007] [Indexed: 05/10/2023]
Abstract
The results are reported of mass-spectrometric studies of the nucleobases adenine 1h (1, R = H), guanine 2h, and cytosine 3h. The protonated nucleobases are generated by electrospray ionization of adenosine 1r (1, R = ribose), guanosine 2r, and deoxycytidine 3d (3, R = deoxyribose) and their fragmentations were studied with tandem mass spectrometry. In contrast to previous EI-MS studies of the nucleobases, NH(3) elimination does present a major path for the fragmentations of the ions [1h + H](+), [2h + H](+), and [3h + H](+). The ion [2h + H - NH(3)](+) also was generated from the acyclic precursor 5-cyanoamino-4-oxomethylene-dihydroimidazole 13h and from the thioether derivative 14h of 2h (NH(2) replaced by MeS). The analyses of the modes of initial fragmentation is supported by density functional theoretical studies. Conjugate acids 15-55 were studied to determine site preferences for the protonations of 1h, 2h, 3h, 13h, and 14h. The proton affinity of the amino group hardly ever is the substrate's best protonation site, and possible mechanisms for NH(3) elimination are discussed in which the amino group serves as the dissociative protonation site. The results provide semi-direct experimental evidence for the existence of the pyrimidine ring-opened cations that we had proposed on the basis of theoretical studies as intermediates in nitrosative nucleobase deamination.
Collapse
Affiliation(s)
- Ming Qian
- Department of Chemistry, University of Missouri-Columbia, Columbia, Missouri 65211, USA
| | | | | | | | | | | |
Collapse
|
45
|
Alvarado F, Bari S, Hoekstra R, Schlathölter T. Interactions of neutral and singly charged keV atomic particles with gas-phase adenine molecules. J Chem Phys 2007; 127:034301. [PMID: 17655437 DOI: 10.1063/1.2751502] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
KeV atomic particles traversing biological matter are subject to charge exchange and screening effects which dynamically change this particle's effective charge. The understanding of the collision cascade along the track thus requires a detailed knowledge of the interaction dynamics of radiobiologically relevant molecules, such as DNA building blocks or water, not only with ionic but also with neutral species. We have studied collisions of keV H(+), He(+), and C(+) ions and H(0), He(0), and C(0) atoms with the DNA base adenine by means of high resolution time-of-flight spectrometry. For H(0) and H(+) we find qualitatively very similar fragmentation patterns, while for carbon, strong differences are observed when comparing C(0) and C(+) impact. For collisions with He(0) and He(+) projectiles, a pronounced delayed fragmentation channel is observed, which has not been reported before.
Collapse
Affiliation(s)
- Fresia Alvarado
- KVI Atomic Physics, University of Groningen, Zernikelaan 25, NL-9747AA Groningen, The Netherlands.
| | | | | | | |
Collapse
|
46
|
Schlathölter T, Alvarado F, Bari S, Lecointre A, Hoekstra R, Bernigaud V, Manil B, Rangama J, Huber B. Ion-induced biomolecular radiation damage: from isolated nucleobases to nucleobase clusters. Chemphyschem 2007; 7:2339-45. [PMID: 17029324 DOI: 10.1002/cphc.200600361] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A large number of studies are devoted to the investigation of the biomolecular ionization and fragmentation dynamics underlying biological radiation damage. Most of these studies have been based on gas-phase collisions with isolated DNA building blocks. The radiobiological significance of these studies is often questioned because of the lack of a chemical environment. To clarify this aspect, we studied interactions of keV ions with isolated nucleobases and with nucleobase clusters by means of coincidence time-of-flight spectrometry. Significant changes already show up in the molecular fragmentation patterns of very small clusters.
Collapse
Affiliation(s)
- Thomas Schlathölter
- KVI Atomic Physics, Rijksuniversiteit Groningen, Zernikelaan 25, 9747AA Groningen, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Plekan O, Feyer V, Richter R, Coreno M, de Simone M, Prince K. Photofragmentation of guanine, cytosine, leucine and methionine. Chem Phys 2007. [DOI: 10.1016/j.chemphys.2007.02.013] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
48
|
Townsend LB, Beylin VG, Wotring LL. Synthesis, Biochemical and Chemotherapeutic Activity of Some Azolo[1,3]Oxazine Nucleosides. ACTA ACUST UNITED AC 2006. [DOI: 10.1080/07328318508077829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
49
|
Hanessian S. Mass spectrometry in the detemination of structure of certain natural products containing sugars. METHODS OF BIOCHEMICAL ANALYSIS 2006; 19:105-228. [PMID: 4935450 DOI: 10.1002/9780470110386.ch2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
50
|
Goldstein G, Rainey WT. Development of specifications for labelled mucleotides and related compounds, specific activity measurements dy mass spectrometry. ACTA ACUST UNITED AC 2006. [DOI: 10.1002/jlcr.2590090422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|