1
|
Nagelski AL, Ozerov M, Fataftah MS, Krzystek J, Greer SM, Holland PL, Telser J. Electronic Structure of Three-Coordinate Fe II and Co II β-Diketiminate Complexes. Inorg Chem 2024; 63:4511-4526. [PMID: 38408452 DOI: 10.1021/acs.inorgchem.3c03388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
The β-diketiminate supporting group, [ArNCRCHCRNAr]-, stabilizes low coordination number complexes. Four such complexes, where R = tert-butyl, Ar = 2,6-diisopropylphenyl, are studied: (nacnactBu)ML, where M = FeII, CoII and L = Cl, CH3. These are denoted FeCl, FeCH3, CoCl, and CoCH3 and have been previously reported and structurally characterized. The two FeII complexes (S = 2) have also been previously characterized by Mössbauer spectroscopy, but only indirect assessment of the ligand-field splitting and zero-field splitting (zfs) parameters was available. Here, EPR spectroscopy is used, both conventional field-domain for the CoII complexes (with S = 3/2) and frequency-domain, far-infrared magnetic resonance spectroscopy (FIRMS) for all four complexes. The CoII complexes were also studied by magnetometry. These studies allow accurate determination of the zfs parameters. The two FeII complexes are similar with nearly axial zfs and large magnitude zfs given by D = -37 ± 1 cm-1 for both. The two CoII complexes likewise exhibit large and nearly axial zfs, but surprisingly, CoCl has positive D = +55 cm-1 while CoCH3 has negative D = -49 cm-1. Theoretical methods were used to probe the electronic structures of the four complexes, which explain the experimental spectra and the zfs parameters.
Collapse
Affiliation(s)
- Alexandra L Nagelski
- Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| | - Mykhaylo Ozerov
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| | - Majed S Fataftah
- Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| | - J Krzystek
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| | - Samuel M Greer
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Patrick L Holland
- Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| | - Joshua Telser
- Department of Biological, Chemical and Physical Sciences, Roosevelt University, Chicago, Illinois 60605, United States
| |
Collapse
|
2
|
Toubiana LA, Valaydon-Pillay A, Elinburg JK, Bacon JW, Ozarowski A, Doerrer LH, Stoian SA. Spectroscopic and Theoretical Investigation of High-Spin Square-Planar and Trigonal Fe(II) Complexes Supported by Fluorinated Alkoxides. Inorg Chem 2024; 63:2370-2387. [PMID: 38259134 DOI: 10.1021/acs.inorgchem.3c03236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The electronic structures and spectroscopic behavior of three high-spin FeII complexes of fluorinated alkoxides were studied: square-planar {K(DME)2}2[Fe(pinF)2] (S) and quasi square-planar {K(C222)}2[Fe(pinF)2] (S') and trigonal-planar {K(18C6)}[Fe(OC4F9)3] (T) where pinF = perfluoropinacolate and OC4F9 = tris-perfluoro-t-butoxide. The zero-field splitting (ZFS) and hyperfine structure parameters of the S = 2 ground states were determined using field-dependent 57Fe Mössbauer and high-field and -frequency electron paramagnetic resonance (HFEPR) spectroscopies. The spin Hamiltonian parameters were analyzed with crystal field theory and corroborated by density functional theory (DFT) and ab initio complete active space self-consistent field (CASSCF) calculations. Whereas the ZFS tensor of S has a small rhombicity, E/D = 0.082, and a positive D = 15.17 cm-1, T exhibits a negative D = -9.16 cm-1 and a large rhombicity, E/D = 0.246. Computational investigation of the structural factors suggests that the ground-state electronic configuration and geometry of T's Fe site are determined by the interaction of [Fe(OC4F9)3]- with {K(18C6)}+. In contrast, two distinct countercations of S/S' have a negligible influence on their [Fe(pinF)2]2- moieties. Instead, the distortions in S' are likely induced by the chelate ring conformation change from δλ, observed for S, to the δδ conformation, determined for S'.
Collapse
Affiliation(s)
- Léa A Toubiana
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Adam Valaydon-Pillay
- Department of Chemistry, University of Idaho, Moscow, Idaho 83844, United States
| | - Jessica K Elinburg
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Jeffrey W Bacon
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Andrew Ozarowski
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| | - Linda H Doerrer
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Sebastian A Stoian
- Department of Chemistry, University of Idaho, Moscow, Idaho 83844, United States
| |
Collapse
|
3
|
Singh D, Knight BJ, Catalano VJ, García-Serres R, Maurel V, Mouesca JM, Murray LJ. Partial Deoxygenative CO Homocoupling by a Diiron Complex. Angew Chem Int Ed Engl 2023; 62:e202308813. [PMID: 37594782 DOI: 10.1002/anie.202308813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 08/19/2023]
Abstract
One route to address climate change is converting carbon dioxide to synthetic carbon-neutral fuels. Whereas carbon dioxide to CO conversion has precedent in homo- and heterogeneous catalysis, deoxygenative coupling of CO to products with C-C bonds-as in liquid fuels-remains challenging. Here, we report coupling of two CO molecules by a diiron complex. Reduction of Fe2 (CO)2 L (2), where L2- is a bis(β-diketiminate) cyclophane, gives [K(THF)5 ][Fe2 (CO)2 L] (3), which undergoes silylation to Fe2 (CO)(COSiMe3 )L (4). Subsequent C-OSiMe3 bond cleavage and C=C bond formation occurs upon reduction of 4, yielding Fe2 (μ-CCO)L. CO derived ligands in this series mediate weak exchange interactions with the ketenylidene affording the smallest J value, with changes to local metal ion spin states and coupling schemes (ferro- vs. antiferromagnetism) based on DFT calculations, Mössbauer and EPR spectroscopy. Finally, reaction of 5 with KEt3 BH or methanol releases the C2 O2- ligand with retention of the diiron core.
Collapse
Affiliation(s)
- Devender Singh
- Center for Catalysis and Florida Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, FL, USA
| | - Brian J Knight
- Center for Catalysis and Florida Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, FL, USA
| | | | - Ricardo García-Serres
- Université Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux, 17 rue des Martyrs, 38000, Grenoble, France
| | - Vincent Maurel
- Université Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, 38000, Grenoble, France
| | - Jean-Marie Mouesca
- Université Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, 38000, Grenoble, France
| | - Leslie J Murray
- Center for Catalysis and Florida Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, FL, USA
| |
Collapse
|
4
|
Xiong J, Liu Q, Lavina B, Hu MY, Zhao J, Alp EE, Deng L, Ye S, Guo Y. Spin polarization assisted facile C-H activation by an S = 1 iron(iv)-bisimido complex: a comprehensive spectroscopic and theoretical investigation. Chem Sci 2023; 14:2808-2820. [PMID: 36937578 PMCID: PMC10016330 DOI: 10.1039/d2sc06273a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/14/2023] [Indexed: 02/17/2023] Open
Abstract
High valent iron terminal imido species (Fe[double bond, length as m-dash]NR) have been shown to be key reactive intermediates in C-H functionalization. However, the detailed structure-reactivity relationship in Fe[double bond, length as m-dash]NR species derived from studies of structurally well-characterized high-valent Fe[double bond, length as m-dash]NR complexes are still scarce, and the impact of imido N-substituents (electron-donating vs. electron-withdrawing) on their electronic structures and reactivities has not been thoroughly explored. In this study, we report spectroscopic and computational studies on a rare S = 1 iron(iv)-bisimido complex featuring trifluoromethyl groups on the imido N-substituents, [(IPr)Fe(NC(CF3)2Ph)2] (2), and two closely related S = 0 congeners bearing alkyl and aryl substituents, [(IPr)Fe(NC(CMe3)2Ph)2] (3) and [(IPr)Fe(NDipp)2] (1), respectively. Compared with 1 and 3, 2 exhibits a decreased Fe[double bond, length as m-dash]NR bond covalency due to the electron-withdrawing and the steric effect of the N-substituents, which further leads to a pseudo doubly degenerate ground electronic structure and spin polarization induced β spin density on the imido nitrogens. This unique electronic structure, which differs from those of the well-studied Fe(iv)-oxido complexes and many previously reported Fe(iv)-imido complexes, provides both kinetic and thermodynamic advantages for facile C-H activation, compared to the S = 0 counterparts.
Collapse
Affiliation(s)
- Jin Xiong
- Department of Chemistry, Carnegie Mellon University Pittsburgh Pennsylvania 15213 USA
| | - Qing Liu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 P. R. China
| | - Barbara Lavina
- Advanced Photon Source, Argonne National Laboratory Argonne Illinois 60439 USA
- Center for Advanced Radiation Sources, University of Chicago Chicago Illinois 60439 USA
| | - Michael Y Hu
- Advanced Photon Source, Argonne National Laboratory Argonne Illinois 60439 USA
| | - Jiyong Zhao
- Advanced Photon Source, Argonne National Laboratory Argonne Illinois 60439 USA
| | - Esen E Alp
- Advanced Photon Source, Argonne National Laboratory Argonne Illinois 60439 USA
| | - Liang Deng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 P. R. China
| | - Shengfa Ye
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 P. R. China
| | - Yisong Guo
- Department of Chemistry, Carnegie Mellon University Pittsburgh Pennsylvania 15213 USA
| |
Collapse
|
5
|
Qian Z, Wang L, Dzakpasu M, Tian Y, Ding D, Chen R, Wang G, Yang S. Spontaneous Fe III/Fe II redox cycling in single-atom catalysts: Conjugation effect and electron delocalization. iScience 2022; 26:105902. [PMID: 36691626 PMCID: PMC9860487 DOI: 10.1016/j.isci.2022.105902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/21/2022] [Accepted: 12/21/2022] [Indexed: 12/30/2022] Open
Abstract
The mechanism of spontaneous FeIII/FeII redox cycling in iron-centered single-atom catalysts (I-SACs) is often overlooked. Consequently, pathways for continuous SO4 ·-/HO⋅ generation during peroxymonosulfate (PMS) activation by I-SACs remain unclear. Herein, the evolution of the iron center and ligand in I-SACs was comprehensively investigated. I-SACs could be considered as a coordination complex created by iron and a heteroatom N-doped carbonaceous ligand. The ligand-field theory could well explain the electronic behavior of the complex, whereby electrons delocalized by the conjugation effect of the ligand were confirmed to be responsible for the FeIII/FeII redox cycle. The possible pyridinic ligand in I-SACs was demonstrably weaker than the pyrrolic ligand in FeIII reduction due to its shielding effect on delocalized π orbitals by local lone-pair electrons. The results of this study significantly advance our understanding of the mechanism of spontaneous FeIII/FeII redox cycling and radical generation pathways in the I-SACs/PMS process.
Collapse
Affiliation(s)
- Zheng Qian
- School of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, No. 13, Yanta Road, Xi’an, Shaanxi 710055, China
| | - Lingzhen Wang
- School of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, No. 13, Yanta Road, Xi’an, Shaanxi 710055, China
| | - Mawuli Dzakpasu
- School of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, No. 13, Yanta Road, Xi’an, Shaanxi 710055, China
| | - Yujia Tian
- School of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, No. 13, Yanta Road, Xi’an, Shaanxi 710055, China
| | - Dahu Ding
- College of Resources and Environmental Sciences, Nanjing Agricultural University, No. 1, Weigang, Nanjing, Jiangsu 210095, China
| | - Rongzhi Chen
- College of Resources and Environment, University of Chinese Academic of Science, 19A Yuquan Road, Beijing, 100049, China,Corresponding author
| | - Gen Wang
- School of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, No. 13, Yanta Road, Xi’an, Shaanxi 710055, China
| | - Shengjiong Yang
- School of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, No. 13, Yanta Road, Xi’an, Shaanxi 710055, China,Corresponding author
| |
Collapse
|
6
|
Münster K, Baabe D, Kintzel B, Böhme M, Plass W, Raeder J, Walter MD. Low-Coordinate Iron(II) Amido Half-Sandwich Complexes with Large Internal Magnetic Hyperfine Fields. Inorg Chem 2022; 61:18883-18898. [DOI: 10.1021/acs.inorgchem.2c02768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Katharina Münster
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, Braunschweig38106, Germany
| | - Dirk Baabe
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, Braunschweig38106, Germany
| | - Benjamin Kintzel
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldtstraße 8, Jena07743, Germany
| | - Michael Böhme
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldtstraße 8, Jena07743, Germany
| | - Winfried Plass
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldtstraße 8, Jena07743, Germany
| | - Jan Raeder
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, Braunschweig38106, Germany
| | - Marc D. Walter
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, Braunschweig38106, Germany
| |
Collapse
|
7
|
Takebayashi S, Iron MA, Feller M, Rivada-Wheelaghan O, Leitus G, Diskin-Posner Y, Shimon LJW, Avram L, Carmieli R, Wolf SG, Cohen-Ofri I, Sanguramath RA, Shenhar R, Eisen M, Milstein D. Iron-catalysed ring-opening metathesis polymerization of olefins and mechanistic studies. Nat Catal 2022. [DOI: 10.1038/s41929-022-00793-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
8
|
Kim D, Wilson DWN, Fataftah MS, Mercado BQ, Holland PL. Spin States, Bonding and Magnetism in Mixed-Valence Iron(0)-Iron(II) Complexes. Chemistry 2022; 28:e202104431. [PMID: 34919297 PMCID: PMC8860844 DOI: 10.1002/chem.202104431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Indexed: 11/08/2022]
Abstract
"Xenophilic" complexes offer metal-metal bonds between disparate metal sites, but the nature of the metal-metal bonding is often unclear. Here, we describe two novel complexes with unsupported Fe-Fe bonds, Lx Fe-Fp (LX = β-aldiminate or β-diketiminate; Fp = Fe(CO)2 Cp), that offer insight into Fe-Fe bonding. Mössbauer, magnetism, and DFT analysis indicate that the most accurate electronic structure description is LFeII ←Fe0 (CO)2 Cp, in which the Fe(CO)2 Cp is low-spin iron(0) and acts as an X-type ligand toward the high-spin iron(II) of the LFe fragment. This largely electrostatic interaction has a bond order of only 0.5. The three-coordinate high-spin iron(II) site has large zero-field splitting, and in addition its Mössbauer parameters can be used to rank the Fp- "metalloligand" as a donor; it is nearly as strong a donor as phosphides and alkyls.
Collapse
Affiliation(s)
- Daniel Kim
- Department of Chemistry, Yale University, New Haven, CT, 06520, United States
| | - Daniel W N Wilson
- Department of Chemistry, Yale University, New Haven, CT, 06520, United States
| | - Majed S Fataftah
- Department of Chemistry, Yale University, New Haven, CT, 06520, United States
| | - Brandon Q Mercado
- Department of Chemistry, Yale University, New Haven, CT, 06520, United States
| | - Patrick L Holland
- Department of Chemistry, Yale University, New Haven, CT, 06520, United States
| |
Collapse
|
9
|
Gao Y, Pink M, Smith JM. Alkali Metal Ions Dictate the Structure and Reactivity of an Iron(II) Imido Complex. J Am Chem Soc 2022; 144:1786-1794. [DOI: 10.1021/jacs.1c11429] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yafei Gao
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Maren Pink
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Jeremy M. Smith
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
10
|
Li Y, Xi J, Ferrando-Soria J, Zhang YQ, Wang W, Song Y, Guo Y, Pardo E, Liu X. Slow magnetic relaxation in a trigonal-planar mononuclear Fe(II) complex. Dalton Trans 2022; 51:8266-8272. [DOI: 10.1039/d2dt00899h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Based on a β-diketiminate ligand, an iron(III) tetrahedral high-spin complex, [LFeIII(Cl)2] (1), and an iron(II) high-spin triangular planar complex, [LFeIICl] (2), have been synthesized and structurally characterized. Also, complex 1...
Collapse
|
11
|
Zhou Y, Li Y, Xi J, Qin Y, Cen P, Zhang YQ, Guo Y, Ding Y, Liu X. Modulation of the architectures and magnetic dynamics in pseudotetrahedral cobalt(II) complexes. Dalton Trans 2022; 51:7673-7680. [DOI: 10.1039/d2dt01047j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two β-Diketiminate cobalt(II) compounds of formula [LCo(μ-Cl)]2∙2C6H14 (1) and [LCoClPy]∙0.5C7H8∙0.5C6H14 (2) (L = [PhC-(PhCN-Dip)2]−, Dip = 2,6-iPr2C6H3) have been synthesized and structurally characterized by single crystal X-ray diffraction. Compound 1...
Collapse
|
12
|
Hakey BM, Leary DC, Xiong J, Harris CF, Darmon JM, Petersen JL, Berry JF, Guo Y, Milsmann C. High Magnetic Anisotropy of a Square-Planar Iron-Carbene Complex. Inorg Chem 2021; 60:18575-18588. [PMID: 34431660 PMCID: PMC9106389 DOI: 10.1021/acs.inorgchem.1c01860] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Among Earth-abundant catalyst systems, iron-carbene intermediates that perform C-C bond forming reactions such as cyclopropanation of olefins and C-H functionalization via carbene insertion are rare. Detailed descriptions of the possible electronic structures for iron-carbene bonds are imperative to obtain better mechanistic insights and enable rational catalyst design. Here, we report the first square-planar iron-carbene complex (MesPDPPh)Fe(CPh2), where [MesPDPPh]2- is the doubly deprotonated form of [2,6-bis(5-(2,4,6-trimethylphenyl)-3-phenyl-1H-pyrrol-2-yl)pyridine]. The compound was prepared via reaction of the disubstituted diazoalkane N2CPh2 with (MesPDPPh)Fe(thf) and represents a rare example of a structurally characterized, paramagnetic iron-carbene complex. Temperature-dependent magnetic susceptibility measurements and applied-field Mössbauer spectroscopic studies revealed an orbitally near-degenerate S = 1 ground state with large unquenched orbital angular momentum resulting in high magnetic anisotropy. Spin-Hamiltonian analysis indicated that this S = 1 spin system has uniaxial magnetic properties arising from a ground MS = ±1 non-Kramers doublet that is well-separated from the MS = 0 sublevel due to very large axial zero-field splitting (D = -195 cm-1, E/D = 0.02 estimated from magnetic susceptibility data). This remarkable electronic structure gives rise to a very large, positive magnetic hyperfine field of more than +60 T for the 57Fe nucleus along the easy magnetization axis observed by Mössbauer spectroscopy. Computational analysis with complete active space self-consistent field (CASSCF) calculations provides a detailed electronic structure analysis and confirms that (MesPDPPh)Fe(CPh2) exhibits a multiconfigurational ground state. The majority contribution originates from a configuration best described as a singlet carbene coordinated to an intermediate-spin FeII center with a (dxy)2{(dxz),(dz2)}3(dyz)1(dx2-y2)0 configuration featuring near-degenerate dxz and dz2 orbitals.
Collapse
Affiliation(s)
- Brett M Hakey
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Dylan C Leary
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Jin Xiong
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Caleb F Harris
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Jonathan M Darmon
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Jeffrey L Petersen
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - John F Berry
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Yisong Guo
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Carsten Milsmann
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| |
Collapse
|
13
|
Maddock LCH, Kennedy AR, Hevia E. Structural and Synthetic Insights into Sodium‐Mediated‐Ferration of Fluoroarenes. Helv Chim Acta 2021. [DOI: 10.1002/hlca.202100206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Lewis C. H. Maddock
- Department für Chemie Biochemie und Pharmazie Universität Bern CH-3012 Bern Switzerland
| | - Alan R. Kennedy
- Department of Pure and Applied Chemistry University of Strathclyde UK-Glasgow G1 1XL United Kingdom
| | - Eva Hevia
- Department für Chemie Biochemie und Pharmazie Universität Bern CH-3012 Bern Switzerland
| |
Collapse
|
14
|
Jung J, Legendre CM, Demeshko S, Herbst-Irmer R, Stalke D. Trigonal Planar Iron(II) and Cobalt(II) Complexes Containing [RS(N tBu) 3] n- (R = N tBu, n = 2; CH 2PPh 2, n = 1) as Acute Bite-Angle Chelating Ligands: Soft P Donor Proves Beneficial to Magnetic Co Species. Inorg Chem 2021; 60:9580-9588. [PMID: 34125515 DOI: 10.1021/acs.inorgchem.1c00770] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We prepared four new complexes, 4a,b and 5a,b, from polyimido sulfur-centered ligands with FeII and CoII amides. Their molecular structures were elucidated by single-crystal X-ray diffraction. Cobalt magnetic investigations and multiconfigurational calculations provided insight into magneto-structural correlations between the acute N,N' chelating bite angle and P-side arm donation. The deviation from an ideal trigonal planar geometry and the magnetic performance correlated in an unprecedented manor. Mononuclear cobalt species 4b and 5b showed slow magnetic relaxation under a small applied dc field with energy barriers of up to 33.0 and 21.9 cm-1, respectively. Although they possess some of the largest zero-field splitting parameters among three-coordinate cobalt single-ion magnets, both theory and experiment suggest that the high rhombicity (E/D) hampers large effective energy barriers to spin reversal at zero field from being obtained.
Collapse
Affiliation(s)
- Jochen Jung
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Tammannstraße 4, 37077 Göttingen (Germany)
| | - Christina M Legendre
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Tammannstraße 4, 37077 Göttingen (Germany)
| | - Serhiy Demeshko
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Tammannstraße 4, 37077 Göttingen (Germany)
| | - Regine Herbst-Irmer
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Tammannstraße 4, 37077 Göttingen (Germany)
| | - Dietmar Stalke
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Tammannstraße 4, 37077 Göttingen (Germany)
| |
Collapse
|
15
|
Hong DH, Ferreira RB, Catalano VJ, García-Serres R, Shearer J, Murray LJ. Access to Metal Centers and Fluxional Hydride Coordination Integral for CO 2 Insertion into [Fe 3(μ-H) 3] 3+ Clusters. Inorg Chem 2021; 60:7228-7239. [PMID: 33900076 DOI: 10.1021/acs.inorgchem.1c00244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
CO2 insertion into tri(μ-hydrido)triiron(II) clusters ligated by a tris(β-diketiminate) cyclophane is demonstrated to be balanced by sterics for CO2 approach and hydride accessibility. Time-resolved NMR and UV-vis spectra for this reaction for a complex in which methoxy groups border the pocket of the hydride donor (Fe3H3L2, 4) result in a decreased activation barrier and increased kinetic isotope effect consistent with the reduced sterics. For the ethyl congener Fe3H3L1 (2), no correlation is found between rate and reaction solvent or added Lewis acids, implying CO2 coordination to an Fe center in the mechanism. The estimated hydricity (50 kcal/mol) based on observed H/D exchange with BD3 requires Fe-O bond formation in the product to offset an endergonic CO2 insertion. μ3-hydride coordination is noted to lower the activation barrier for the first CO2 insertion event in DFT calculations.
Collapse
Affiliation(s)
- Dae Ho Hong
- Center for Catalysis and Florida Center for Heterocyclic Chemistry, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Ricardo B Ferreira
- Center for Catalysis and Florida Center for Heterocyclic Chemistry, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Vincent J Catalano
- Department of Chemistry, University of Nevada, Reno, Nevada 89557, United States
| | - Ricardo García-Serres
- Université Grenoble Alpes, CNRS, CEA, BIG, LCBM (UMR 5249), F-38054 Grenoble, France
| | - Jason Shearer
- Department of Chemistry, Trinity University, San Antonio, Texas 78212, United States
| | - Leslie J Murray
- Center for Catalysis and Florida Center for Heterocyclic Chemistry, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
16
|
Reczyński M, Akaki M, Fukuda T, Sawada Y, Nishii K, Hagiwara M, Nitek W, Sieklucka B, Nowicka B. Hepta-coordinated Ni(II) assemblies - structure and magnetic studies. Dalton Trans 2021; 50:5251-5261. [PMID: 33881078 DOI: 10.1039/d1dt00479d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two mononuclear complexes [Ni(dapsc)(H2O)2]Cl(NO3)·H2O (1) and [Ni(dapsc)(NCS)2] (2), and a bimetallic CN-bridged trinuclear molecule [NiII(dapsc)(H2O)]2[WIV(CN)8]·11H2O (3) (dapsc = 2,6-diacetylpyridine-bis(semicarbazone)) were synthesised and characterised in terms of structure and magnetic properties. All three compounds contain Ni(ii) ions in a pentagonal bipyramid coordination geometry afforded by the equatorial pentadentate ligand (dapsc) and two O- or N-donating axial ligands. The compounds differ in the relative arrangement of the complexes, intermolecular interactions and distortion from the ideal coordination geometry. The high-field EPR and magnetometric studies show large anisotropy of the Ni(ii) centres with the D parameters in the range of -10.5 to -21.2 cm-1 and negligible antiferromagnetic interactions. The easy-axis magnetic anisotropies of 1-3 were reproduced by ab initio CASSCF/NEVPT2 calculations. The ground states consist mainly of the |MS = |±1 states, which is consistent with the fact that no out-of-phase signal can be detected in the AC magnetic susceptibility measurements.
Collapse
Affiliation(s)
- Mateusz Reczyński
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland.
| | - Mitsuru Akaki
- Center for Advanced High Magnetic Field Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Takamitsu Fukuda
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Yuya Sawada
- Center for Advanced High Magnetic Field Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Kengo Nishii
- Center for Advanced High Magnetic Field Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Masayuki Hagiwara
- Center for Advanced High Magnetic Field Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Wojciech Nitek
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland.
| | - Barbara Sieklucka
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland.
| | - Beata Nowicka
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland.
| |
Collapse
|
17
|
Gao Y, Carta V, Pink M, Smith JM. Catalytic Carbodiimide Guanylation by a Nucleophilic, High Spin Iron(II) Imido Complex. J Am Chem Soc 2021; 143:5324-5329. [PMID: 33793235 DOI: 10.1021/jacs.1c02068] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Reduction of the three-coordinate iron(III) imido [Ph2B(tBuIm)2Fe═NDipp] (1) affords [Ph2B(tBuIm)2Fe═NDipp][K(18-C-6)THF2] (2), a rare example of a high-spin (S = 2) iron(II) imido complex. Unusually for a late metal imido complex, the imido ligand in 2 has nucleophilic character, as demonstrated by the reaction with DippNH2, which establishes an equilibrium with the bis(anilido) complex [Ph2B(tBuIm)2Fe(NHDipp)2][K(18-C-6)THF2] (3). In an unusual transformation, formal insertion of iPrN═C═NiPr into the Fe═N(imido) bond yields the guanidinate [Ph2B(tBuIm)2Fe(iPrN)2CNDipp][K(18-C-6)THF2] (4). Reaction of 4 with excess DippNH2 provides 3, along with the guanidine (iPrNH)2C═NDipp. As suggested by these stoichiometric reactions, 2 is an efficient catalyst for the guanylation of carbodiimides, converting a wide range of aniline substrates under mild conditions.
Collapse
Affiliation(s)
- Yafei Gao
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Veronica Carta
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Maren Pink
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Jeremy M Smith
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
18
|
Tarrago M, Römelt C, Nehrkorn J, Schnegg A, Neese F, Bill E, Ye S. Experimental and Theoretical Evidence for an Unusual Almost Triply Degenerate Electronic Ground State of Ferrous Tetraphenylporphyrin. Inorg Chem 2021; 60:4966-4985. [PMID: 33739093 DOI: 10.1021/acs.inorgchem.1c00031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Iron porphyrins exhibit unrivalled catalytic activity for electrochemical CO2-to-CO conversion. Despite intensive experimental and computational studies in the last 4 decades, the exact nature of the prototypical square-planar [FeII(TPP)] complex (1; TPP2- = tetraphenylporphyrinate dianion) remained highly debated. Specifically, its intermediate-spin (S = 1) ground state was contradictorily assigned to either a nondegenerate 3A2g state with a (dxy)2(dz2)2(dxz,yz)2 configuration or a degenerate 3Egθ state with a (dxy)2(dxz,yz)3(dz2)1/(dz2)2(dxy)1(dxz,yz)3 configuration. To address this question, we present herein a comprehensive, spectroscopy-based theoretical and experimental electronic-structure investigation on complex 1. Highly correlated wave-function-based computations predicted that 3A2g and 3Egθ are well-isolated from other triplet states by ca. 4000 cm-1, whereas their splitting ΔA-E is on par with the effective spin-orbit coupling (SOC) constant of iron(II) (≈400 cm-1). Therfore, we invoked an effective Hamiltonian (EH) operating on the nine magnetic sublevels arising from SOC between the 3A2g and 3Egθ states. This approach enabled us to successfully simulate all spectroscopic data of 1 obtained by variable-temperature and variable-field magnetization, applied-field 57Fe Mössbauer, and terahertz electron paramagnetic resonance measurements. Remarkably, the EH contains only three adjustable parameters, namely, the energy gap without SOC, ΔA-E, an angle θ that describes the mixing of (dxy)2(dxz,yz)3(dz2)1 and (dz2)2(dxy)1(dxz,yz)3 configurations, and the ⟨rd-3⟩ expectation value of the iron d orbitals that is necessary to estimate the 57Fe magnetic hyperfine coupling tensor. The EH simulations revealed that the triplet ground state of 1 is genuinely multiconfigurational with substantial parentages of both 3A2g (<88%) and 3Eg (>12%), owing to their accidental near-triple degeneracy with ΔA-E = +950 cm-1. As a consequence of this peculiar electronic structure, 1 exhibits a huge effective magnetic moment (4.2 μB at 300 K), large temperature-independent paramagnetism, a large and positive axial zero-field splitting, strong easy-plane magnetization (g⊥ ≈ 3 and g∥ ≈ 1.7) and a large and positive internal field at the 57Fe nucleus aligned in the xy plane. Further in-depth analyses suggested that g⊥ ≫ g∥ is a general spectroscopic signature of near-triple orbital degeneracy with more than half-filled pseudodegenerate orbital sets. Implications of the unusual electronic structure of 1 for CO2 reduction are discussed.
Collapse
Affiliation(s)
- Maxime Tarrago
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Christina Römelt
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Joscha Nehrkorn
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Alexander Schnegg
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Frank Neese
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Eckhard Bill
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Shengfa Ye
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany.,State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
19
|
Sarkar A, Dey S, Rajaraman G. Role of Coordination Number and Geometry in Controlling the Magnetic Anisotropy in Fe II , Co II , and Ni II Single-Ion Magnets. Chemistry 2020; 26:14036-14058. [PMID: 32729641 DOI: 10.1002/chem.202003211] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Indexed: 12/22/2022]
Abstract
Since the last decade, the focus in the area of single-molecule magnets (SMMs) has been shifting constructively towards the development of single-ion magnets (SIMs) based on transition metals and lanthanides. Although ground-breaking results have been witnessed for DyIII -based SIMs, significant results have also been obtained for some mononuclear transition metal SIMs. Among others, studies based on CoII ion are very prominent as they often exhibit high magnetic anisotropy or zero-field splitting parameters and offer a large barrier height for magnetisation reversal. Although CoII possibly holds the record for having the largest number of zero-field SIMs known for any transition metal ion, controlling the magnetic anisotropy in these systems are is still a challenge. In addition to the modern spectroscopic techniques, theoretical studies, especially ab initio CASSCF/NEVPT2 approaches, have been used to uncover the electronic structure of various CoII SIMs. In this article, with some selected examples, the aim is to showcase how varying the coordination number from two to eight, and the geometry around the CoII centre alters the magnetic anisotropy. This offers some design principles for the experimentalists to target new generation SIMs based on the CoII ion. Additionally, some important FeII /FeIII and NiII complexes exhibiting large magnetic anisotropy and SIM properties are also discussed.
Collapse
Affiliation(s)
- Arup Sarkar
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Sourav Dey
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Gopalan Rajaraman
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India
| |
Collapse
|
20
|
Lutz SA, Hickey AK, Gao Y, Chen CH, Smith JM. Two-State Reactivity in Iron-Catalyzed Alkene Isomerization Confers σ-Base Resistance. J Am Chem Soc 2020; 142:15527-15535. [PMID: 32786744 DOI: 10.1021/jacs.0c07300] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A low-coordinate, high spin (S = 3/2) organometallic iron(I) complex is a catalyst for the isomerization of alkenes. A combination of experimental and computational mechanistic studies supports a mechanism in which alkene isomerization occurs by the allyl mechanism. Importantly, while substrate binding occurs on the S = 3/2 surface, oxidative addition to an η1-allyl intermediate only occurs on the S = 1/2 surface. Since this spin state change is only possible when the alkene substrate is bound, the catalyst has high immunity to typical σ-base poisons due to the antibonding interactions of the high spin state.
Collapse
Affiliation(s)
- Sean A Lutz
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Anne K Hickey
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Yafei Gao
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Chun-Hsing Chen
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Jeremy M Smith
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
21
|
Saber MR, Przyojski JA, Tonzetich ZJ, Dunbar KR. Slow magnetic relaxation in cobalt N-heterocyclic carbene complexes. Dalton Trans 2020; 49:11577-11582. [PMID: 32749418 DOI: 10.1039/d0dt02286a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The combined experimental and theoretical investigation of the magnetic properties of the cobalt(ii) NHC complexes (NHC = N-heterocyclic carbene); [Co(CH2SiMe3)2(IPr)] (1), [CoCl2(IMes)2] (2) and [Co(CH3)2(IMes)2] (3) revealed a large easy plane anisotropy for 1 (D = +73.7 cm-1) and a moderate easy axis anisotropy for 2 (D = -7.7 cm-1) due to significant out-of-state spin-orbit coupling. Dynamic magnetic measurements revealed slow relaxation of the magnetization for 1 (Ueff = 22.5 K, τ0 = 3 × 10-7 s, 1000 Oe) and for 2 (Ueff = 20.2 K, τ0 = 1.73 × 10-8 s, 1500 Oe). The molecular origin of the slow relaxation phenomena was further supported by the retention of AC signal in 10% solutions in 2-MeTHF which reveals a second zero field AC signal in 1 at higher frequencies. Compound 3 was found to be an S = 1/2 system.
Collapse
Affiliation(s)
- Mohamed R Saber
- Department of Chemistry, Texas A&M University, College Station, TX 77842-3012, USA. and Chemistry Department, Faculty of Science, Fayoum University, Fayoum 63514, Egypt
| | - Jacob A Przyojski
- Department of Chemistry, University of Texas at San Antonio (UTSA), San Antonio, TX 78249, USA
| | - Zachary J Tonzetich
- Department of Chemistry, University of Texas at San Antonio (UTSA), San Antonio, TX 78249, USA
| | - Kim R Dunbar
- Department of Chemistry, Texas A&M University, College Station, TX 77842-3012, USA.
| |
Collapse
|
22
|
Guillet GL, Arpin KY, Boltin AM, Gordon JB, Rave JA, Hillesheim PC. Synthesis and Characterization of a Linear Triiron(II) Extended Metal Atom Chain Complex with Fe–Fe Bonds. Inorg Chem 2020; 59:11238-11243. [DOI: 10.1021/acs.inorgchem.0c01625] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Gary L. Guillet
- Department of Chemistry and Biochemistry, Georgia Southern University, 11935 Abercorn Street, Savannah, Georgia 31419, United States
| | - Kathleen Y. Arpin
- Department of Chemistry and Biochemistry, Georgia Southern University, 11935 Abercorn Street, Savannah, Georgia 31419, United States
| | - Alan M. Boltin
- Department of Chemistry and Biochemistry, Georgia Southern University, 11935 Abercorn Street, Savannah, Georgia 31419, United States
| | - Jesse B. Gordon
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Justin A. Rave
- Department of Chemistry and Biochemistry, Georgia Southern University, 11935 Abercorn Street, Savannah, Georgia 31419, United States
| | - Patrick C. Hillesheim
- Department of Chemistry and Physics, Ave Maria University, 5050 Ave Maria Boulevard, Ave Maria, Florida 34142, United States
| |
Collapse
|
23
|
Kephart JA, Hecht Z, Livesay BN, Bhowmick I, Shores MP, Popescu VC, Arulsamy N, Hulley EB. Self-assembly of an organometallic Fe 9O 6 cluster from aerobic oxidation of (tmeda)Fe(CH 2tBu) 2. Chem Commun (Camb) 2020; 56:4994-4997. [PMID: 32239066 DOI: 10.1039/d0cc00011f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aerobic oxidation of (tmeda)Fe(CH2tBu)2 in toluene or THF solution leads to the self-assembly of a magic-sized all-ferrous oxide cluster containing the Fe9O6 subunit and bearing organometallic and diamine ligands. Mössbauer studies of the cluster are consistent with an all-ferrous assignment and magnetometry reveals complex intracluster and intercluster magnetic interactions.
Collapse
|
24
|
Bar AK, Heras Ojea MJ, Tang J, Layfield RA. Coupling of Nitric Oxide and Release of Nitrous Oxide from Rare-Earth-Dinitrosyliron Complexes. J Am Chem Soc 2020; 142:4104-4107. [DOI: 10.1021/jacs.9b13571] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Arun Kumar Bar
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, U.K
| | - María José Heras Ojea
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, U.K
| | - Jinkui Tang
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5626, 130022 Changchun, China
| | - Richard A. Layfield
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, U.K
| |
Collapse
|
25
|
Colonna P, Bezzenine S, Gil R, Hannedouche J. Alkene Hydroamination
via
Earth‐Abundant Transition Metal (Iron, Cobalt, Copper and Zinc) Catalysis: A Mechanistic Overview. Adv Synth Catal 2020. [DOI: 10.1002/adsc.201901157] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Pierre Colonna
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO)CNRS UMR 8182Université Paris-Sud Université Paris-Saclay 91405 Orsay cedex France
| | - Sophie Bezzenine
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO)CNRS UMR 8182Université Paris-Sud Université Paris-Saclay 91405 Orsay cedex France
| | - Richard Gil
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO)CNRS UMR 8182Université Paris-Sud Université Paris-Saclay 91405 Orsay cedex France
| | - Jérôme Hannedouche
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO)CNRS UMR 8182Université Paris-Sud Université Paris-Saclay 91405 Orsay cedex France
| |
Collapse
|
26
|
Liang Q, Lin JH, DeMuth JC, Neidig ML, Song D. Syntheses and characterizations of iron complexes of bulky o-phenylenediamide ligand. Dalton Trans 2020; 49:12287-12297. [DOI: 10.1039/d0dt02087g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the reactivity of the iron complexes of a bulky phenylenediamide ligand.
Collapse
Affiliation(s)
- Qiuming Liang
- Davenport Chemical Research Laboratories
- Department of Chemistry
- University of Toronto
- Toronto
- Canada
| | - Jack H. Lin
- Davenport Chemical Research Laboratories
- Department of Chemistry
- University of Toronto
- Toronto
- Canada
| | | | | | - Datong Song
- Davenport Chemical Research Laboratories
- Department of Chemistry
- University of Toronto
- Toronto
- Canada
| |
Collapse
|
27
|
Nagelski AL, Fataftah MS, Bollmeyer MM, McWilliams SF, MacMillan SN, Mercado BQ, Lancaster KM, Holland PL. The influences of carbon donor ligands on biomimetic multi-iron complexes for N 2 reduction. Chem Sci 2020; 11:12710-12720. [PMID: 34094466 PMCID: PMC8163302 DOI: 10.1039/d0sc03447a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The active site clusters of nitrogenase enzymes possess the only examples of carbides in biology. These are the only biological FeS clusters that are capable of reducing N2 to NH4+, implicating the central carbon and its interaction with Fe as important in the mechanism of N2 reduction. This biological question motivates study of the influence of carbon donors on the electronic structure and reactivity of unsaturated, high-spin iron centers. Here, we present functional and structural models that test the impacts of carbon donors and sulfide donors in simpler iron compounds. We report the first example of a diiron complex that is bridged by an alkylidene and a sulfide, which serves as a high-fidelity structural and spectroscopic model of a two-iron portion of the active-site cluster (FeMoco) in the resting state of Mo-nitrogenase. The model complexes have antiferromagnetically coupled pairs of high-spin iron centers, and sulfur K-edge X-ray absorption spectroscopy shows comparable covalency of the sulfide for C and S bridged species. The sulfur-bridged compound does not interact with N2 even upon reduction, but upon removal of the sulfide it becomes capable of reducing N2 to NH4+ with the addition of protons and electrons. This provides synthetic support for sulfide extrusion in the activation of nitrogenase cofactors. High-spin diiron alkylidenes give insight into the electronic structure and functional relevance of carbon in the FeMoco active site of nitrogenase.![]()
Collapse
Affiliation(s)
| | | | - Melissa M. Bollmeyer
- Department of Chemistry and Chemical Biology
- Baker Laboratory
- Cornell University
- Ithaca
- USA
| | | | - Samantha N. MacMillan
- Department of Chemistry and Chemical Biology
- Baker Laboratory
- Cornell University
- Ithaca
- USA
| | | | - Kyle M. Lancaster
- Department of Chemistry and Chemical Biology
- Baker Laboratory
- Cornell University
- Ithaca
- USA
| | | |
Collapse
|
28
|
Moseley IP, Lin CY, Zee DZ, Zadrozny JM. Synthesis and magnetic characterization of a dinuclear complex of low-coordinate iron(II). Polyhedron 2020; 175. [PMID: 34092885 DOI: 10.1016/j.poly.2019.114171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Low-coordinate ions possess exciting magnetic, optical, and reactive properties that may afford novel material physics. Hence, it is important to test both synthetic methods for realizing extended solids of such ions as well as the properties of smaller molecular fragments of envisioned future materials. Herein, we report the synthesis and characterization of a new dinuclear Fe species, [{(Me3Si2)2N}Fe{μ-p-{HN(SiMe3)}(C6Me4){N(SiMe3)}}2Fe{N(SiMe3)2}] (1), formed through a transamination reaction between [Fe{N(SiMe3)2}2]2 and the bulky diamine p-{HN(SiMe3)}2(C6Me4) (L). The Fe centers of this dimer assume a pseudo-trigonal-planar, three-coordinate conformation in 1, bridged by two aromatic diamines. Single-crystal X-ray diffraction, IR spectroscopy, and Mössbauer spectroscopy enable the assignment of both Fe centers as the 2+ oxidation state. Magnetic studies show that 1 displays a weak antiferromagnetic exchange interaction (J = -2.33 cm-1) and moderate zero-field splitting (D = 7.51 cm-1). Importantly, these studies demonstrate the viability of using transamination to bridge high-spin low-coordinate metal ions and hence the technique may, in the future, produce new extended structures.
Collapse
Affiliation(s)
- Ian P Moseley
- Department of Chemistry, Colorado State University, 1301 Center Ave., Fort Collins, CO 80523-1872, United States
| | - Chun-Yi Lin
- Department of Chemistry, Colorado State University, 1301 Center Ave., Fort Collins, CO 80523-1872, United States
| | - David Z Zee
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, United States
| | - Joseph M Zadrozny
- Department of Chemistry, Colorado State University, 1301 Center Ave., Fort Collins, CO 80523-1872, United States
| |
Collapse
|
29
|
MacLeod KC, DiMucci IM, Zovinka EP, McWilliams SF, Mercado BQ, Lancaster KM, Holland PL. Masked Radicals: Iron Complexes of Trityl, Benzophenone, and Phenylacetylene. Organometallics 2019; 38:4224-4232. [PMID: 34103782 DOI: 10.1021/acs.organomet.9b00534] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We report the first Fe─CPh3 complex, and show that the long Fe─C bond can be disrupted by neutral π-acceptor ligands (benzophenone and phenylacetylene) to release the triphenylmethyl radical. The products are formally iron(I) complexes, but X-ray absorption spectroscopy coupled with density functional and multireference ab initio calculations indicates that the best description of all the complexes is iron(II). In the formally iron(I) complexes, this does not imply that the π-acceptor ligand has radical character, because the iron(II) description arises from doubly-occupied frontier molecular orbitals that are shared equitably by the iron and the π-acceptor ligand, and the unpaired electrons lie on the metal. Despite the lack of substantial radical character on the ligands, alkyne and ketone fragments can couple to form a high-spin iron(III) complex with a cyclized metalladihydrofuran core.
Collapse
Affiliation(s)
- K Cory MacLeod
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06511
| | - Ida M DiMucci
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca New York 14853
| | - Edward P Zovinka
- Department of Chemistry, Saint Francis University, Loretto, Pennsylvania 15940
| | - Sean F McWilliams
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06511
| | - Brandon Q Mercado
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06511
| | - Kyle M Lancaster
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca New York 14853
| | - Patrick L Holland
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06511
| |
Collapse
|
30
|
Levitsky MM, Bilyachenko AN, Shubina ES, Long J, Guari Y, Larionova J. Magnetic cage-like metallasilsesquioxanes. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.213015] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
31
|
Bodenstein T, Eichhöfer A. Magnetic anisotropy in trigonal planar Fe(ii) bis(trimethylsilyl)amido complexes of the type [Fe{N(SiMe 3) 2} 2L]-experiment and theory. Dalton Trans 2019; 48:15699-15712. [PMID: 31538172 DOI: 10.1039/c9dt01702j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Systematic ac (alternating current) magnetic investigations on four new trigonal planar high-spin Fe2+ complexes [Fe{N(SiMe3)2}2L] reveal that complexes which comprise a phosphine or arsine type ligand (L = PPh3, PMe3 and AsPh3) display slow magnetic relaxation at temperatures below 8 K under applied dc (direct current) fields, whereas a complex with a phosphine oxide ligand (L = OPPh3) does not. Accordingly, the parameters characteristic for magnetic anisotropy, derived both from dc magnetic measurements and quantum chemical calculations, reveal distinct differences for these two types of complexes. Extensive ab initio calculations of multi-reference wave function type were performed on the four new complexes listed above and the related reported ones with L = py, thf and PCy3 in order to get a reasonable description of the local electronic states involved in the magnetic relaxation. These calculations confirm that strong spin-orbit effects generate the magnetic anisotropy of complexes with L = PPh3, PMe3, AsPh3 and PCy3. On the other hand, the complexes with L = OPPh3, py and THF exhibit only small spin-orbit splittings, consistent with the fast relaxation found experimentally.
Collapse
Affiliation(s)
- Tilmann Bodenstein
- Institut für Nanotechnologie, Karlsruher Institut für Technologie (KIT), Campus Nord, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
| | | |
Collapse
|
32
|
Zhang Y. Computational Investigations of Heme Carbenes and Heme Carbene Transfer Reactions. Chemistry 2019; 25:13231-13247. [DOI: 10.1002/chem.201901984] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/19/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Yong Zhang
- Department of Chemistry and Chemical Biology Stevens Institute of Technology 1 Castle Point on Hudson Hoboken NJ 07030 USA
| |
Collapse
|
33
|
Ye M, Thompson NB, Brown AC, Suess DLM. A Synthetic Model of Enzymatic [Fe 4S 4]-Alkyl Intermediates. J Am Chem Soc 2019; 141:13330-13335. [PMID: 31373801 PMCID: PMC6748666 DOI: 10.1021/jacs.9b06975] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Although
alkyl complexes of [Fe4S4] clusters
have been invoked as intermediates in a number of enzymatic reactions,
obtaining a detailed understanding of their reactivity patterns and
electronic structures has been difficult owing to their transient
nature. To address this challenge, we herein report the synthesis
and characterization of a 3:1 site-differentiated [Fe4S4]2+–alkyl cluster. Whereas [Fe4S4]2+ clusters typically exhibit pairwise delocalized
electronic structures in which each Fe has a formal valence of 2.5+,
Mössbauer spectroscopic and computational studies suggest that
the highly electron-releasing alkyl group partially localizes the
charge distribution within the cubane, an effect that has not been
previously observed in tetrahedrally coordinated [Fe4S4] clusters.
Collapse
Affiliation(s)
- Mengshan Ye
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Niklas B Thompson
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Alexandra C Brown
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Daniel L M Suess
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| |
Collapse
|
34
|
Yogendra S, Weyhermüller T, Hahn AW, DeBeer S. From Ylides to Doubly Yldiide-Bridged Iron(II) High Spin Dimers via Self-Protolysis. Inorg Chem 2019; 58:9358-9367. [PMID: 31260277 PMCID: PMC6750861 DOI: 10.1021/acs.inorgchem.9b01086] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Indexed: 12/20/2022]
Abstract
A synthetic strategy for the preparation of novel doubly yldiide bridged iron(II) high spin dimers ([(μ2-C)FeL]2, L = N(SiMe3)2, Mesityl) has been developed. This includes the synthesis of ylide-iron(II) monomers [(Ylide)FeL2] via adduct formation. Subsequent self-protolysis at elevated temperatures by in situ deprotonation of the ylide ligands results in a dimerization reaction forming the desired bridging μ2-C yldiide ligands in [(μ2-C)FeL]2. The comprehensive structural and electronic analysis of dimers [(μ2-C)FeL]2, including NMR, Mössbauer, and X-ray spectroscopy, as well as X-ray crystallography, SQUID, and DFT calculations, confirm their high-spin FeII configurations. Interestingly, the Fe2C2 cores display very acute Fe-C-Fe angles (averaged: 78.6(2)°) resulting in short Fe···Fe distances (averaged: 2.588(2) Å). A remarkably strong antiferromagnetic coupling between the Fe centers has been identified. Strongly polarized Fe-C bonds are observed where the negative charge is mostly centered at the μ2-C yldiide ligands.
Collapse
Affiliation(s)
- Sivathmeehan Yogendra
- Max Planck Institute for Chemical Energy
Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Thomas Weyhermüller
- Max Planck Institute for Chemical Energy
Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Anselm W. Hahn
- Max Planck Institute for Chemical Energy
Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy
Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
35
|
Johnson EJ, Kleinlein C, Musgrave RA, Betley TA. Diiron oxo reactivity in a weak-field environment. Chem Sci 2019; 10:6304-6310. [PMID: 31341583 PMCID: PMC6598509 DOI: 10.1039/c9sc00605b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 05/08/2019] [Indexed: 11/21/2022] Open
Abstract
Concomitant deprotonation and metalation of a dinucleating cofacial Pacman dipyrrin ligand platform tBudmxH2 with Fe2(Mes)4 results in formation of a diiron complex ( tBudmx)Fe2(Mes)2. Treatment of ( tBudmx)Fe2(Mes)2 with one equivalent of water yields the diiron μ-oxo complex ( tBudmx)Fe2(μ-O) and free mesitylene. A two-electron oxidation of ( tBudmx)Fe2(μ-O) gives rise to the diferric complex ( tBudmx)Fe2(μ-O)Cl2, and one-electron reduction from this FeIIIFeIII state allows for isolation of a mixed-valent species [Cp2Co][( tBudmx)Fe2(μ-O)Cl2]. Both ( tBudmx)Fe2(μ-O) and [Cp2Co][( tBudmx)Fe2(μ-O)Cl2] exhibit basic character at the bridging oxygen atom and can be protonated using weak acids to form bridging diferrous hydroxide species. The basicity of the diferrous oxo ( tBudmx)Fe2(μ-O) is quantified through studies of the pK a of its conjugate acid, [( tBudmx)Fe2(μ-OH)]+, which is determined to be 15.3(6); interestingly, upon coordination of neutral solvent ligands to yield ( tBudmx)Fe2(μ-O)(thf)2, the basicity is increased as observed through an increase in the pK a of the conjugate acid [( tBudmx)Fe2(μ-OH)(thf)2]+ to 26.8(6). In contrast, attempts to synthesize a diferric bridging hydroxide by two-electron oxidation of [( tBudmx)Fe2(μ-OH)(thf)2]+ resulted in isolation of ( tBudmx)Fe2(μ-O)Cl2 with concomitant loss of a proton, consistent with the pK a of the conjugate acid [( tBudmx)Fe2(μ-OH)Cl2]+ determined computationally to be -1.8(6). The foregoing results highlight the intricate interplay between oxidation state and reactivity in diiron μ-oxo units.
Collapse
Affiliation(s)
- Elizabeth J Johnson
- Department of Chemistry and Chemical Biology , Harvard University , Cambridge , MA 02138 , USA .
| | - Claudia Kleinlein
- Department of Chemistry and Chemical Biology , Harvard University , Cambridge , MA 02138 , USA .
| | - Rebecca A Musgrave
- Department of Chemistry and Chemical Biology , Harvard University , Cambridge , MA 02138 , USA .
| | - Theodore A Betley
- Department of Chemistry and Chemical Biology , Harvard University , Cambridge , MA 02138 , USA .
| |
Collapse
|
36
|
Whangbo MH, Xiang H, Koo HJ, Gordon EE, Whitten JL. Electronic and Structural Factors Controlling the Spin Orientations of Magnetic Ions. Inorg Chem 2019; 58:11854-11874. [PMID: 31247865 DOI: 10.1021/acs.inorgchem.9b00687] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Magnetic ions M in discrete molecules and extended solids form MLn complexes with their first-coordinate ligand atoms L. The spin moment of M in a complex MLn prefers a certain direction in coordinate space because of spin-orbit coupling (SOC). In this minireview, we examine the structural and electronic factors governing the preferred spin orientations. Elaborate experimental measurements and/or sophisticated computational efforts are required to find the preferred spin orientations of magnetic ions, largely because the energy scale of SOC is very small. The latter is also the very reason why one can readily predict the preferred spin orientation of M by analyzing the SOC-induced highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) interactions of the MLn complexes in terms of qualitative perturbation theory. The strength of this HOMO-LUMO interaction depends on the spin orientation, which is governed by the selection rules based on the minimum |ΔLz| value (i.e., the minimum difference in the magnetic quantum numbers) between the HOMO and LUMO. With the local z axis of MLn chosen as its n-fold rotational axis, the preferred spin orientation is parallel to the z axis (∥z) when |ΔLz| = 0 but perpendicular to the z axis (⊥z) when |ΔLz| = 1.
Collapse
Affiliation(s)
- Myung-Hwan Whangbo
- Department of Chemistry , North Carolina State University , Raleigh , North Carolina 27695-8204 , United States.,State Key Laboratory of Structural Chemistry , Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences , Fuzhou 350002 , P. R. China.,State Key Laboratory of Crystal Materials , Shandong University , Jinan 250100 , P. R. China
| | - Hongjun Xiang
- Key Laboratory of Computational Physical Sciences (Ministry of Education), State Key Laboratory of Surface Physics, and Department of Physics , Fudan University , Shanghai 200433 , P. R. China.,Collaborative Innovation Center of Advanced Microstructures , Nanjing 210093 , P. R. China
| | - Hyun-Joo Koo
- Department of Chemistry and Research institute for Basic Sciences , Kyung Hee University , Seoul 02447 , Republic of Korea
| | - Elijah E Gordon
- Ames Laboratory, U.S. Department of Energy , Ames , Iowa 50011 , United States
| | - Jerry L Whitten
- Department of Chemistry , North Carolina State University , Raleigh , North Carolina 27695-8204 , United States
| |
Collapse
|
37
|
McWilliams SF, Bunting PC, Kathiresan V, Mercado BQ, Hoffman BM, Long JR, Holland PL. Isolation and characterization of a high-spin mixed-valent iron dinitrogen complex. Chem Commun (Camb) 2018; 54:13339-13342. [PMID: 30403226 DOI: 10.1039/c8cc07294a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a rare example of a mixed-valence iron compound with an FeNNFe core, which gives insight into the structural, spectroscopic, and magnetic influences of single-electron reductions and oxidations. In the new compound, the odd electron is localized as judged from Mössbauer spectra at 80 K and infrared spectra at room temperature, and the backbonding into the N2 unit is intermediate between diiron(i) and diiron(0) congeners. Magnetic susceptibility and relaxation studies on the series of FeNNFe compounds show significant magnetic anisotropy, but through-barrier pathways enable fairly rapid magnetic relaxation.
Collapse
Affiliation(s)
- Sean F McWilliams
- Department of Chemistry, Yale University, 225 Prospect St., New Haven, CT 06520, USA.
| | | | | | | | | | | | | |
Collapse
|
38
|
Kaniewska K, Dragulescu-Andrasi A, Ponikiewski Ł, Pikies J, Stoian SA, Grubba R. Syntheses, Structures and Reactivity of Terminal Phosphido Complexes of Iron(II) Supported by a β-Diketiminato Ligand. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800850] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Kinga Kaniewska
- Department of Inorganic Chemistry; Chemical Faculty; Gdańsk University of Technology; 11/12 Gabriela Narutowicza Str. 80-233 Gdańsk Poland
| | | | - Łukasz Ponikiewski
- Department of Inorganic Chemistry; Chemical Faculty; Gdańsk University of Technology; 11/12 Gabriela Narutowicza Str. 80-233 Gdańsk Poland
| | - Jerzy Pikies
- Department of Inorganic Chemistry; Chemical Faculty; Gdańsk University of Technology; 11/12 Gabriela Narutowicza Str. 80-233 Gdańsk Poland
| | | | - Rafał Grubba
- Department of Inorganic Chemistry; Chemical Faculty; Gdańsk University of Technology; 11/12 Gabriela Narutowicza Str. 80-233 Gdańsk Poland
| |
Collapse
|
39
|
McWilliams SF, Bill E, Lukat-Rodgers G, Rodgers KR, Mercado BQ, Holland PL. Effects of N 2 Binding Mode on Iron-Based Functionalization of Dinitrogen to Form an Iron(III) Hydrazido Complex. J Am Chem Soc 2018; 140:8586-8598. [PMID: 29957940 PMCID: PMC6115203 DOI: 10.1021/jacs.8b04828] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Distinguishing the reactivity differences between N2 complexes having different binding modes is crucial for the design of effective N2-functionalizing reactions. Here, we compare the reactions of a K-bridged, dinuclear FeNNFe complex with a monomeric Fe(N2) complex where the bimetallic core is broken up by the addition of chelating agents. The new anionic iron(0) dinitrogen complex has enhanced electron density at the distal N atoms of coordinated N2, and though the N2 is not as weakened in this monomeric compound, it is much more reactive toward silylation by (CH3)3SiI (TMSI). Double silylation of N2 gives a three-coordinate iron(III) hydrazido(2-) complex, which is finely balanced between coexisting S = 1/2 and S = 3/2 states that are characterized by crystallography, spectroscopy, and computations. These results give insight into the interdependence between binding modes, alkali dependence, reactivity, and magnetic properties within an iron system that functionalizes N2.
Collapse
Affiliation(s)
- Sean F. McWilliams
- Department of Chemistry, Yale University, 225 Prospect St., New Haven, Connecticut 06520
| | - Eckhard Bill
- Max-Planck-Insitut für Chemische Energiekonversion, Mülheim an der Ruhr, Germany
| | - Gudrun Lukat-Rodgers
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58105
| | - Kenton R. Rodgers
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58105
| | - Brandon Q. Mercado
- Department of Chemistry, Yale University, 225 Prospect St., New Haven, Connecticut 06520
| | - Patrick L. Holland
- Department of Chemistry, Yale University, 225 Prospect St., New Haven, Connecticut 06520
| |
Collapse
|
40
|
Pelmenschikov V, Gee LB, Wang H, MacLeod KC, McWilliams SF, Skubi KL, Cramer SP, Holland PL. High-Frequency Fe-H Vibrations in a Bridging Hydride Complex Characterized by NRVS and DFT. Angew Chem Int Ed Engl 2018; 57:9367-9371. [PMID: 29847703 DOI: 10.1002/anie.201804601] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Indexed: 11/10/2022]
Abstract
High-spin iron species with bridging hydrides have been detected in species trapped during nitrogenase catalysis, but there are few general methods of evaluating Fe-H bonds in high-spin multinuclear iron systems. An 57 Fe nuclear resonance vibrational spectroscopy (NRVS) study on an Fe(μ-H)2 Fe model complex reveals Fe-H stretching vibrations for bridging hydrides at frequencies greater than 1200 cm-1 . These isotope-sensitive vibrational bands are not evident in infrared (IR) spectra, showing the power of NRVS for identifying hydrides in this high-spin iron system. Complementary density functional theory (DFT) calculations elucidate the normal modes of the rhomboidal iron hydride core.
Collapse
Affiliation(s)
| | - Leland B Gee
- Department of Chemistry, University of California, Davis, CA, 95616, USA.,Current Address: Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - Hongxin Wang
- Department of Chemistry, University of California, Davis, CA, 95616, USA
| | - K Cory MacLeod
- Department of Chemistry, Yale University, New Haven, CT, 06520, USA
| | | | - Kazimer L Skubi
- Department of Chemistry, Yale University, New Haven, CT, 06520, USA
| | - Stephen P Cramer
- Department of Chemistry, University of California, Davis, CA, 95616, USA
| | | |
Collapse
|
41
|
Pelmenschikov V, Gee LB, Wang H, MacLeod KC, McWilliams SF, Skubi KL, Cramer SP, Holland PL. High-Frequency Fe-H Vibrations in a Bridging Hydride Complex Characterized by NRVS and DFT. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201804601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | - Leland B. Gee
- Department of Chemistry; University of California; Davis CA 95616 USA
- Current Address: Department of Chemistry; Stanford University; Stanford CA 94305 USA
| | - Hongxin Wang
- Department of Chemistry; University of California; Davis CA 95616 USA
| | - K. Cory MacLeod
- Department of Chemistry; Yale University; New Haven CT 06520 USA
| | | | - Kazimer L. Skubi
- Department of Chemistry; Yale University; New Haven CT 06520 USA
| | - Stephen P. Cramer
- Department of Chemistry; University of California; Davis CA 95616 USA
| | | |
Collapse
|
42
|
Wagner S, Martinaiou I, Shahraei A, Weidler N, Kramm UI. On the effect of sulfite ions on the structural composition and ORR activity of Fe-N-C catalysts. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/s10751-017-1485-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
43
|
Gendron F, Bolvin H, Autschbach J. Complete Active Space Wavefunction-Based Analysis of Magnetization and Electronic Structure. TOP ORGANOMETAL CHEM 2018. [DOI: 10.1007/3418_2018_6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
44
|
|
45
|
Grubba R, Kaniewska K, Ponikiewski Ł, Cristóvão B, Ferenc W, Dragulescu-Andrasi A, Krzystek J, Stoian SA, Pikies J. Synthetic, Structural, and Spectroscopic Characterization of a Novel Family of High-Spin Iron(II) [(β-Diketiminate)(phosphanylphosphido)] Complexes. Inorg Chem 2017; 56:11030-11042. [PMID: 28841309 DOI: 10.1021/acs.inorgchem.7b01374] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
This work describes a series of iron(II) phosphanylphosphido complexes. These compounds were obtained by reacting lithiated diphosphanes R2PP(SiMe3)Li (R = t-Bu, i-Pr) with an iron(II) β-diketiminate complex, [LFe(μ2-Cl)2Li(DME)2] (1), where DME = 1,2-dimethoxyethane and L = Dippnacnac (β-diketiminate). While the reaction of 1 with t-Bu2PP(SiMe3)Li yields [LFe(η1-Me3SiPP-t-Bu2)] (2), that of 1 with equimolar amounts of i-Pr2PP(SiMe3)Li, in DME, leads to [LFe(η2-i-Pr2PPSiMe3)] (3). In contrast, the reaction of 1 with (i-Pr2N)2PP(SiMe3)Li provides not an iron-containing complex but 1-[(diisopropylamino)phosphine]-2,4-bis(diisopropylamino)-3-(trimethylsilyl)tetraphosphetane (4). The structures of 2-4 were determined using diffractometry. Thus, 2 exhibits a three-coordinate iron site and 3 a four-coordinate iron site. The increase in the coordination number is induced by the change from an anticlinal to a synclinal conformation of the phoshpanylphosphido ligands. The electronic structures of 2 and 3 were assessed through a combined field-dependent 57Fe Mössbauer and high-frequency and -field electron paramagnetic resonance spectroscopic investigation in conjunction with analysis of their magnetic susceptibility and magnetization data. These studies revealed two high-spin iron(II) sites with S = 2 ground states that have different properties. While 2 exhibits a zero-field splitting described by a positive D parameter (D = +17.4 cm-1; E/D = 0.11) for 3, this parameter is negative [D = -25(5) cm-1; E/D = 0.15(5)]. Density functional theory (DFT) and time-dependent DFT (TDDFT) calculations provide insights into the origin of these differences and allow us to rationalize the fine and hyperfine structure parameters of 2 and 3. Thus, for 2, the spin-orbit coupling mixes a z2-type ground state with two low-lying {xz/yz} orbital states. These interactions lead to an easy plane of magnetization, which is essentially parallel to the plane defined by the N-Fe-N atoms. For 3, we find a yz-type ground state that is strongly mixed with a low-lying z2-type orbital state. In this case, the spin-orbit interaction leads to a partial unquenching of the orbital momentum along the x axis, that is, to an easy axis of magnetization oriented roughly along the Fe-P bond of the phosphido moiety.
Collapse
Affiliation(s)
- Rafał Grubba
- Department of Inorganic Chemistry, Chemical Faculty, Gdańsk University of Technology , G. Narutowicza St. 11/12, Gdańsk PL-80-233, Poland
| | - Kinga Kaniewska
- Department of Inorganic Chemistry, Chemical Faculty, Gdańsk University of Technology , G. Narutowicza St. 11/12, Gdańsk PL-80-233, Poland
| | - Łukasz Ponikiewski
- Department of Inorganic Chemistry, Chemical Faculty, Gdańsk University of Technology , G. Narutowicza St. 11/12, Gdańsk PL-80-233, Poland
| | - Beata Cristóvão
- Department of General and Coordination Chemistry, Faculty of Chemistry, Maria Curie-Skłodowska University , Maria Curie-Skłodowska Sq. 2, Lublin PL-20-031, Poland
| | - Wiesława Ferenc
- Department of General and Coordination Chemistry, Faculty of Chemistry, Maria Curie-Skłodowska University , Maria Curie-Skłodowska Sq. 2, Lublin PL-20-031, Poland
| | - Alina Dragulescu-Andrasi
- Department of Chemistry and Biochemistry, Florida State University , Tallahassee, Florida 32306, United States
| | - J Krzystek
- National High Magnetic Field Laboratory, Florida State University , Tallahassee, Florida 32310, United States
| | - Sebastian A Stoian
- Department of Chemistry and Biochemistry, Florida State University , Tallahassee, Florida 32306, United States.,National High Magnetic Field Laboratory, Florida State University , Tallahassee, Florida 32310, United States.,Department of Chemistry, University of Idaho , Moscow, Idaho 83844, United States
| | - Jerzy Pikies
- Department of Inorganic Chemistry, Chemical Faculty, Gdańsk University of Technology , G. Narutowicza St. 11/12, Gdańsk PL-80-233, Poland
| |
Collapse
|
46
|
McWilliams SF, Brennan-Wydra E, MacLeod KC, Holland PL. Density Functional Calculations for Prediction of 57Fe Mössbauer Isomer Shifts and Quadrupole Splittings in β-Diketiminate Complexes. ACS OMEGA 2017; 2:2594-2606. [PMID: 28691111 PMCID: PMC5494642 DOI: 10.1021/acsomega.7b00595] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 05/24/2017] [Indexed: 05/09/2023]
Abstract
The relative ease of Mössbauer spectroscopy and of density functional theory (DFT) calculations encourages the use of Mössbauer parameters as a validation method for calculations, and the use of calculations as a double check on crystallographic structures. A number of studies have proposed correlations between the computationally determined electron density at the iron nucleus and the observed isomer shift, but deviations from these correlations in low-valent iron β-diketiminate complexes encouraged us to determine a new correlation for these compounds. The use of B3LYP/def2-TZVP in the ORCA platform provides an excellent balance of accuracy and speed. We provide here not only this new correlation and a clear guide to its use but also a systematic analysis of the limitations of this approach. We also highlight the impact of crystallographic inaccuracies, DFT model truncation, and spin states, with intent to assist experimentalists to use Mössbauer spectroscopy and calculations together.
Collapse
Affiliation(s)
- Sean F McWilliams
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Emma Brennan-Wydra
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - K Cory MacLeod
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Patrick L Holland
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| |
Collapse
|
47
|
Bar AK, Gogoi N, Pichon C, Goli VMLDP, Thlijeni M, Duhayon C, Suaud N, Guihéry N, Barra AL, Ramasesha S, Sutter JP. Pentagonal Bipyramid Fe II Complexes: Robust Ising-Spin Units towards Heteropolynuclear Nanomagnets. Chemistry 2017; 23:4380-4396. [PMID: 28118518 DOI: 10.1002/chem.201605549] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Indexed: 11/07/2022]
Abstract
Pentagonal bipyramid FeII complexes have been investigated to evaluate their potential as Ising-spin building units for the preparation of heteropolynuclear complexes that are likely to behave as single-molecule magnets (SMMs). The considered monometallic complexes were prepared from the association of a divalent metal ion with pentadentate ligands that have a 2,6-diacetylpyridine bis(hydrazone) core (H2 LN3O2R ). Their magnetic anisotropy was established by magnetometry to reveal their zero-field splitting (ZFS) parameter D, which ranged between -4 and -13 cm-1 and was found to be modulated by the apical ligands (ROH versus Cl). The alteration of the D value by N-bound axial CN ligands, upon association with cyanometallates, was also assessed for heptacoordinated FeII as well as for related NiII and CoII derivatives. In all cases, N-coordinated cyanide ligands led to large magnetic anisotropy (i.e., -8 to -18 cm-1 for Fe and Ni, +33 cm-1 for Co). Ab initio calculations were performed on three FeII complexes, which enabled one to rationalize the role of the ligand on the nature and magnitude of the magnetic anisotropy. Starting from the pre-existing heptacoordinated complexes, a series of pentanuclear compounds were obtained by reactions with paramagnetic [W(CN)8 ]3- . Magnetic studies revealed the occurrence of ferromagnetic interactions between the spin carriers in all the heterometallic systems. Field-induced slow magnetic relaxation was observed for mononuclear FeII complexes (Ueff /kB up to 53 K (37 cm-1 ), τ0 =5×10-9 s), and SMM behavior was evidenced for a heteronuclear [Fe3 W2 ] derivative (Ueff /kB =35 K and τ0 =4.6 10-10 s), which confirmed that the parent complexes were robust Ising-type building units. High-field EPR spectroscopic investigation of the ZFS parameters for a Ni derivative is also reported.
Collapse
Affiliation(s)
- Arun Kumar Bar
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205, route de Narbonne, 31077, Toulouse, France.,Université de Toulouse, UPS, INPT, LCC, 31077, Toulouse, France
| | - Nayanmoni Gogoi
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205, route de Narbonne, 31077, Toulouse, France.,Université de Toulouse, UPS, INPT, LCC, 31077, Toulouse, France
| | - Céline Pichon
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205, route de Narbonne, 31077, Toulouse, France.,Université de Toulouse, UPS, INPT, LCC, 31077, Toulouse, France
| | - V M L Durga Prasad Goli
- Indian Institute of Science, Bangalore, 560012, India.,Ulsan National Institute of Science and Technology (UNIST), 50, UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Mehrez Thlijeni
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205, route de Narbonne, 31077, Toulouse, France.,Université de Toulouse, UPS, INPT, LCC, 31077, Toulouse, France
| | - Carine Duhayon
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205, route de Narbonne, 31077, Toulouse, France.,Université de Toulouse, UPS, INPT, LCC, 31077, Toulouse, France
| | - Nicolas Suaud
- Laboratoire de Chimie et Physique Quantiques, UMR5626, IRSAMC, Université de Toulouse 3, Paul Sabatier, 118 route de Narbonne, 31062, Toulouse Cedex 9, France
| | - Nathalie Guihéry
- Laboratoire de Chimie et Physique Quantiques, UMR5626, IRSAMC, Université de Toulouse 3, Paul Sabatier, 118 route de Narbonne, 31062, Toulouse Cedex 9, France
| | - Anne-Laure Barra
- Laboratoire National des Champs Magnétiques Intenses, UPR CNRS 3228, Université Grenoble Alpes, 25, Avenue des Martyrs, B.P. 166, 38042, Grenoble Cedex 9, France
| | - S Ramasesha
- Indian Institute of Science, Bangalore, 560012, India
| | - Jean-Pascal Sutter
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205, route de Narbonne, 31077, Toulouse, France.,Université de Toulouse, UPS, INPT, LCC, 31077, Toulouse, France
| |
Collapse
|
48
|
Reesbeck ME, Grubel K, Kim D, Brennessel WW, Mercado BQ, Holland PL. Diazoalkanes in Low-Coordinate Iron Chemistry: Bimetallic Diazoalkyl and Alkylidene Complexes of Iron(II). Inorg Chem 2017; 56:1019-1022. [PMID: 28067506 DOI: 10.1021/acs.inorgchem.6b01952] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The addition of (trimethylsilyl)diazomethane and its conjugate base to iron β-diketiminate precursors gives novel dinuclear complexes in which the bridges are either diazomethane derivatives or an alkylidene. One product is an unusual bridging alkylidene complex containing two three-coordinate iron(II) centers. On the other hand, syntheses using the deprotonated diazomethane give two bridging diazomethyl species with binding modes that have not been observed in iron complexes previously. In the presence of a coordinating tetrahydrofuran solvent, a diiron(II) compound with μ-N bridges rearranges to a more stable isomer with μ-N,C bridges, a process that is accompanied by a 1,3-shift of a silyl group.
Collapse
Affiliation(s)
- Megan E Reesbeck
- Department of Chemistry, Yale University , 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Katarzyna Grubel
- Department of Chemistry, Yale University , 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Daniel Kim
- Department of Chemistry, Yale University , 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - William W Brennessel
- Department of Chemistry, University of Rochester , 120 Trustee Road, Rochester, New York 14627, United States
| | - Brandon Q Mercado
- Department of Chemistry, Yale University , 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Patrick L Holland
- Department of Chemistry, Yale University , 225 Prospect Street, New Haven, Connecticut 06520, United States
| |
Collapse
|
49
|
Saha S, Roy Choudhury C, Gómez-García CJ, Benmansour S, Garribba E, Frontera A, Rizzoli C, Mitra S. A trigonal prismatic anionic iron(iii) complex of a radical o-iminobenzosemiquinonate derivative: structural and spectral analyses. NEW J CHEM 2017. [DOI: 10.1039/c7nj01212h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The complex [FeIII(L2−˙)2]−is a rare example of a trigonal prismatic Fe(iii) complex with twoS= 1/2 radical isoquinone ligands showing strong antiferromagnetic coupling.
Collapse
Affiliation(s)
- Sandeepta Saha
- Department of Chemistry
- Jadavpur University
- Kolkata-700032
- India
| | | | - Carlos J. Gómez-García
- Instituto de Ciencia Molecular (ICMol)
- Dpto. Química Inorgánica
- Universidad de Valencia
- 46980 Paterna
- Spain
| | - Samia Benmansour
- Instituto de Ciencia Molecular (ICMol)
- Dpto. Química Inorgánica
- Universidad de Valencia
- 46980 Paterna
- Spain
| | - Eugenio Garribba
- Department of Chemistry and Pharmacy
- University of Sassari
- I-07100 Sassari
- Italy
| | - Antonio Frontera
- Departament de Química
- Universitat de les Illes Balears
- Baleares
- Spain
| | | | - Samiran Mitra
- Department of Chemistry
- Jadavpur University
- Kolkata-700032
- India
- Department of Chemistry
| |
Collapse
|
50
|
Pranckevicius C, Iovan DA, Stephan DW. Three and four coordinate Fe carbodiphosphorane complexes. Dalton Trans 2016; 45:16820-16825. [PMID: 27711768 DOI: 10.1039/c6dt03453e] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Carbodiphosphoranes (CDPs) are a family of divalent carbon ligands that are known for their exceptional electron donor properties. Herein, the preparation and reactivity of a family of three and four co-ordinate Fe carbodiphosphorane complexes is described. Hexaphenylcarbodiphosphorane (HCDP) [1] is shown to react with FeCl2(PPh3)2 to form the three coordinate adduct Fe(HCDP)Cl2 [2], which is equilibrium with its four coordinate dimer. Reaction of [2] with two equivalents of benzyl Grignard yields the corresponding dialkyl complex (HCDP)FeBn2 [3]. Combination of [2] with LiHMDS results in salt metathesis and the formation of the monosilylated derivative Fe(HCDP)Cl(N(SiMe3)2) [4]. Subsequent anion exchange leads to the three coordinate Fe(HCDP)(OTf)(N(SiMe3)2) [5] which was characterized crystallographically and in solution.
Collapse
Affiliation(s)
- Conor Pranckevicius
- Department of Chemistry, University of Toronto, 80 St George St., Toronto, ON, Canada M5S3H6.
| | | | | |
Collapse
|