1
|
O’Connor R, Matsoso JB, Mashindi V, Mente P, Macheli L, Moreno BD, Doyle BP, Coville NJ, Barrett DH. Catalyst Design: Counter Anion Effect on Ni Nanocatalysts Anchored on Hollow Carbon Spheres. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:426. [PMID: 36770387 PMCID: PMC9919602 DOI: 10.3390/nano13030426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Herein, the influence of the counter anion on the structural properties of hollow carbon spheres (HCS) support was investigated by varying the nickel metal precursor salts applied. TEM and SEM micrographs revealed the dimensional dependence of the HCS shell on the Ni precursor salt, as evidenced by thick (~42 nm) and thin (~23 nm) shells for the acetate and chloride-based salts, respectively. Importantly, the effect of the precursor salt on the textural properties of the HCS nanosupports (~565 m2/gNi(acet)) and ~607 m2/gNiCl), influenced the growth of the Ni nanoparticles, viz for the acetate-(ca 6.4 nm)- and chloride (ca 12 nm)-based salts, respectively. Further, XRD and PDF analysis showed the dependence of the reduction mechanism relating to nickel and the interaction of the nickel-carbon support on the type of counter anion used. Despite the well-known significance of the counter anion on the size and crystallinity of Ni nanoparticles, little is known about the influence of such counter anions on the physicochemical properties of the carbon support. Through this study, we highlight the importance of the choice of the Ni-salt on the size of Ni in Ni-carbon-based nanocatalysts.
Collapse
Affiliation(s)
- Ryan O’Connor
- DSI-NRF Centre of Excellence in Strong Materials, University of the Witwatersrand, WITS, Johannesburg 2050, South Africa
- Molecular Science Institute, School of Chemistry, University of the Witwatersrand, WITS, Johannesburg 2050, South Africa
| | - Joyce B. Matsoso
- Molecular Science Institute, School of Chemistry, University of the Witwatersrand, WITS, Johannesburg 2050, South Africa
- Department of Inorganic Chemistry, University of Chemistry and Technology in Prague, Dejvice 6, 166 28 Prague 6, Czech Republic
| | - Victor Mashindi
- Molecular Science Institute, School of Chemistry, University of the Witwatersrand, WITS, Johannesburg 2050, South Africa
| | - Pumza Mente
- Molecular Science Institute, School of Chemistry, University of the Witwatersrand, WITS, Johannesburg 2050, South Africa
- Institute of Physical Chemistry, Polish Academy of Science, 01-224 Warsaw, Poland
| | - Lebohang Macheli
- Department of Physics, University of Johannesburg, P.O. Box 524, Auckland Park 2006, South Africa
| | - Beatriz D. Moreno
- Canadian Light Source Inc., 44 Innovation Boulevard, Saskatoon, SK S7N 2V3, Canada
| | - Bryan P. Doyle
- Department of Physics, University of Johannesburg, P.O. Box 524, Auckland Park 2006, South Africa
| | - Neil J. Coville
- DSI-NRF Centre of Excellence in Strong Materials, University of the Witwatersrand, WITS, Johannesburg 2050, South Africa
- Molecular Science Institute, School of Chemistry, University of the Witwatersrand, WITS, Johannesburg 2050, South Africa
| | - Dean H. Barrett
- DSI-NRF Centre of Excellence in Strong Materials, University of the Witwatersrand, WITS, Johannesburg 2050, South Africa
- Molecular Science Institute, School of Chemistry, University of the Witwatersrand, WITS, Johannesburg 2050, South Africa
| |
Collapse
|
2
|
Pokhrel N, Vabbina PK, Pala N. Sonochemistry: Science and Engineering. ULTRASONICS SONOCHEMISTRY 2016; 29:104-28. [PMID: 26584990 DOI: 10.1016/j.ultsonch.2015.07.023] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Revised: 07/21/2015] [Accepted: 07/21/2015] [Indexed: 05/04/2023]
Abstract
Sonochemistry offers a simple route to nanomaterial synthesis with the application of ultrasound. The tiny acoustic bubbles, produced by the propagating sound wave, enclose an incredible facility where matter interact among at energy as high as 13 eV to spark extraordinary chemical reactions. Within each period - formation, growth and collapse of bubbles, lies a coherent phase of material formation. This effective yet highly localized method has facilitated synthesis of various chemical and biological compounds featuring unique morphology and intrinsic property. The benign processing lends to synthesis without any discrimination towards a certain group of material, or the substrates where they are grown. As a result, new and improved applications have evolved to reach out various field of science and technology and helped engineer new and better devices. Along with the facile processing and notes on the essence of sonochemistry, in this comprehensive review, we discuss the individual and mutual effect of important input parameters on the nanomaterial synthesis process as a start to help understand the underlying mechanism. Secondly, an objective discussion of the diversely synthesized nanomaterial follows to divulge the easiness imparted by sonochemistry, which finally blends into the discussion of their applications and outreach.
Collapse
Affiliation(s)
- Nimesh Pokhrel
- Integrated Nanosystems Research Lab, Florida International University, 10555 W Flagler Street EC 3975, Miami, FL 33174, USA.
| | - Phani Kiran Vabbina
- Integrated Nanosystems Research Lab, Florida International University, 10555 W Flagler Street EC 3975, Miami, FL 33174, USA
| | - Nezih Pala
- Integrated Nanosystems Research Lab, Florida International University, 10555 W Flagler Street EC 3975, Miami, FL 33174, USA
| |
Collapse
|