1
|
Bremer J, Richter C, Schwalbe H, Richert C. Synthesis of a Peptidoyl RNA Hairpin via a Combination of Solid-Phase and Template-Directed Chain Assembly. Chembiochem 2022; 23:e202200352. [PMID: 35867587 PMCID: PMC9542650 DOI: 10.1002/cbic.202200352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/21/2022] [Indexed: 12/02/2022]
Abstract
Peptidoyl RNAs are the products of ribosome-free, single-nucleotide translation. They contain a peptide in the backbone of the oligoribonucleotide and are interesting from a synthetic and a bioorganic point of view. A synthesis of a stabilized version of peptidoyl RNA, with an amide bond between the C-terminus of a peptide and a 3'-amino-2',3'-dideoxynucleoside in the RNA chain was developed. The preferred synthetic route used an N-Teoc-protected aminonucleoside support and involved a solution-phase coupling of the amino-terminal oligonucleotide to a dipeptido dinucleotide. Exploratory UV-melting and NMR analysis of the hairpin 5'-UUGGCGAAAGCdC-LeuLeu-AA-3' indicated that the peptide-linked RNA segments do not fold in a cooperative fashion. The synthetic access to doubly RNA-linked peptides on a scale sufficient for structural biology opens the door to the exploration of their structural and biochemical properties.
Collapse
Affiliation(s)
- Jennifer Bremer
- Institut for Organic ChemistryUniversity of Stuttgart70569StuttgartGermany
| | - Christian Richter
- Institute for Organic Chemistry and Chemical BiologyJohann Wolfgang Goethe-University60438FrankfurtGermany
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical BiologyJohann Wolfgang Goethe-University60438FrankfurtGermany
| | - Clemens Richert
- Institut for Organic ChemistryUniversity of Stuttgart70569StuttgartGermany
| |
Collapse
|
2
|
Räuchle M, Leveau G, Richert C. Synthesis of Peptido RNAs from Unprotected Peptides and Oligoribonucleotides via Coupling in Aqueous Solution. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Maximilian Räuchle
- Institute of Organic Chemistry University of Stuttgart 70569 Stuttgart Germany
| | - Gabrielle Leveau
- Institute of Organic Chemistry University of Stuttgart 70569 Stuttgart Germany
| | - Clemens Richert
- Institute of Organic Chemistry University of Stuttgart 70569 Stuttgart Germany
| |
Collapse
|
3
|
O'Flaherty DK, Zhou L, Szostak JW. Nonenzymatic RNA-templated Synthesis of N3'→P5' Phosphoramidate DNA. Bio Protoc 2020; 10:e3734. [PMID: 33659395 DOI: 10.21769/bioprotoc.3734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/10/2020] [Accepted: 06/15/2020] [Indexed: 11/02/2022] Open
Abstract
The RNA world hypothesis describes a scenario where early life forms relied on RNA to govern both inheritance and catalyze useful chemical reactions. Prior to the emergence of enzymes capable of replicating the RNA genome, a nonenzymatic replication process would have been necessary to initiate Darwinian Evolution. However, the one-pot nonenzymatic RNA chemical copying of templates with mixed-sequences is insufficient to generate strand products long enough to encode useful function. The use of alternate (RNA-like) genetic polymers may overcome hurdles associated with RNA copying, and further our understanding of nonenzymatic copying chemistry. This protocol describes the nonenzymatic copying of RNA templates into N3'→P5' phosphoramidate DNA (3'-NP-DNA). We describe, in detail, the synthesis of 3'-amino-2',3'-dideoxyribonucleotide monomers activated with 2-aminoimidazole (3'-NH2-2AIpddN), and their use in template-directed polymerization.
Collapse
Affiliation(s)
- Derek K O'Flaherty
- Howard Hughes Medical Institute, Department of Molecular Biology, and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts, United States
| | - Lijun Zhou
- Howard Hughes Medical Institute, Department of Molecular Biology, and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts, United States
| | - Jack W Szostak
- Howard Hughes Medical Institute, Department of Molecular Biology, and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts, United States
| |
Collapse
|
4
|
O'Flaherty DK, Zhou L, Szostak JW. Nonenzymatic Template-Directed Synthesis of Mixed-Sequence 3'-NP-DNA up to 25 Nucleotides Long Inside Model Protocells. J Am Chem Soc 2019; 141:10481-10488. [PMID: 31180644 PMCID: PMC7547854 DOI: 10.1021/jacs.9b04858] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Efficiently copying mixed-sequence oligonucleotide templates nonenzymatically is a long-standing problem both with respect to the origin of life, and with regard to bottom up efforts to synthesize artificial living systems. Here we report an efficient and sequence-general nonenzymatic process in which RNA templates direct the synthesis of a complementary strand composed of N3'→P5' phosphoramidate DNA (3'-NP-DNA) using 3'-amino-2',3'-dideoxyribonucleotides activated with 2-aminoimidazole. Using only the four canonical nucleobases (A, G, C, and T) of modern DNA, we demonstrate the chemical copying of a variety of mixed-sequence RNA templates, both in solution and within model protocells, into complementary 3'-NP-DNA strands. Templates up to 25 nucleotides long were chemically transcribed with an average stepwise yield of 96-97%. The nonenzymatic template-directed generation of primer extension products long enough to encode active ribozymes and/or aptamers inside model protocells suggests possible routes to the synthesis of evolving cellular systems.
Collapse
Affiliation(s)
- Derek K O'Flaherty
- Howard Hughes Medical Institute, Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital , 185 Cambridge Street , Boston , Massachusetts 02114 , United States.,Department of Genetics , Harvard Medical School , 77 Avenue Louis Pasteur , Boston , Massachusetts 02115 , United States
| | - Lijun Zhou
- Howard Hughes Medical Institute, Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital , 185 Cambridge Street , Boston , Massachusetts 02114 , United States.,Department of Genetics , Harvard Medical School , 77 Avenue Louis Pasteur , Boston , Massachusetts 02115 , United States
| | - Jack W Szostak
- Howard Hughes Medical Institute, Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital , 185 Cambridge Street , Boston , Massachusetts 02114 , United States.,Department of Genetics , Harvard Medical School , 77 Avenue Louis Pasteur , Boston , Massachusetts 02115 , United States.,Department of Chemistry and Chemical Biology , Harvard University , 12 Oxford Street , Cambridge , Massachusetts 02138 , United States
| |
Collapse
|
5
|
Affiliation(s)
- Elena Hänle
- Institut für Organische Chemie; Universität Stuttgart; 70569 Stuttgart Germany
| | - Clemens Richert
- Institut für Organische Chemie; Universität Stuttgart; 70569 Stuttgart Germany
| |
Collapse
|
6
|
Hänle E, Richert C. Enzyme-Free Replication with Two or Four Bases. Angew Chem Int Ed Engl 2018; 57:8911-8915. [PMID: 29779237 DOI: 10.1002/anie.201803074] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 04/27/2018] [Indexed: 11/10/2022]
Abstract
All known forms of life encode their genetic information in a sequence of bases of a genetic polymer and produce copies through replication. How this process started before polymerase enzymes had evolved is unclear. Enzyme-free copying of short stretches of DNA or RNA has been demonstrated using activated nucleotides, but not replication. We have developed a method for enzyme-free replication. It involves extension with reversible termination, enzyme-free ligation, and strand capture. We monitored nucleotide incorporation for a full helical turn of DNA, during both a first and a second round of copying, by using mass spectrometry. With all four bases (A/C/G/T), an "error catastrophe" occurred, with the correct sequence being "overwhelmed" by incorrect ones. When only C and G were used, approximately half of the daughter strands had the mass of the correct sequence after 20 copying steps. We conclude that enzyme-free replication is more likely to be successful with just the two strongly pairing bases than with all four bases of the genetic alphabet.
Collapse
Affiliation(s)
- Elena Hänle
- Institut für Organische Chemie, Universität Stuttgart, 70569, Stuttgart, Germany
| | - Clemens Richert
- Institut für Organische Chemie, Universität Stuttgart, 70569, Stuttgart, Germany
| |
Collapse
|
7
|
Schwarz RJ, Richert C. A four-helix bundle DNA nanostructure with binding pockets for pyrimidine nucleotides. NANOSCALE 2017; 9:7047-7054. [PMID: 28327725 DOI: 10.1039/c7nr00094d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Designed DNA nanostructures of impressive size have been described, but designed structures of the size of protein enzymes that bind organic ligands with high specificity are rare. Here we report a four-helix motif consisting of three synthetic strands with 65 base pairs and 165 nucleotides in total that folds well. Furthermore, we show that in the interior of this small folded DNA nanostructure, cavities can be set up that bind pyrimidine nucleotides with micromolar affinity. Base-specific binding for both thymidine and cytidine derivatives is demonstrated. The binding affinity depends on the position in the structure, as expected for recognition beyond simple base pairing. The folding motif reported here can help to expand DNA nanotechnology into the realm of selective molecular recognition that is currently dominated by protein-based enzymes and receptors.
Collapse
Affiliation(s)
- Rainer Joachim Schwarz
- Institute of Organic Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany.
| | | |
Collapse
|
8
|
Kervio E, Sosson M, Richert C. The effect of leaving groups on binding and reactivity in enzyme-free copying of DNA and RNA. Nucleic Acids Res 2016; 44:5504-14. [PMID: 27235418 PMCID: PMC4937335 DOI: 10.1093/nar/gkw476] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 05/06/2016] [Accepted: 05/09/2016] [Indexed: 01/29/2023] Open
Abstract
The template-directed incorporation of nucleotides at the terminus of a growing primer is the basis of the transmission of genetic information. Nature uses polymerases-catalyzed reactions, but enzyme-free versions exist that employ nucleotides with organic leaving groups. The leaving group affects yields, but it was not clear whether inefficient extensions are due to poor binding, low reactivity toward the primer, or rapid hydrolysis. We have measured the binding of a total of 15 different activated nucleotides to DNA or RNA sequences. Further, we determined rate constants for the chemical step of primer extension involving methylimidazolides or oxyazabenzotriazolides of deoxynucleotides or ribonucleotides. Binding constants range from 10 to >500 mM and rate constants from 0.1 to 370 M(-1) h(-1) For aminoterminal primers, a fast covalent step and slow hydrolysis are the main factors leading to high yields. For monomers with weakly pairing bases, the leaving group can improve binding significantly. A detailed mechanistic picture emerges that explains why some enzyme-free primer extensions occur in high yield, while others remain recalcitrant to copying without enzymatic catalysis. A combination of tight binding and rapid extension, coupled with slow hydrolysis induces efficient enzyme-free copying.
Collapse
Affiliation(s)
- Eric Kervio
- Institute of Organic Chemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Marilyne Sosson
- Institute of Organic Chemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Clemens Richert
- Institute of Organic Chemistry, University of Stuttgart, 70569 Stuttgart, Germany
| |
Collapse
|
9
|
Abstract
This review discusses the template-directed preparation of sequence-defined polymers.
Collapse
|
10
|
Kervio E, Claasen B, Steiner UE, Richert C. The strength of the template effect attracting nucleotides to naked DNA. Nucleic Acids Res 2014; 42:7409-20. [PMID: 24875480 PMCID: PMC4066754 DOI: 10.1093/nar/gku314] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The transmission of genetic information relies on Watson–Crick base pairing between nucleoside phosphates and template bases in template–primer complexes. Enzyme-free primer extension is the purest form of the transmission process, without any chaperon-like effect of polymerases. This simple form of copying of sequences is intimately linked to the origin of life and provides new opportunities for reading genetic information. Here, we report the dissociation constants for complexes between (deoxy)nucleotides and template–primer complexes, as determined by nuclear magnetic resonance and the inhibitory effect of unactivated nucleotides on enzyme-free primer extension. Depending on the sequence context, Kd′s range from 280 mM for thymidine monophosphate binding to a terminal adenine of a hairpin to 2 mM for a deoxyguanosine monophosphate binding in the interior of a sequence with a neighboring strand. Combined with rate constants for the chemical step of extension and hydrolytic inactivation, our quantitative theory explains why some enzyme-free copying reactions are incomplete while others are not. For example, for GMP binding to ribonucleic acid, inhibition is a significant factor in low-yielding reactions, whereas for amino-terminal DNA hydrolysis of monomers is critical. Our results thus provide a quantitative basis for enzyme-free copying.
Collapse
Affiliation(s)
- Eric Kervio
- Institute for Organic Chemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Birgit Claasen
- Institute for Organic Chemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Ulrich E Steiner
- Fachbereich Chemie, Universität Konstanz, 78457 Konstanz, Germany
| | - Clemens Richert
- Institute for Organic Chemistry, University of Stuttgart, 70569 Stuttgart, Germany
| |
Collapse
|
11
|
Han J, Zheng Y, Zhao B, Li S, Zhang Y, Gao C. Sequentially hetero-functional, topological polymers by step-growth thiol-yne approach. Sci Rep 2014; 4:4387. [PMID: 24633000 PMCID: PMC3955905 DOI: 10.1038/srep04387] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 02/27/2014] [Indexed: 11/09/2022] Open
Abstract
Sequence-controlled polymers (SCPs) such as DNA and proteins play an important role in biology. Many efforts have been devoted to synthesize SCPs in the past half a century. However, to our knowledge, the artificial sequences containing independently functional groups have never been reported. Here, we present a facile and scalable approach based on radical-initiated step-growth polymerization to synthesize sequence-controlled functional polymers (SCFPs) with various topologies, covering from linear to random and hyperbranched polymers. The functional groups, such as OH/NH2, OH/COOH, and NH2/N3, alternately arranged along the chain, which were further selectively functionalized to achieve DNA-mimic and hetero-multifunctional SCPs. This user-friendly strategy exhibits advantages of commercially available monomers, catalyst-free process, fast reaction, high yield and water solvent, opening a general approach to facile and scalable synthesis of SCFPs.
Collapse
Affiliation(s)
- Jin Han
- 1] MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, P. R. China [2]
| | - Yaochen Zheng
- 1] MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, P. R. China [2] College of Chemistry and Chemical Engineering, Yantai University, 30 Qingquan Road, Yantai 264005, P. R. China [3]
| | - Bo Zhao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, P. R. China
| | - Sipei Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, P. R. China
| | - Yuanchao Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, P. R. China
| | - Chao Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, P. R. China
| |
Collapse
|
12
|
Kaiser A, Richert C. Nucleotide-based copying of nucleic acid sequences without enzymes. J Org Chem 2013; 78:793-9. [PMID: 23327991 DOI: 10.1021/jo3025779] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chemical primer extension is the enzyme-free incorporation of nucleotides at the end of an oligonucleotide, directed by a template. The reaction mimics the copying of sequences during replication but relies on recognition and reactivity of nucleic acids alone. Copying is low-yielding, particularly for long RNA. Hydrolysis of active esters and inhibition through hydrolysis products have been identified as factors that prevent high yields, and approaches to overcoming them have culminated in successful template-directed solid-phase syntheses for RNA and phosphoramidate DNA.
Collapse
Affiliation(s)
- Andreas Kaiser
- Institute for Organic Chemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | | |
Collapse
|
13
|
Leu K, Kervio E, Obermayer B, Turk-MacLeod RM, Yuan C, Luevano JM, Chen E, Gerland U, Richert C, Chen IA. Cascade of reduced speed and accuracy after errors in enzyme-free copying of nucleic acid sequences. J Am Chem Soc 2013; 135:354-66. [PMID: 23259600 PMCID: PMC3557965 DOI: 10.1021/ja3095558] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nonenzymatic, template-directed synthesis of nucleic acids is a paradigm for self-replicating systems. The evolutionary dynamics of such systems depend on several factors, including the mutation rates, relative replication rates, and sequence characteristics of mutant sequences. We measured the kinetics of correct and incorrect monomer insertion downstream of a primer-template mismatch (mutation), using a range of backbone structures (RNA, DNA, and LNA templates and RNA and DNA primers) and two types of 5'-activated nucleotides (oxyazabenzotriazolides and imidazolides, i.e., nucleoside 5'-phosphorimidazolides). Our study indicated that for all systems studied, an initial mismatch was likely to be followed by another error (54-75% of the time), and extension after a single mismatch was generally 10-100 times slower than extension without errors. If the mismatch was followed by a matched base pair, the extension rate recovered to nearly normal levels. On the basis of these data, we simulated nucleic acid replication in silico, which indicated that a primer suffering an initial error would lag behind properly extended counterparts due to a cascade of subsequent errors and kinetic stalling, with the typical mutational event consisting of several consecutive errors. Our study also included different sequence contexts, which suggest the presence of cooperativity among monomers affecting both absolute rate (by up to 2 orders of magnitude) and fidelity. The results suggest that molecular evolution in enzyme-free replication systems would be characterized by large "leaps" through sequence space rather than isolated point mutations, perhaps enabling rapid exploration of diverse sequences. The findings may also be useful for designing self-replicating systems combining high fidelity with evolvability.
Collapse
Affiliation(s)
- Kevin Leu
- FAS Center for Systems Biology, Harvard University, Cambridge, MA, USA
| | - Eric Kervio
- Institute for Organic Chemistry, University of Stuttgart, Stuttgart, Germany
| | | | | | - Caterina Yuan
- FAS Center for Systems Biology, Harvard University, Cambridge, MA, USA
| | | | - Eric Chen
- FAS Center for Systems Biology, Harvard University, Cambridge, MA, USA
| | - Ulrich Gerland
- Physics Department and Center for Nanoscience, University of Munich, Munich, Germany
| | - Clemens Richert
- Institute for Organic Chemistry, University of Stuttgart, Stuttgart, Germany
| | - Irene A. Chen
- FAS Center for Systems Biology, Harvard University, Cambridge, MA, USA
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, USA
| |
Collapse
|
14
|
Kuruvilla E, Schuster GB, Hud NV. Enhanced nonenzymatic ligation of homopurine miniduplexes: support for greater base stacking in a pre-RNA world. Chembiochem 2012; 14:45-8. [PMID: 23225671 DOI: 10.1002/cbic.201200601] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Indexed: 11/07/2022]
Abstract
The ancestors of RNA? There is a long-standing proposal that contemporary nucleic acids might have evolved from RNA-like polymers that utilized only purine-purine base pairs. Here we demonstrate the great advantage that increased nucleobase stacking area provides for nonenzymatic ligation.
Collapse
Affiliation(s)
- Elizabeth Kuruvilla
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA
| | | | | |
Collapse
|
15
|
Leu K, Obermayer B, Rajamani S, Gerland U, Chen IA. The prebiotic evolutionary advantage of transferring genetic information from RNA to DNA. Nucleic Acids Res 2011; 39:8135-47. [PMID: 21724606 PMCID: PMC3185426 DOI: 10.1093/nar/gkr525] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 06/07/2011] [Accepted: 06/07/2011] [Indexed: 11/13/2022] Open
Abstract
In the early 'RNA world' stage of life, RNA stored genetic information and catalyzed chemical reactions. However, the RNA world eventually gave rise to the DNA-RNA-protein world, and this transition included the 'genetic takeover' of information storage by DNA. We investigated evolutionary advantages for using DNA as the genetic material. The error rate of replication imposes a fundamental limit on the amount of information that can be stored in the genome, as mutations degrade information. We compared misincorporation rates of RNA and DNA in experimental non-enzymatic polymerization and calculated the lowest possible error rates from a thermodynamic model. Both analyses found that RNA replication was intrinsically error-prone compared to DNA, suggesting that total genomic information could increase after the transition to DNA. Analysis of the transitional RNA/DNA hybrid duplexes showed that copying RNA into DNA had similar fidelity to RNA replication, so information could be maintained during the genetic takeover. However, copying DNA into RNA was very error-prone, suggesting that attempts to return to the RNA world would result in a considerable loss of information. Therefore, the genetic takeover may have been driven by a combination of increased chemical stability, increased genome size and irreversibility.
Collapse
Affiliation(s)
- Kevin Leu
- FAS Center for Systems Biology, Department of Physics, Harvard University, Cambridge, MA 02138, USA and Department of Physics, Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Ludwig-Maximilians Universität München, Munich, Germany
| | - Benedikt Obermayer
- FAS Center for Systems Biology, Department of Physics, Harvard University, Cambridge, MA 02138, USA and Department of Physics, Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Ludwig-Maximilians Universität München, Munich, Germany
| | - Sudha Rajamani
- FAS Center for Systems Biology, Department of Physics, Harvard University, Cambridge, MA 02138, USA and Department of Physics, Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Ludwig-Maximilians Universität München, Munich, Germany
| | - Ulrich Gerland
- FAS Center for Systems Biology, Department of Physics, Harvard University, Cambridge, MA 02138, USA and Department of Physics, Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Ludwig-Maximilians Universität München, Munich, Germany
| | - Irene A. Chen
- FAS Center for Systems Biology, Department of Physics, Harvard University, Cambridge, MA 02138, USA and Department of Physics, Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Ludwig-Maximilians Universität München, Munich, Germany
| |
Collapse
|
16
|
Röthlingshöfer M, Richert C. Chemical primer extension at submillimolar concentration of deoxynucleotides. J Org Chem 2010; 75:3945-52. [PMID: 20364862 DOI: 10.1021/jo1002467] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Template-directed primer extension usually requires a polymerase, nucleoside triphosphates, and magnesium ions as cofactors. Enzyme-free, chemical primer extensions are known for preactivated nucleotides at millimolar concentrations. Based on a screen of carbodiimides, heterocyclic catalysts, and reactions conditions, we now show that near-quantitative primer conversion can be achieved at submillimolar concentration of any of the four deoxynucleotides (dAMP, dCMP, dGMP and dTMP). The new protocol relies on in situ activation with EDC and 1-methylimidazole and a magnesium-free buffer that was tested successfully for different sequence motifs. The method greatly simplifies chemical primer extension assays, further reduces the cost of such assays, and demonstrates the potential of the in situ activation approach.
Collapse
Affiliation(s)
- Manuel Röthlingshöfer
- Institute for Organic Chemistry, University of Karlsruhe/K.I.T., 76131 Karlsruhe, Germany
| | | |
Collapse
|
17
|
Abstract
Template-directed synthesis of complementary strands is pivotal for life. Nature employs polymerases for this reaction, leaving the ability of DNA itself to direct the incorporation of individual nucleotides at the end of a growing primer difficult to assess. Using 64 sequences, we now find that any of the four nucleobases, in combination with any neighboring residue, support enzyme-free primer extension when primer and mononucleotide are sufficiently reactive, with >or=93% primer extension for all sequences. Between the 64 possible base triplets, the rate of extension for the poorest template, CAG, with A as templating base, and the most efficient template, TCT, with C as templating base, differs by less than two orders of magnitude. Further, primer extension with a balanced mixture of monomers shows >or=72% of the correct extension product in all cases, and >or=90% incorporation of the correct base for 46 out of 64 triplets in the presence of a downstream-binding strand. A mechanism is proposed with a binding equilibrium for the monomer, deprotonation of the primer, and two chemical steps, the first of which is most strongly modulated by the sequence. Overall, rates show a surprisingly smooth reactivity landscape, with similar incorporation on strongly and weakly templating sequences. These results help to clarify the substrate contribution to copying, as found in polymerase-catalyzed replication, and show an important feature of DNA as genetic material.
Collapse
|
18
|
Ikonen S, Macícková-Cahová H, Pohl R, Sanda M, Hocek M. Synthesis of nucleoside and nucleotide conjugates of bile acids, and polymerase construction of bile acid-functionalized DNA. Org Biomol Chem 2010; 8:1194-201. [PMID: 20165813 DOI: 10.1039/b924072a] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Aqueous Sonogashira cross-coupling reactions of 5-iodopyrimidine or 7-iodo-7-deazaadenine nucleosides with bile acid-derived terminal acetylenes linked via an ester or amide tether gave the corresponding bile acid-nucleoside conjugates. Analogous reactions of halogenated nucleoside triphosphates gave directly bile acid-modified dNTPs. Enzymatic incorporation of these modified nucleotides to DNA was successfully performed using Phusion polymerase for primer extension. One of the dNTPs (dCTP bearing cholic acid) was also efficient for PCR amplification.
Collapse
Affiliation(s)
- Satu Ikonen
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead & IOCB Research Center, Flemingovo nam. 2, CZ-16610, Prague 6, Czech Republic
| | | | | | | | | |
Collapse
|
19
|
Abstract
The control over comonomer sequences is barely studied in macromolecular science nowadays. This is an astonishing situation, taking into account that sequence-defined polymers such as nucleic acids and proteins are key components of the living world. In fact, fascinating biological machines such as enzymes, transport proteins, cytochromes or sensory receptors would certainly not exist if evolution had not favored chemical pathways for controlling chirality and sequences. Thus, it seems obvious that synthetic polymers with controlled monomer sequences have an enormous role to play in the materials science of the next centuries. The goal of this tutorial review is to shed light on this highly important but embryonic field of research. Both biological and synthetic mechanisms for controlling sequences in polymerization processes are critically discussed herein. This state-of-the-art overview may serve as a source of inspiration for the development of new generations of synthetic macromolecules.
Collapse
Affiliation(s)
- Nezha Badi
- Research Group Nanotechnology for Life Science, Fraunhofer Institute for Applied Polymer Research, Geiselbergstrasse 69, 14476 Potsdam-Golm, Germany
| | | |
Collapse
|
20
|
Chen JJ, Cai X, Szostak JW. N2'-->p3' phosphoramidate glycerol nucleic acid as a potential alternative genetic system. J Am Chem Soc 2009; 131:2119-21. [PMID: 19166350 PMCID: PMC2722806 DOI: 10.1021/ja809069b] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Glycerol nucleic acid (GNA) is an interesting base-pairing system with an acyclic, three-carbon backbone. In the present study, GNA analogues with N2′→P3′ phosphoramidate linkages (npGNA) have been synthesized and their base-pairing properties examined. Thermal denaturation and circular dichroism studies show that npGNA can form stable duplexes with itself and with GNA. Furthermore, we show that npGNA can be assembled by template-directed ligation of 3′-imidazole-activated-2′-amino GNA dinucleotides. These results suggest that npGNA is a potential candidate for a self-replicating system based upon phosphoramidate linkages.
Collapse
Affiliation(s)
- Jesse J Chen
- Howard Hughes Medical Institute, and Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, Massachusetts 02114, USA
| | | | | |
Collapse
|
21
|
Eisenhuth R, Richert C. Convenient syntheses of 3'-amino-2',3'-dideoxynucleosides, their 5'-monophosphates, and 3'-aminoterminal oligodeoxynucleotide primers. J Org Chem 2009; 74:26-37. [PMID: 19053612 DOI: 10.1021/jo8018889] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
5'-Protected 3'-amino-2',3'-dideoxynucleosides containing any of the four canonical nucleobases (A/C/G/T) were prepared via azides in five to six steps, starting from deoxynucleosides. For pyrimidines, the synthetic route involved nucleophilic opening of anhydronucleosides. For purines, an in situ oxidation/reduction sequence, followed by a Mitsunobu reaction with diphenyl-2-pyridylphosphine and sodium azide, provided the 3'-azidonucleosides in high yield and purity. For solid-phase synthesis of aminoterminal oligonucleotides, aminonucleosides were linked to controlled pore glass through a novel hexafluoroglutaric acid linker. These supports gave 3'-aminoterminal primers in high yield and purity via conventional DNA chain assembly and one-step deprotection/release with aqueous ammonia. Primers thus prepared were successfully tested in enzyme-free chemical primer extension, an inexpensive methodology for genotyping and labeling. Protected 5'-monophosphates of 3'-amino-2',3'-dideoxynucleosides were also prepared, providing starting materials for the preparation of labeled or photolably protected monomers for chemical primer extension.
Collapse
Affiliation(s)
- Ralf Eisenhuth
- Institute for Organic Chemistry, University of Karlsruhe (TH), 76131 Karlsruhe, Germany
| | | |
Collapse
|
22
|
Rojas Stütz JA, Richert C. Tuning the reaction site for enzyme-free primer-extension reactions through small molecule substituents. Chemistry 2007; 12:2472-81. [PMID: 16402399 DOI: 10.1002/chem.200501008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The replication of genetic information relies on the template-directed extension of DNA primers catalyzed by polymerases. The active sites of polymerases accept four different substrates and ensure fidelity and processivity for each of them. Because of the pivotal role of catalyzed primer extension for life, it is important to better understand this reaction on a molecular level. Here we present results from primer-extension reactions performed with chemical systems that show high reactivity in the absence of polymerases. Small molecular caps linked to the 5'-terminus of templates are shown to enhance the rate and selectivity of primer extension driven by 2-methylimidazolides as activated monomers for any of the four different templating bases (A, C, G, and T). The most consistent effect is provided by a stilbene carboxamide residue, rather than larger aromatic or aliphatic substituents. Up to 20-fold rate enhancements were achieved for the reactions at the terminus of the template. The preference for a medium size cap can be explained by competing interactions with both the oligonucleotides and the incoming deoxynucleotide. The data also show that there is no particularly intractable problem in combining promiscuity with fidelity. Exploratory experiments involving a longer template and a downstream-binding strand with a 5'-cap show up to 38-fold rate acceleration over the same reaction templated by a single overhanging nucleotide.
Collapse
Affiliation(s)
- Jan A Rojas Stütz
- Institut für Organische Chemie, Universität Karlsruhe TH, 76131 Karlsruhe, Germany
| | | |
Collapse
|
23
|
Stütz JAR, Kervio E, Deck C, Richert C. Chemical primer extension: individual steps of spontaneous replication. Chem Biodivers 2007; 4:784-802. [PMID: 17443889 DOI: 10.1002/cbdv.200790064] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The replication of genetic information, as we know it from today's biology, relies on template-directed, polymerase-catalyzed extension of primers. It is known that short stretches of complementary RNA can form on templates in the absence of enzymes. This account summarizes recent work on efficient enzyme-free primer extension, both with 3'-amino-terminal deoxyribonucleotide primers and with primers made of unmodified RNA. Near-quantitative primer extension with half-life times on the order of hours has been demonstrated by using azaoxybenzotriazolides of nucleotides and downstream-binding oligomers. Further, small non-nucleosidic substituents placed on the terminus of the template or the downstream-binding oligomer have been shown to increase the rate and fidelity of primer-extension reactions. Since all four templating bases (A, C, G, T/U) direct sequence-selective primer-extension steps, we feel that there is renewed hope that full, nonenzymatic replication from monomers may eventually be achieved.
Collapse
Affiliation(s)
- Jan A Rojas Stütz
- Institute for Organic Chemistry, University of Karlsruhe TH, D-76131 Karlsruhe
| | | | | | | |
Collapse
|
24
|
Hagenbuch P, Kervio E, Hochgesand A, Plutowski U, Richert C. Chemical primer extension: efficiently determining single nucleotides in DNA. Angew Chem Int Ed Engl 2006; 44:6588-92. [PMID: 16175646 DOI: 10.1002/anie.200501794] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Patrizia Hagenbuch
- Institut für Organische Chemie, Universität Karlsruhe TH, 76131 Karlsruhe, Germany
| | | | | | | | | |
Collapse
|
25
|
Baumhof P, Griesang N, Bächle M, Richert C. Synthesis of oligonucleotides with 3'-terminal 5-(3-acylamidopropargyl)-3'-amino-2',3'-dideoxyuridine residues and their reactivity in single-nucleotide steps of chemical replication. J Org Chem 2006; 71:1060-7. [PMID: 16438521 DOI: 10.1021/jo052097j] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Oligonucleotides with a 3'-terminal 5-alkynyl-3'-amino-2',3'-dideoxyuridine residue were prepared, starting from 2'-deoxyuridine. The optimized route employs a 2',3'-dideoxy-3'-trifluoroacetamido-5-iodouridine 5'-phosphoramidite as building block for DNA synthesis and involves on-support Sonogashira coupling with N-tritylpropargylamine to generate oligonucleotides. The amino group of the propargylamine side chain was acylated to accelerate primer extension reactions involving the 3'-amino group. Three acyl groups were identified that decrease the half-life for DNA-templated extension steps with 7-azabenzotriazole esters of 2'-deoxynucleotides. The residue of 4-pyrenylbutyric acid was found to accelerate primer extension reactions and to render them more selective than those of the control primer. With this substituent, primer extension is also faster than previously measured for three-strand systems involving template, aminoprimer, and a downstream-binding helper oligonucleotide. Fast-reacting primers might become useful for genotyping single nucleotides.
Collapse
Affiliation(s)
- Patrick Baumhof
- Institute for Organic Chemistry, University of Karlsruhe (TH), D-76131 Karlsruhe, Germany
| | | | | | | |
Collapse
|
26
|
Hagenbuch P, Kervio E, Hochgesand A, Plutowski U, Richert C. Chemical Primer Extension: Efficiently Determining Single Nucleotides in DNA. Angew Chem Int Ed Engl 2005. [DOI: 10.1002/ange.200501794] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
27
|
Vogel SR, Deck C, Richert C. Accelerating chemical replication steps of RNA involving activated ribonucleotides and downstream-binding elements. Chem Commun (Camb) 2005:4922-4. [PMID: 16205800 DOI: 10.1039/b510775j] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Template-directed single nucleotide extension of an RNA primer with oxyazabenzotriazolides of ribonucleotides is shown to be fast and sequence-selective; downstream-binding RNA strands contribute to the acceleration of the reaction.
Collapse
Affiliation(s)
- Stephanie R Vogel
- Institute for Organic Chemistry, University of Karlsruhe (TH), 76131 Karlsruhe, Germany
| | | | | |
Collapse
|
28
|
Tuma J, Paulini R, Rojas Stütz JA, Richert C. How Much π-Stacking Do DNA Termini Seek? Solution Structure of a Self-Complementary DNA Hexamer with Trimethoxystilbenes Capping the Terminal Base Pairs,. Biochemistry 2004; 43:15680-7. [PMID: 15595824 DOI: 10.1021/bi048205y] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The exposed terminal base pairs of DNA duplexes are nonclassical binding sites for small molecules. Instead, small molecules usually prefer intercalation or minor groove binding. Here we report the solution structure of the DNA duplex (TMS-TGCGCA)(2), where TMS denotes trimethoxystilbene carboxamides that are 5'-tethered to the DNA. The stilbenes, for which intercalation is conformationally accessible, stack on the terminal T:A base pairs of an undisturbed B-form duplex. Two conformations, differing by the orientation of the stilbene relative to the terminal base pair, are observed, indicating that the flip rate is slow for the pi-stacked aromatic ring system. The trimethoxystilbene is known to greatly increase base pairing fidelity at the terminus. Here we show that it gauges the size of the T:A base pair by embracing the 2'-methylene group of the terminal dA residue of the unmodified terminus with its methoxy "arms", but that it does not engage the entire base pair in pi-stacking. Mismatched base pairs with their altered geometry will not allow for the same embracing interaction. On the basis of the current structure, a trimethoxychrysene carboxamide is proposed as a ligand with increased pi-stacking surface and possible applications as improved fidelity-enhancing element.
Collapse
Affiliation(s)
- Jennifer Tuma
- Max-Planck-Institute for Biophysical Chemistry, D-37077 Göttingen, Germany
| | | | | | | |
Collapse
|