1
|
Souilah C, Jannuzzi SAV, Becker FJ, Demirbas D, Jenisch D, Ivlev S, Xie X, Peredkov S, Lichtenberg C, DeBeer S, Casitas A. Synthesis of Iron(IV) Alkynylide Complexes and Their Reactivity to Form 1,3-Diynes. Angew Chem Int Ed Engl 2025; 64:e202421222. [PMID: 39551703 DOI: 10.1002/anie.202421222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/14/2024] [Accepted: 11/14/2024] [Indexed: 11/19/2024]
Abstract
The isolation of thermally unstable and highly reactive organoiron(IV) complexes is a challenge for synthetic chemists. In particular, the number of examples where the C-based ligand is not part of the chelating ligand remains scarce. These compounds are of interest because they could pave the way to designing catalytic cycles of bond forming reactions proceeding via organoiron(IV) intermediates. Herein, we report the synthesis and characterization, including single-crystal X-ray diffraction, of a family of alkynylferrates(III) and Fe(IV) alkynylide complexes. The alkynylferrates(III) are formed by transmetalation of the Fe(III) precursor [(N3N')FeIII] (N3N'3- is tris(N-tert-butyldimethylsilyl-2-amidoethyl)amine) with lithium alkynylides, and their further one-electron oxidation enables the synthesis of the corresponding Fe(IV) alkynylides. The electronic structure of this family of organometallic Fe(III) and Fe(IV) complexes has been thoroughly investigated by spectroscopic methods (EPR, NMR, 57Fe Mössbauer, X-Ray absorption (XAS) and emission (XES) spectroscopies) and theoretical calculations. While alkynylferrates(III) are sluggish to engage into C-C bond forming processes, the Fe(IV) alkynylides react to afford 1,3-diynes at room temperature. A bimolecular reductive elimination from a bimetallic Fe(IV) intermediate to form the 1,3-diynes is proposed based on the mechanistic investigations performed.
Collapse
Affiliation(s)
- Charafa Souilah
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043, Marburg, Germany
| | - Sergio A V Jannuzzi
- Max Planck Institute for Chemical Energy Conversion (MPI CEC), Stiftstraße 34-36, 45470, Mülheim an der Ruhr, Germany
| | - Felix J Becker
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043, Marburg, Germany
| | - Derya Demirbas
- Max-Planck-Institut für Kohlenforschung (MPI KOFO), Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Daniel Jenisch
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043, Marburg, Germany
| | - Sergei Ivlev
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043, Marburg, Germany
| | - Xiulan Xie
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043, Marburg, Germany
| | - Sergey Peredkov
- Max Planck Institute for Chemical Energy Conversion (MPI CEC), Stiftstraße 34-36, 45470, Mülheim an der Ruhr, Germany
| | - Crispin Lichtenberg
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043, Marburg, Germany
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion (MPI CEC), Stiftstraße 34-36, 45470, Mülheim an der Ruhr, Germany
| | - Alicia Casitas
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043, Marburg, Germany
| |
Collapse
|
2
|
Khurana R, Liu C. Unveiling the Redox Noninnocence of Metallocorroles: Exploring K-Edge X-ray Absorption Near-Edge Spectroscopy with a Multiconfigurational Wave Function Approach. J Phys Chem Lett 2024; 15:10985-10995. [PMID: 39454090 DOI: 10.1021/acs.jpclett.4c02410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2024]
Abstract
X-ray absorption near-edge spectroscopy (XANES) is an advanced technique for probing the local electronic structure of catalysts, effectively identifying the noninnocent nature of ligands in transition-metal complexes. Metallocorroles with noninnocent corrole rings exhibit unusual electronic structures that challenge traditional density functional theory (DFT) methods, necessitating more rigorous approaches to describe electron correlation accurately. We explored K-edge XANES spectra of Fe, Mn, and Co metallocorroles using TDDFT and wave function-based methods. This is the first investigation employing multireference methods, specifically RASSCF, RASPT2, and MC-PDFT, to analyze the redox noninnocent nature of metallocorroles reflected in their XANES spectra. We quantified the noninnocent character of the corrole and the oxidation states of the metals, capturing more than singly excited excitations responsible for the pre-edge peak. Our findings demonstrate the importance of these advanced computational techniques for accurately predicting XANES spectra, providing a reliable understanding of the electronic properties of such complexes. This study offers a new strategy for investigating ligand redox noninnocence via integrated experimental and computational XANES.
Collapse
Affiliation(s)
- Rishu Khurana
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Cong Liu
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
3
|
Li C, Mao S, Huang R, Evangelista FA. Frozen Natural Orbitals for the State-Averaged Driven Similarity Renormalization Group. J Chem Theory Comput 2024; 20:4170-4181. [PMID: 38747709 DOI: 10.1021/acs.jctc.4c00152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
We present a reduced-cost implementation of the state-averaged driven similarity renormalization group (SA-DSRG) based on the frozen natural orbital (FNO) approach. The natural orbitals (NOs) are obtained by diagonalizing the one-body reduced density matrix from SA-DSRG second-order perturbation theory (SA-DSRG-PT2). We consider three criteria to truncate the virtual NOs for the subsequent electron correlation treatment beyond SA-DSRG-PT2. An additive second-order correction is applied to the SA-DSRG Hamiltonian to reintroduce correlation effects from the discarded orbitals. The FNO SA-DSRG method is benchmarked on 35 small organic molecules in the QUEST database. When keeping 98-99% of the cumulative occupation numbers, the mean absolute error in the vertical transition energies due to FNO is less than 0.01 eV. Using the same FNO threshold, we observe a speedup of 9 times compared to the conventional SA-DSRG implementation for nickel carbonyl with a quadruple-ζ basis set. The FNO approach enables nonperturbative SA-DSRG computations on chloroiron corrole [FeCl(C19H11N4)] with more than 1000 basis functions, surpassing the current limit of a conventional implementation.
Collapse
Affiliation(s)
- Chenyang Li
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Shuxian Mao
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Renke Huang
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| | - Francesco A Evangelista
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
4
|
Ghosh A, Conradie J. B12 and F430 models: Metal- versus ligand-centered redox in cobalt and nickel tetradehydrocorrin derivatives. J Inorg Biochem 2023; 243:112199. [PMID: 36996695 DOI: 10.1016/j.jinorgbio.2023.112199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 03/18/2023] [Indexed: 03/29/2023]
Abstract
DFT calculations with the well-tested OLYP and B3LYP* exchange-correlation functionals (along with D3 dispersion corrections and all-electron ZORA STO-TZ2P basis sets) and careful use of group theory have led to significant insights into the question of metal- versus ligand-centered redox in Co and Ni B,C-tetradehydrocorrin complexes. For the cationic complexes, both metals occur in their low-spin M(II) forms. In contrast, the charge-neutral states vary for the two metals: while the Co(I) and CoII-TDC•2- state are comparable in energy for cobalt, a low-spin NiII-TDC•2- state is clearly preferred for nickel. The latter behavior stands in sharp contrast to other corrinoids that reportedly stabilize a Ni(I) center.
Collapse
Affiliation(s)
- Abhik Ghosh
- Department of Chemistry, UiT The Arctic University of Norway, N-9037 Tromsø, Norway.
| | - Jeanet Conradie
- Department of Chemistry, University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa.
| |
Collapse
|
5
|
Ren W, Schulz CE, Shroyer MH, Xu W, Xi S, An P, Guo W, Li J. Electronic Configurations and the Effect of Peripheral Substituents of (Nitrosyl)iron Corroles. Inorg Chem 2022; 61:20385-20396. [DOI: 10.1021/acs.inorgchem.2c03026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Wanjie Ren
- College of Materials Science and Optoelectronic Technology and Chinese Academy of Sciences Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Yanqi Lake, Huairou District, Beijing101408, P. R. China
| | - Charles E. Schulz
- Department of Physics and Astronomy, Knox College, Galesburg, Illinois61401, United States
| | - Mark H. Shroyer
- Department of Physics and Astronomy, Knox College, Galesburg, Illinois61401, United States
| | - Wei Xu
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing100049, P. R. China
- RICMASS, Rome International Center for Materials Science Superstripes, Via dei Sabelli 119A, Rome00185, Italy
| | - Shibo Xi
- Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research, 1 Pesek Road, Jurong Island, Singapore627833, Singapore
| | - Pengfei An
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing100049, P. R. China
| | - Wenping Guo
- National Energy Center for Coal to Clean Fuels, Synfuels China Co., Ltd., Huairou District, Beijing101400, P. R. China
| | - Jianfeng Li
- College of Materials Science and Optoelectronic Technology and Chinese Academy of Sciences Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Yanqi Lake, Huairou District, Beijing101408, P. R. China
| |
Collapse
|
6
|
Corrole and squeezed coordination. Nat Chem 2022; 14:1474. [PMID: 36376391 DOI: 10.1038/s41557-022-01096-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
Gao H, Wu F, Zhao Y, Zhi X, Sun Y, Shen Z. Highly Stable Neutral Corrole Radical: Amphoteric Aromatic-Antiaromatic Switching and Efficient Photothermal Conversion. J Am Chem Soc 2022; 144:3458-3467. [PMID: 35170957 DOI: 10.1021/jacs.1c11716] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The preparation of novel stable radical systems that survive and may be manipulated under harsh conditions is essential for their practical applications, such as energy storage and conversion materials. Here, we present a facile synthesis of an electrically neutral benzo-fused nickel corrole radical that shows remarkable photo- and thermal stability. The carbon-based organic radical character was confirmed using electron spin resonance and spin population analyses. This radical may be reversibly converted to its aromatic or antiaromatic ion via a one-electron redox process, as indicated by nuclear magnetic resonance chemical shifts and theoretical calculations. Notably, the antiaromatic state is stable, showing intense ring currents with complex pathways. The spectroscopic characteristics and calculated molecular orbitals of the corrole radical exhibit a combination of aromatic and antiaromatic features. On the basis of the aromatic light-harvesting property and antiaromatic emission-free character, the corrole radical exhibits highly robust, efficient photothermal energy conversion in water after encapsulation within nanoparticles, with the unpaired spin simultaneously retained. These results provide a fundamental understanding of the relationship between the (anti)aromaticity and photophysical properties of a porphyrinoid radical and a promising platform for the design of radical-based functional materials.
Collapse
Affiliation(s)
- Hu Gao
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Fan Wu
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xu Zhi
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yufen Sun
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zhen Shen
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
8
|
Caulfield KP, Tonzetich ZJ. Alkyl Complexes of Iron(IV) Triphenylcorrole. Organometallics 2022. [DOI: 10.1021/acs.organomet.1c00635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kenneth P. Caulfield
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Zachary J. Tonzetich
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| |
Collapse
|
9
|
Phung QM, Muchammad Y, Yanai T, Ghosh A. A DMRG/CASPT2 Investigation of Metallocorroles: Quantifying Ligand Noninnocence in Archetypal 3d and 4d Element Derivatives. JACS AU 2021; 1:2303-2314. [PMID: 34984418 PMCID: PMC8717376 DOI: 10.1021/jacsau.1c00417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Indexed: 05/03/2023]
Abstract
Hybrid density functional theory (B3LYP) and density matrix renormalization group (DMRG) theory have been used to quantitatively compare the degree of ligand noninnocence (corrole radical character) in seven archetypal metallocorroles. The seven complexes, in decreasing order of corrole noninnocent character, are Mn[Cor]Cl > Fe[Cor]Cl > Fe[Cor](NO) > Mo[Cor]Cl2 > Ru[Cor](NO) ≈ Mn[Cor]Ph ≈ Fe[Cor]Ph ≈ 0, where [Cor] refers to the unsubstituted corrolato ligand. DMRG-based second-order perturbation theory calculations have also yielded detailed excited-state energetics data on the compounds, shedding light on periodic trends involving middle transition elements. Thus, whereas the ground state of Fe[Cor](NO) (S = 0) is best described as a locally S = 1/2 {FeNO}7 unit antiferromagnetically coupled to a corrole A' radical, the calculations confirm that Ru[Cor](NO) may be described as simply {RuNO}6-Cor3-, that is, having an innocent corrole macrocycle. Furthermore, whereas the ferromagnetically coupled S = 1{FeNO}7-Cor•2- state of Fe[Cor](NO) is only ∼17.5 kcal/mol higher than the S = 0 ground state, the analogous triplet state of Ru[Cor](NO) is higher by a far larger margin (37.4 kcal/mol) relative to the ground state. In the same vein, Mo[Cor]Cl2 exhibits an adiabatic doublet-quartet gap of 36.1 kcal/mol. The large energy gaps associated with metal-ligand spin coupling in Ru[Cor](NO) and Mo[Cor]Cl2 reflect the much greater covalent character of 4d-π interactions relative to analogous interactions involving 3d orbitals. As far as excited-state energetics is concerned, DMRG-CASPT2 calculations provide moderate validation for hybrid density functional theory (B3LYP) for qualitative purposes, but underscore the possibility of large errors (>10 kcal/mol) in interstate energy differences.
Collapse
Affiliation(s)
- Quan Manh Phung
- Department
of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
- Institute
of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Yasin Muchammad
- Department
of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Takeshi Yanai
- Department
of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
- Institute
of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Abhik Ghosh
- Department
of Chemistry, UiT-The Arctic University
of Norway, N-9037 Tromsø, Norway
| |
Collapse
|
10
|
Conradie J, Vazquez-Lima H, Alemayehu AB, Ghosh A. Comparing Isoelectronic, Quadruple-Bonded Metalloporphyrin and Metallocorrole Dimers: Scalar-Relativistic DFT Calculations Predict a >1 eV Range for Ionization Potential and Electron Affinity. ACS PHYSICAL CHEMISTRY AU 2021; 2:70-78. [PMID: 36855506 PMCID: PMC9955219 DOI: 10.1021/acsphyschemau.1c00030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A scalar-relativistic DFT study of isoelectronic, quadruple-bonded Group 6 metalloporphyrins (M = Mo, W) and Group 7 metallocorroles (M = Tc, Re) has uncovered dramatic differences in ionization potential (IP) and electron affinity (EA) among the compounds. Thus, both the IPs and EAs of the corrole derivatives are 1 eV or more higher than those of the porphyrin derivatives. These differences largely reflect the much lower orbital energies of the δ- and δ*-orbitals of the corrole dimers relative to those of the porphyrin dimers, which in turn reflect the higher (+III as opposed to +II) oxidation states of the metals in the former compounds. Significant differences have also been determined between Mo and W porphyrin dimers and between Tc and Re corrole dimers. These differences are thought to largely reflect greater relativistic destabilization of the 5d orbitals of W and Re relative to the 4d orbitals of Mo and Tc. The calculated differences in IP and EA should translate to major differences in electrochemical redox potentials-a prediction that in our opinion is well worth confirming.
Collapse
Affiliation(s)
- Jeanet Conradie
- Department
of Chemistry, UiT − The Arctic University
of Norway, N-9037 Tromsø, Norway,Department
of Chemistry, University of the Free State, P.O. Box 339, Bloemfontein 9300, Republic of South Africa
| | - Hugo Vazquez-Lima
- Department
of Chemistry, UiT − The Arctic University
of Norway, N-9037 Tromsø, Norway
| | - Abraham B. Alemayehu
- Department
of Chemistry, UiT − The Arctic University
of Norway, N-9037 Tromsø, Norway
| | - Abhik Ghosh
- Department
of Chemistry, UiT − The Arctic University
of Norway, N-9037 Tromsø, Norway,; Telephone: +47 45476145
| |
Collapse
|
11
|
Vazquez-Lima H, Conradie J, Johansen MAL, Martinsen SR, Alemayehu AB, Ghosh A. Heavy-element-ligand covalence: ligand noninnocence in molybdenum and tungsten Viking-helmet Corroles. Dalton Trans 2021; 50:12843-12849. [PMID: 34473174 DOI: 10.1039/d1dt01970h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Extensive DFT calculations with several exchange-correlation functionals indicate that molybdenum-dichlorido Viking helmet corroles are noninnocent with significant MoIV-corrole˙2- character. The effect is mediated by a Mo(4d)-corrole(π) orbital interaction similar to that postulated for MnCl, FeCl and FeNO corroles. The effect also appears to operate in tungsten-dichlorido corroles but is weaker relative to that for Mo. In contrast, MoO triarylcorroles do not exhibit a significant degree of corrole radical character. Furthermore, the Soret absorption maxima of a series of MoCl2 tris(para-X-phenyl)corrole derivatives were found to redshift dramatically with increasing electron-donating character of the para substituent X, essentially clinching the case for a noninnocent macrocycle in MoCl2 corroles.
Collapse
Affiliation(s)
- Hugo Vazquez-Lima
- Department of Chemistry, UiT - The Arctic University of Norway, N-9037 Tromsø, Norway. .,Centro de Química, Instituto de Ciencias, Universidad Autónoma de Puebla, Edif. IC9, CU, San Manuel, 72570 Puebla, Puebla, Mexico
| | - Jeanet Conradie
- Department of Chemistry, UiT - The Arctic University of Norway, N-9037 Tromsø, Norway. .,Department of Chemistry, University of the Free State, P.O. Box 339, Bloemfontein, 9300, South Africa
| | - Martin A L Johansen
- Department of Chemistry, UiT - The Arctic University of Norway, N-9037 Tromsø, Norway.
| | | | - Abraham B Alemayehu
- Department of Chemistry, UiT - The Arctic University of Norway, N-9037 Tromsø, Norway.
| | - Abhik Ghosh
- Department of Chemistry, UiT - The Arctic University of Norway, N-9037 Tromsø, Norway.
| |
Collapse
|
12
|
Ren D, Smaga O, Fu X, Li X, Pawlicki M, Koniarz S, Chmielewski PJ. From Antiaromatic Norcorrolatonickel(II) to Aromatic and Nonaromatic Zwitterions: Innocent Ligands with Unbalanced Charge of the Core. Org Lett 2021; 23:1032-1037. [PMID: 33475380 PMCID: PMC7875510 DOI: 10.1021/acs.orglett.0c04227] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
A three-component
reaction of antiaromatic meso-mesityl-3-nitronorcorrolatonickel(II) 1-NO2 with dialkyl acetylenedicarboxylate and PBu3 yields aromatic
zwitterionic corrole nickel(II) complexes 3-R with one
of the meso-substituents comprising a positively
charged tributyl phosphonium group and negatively charged coordination
core. Reaction of 1-NO2 with PBu3 alone resulted in a nonaromatic chiral adduct 5 of
a zwitterionic phlorine character with a −PBu3+ group at a pyrrole β-position.
Collapse
Affiliation(s)
- Demin Ren
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecules, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
| | - Oskar Smaga
- Department of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50 383 Wrocław, Poland
| | - Xinliang Fu
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecules, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
| | - Xiaofang Li
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecules, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
| | - Miłosz Pawlicki
- Department of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50 383 Wrocław, Poland.,Department of Chemistry, Jagiellonian University, Gronostajowa 2, 30 387 Kraków, Poland
| | - Sebastian Koniarz
- Department of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50 383 Wrocław, Poland
| | - Piotr J Chmielewski
- Department of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50 383 Wrocław, Poland
| |
Collapse
|
13
|
Osterloh WR, Desbois N, Quesneau V, Brandès S, Fleurat-Lessard P, Fang Y, Blondeau-Patissier V, Paolesse R, Gros CP, Kadish KM. Old Dog, New Tricks: Innocent, Five-coordinate Cyanocobalt Corroles. Inorg Chem 2020; 59:8562-8579. [PMID: 32452674 DOI: 10.1021/acs.inorgchem.0c01037] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Three mono-CN ligated anionic cobalt A3-triarylcorroles were synthesized and investigated as to their spectroscopic and electrochemical properties in CH2Cl2, pyridine (Py), and dimethyl sulfoxide (DMSO). The newly synthesized corroles provide the first examples of air-stable cobalt corroles with an anionic axial ligand and are represented as [(Ar)3CorCoIII(CN)]-TBA+, where Cor is the trivalent corrole macrocycle, Ar is p-(CN)Ph, p-(CF3)Ph, or p-(OMe)Ph, and TBA+ is the tetra-n-butylammonium (TBA) cation. Multiple redox reactions are observed for each mono-CN derivative with a key feature being a more facile first oxidation and a more difficult first reduction in all three solvents as compared to all previously examined corroles with similar meso- and β-pyrrole substituents. Formation constants (log K) for conversion of the five-coordinate mono-CN complex to its six-coordinate bis-CN form ranged from 102.8 for Ar = p-(OMe)Ph to 104.7 for Ar = p-(CN)Ph in DMSO as determined by spectroscopic methodologies. The in situ generated bis-CN complexes, represented as [(Ar)3CorCoIII(CN)2]2-(TBA+)2, and the mixed ligand complexes, represented as [(Ar)3CorCoIII(CN)(Py)]-TBA+, were also investigated as to their electrochemical and spectroscopic properties. UV-visible spectra and electrode reactions of the synthesized mono-CN derivatives are compared with the neutral mono-DMSO cobalt corrole complexes and the in situ generated bis-CN and bis-Py complexes, and the noninnocent (or innocent) nature of each cobalt corrole system is addressed. The data demonstrate the ability of the CN- axial ligand(s) to stabilize the high-valent forms of the metallocorrole, leading to systems with innocent macrocyclic ligands. Although a number of six-coordinate cobalt(III) corroles with N-donor ligands were characterized in the solid state, a dissociation of one axial ligand readily occurs in nonaqueous solvents, and this behavior contrasts with the high stability of the currently studied bis-CN adducts in CH2Cl2, pyridine, or DMSO. Linear free energy relationships were elucidated between the meso-phenyl Hammett substituent constants (Σσ) and the measured binding constants, the redox potentials, and the energy of the band positions in the mono-CN and bis-CN complexes in their neutral or singly oxidized forms, revealing highly predictable trends in the physicochemical properties of the anionic corroles.
Collapse
Affiliation(s)
- W Ryan Osterloh
- Department of Chemistry, University of Houston, Houston 77204-5003, Texas, United States
| | - Nicolas Desbois
- Université Bourgogne Franche-Comté, ICMUB (UMR CNRS 6302), 9 Avenue Alain Savary, BP 47870, Dijon, Cedex 21078, France
| | - Valentin Quesneau
- Université Bourgogne Franche-Comté, ICMUB (UMR CNRS 6302), 9 Avenue Alain Savary, BP 47870, Dijon, Cedex 21078, France
| | - Stéphane Brandès
- Université Bourgogne Franche-Comté, ICMUB (UMR CNRS 6302), 9 Avenue Alain Savary, BP 47870, Dijon, Cedex 21078, France
| | - Paul Fleurat-Lessard
- Université Bourgogne Franche-Comté, ICMUB (UMR CNRS 6302), 9 Avenue Alain Savary, BP 47870, Dijon, Cedex 21078, France
| | - Yuanyuan Fang
- Department of Chemistry, University of Houston, Houston 77204-5003, Texas, United States
| | - Virginie Blondeau-Patissier
- Department Time-Frequency, Université Bourgogne Franche-Comté, Institut FEMTO-ST (UMR CNRS 6174), 26 Chemin de l'épitaphe, Besançon Cedex 25030, France
| | - Roberto Paolesse
- Department of Chemical Science and Technology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, Rome 00133, Italy
| | - Claude P Gros
- Université Bourgogne Franche-Comté, ICMUB (UMR CNRS 6302), 9 Avenue Alain Savary, BP 47870, Dijon, Cedex 21078, France
| | - Karl M Kadish
- Department of Chemistry, University of Houston, Houston 77204-5003, Texas, United States
| |
Collapse
|
14
|
Thomas K, Settineri NS, Teat SJ, Steene E, Ghosh A. Molecular Structure of Copper and μ-Oxodiiron Octafluorocorrole Derivatives: Insights into Ligand Noninnocence. ACS OMEGA 2020; 5:10176-10182. [PMID: 32391505 PMCID: PMC7203988 DOI: 10.1021/acsomega.0c01035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 04/10/2020] [Indexed: 05/20/2023]
Abstract
Single-crystal X-ray structures were obtained for the copper and μ-oxodiiron complexes of 2,3,7,8,12,13,17,18-octafluoro-5,10,15-triphenylcorrole, hereafter denoted as Cu[F8TPC] and {Fe[F8TPC]}2O. A comparison with the crystal structures of other undecasubstituted Cu corroles, including those with H, Ar, Br, I, and CF3 as β-substituents, showed that the degree of saddling increases in the order: H ≲ F < Ar ≲ Br ≲ I < CF3. In other words, Cu[F8TPC] is marginally more saddled than β-unsubstituted Cu triarylcorroles, but substantially less saddled than Cu undecaarylcorroles, β-octabromo-meso-triarylcorroles, and β-octaiodo-meso-triarylcorroles, and far less saddled than Cu β-octakis(trifluoromethyl)-meso-triarylcorroles. As for {Fe[F8TPC]}2O, the moderate quality of the structure did not allow us to draw firm conclusions in regard to bond length alternations in the corrole skeleton and hence also the question of ligand noninnocence. The Fe-O bond distances, 1.712(8) and 1.724(8), however, are essentially identical to those observed for {Fe[TPFPC]}2O, where TPFPC3- is the trianion of 5,10,15-tris(pentafluorophenyl)corrole, suggesting that a partially noninnocent electronic structural description may be applicable for both compounds.
Collapse
Affiliation(s)
- Kolle
E. Thomas
- Department of Chemistry, UiT—The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Nicholas S. Settineri
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720-8229, United States
- Department
of Chemistry, University of California Berkeley, Berkeley, California 94720, United States
| | - Simon J. Teat
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720-8229, United States
| | - Erik Steene
- Department of Chemistry, UiT—The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Abhik Ghosh
- Department of Chemistry, UiT—The Arctic University of Norway, N-9037 Tromsø, Norway
| |
Collapse
|
15
|
Sinha W, Mahammed A, Fridman N, Gross Z. Water Oxidation Catalysis by Mono- and Binuclear Iron Corroles. ACS Catal 2020. [DOI: 10.1021/acscatal.9b05382] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Woormileela Sinha
- Schulich Faculty of Chemistry and the Nancy and Stephen Grand Technion Energy Program (GTEP), Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Atif Mahammed
- Schulich Faculty of Chemistry and the Nancy and Stephen Grand Technion Energy Program (GTEP), Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Natalia Fridman
- Schulich Faculty of Chemistry and the Nancy and Stephen Grand Technion Energy Program (GTEP), Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Zeev Gross
- Schulich Faculty of Chemistry and the Nancy and Stephen Grand Technion Energy Program (GTEP), Technion-Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
16
|
Krzystek J, Schnegg A, Aliabadi A, Holldack K, Stoian SA, Ozarowski A, Hicks SD, Abu-Omar MM, Thomas KE, Ghosh A, Caulfield KP, Tonzetich ZJ, Telser J. Advanced Paramagnetic Resonance Studies on Manganese and Iron Corroles with a Formal d 4 Electron Count. Inorg Chem 2020; 59:1075-1090. [PMID: 31909979 DOI: 10.1021/acs.inorgchem.9b02635] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Metallocorroles wherein the metal ion is MnIII and formally FeIV are studied here using field- and frequency-domain electron paramagnetic resonance techniques. The MnIII corrole, Mn(tpfc) (tpfc = 5,10,15-tris(pentafluorophenyl)corrole trianion), exhibits the following S = 2 zero-field splitting (zfs) parameters: D = -2.67(1) cm-1, |E| = 0.023(5) cm-1. This result and those for other MnIII tetrapyrroles indicate that when D ≈ - 2.5 ± 0.5 cm-1 for 4- or 5-coordinate and D ≈ - 3.5 ± 0.5 cm-1 for 6-coordinate complexes, the ground state description is [MnIII(Cor3-)]0 or [MnIII(P2-)]+ (Cor = corrole, P = porphyrin). The situation for formally FeIV corroles is more complicated, and it has been shown that for Fe(Cor)X, when X = Ph (phenyl), the ground state is a spin triplet best described by [FeIV(Cor3-)]+, but when X = halide, the ground state corresponds to [FeIII(Cor•2-)]+, wherein an intermediate spin (S = 3/2) FeIII is antiferromagnetically coupled to a corrole radical dianion (S = 1/2) to also give an S = 1 ground state. These two valence isomers can be distinguished by their zfs parameters, as determined here for Fe(tpc)X, X = Ph, Cl (tpc = 5,10,15-triphenylcorrole trianion). The complex with axial phenyl gives D = 21.1(2) cm-1, while that with axial chloride gives D = 14.6(1) cm-1. The D value for Fe(tpc)Ph is in rough agreement with the range of values reported for other FeIV complexes. In contrast, the D value for Fe(tpc)Cl is inconsistent with an FeIV description and represents a different type of iron center. Computational studies corroborate the zfs for the two types of iron corrole complexes. Thus, the zfs of metallocorroles can be diagnostic as to the electronic structure of a formally high oxidation state metallocorrole, and by extension to metalloporphyrins, although such studies have yet to be performed.
Collapse
Affiliation(s)
- J Krzystek
- National High Magnetic Field Laboratory , Florida State University , Tallahassee , Florida 32310 , United States
| | - Alexander Schnegg
- EPR Research Group , Max Planck Institute for Chemical Energy Conversion , Stiftstraße 34-36 , D-45470 Mülheim Ruhr , Germany.,Berlin Joint EPR Laboratory , Helmholtz-Zentrum Berlin , Kekulestraße 5 , D-12489 Berlin , Germany
| | - Azar Aliabadi
- Berlin Joint EPR Laboratory , Helmholtz-Zentrum Berlin , Kekulestraße 5 , D-12489 Berlin , Germany
| | - Karsten Holldack
- Institut für Methoden und Instrumentierung der Forschung mit Synchrotronstrahlung am Elektronenspeicherring BESSY II , Albert-Einstein-Straße 15 , D-12489 Berlin , Germany
| | - Sebastian A Stoian
- Department of Chemistry , University of Idaho , Moscow , Idaho 83844 , United States
| | - Andrew Ozarowski
- National High Magnetic Field Laboratory , Florida State University , Tallahassee , Florida 32310 , United States
| | - Scott D Hicks
- Department of Chemistry , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Mahdi M Abu-Omar
- Departments of Chemistry and Biochemistry , University of California , Santa Barbara , California 93106-9510 , United States
| | - Kolle E Thomas
- Department of Chemistry , UiT-The Arctic University of Norway , N-9037 Tromsø , Norway
| | - Abhik Ghosh
- Department of Chemistry , UiT-The Arctic University of Norway , N-9037 Tromsø , Norway
| | - Kenneth P Caulfield
- Department of Chemistry , University of Texas at San Antonio (UTSA) , One UTSA Circle , San Antonio , Texas 78249 , United States
| | - Zachary J Tonzetich
- Department of Chemistry , University of Texas at San Antonio (UTSA) , One UTSA Circle , San Antonio , Texas 78249 , United States
| | - Joshua Telser
- Department of Biological, Physical, and Health Sciences , Roosevelt University , Chicago , Illinois 60605 , United States
| |
Collapse
|
17
|
Mondal S, Naik PK, Adha JK, Kar S. Synthesis, characterization, and reactivities of high valent metal–corrole (M = Cr, Mn, and Fe) complexes. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.213043] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
18
|
Caulfield KP, Conradie J, Arman HD, Ghosh A, Tonzetich ZJ. Iron(II) Corrole Anions. Inorg Chem 2019; 58:15225-15235. [DOI: 10.1021/acs.inorgchem.9b02209] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Kenneth P. Caulfield
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Jeanet Conradie
- Department of Chemistry, University of Tromsø-The Arctic University of Norway, N-9037 Tromsø, Norway
- Department of Chemistry, University of the Free State, P.O. Box 339, 9300 Bloemfontein, Republic of South Africa
| | - Hadi D. Arman
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Abhik Ghosh
- Department of Chemistry, University of Tromsø-The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Zachary J. Tonzetich
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| |
Collapse
|
19
|
Chen CC, Wu YW, Nakamura M, Cheng RJ, Tseng TH, Chen PPY. Assessment of the intramolecular magnetic interactions in the highly saddled iron(iii) porphyrin π-radical cations: the change from planar to saddle conformations. Dalton Trans 2019; 48:13820-13833. [PMID: 31482912 DOI: 10.1039/c9dt02714a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The intramolecular magnetic interactions in one-electron oxidized iron(iii) porphyrin π-radical cations, [Fe(OETPP˙)Cl][SbCl6] (1), [Fe(OMTPP˙)Cl][SbCl6] (2) and [Fe(TPP˙)Cl][SbCl6] (3), have been compared by means of X-ray crystallography, SQUID magnetometry, cyclic voltammetry, UV-Vis spectroelectrochemical analysis, NMR spectroscopy analysis and unrestricted DFT calculations. Unlike a generally recognized antiferromagnetic coupling dxy↑dxz↑dyz↑dz2↑dx2-y2↑P˙+(a2u)↓ (S = 2) state via a weak bonding interaction as in (3), we have disclosed that a strong bonding interaction among iron dx2-y2 and porphyrin a2u orbitals forms in (1) into a highly delocalized Ψπ = [P˙+(a2u) + FeIII(dx2-y2, dz2)] orbital that is able to accommodate two spin-paired electrons to form the Ψπ2dxy1dxz1dyz1, dz21 (S = 2) ground state. Concurrently, the spin polarization effect is exerted on the paired spins in the Ψπ orbital by magnetic induction from the remaining unpaired electrons in the iron d orbitals. The interpretation mentioned above is further verified by the diamagnetic nature of the saddled copper(ii) porphyrin π-cation radical, CuII(OETPP˙)(ClO4) (S = 0), where the strong bonding interaction leads to the Ψπ2dxy2dxz2dyz2dz22 (S = 0) ground state but no spin polarization exists. Thus, the magnetic nature of the iron(iii) porphyrin π-radical cation is tuneable by saddling the ring planarity.
Collapse
Affiliation(s)
- Ching-Chin Chen
- Department of Chemistry, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung City 402, Taiwan.
| | | | | | | | | | | |
Collapse
|
20
|
Abstract
Noninnocent ligands do not allow an unambiguous definition of the oxidation state of a coordinated atom. When coordinated, the ligands also cannot be adequately represented by a classic Lewis structure. A noninnocent system thus harbors oxidizing (holes) or reducing equivalents (electrons) that are delocalized over both the ligand and the coordinated atom. To a certain degree, that is true of all complexes, but the phenomenon is arguably most conspicuous in complexes involving ligands with extended π-systems. The electronic structures of such systems have often been mischaracterized, thereby muddying the chemical literature to the detriment of students and newcomers to the field. In recent years, we have investigated the electronic structures of several metallocorrole families, several of which have turned out to be noninnocent. Our goal here, however, is not to present a systematic account of the different classes of metallocorroles, but rather to focus on seven major tools (in a nod to A. G. Cairns-Smith's Seven Clues to the Origin of Life) that led us to recognize noninnocent behavior and subsequently to characterize the phenomenon in depth. (1) The optical probe: For a series of noninnocent meso-triarylcorrole derivatives with different para substituents X, the Soret maxima are typically exquisitely sensitive to the nature of X, red-shifting with increasing electron-donating character of the group. No such substituent sensitivity is observed for the Soret maxima of innocent triarylcorrole derivatives. (2) Quantum chemistry: Spin-unrestricted density functional theory calculations permit a simple and quick visualization of ligand noninnocence in terms of the spin density profile. Even for an S = 0 complex, the broken-symmetry method often affords a spin density profile that, its fictitious character notwithstanding, helps visualize the intramolecular spin couplings. (3) NMR and EPR spectroscopy: In principle, these two techniques afford experimental probes of the electronic spin density. (4) Structure/X-ray crystallography. Ligand noninnocence in metallocorroles is often reflected in small but distinct skeletal bond length alternations in and around the bipyrrole part of the macrocycle. In addition, for Cu and some Ag corroles, ligand noninnocence manifests itself via a strong saddling of the macrocycle. (5) Vibrational spectroscopy. Unsurprisingly, the aforementioned bond length alternations translate to structure-sensitive vibrational marker bands. (6) Electrochemistry. Noninnocent metallocorroles exhibit characteristically high reduction potentials, but caution should be exercised in turning the logic around. A high reduction potential does not necessarily signify a noninnocent metallocorrole; certain high-valent metal centers also undergo metal-centered reduction at quite high potentials. (7) X-ray absorption spectroscopy (XAS). By focusing on a given element, typically the central atom in a coordination complex, X-ray absorption near-edge spectroscopy (XANES) can provide uniquely detailed local information on oxidation and spin states, ligand field strength, and degree of centrosymmetry. For metallocorroles, some of the most clear-cut distinctions between innocent and noninnocent systems have come from the K-edge XANES of Mn and Fe corroles. For researchers faced with a new, potentially noninnocent system, the take-home message is to employ a good majority (i.e., at least four) of the above methods to arrive at a reliable conclusion vis-à-vis noninnocence.
Collapse
Affiliation(s)
- Sumit Ganguly
- Department of Chemistry and Arctic Center for Sustainable Energy, UiT−The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Abhik Ghosh
- Department of Chemistry and Arctic Center for Sustainable Energy, UiT−The Arctic University of Norway, N-9037 Tromsø, Norway
| |
Collapse
|
21
|
Jiang X, Pomarico G, Bischetti M, Galloni P, Cicero DO, Cui Y, Kadish KM, Paolesse R. Iron, iron everywhere: synthesis and characterization of iron 5,10,15-triferrocenylcorrole complexes. NEW J CHEM 2018. [DOI: 10.1039/c7nj05076c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new series of iron triferrocenylcorroles with three different axial ligands, NO, Cl−and σ-Ph, is synthesized and characterized using1H NMR, electrochemical and spectroelectrochemical techniques in nonaqueous media.
Collapse
Affiliation(s)
- X. Jiang
- Department of Chemistry, University of Houston
- USA
| | - G. Pomarico
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata
- 00133 Rome
- Italy
| | - M. Bischetti
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata
- 00133 Rome
- Italy
| | - P. Galloni
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata
- 00133 Rome
- Italy
| | - D. O. Cicero
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata
- 00133 Rome
- Italy
| | - Y. Cui
- Department of Chemistry, University of Houston
- USA
| | - K. M. Kadish
- Department of Chemistry, University of Houston
- USA
| | - R. Paolesse
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata
- 00133 Rome
- Italy
| |
Collapse
|
22
|
Ganguly S, Conradie J, Bendix J, Gagnon KJ, McCormick LJ, Ghosh A. Electronic Structure of Cobalt–Corrole–Pyridine Complexes: Noninnocent Five-Coordinate Co(II) Corrole–Radical States. J Phys Chem A 2017; 121:9589-9598. [DOI: 10.1021/acs.jpca.7b09440] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sumit Ganguly
- Department
of Chemistry, UiT − The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Jeanet Conradie
- Department
of Chemistry, University of the Free State, 9300 Bloemfontein, Republic of South Africa
| | - Jesper Bendix
- Department
of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
| | - Kevin J. Gagnon
- Advanced
Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720-8229, United States
| | - Laura J. McCormick
- Advanced
Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720-8229, United States
| | - Abhik Ghosh
- Department
of Chemistry, UiT − The Arctic University of Norway, N-9037 Tromsø, Norway
| |
Collapse
|
23
|
Basumatary B, Rai J, Reddy RVR, Sankar J. Evidence for a [17] π-Electronic Full-Fledged Non-innocent Gallium(III)-Corrole Radical. Chemistry 2017; 23:17458-17462. [PMID: 29044747 DOI: 10.1002/chem.201704457] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Indexed: 11/10/2022]
Abstract
One-electron oxidation of a GaIII -corrole with N(4-BrC6 H4 )3 SbCl6 resulted in an air-stable non-innocent GaIII -corrole radical. The single-crystal X-ray crystallography of the 2,17-bis-formyl-5,10,15-tris(pentafluorophenyl)corrolato gallium(III)(chloride) radical ([3-Cl]. ) revealed delocalization of the unpaired electron, which was further confirmed by electron spin resonance (ESR) spectroscopy and spin density distribution plot. In addition, the nucleus-independent chemical shift (NICS), anisotropy-induced current density (AICD) and harmonic oscillator model of aromaticity (HOMA) supported a [17] π-electron-conjugated (or antiaromatic) radical.
Collapse
Affiliation(s)
- Biju Basumatary
- Department of Chemistry, Indian Institute of Science Education and Research, M.P, Indore bypass road, Bhopal, 462066, India
| | - Jyoti Rai
- Department of Chemistry, Indian Institute of Science Education and Research, M.P, Indore bypass road, Bhopal, 462066, India
| | - R V Ramana Reddy
- Department of Chemistry, Indian Institute of Science Education and Research, M.P, Indore bypass road, Bhopal, 462066, India
| | - Jeyaraman Sankar
- Department of Chemistry, Indian Institute of Science Education and Research, M.P, Indore bypass road, Bhopal, 462066, India
| |
Collapse
|
24
|
Ganguly S, Renz D, Giles LJ, Gagnon KJ, McCormick LJ, Conradie J, Sarangi R, Ghosh A. Cobalt- and Rhodium-Corrole-Triphenylphosphine Complexes Revisited: The Question of a Noninnocent Corrole. Inorg Chem 2017; 56:14788-14800. [DOI: 10.1021/acs.inorgchem.7b01828] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sumit Ganguly
- Department of Chemistry, UiT − The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Diemo Renz
- Department of Chemistry, UiT − The Arctic University of Norway, N-9037 Tromsø, Norway
| | - Logan J. Giles
- Structural Molecular Biology, Stanford
Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94306, United States
| | - Kevin J. Gagnon
- Advanced
Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720-8229, United States
| | - Laura J. McCormick
- Advanced
Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720-8229, United States
| | - Jeanet Conradie
- Department of Chemistry, University of the Free State, 9300 Bloemfontein, Republic of South Africa
| | - Ritimukta Sarangi
- Structural Molecular Biology, Stanford
Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94306, United States
| | - Abhik Ghosh
- Department of Chemistry, UiT − The Arctic University of Norway, N-9037 Tromsø, Norway
| |
Collapse
|
25
|
Ganguly S, Giles LJ, Thomas KE, Sarangi R, Ghosh A. Ligand Noninnocence in Iron Corroles: Insights from Optical and X-ray Absorption Spectroscopies and Electrochemical Redox Potentials. Chemistry 2017; 23:15098-15106. [PMID: 28845891 PMCID: PMC5710759 DOI: 10.1002/chem.201702621] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Indexed: 11/11/2022]
Abstract
Two new series of iron meso-tris(para-X-phenyl)corrole (TpXPC) complexes, Fe[TpXPC]Ph and Fe[TpXPC]Tol, in which X=CF3 , H, Me, and OMe, and Tol=p-methylphenyl (p-tolyl), have been synthesized, allowing a multitechnique electronic-structural comparison with the corresponding FeCl, FeNO, and Fe2 (μ-O) TpXPC derivatives. Optical spectroscopy revealed that the Soret maxima of the FePh and FeTol series are insensitive to the phenyl para substituent, consistent with the presumed innocence of the corrole ligand in these compounds. Accordingly, we may be increasingly confident in the ability of the substituent effect criterion to serve as a probe of corrole noninnocence. Furthermore, four complexes-Fe[TPC]Cl, Fe[TPC](NO), {Fe[TPC]}2 O, and Fe[TPC]Ph-were selected for a detailed XANES investigation of the question of ligand noninnocence. The intensity-weighted average energy (IWAE) positions were found to exhibit rather modest variations (0.8 eV over the series of corroles). The integrated Fe-K pre-edge intensities, on the other hand, vary considerably, with a 2.5 fold increase for Fe[TPC]Ph relative to Fe[TPC]Cl and Fe[TPC](NO). Given the approximately C4v local symmetry of the Fe in all the complexes, the large increase in intensity for Fe[TPC]Ph may be attributed to a higher number of 3d holes, consistent with an expected FeIV -like description, in contrast to Fe[TPC]Cl and Fe[TPC](NO), in which the Fe is thought to be FeIII -like. These results afford strong validation of XANES as a probe of ligand noninnocence in metallocorroles. Electrochemical redox potentials, on the other hand, were found not to afford a simple probe of ligand noninnocence in Fe corroles.
Collapse
Affiliation(s)
- Sumit Ganguly
- Department of Chemistry and Center for Theoretical and Computational Chemistry, UiT-, The Arctic University of Norway, 9037, Tromsø, Norway
| | - Logan J Giles
- Structural Molecular Biology, Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, 94306, USA
| | - Kolle E Thomas
- Department of Chemistry and Center for Theoretical and Computational Chemistry, UiT-, The Arctic University of Norway, 9037, Tromsø, Norway
| | - Ritimukta Sarangi
- Structural Molecular Biology, Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, 94306, USA
| | - Abhik Ghosh
- Department of Chemistry and Center for Theoretical and Computational Chemistry, UiT-, The Arctic University of Norway, 9037, Tromsø, Norway
| |
Collapse
|
26
|
Alemayehu AB, Vazquez-Lima H, Gagnon KJ, Ghosh A. Stepwise Deoxygenation of Nitrite as a Route to Two Families of Ruthenium Corroles: Group 8 Periodic Trends and Relativistic Effects. Inorg Chem 2017; 56:5285-5294. [PMID: 28422487 DOI: 10.1021/acs.inorgchem.7b00377] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Given the many applications of ruthenium porphyrins, the rarity of ruthenium corroles and the underdeveloped state of their chemistry are clearly indicative of an area ripe for significant breakthroughs. The tendency of ruthenium corroles to form unreactive metal-metal-bonded dimers has been recognized as a key impediment in this area. Herein, by exposing free-base meso-tris(p-X-phenyl)corroles, H3[TpXPC] (X = CF3, H, Me, and OMe), and [Ru(COD)Cl2]x in refluxing 2-methoxyethanol to nitrite, we have been able to reliably intercept the series Ru[TpXPC](NO) in a matter of seconds to minutes and subsequently RuVI[TpXPC](N), the products of a second deoxygenation, over some 16 h. Two of the RuVIN complexes and one ruthenium corrole dimer could be crystallographically analyzed; the Ru-Nnitrido distance was found to be ∼1.61 Å, consistent with the triple-bonded character of the RuVIN units and essentially identical with the Os-Nnitrido distance in analogous osmium corroles. Spectroscopic and density functional theory (DFT) calculations suggest that the RuNO corroles are best viewed as innocent {RuNO}6 complexes, whereas the analogous FeNO corroles are noninnocent, i.e., best viewed as {FeNO}7-corrole•2-. Both RuVIN and OsVIN corroles exhibit sharp Soret bands, suggestive of an innocent macrocycle. A key difference between the two metals is that the Soret maxima of the OsVIN corroles are red-shifted some 25 nm relative to those of the RuVIN complexes. Careful time-dependent DFT studies indicate that this difference is largely attributable to relativistic effects in OsVIN corroles. The availability of two new classes of mononuclear ruthenium corroles potentially opens the door to new applications, in such areas as catalysis and cancer therapy.
Collapse
Affiliation(s)
- Abraham B Alemayehu
- Department of Chemistry and Center for Theoretical and Computational Chemistry, UiT-The Arctic University of Norway , N-9037 Tromsø, Norway
| | - Hugo Vazquez-Lima
- Department of Chemistry and Center for Theoretical and Computational Chemistry, UiT-The Arctic University of Norway , N-9037 Tromsø, Norway
| | - Kevin J Gagnon
- Advanced Light Source, Lawrence Berkeley National Laboratory , Berkeley, California 94720-8229, United States
| | - Abhik Ghosh
- Department of Chemistry and Center for Theoretical and Computational Chemistry, UiT-The Arctic University of Norway , N-9037 Tromsø, Norway
| |
Collapse
|
27
|
Tanaka T, Ooi S, Ide Y, Ikeue T, Suzuki M, Chen PP, Takahashi M, Osuka A. Different Antiferromagnetic Coupling between 5,5′‐ and 10,10′‐Linked Iron(III) Corrole Dimers. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201601363] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Takayuki Tanaka
- Department of Chemistry Graduate School of Science Kyoto University 606‐8502 Sakyo‐ku, Kyoto Japan
| | - Shota Ooi
- Department of Chemistry Graduate School of Science Kyoto University 606‐8502 Sakyo‐ku, Kyoto Japan
| | - Yuki Ide
- Department of Chemistry, Graduate School of Science and Engineering Shimane University 1060 Nishikawatsu, Matsue 690‐8504 Japan
| | - Takahisa Ikeue
- Department of Chemistry, Graduate School of Science and Engineering Shimane University 1060 Nishikawatsu, Matsue 690‐8504 Japan
| | - Masaaki Suzuki
- Department of Chemistry, Graduate School of Science and Engineering Shimane University 1060 Nishikawatsu, Matsue 690‐8504 Japan
| | - Peter P.‐Y. Chen
- Department of Chemistry National Chung Hsing University Taichung 402 Taiwan Republic of China
| | - Masashi Takahashi
- Department of Chemistry Faculty of Science and Research Center for Materials with Integrated Properties 274‐8510 Toho University Japan
| | - Atsuhiro Osuka
- Department of Chemistry Graduate School of Science Kyoto University 606‐8502 Sakyo‐ku, Kyoto Japan
| |
Collapse
|
28
|
Ghosh A. Electronic Structure of Corrole Derivatives: Insights from Molecular Structures, Spectroscopy, Electrochemistry, and Quantum Chemical Calculations. Chem Rev 2017; 117:3798-3881. [PMID: 28191934 DOI: 10.1021/acs.chemrev.6b00590] [Citation(s) in RCA: 227] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Presented herein is a comprehensive account of the electronic structure of corrole derivatives. Our knowledge in this area derives from a broad range of methods, including UV-vis-NIR absorption and MCD spectroscopies, single-crystal X-ray structure determination, vibrational spectroscopy, NMR and EPR spectroscopies, electrochemistry, X-ray absorption spectroscopy, and quantum chemical calculations, the latter including both density functional theory and ab initio multiconfigurational methods. The review is organized according to the Periodic Table, describing free-base and main-group element corrole derivatives, then transition-metal corroles, and finally f-block element corroles. Like porphyrins, corrole derivatives with a redox-inactive coordinated atom follow the Gouterman four-orbital model. A key difference from porphyrins is the much wider prevalence of noninnocent electronic structures as well as full-fledged corrole•2- radicals among corrole derivatives. The most common orbital pathways mediating ligand noninnocence in transition-metal corroles are the metal(dz2)-corrole("a2u") interaction (most commonly observed in Mn and Fe corroles) and the metal(dx2-y2)-corrole(a2u) interaction in coinage metal corroles. Less commonly encountered is the metal(dπ)-corrole("a1u") interaction, a unique feature of formal d5 metallocorroles. Corrole derivatives exhibit a rich array of optical properties, including substituent-sensitive Soret maxima indicative of ligand noninnocence, strong fluorescence in the case of lighter main-group element complexes, and room-temperature near-IR phosphorescence in the case of several 5d metal complexes. The review concludes with an attempt at identifying gaps in our current knowledge and potential future directions of electronic-structural research on corrole derivatives.
Collapse
Affiliation(s)
- Abhik Ghosh
- Department of Chemistry and Center for Theoretical and Computational Chemistry, UiT-The Arctic University of Norway , 9037 Tromsø, Norway
| |
Collapse
|
29
|
Barata JFB, Neves MGPMS, Faustino MAF, Tomé AC, Cavaleiro JAS. Strategies for Corrole Functionalization. Chem Rev 2016; 117:3192-3253. [PMID: 28222602 DOI: 10.1021/acs.chemrev.6b00476] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
This review covers the functionalization reactions of meso-arylcorroles, both at the inner core, as well as the peripheral positions of the macrocycle. Experimental details for the synthesis of all known metallocorrole types and for the N-alkylation reactions are presented. Key peripheral functionalization reactions such as halogenation, formylation, carboxylation, nitration, sulfonation, and others are discussed in detail, particularly the nucleophilic aromatic substitution and the participation of corroles in cycloaddition reactions as 2π or 4π components (covering Diels-Alder and 1,3-dipolar cycloadditions). Other functionalizations of corroles include a large diversity of reactions, namely Wittig reactions, reactions with methylene active compounds, formation of amines, amides, and imines, and metal catalyzed reactions. At the final section, the reactions involving oxidation and ring expansion of the corrole macrocycle are described comprehensively.
Collapse
Affiliation(s)
- Joana F B Barata
- Department of Chemistry and QOPNA, and ‡Department of Chemistry and CICECO, University of Aveiro , 3810-193 Aveiro, Portugal
| | - M Graça P M S Neves
- Department of Chemistry and QOPNA, and ‡Department of Chemistry and CICECO, University of Aveiro , 3810-193 Aveiro, Portugal
| | - M Amparo F Faustino
- Department of Chemistry and QOPNA, and ‡Department of Chemistry and CICECO, University of Aveiro , 3810-193 Aveiro, Portugal
| | - Augusto C Tomé
- Department of Chemistry and QOPNA, and ‡Department of Chemistry and CICECO, University of Aveiro , 3810-193 Aveiro, Portugal
| | - José A S Cavaleiro
- Department of Chemistry and QOPNA, and ‡Department of Chemistry and CICECO, University of Aveiro , 3810-193 Aveiro, Portugal
| |
Collapse
|
30
|
Einrem RF, Braband H, Fox T, Vazquez-Lima H, Alberto R, Ghosh A. Synthesis and Molecular Structure of 99 Tc Corroles. Chemistry 2016; 22:18747-18751. [PMID: 27802367 DOI: 10.1002/chem.201605015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Indexed: 01/15/2023]
Abstract
The first 99 Tc corroles have been synthesized and fully characterized. A single-crystal X-ray structure of a 99 TcO triarylcorrole revealed nearly identical geometry parameters as the corresponding ReO structure. A significant spectral shift between the Soret maxima of TcO (410-413 nm) and ReO (438-441 nm) corroles was observed and, based on two-component spin-orbit ZORA TDDFT calculations, ascribed to relativistic effects in the Re case. The syntheses reported herein potentially pave the way toward 99m Tc-porphyrinoid-based radiopharmaceuticals.
Collapse
Affiliation(s)
- Rune F Einrem
- Department of Chemistry, UiT-The Arctic University of Norway, 9037, Tromsø, Norway
| | - Henrik Braband
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Thomas Fox
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Hugo Vazquez-Lima
- Department of Chemistry, UiT-The Arctic University of Norway, 9037, Tromsø, Norway
| | - Roger Alberto
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Abhik Ghosh
- Department of Chemistry, UiT-The Arctic University of Norway, 9037, Tromsø, Norway
| |
Collapse
|
31
|
Ganguly S, Vazquez-Lima H, Ghosh A. Wolves in Sheep's Clothing: μ-Oxo-Diiron Corroles Revisited. Chemistry 2016; 22:10336-40. [DOI: 10.1002/chem.201601062] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Sumit Ganguly
- Department of Chemistry and Center for Theoretical and Computational Chemistry; UiT - The Arctic University of Norway; 9037 Tromsø Norway
| | - Hugo Vazquez-Lima
- Department of Chemistry and Center for Theoretical and Computational Chemistry; UiT - The Arctic University of Norway; 9037 Tromsø Norway
| | - Abhik Ghosh
- Department of Chemistry and Center for Theoretical and Computational Chemistry; UiT - The Arctic University of Norway; 9037 Tromsø Norway
| |
Collapse
|
32
|
Sarangi R, Giles LJ, Thomas KE, Ghosh A. Ligand Noninnocence in Silver Corroles: A XANES Investigation. Eur J Inorg Chem 2016. [DOI: 10.1002/ejic.201600413] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ritimukta Sarangi
- Structural Molecular Biology; Stanford Synchrotron Radiation Lightsource; SLAC National Accelerator Laboratory; Menlo Park 94306 CA USA
| | - Logan J. Giles
- Structural Molecular Biology; Stanford Synchrotron Radiation Lightsource; SLAC National Accelerator Laboratory; Menlo Park 94306 CA USA
| | - Kolle E. Thomas
- Department of Chemistry and Center for Theoretical and Computational Chemistry; UiT - The Arctic University of Norway; 9037 Tromsø Norway
| | - Abhik Ghosh
- Department of Chemistry and Center for Theoretical and Computational Chemistry; UiT - The Arctic University of Norway; 9037 Tromsø Norway
| |
Collapse
|
33
|
Alemayehu AB, Vazquez-Lima H, Gagnon KJ, Ghosh A. Tungsten Biscorroles: New Chiral Sandwich Compounds. Chemistry 2016; 22:6914-20. [PMID: 27059004 DOI: 10.1002/chem.201504848] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Indexed: 11/12/2022]
Abstract
The oxidative metalation method, involving the interaction of free-base meso-triarylcorroles and W(CO)6 in refluxing decalin, led to a set of three tungsten(VI) biscorroles, the first homoleptic sandwich compounds involving corroles. Single-crystal X-ray structures of two of the complexes revealed square-antiprismatic coordination and strongly domed corroles with long W-N distances of 2.15-2.22 Å and a substantial displacement of ∼1.17 Å of the metal relative to the mean N4 planes of the ligands. The structures correspond to approximate C2 symmetry and are thus chiral. DFT calculations strongly indicate that the enantiomers are configurationally stable and hence amenable to chiral resolution. Their other notable properties include a strongly blueshifted Soret band at (357±2) nm, a relatively intense π→W(dz2 ) near-IR feature at (781±3) nm, and a low electrochemical HOMO-LUMO gap of approximately 1.3 V. The results obtained herein suggest that metallobiscorroles may emerge as a new class of inherently chiral chromophores with novel optical and electrochemical properties.
Collapse
Affiliation(s)
- Abraham B Alemayehu
- Department of Chemistry, UiT - The Arctic University of Norway, 9037, Tromsø, Norway
| | - Hugo Vazquez-Lima
- Department of Chemistry, UiT - The Arctic University of Norway, 9037, Tromsø, Norway
| | - Kevin J Gagnon
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720-8229, USA
| | - Abhik Ghosh
- Department of Chemistry, UiT - The Arctic University of Norway, 9037, Tromsø, Norway.
| |
Collapse
|
34
|
Norheim HK, Capar J, Einrem RF, Gagnon KJ, Beavers CM, Vazquez-Lima H, Ghosh A. Ligand noninnocence in FeNO corroles: insights from β-octabromocorrole complexes. Dalton Trans 2016; 45:681-9. [DOI: 10.1039/c5dt03947a] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
With a noninnocent {FeNO}7-(corrole˙2−) formulation, the first FeNO octabromocorrole derivatives deepen our appreciation of ligand noninnocence.
Collapse
Affiliation(s)
- Hans-Kristian Norheim
- Department of Chemistry and Center for Theoretical and Computational Chemistry
- UiT – The Arctic University of Norway
- 9037 Tromsø
- Norway
| | - Jan Capar
- Department of Chemistry and Center for Theoretical and Computational Chemistry
- UiT – The Arctic University of Norway
- 9037 Tromsø
- Norway
| | - Rune F. Einrem
- Department of Chemistry and Center for Theoretical and Computational Chemistry
- UiT – The Arctic University of Norway
- 9037 Tromsø
- Norway
| | - Kevin J. Gagnon
- Advanced Light Source
- Lawrence Berkeley National Laboratory
- Berkeley
- USA
| | | | - Hugo Vazquez-Lima
- Department of Chemistry and Center for Theoretical and Computational Chemistry
- UiT – The Arctic University of Norway
- 9037 Tromsø
- Norway
| | - Abhik Ghosh
- Department of Chemistry and Center for Theoretical and Computational Chemistry
- UiT – The Arctic University of Norway
- 9037 Tromsø
- Norway
| |
Collapse
|
35
|
Einrem RF, Gagnon KJ, Alemayehu AB, Ghosh A. Metal-Ligand Misfits: Facile Access to Rhenium-Oxo Corroles by Oxidative Metalation. Chemistry 2015; 22:517-20. [PMID: 26639951 DOI: 10.1002/chem.201504307] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Indexed: 11/08/2022]
Abstract
With the exception of a single accidental synthesis, rhenium corroles are unknown, but of great interest as catalysts and potential radiopharmaceuticals. Oxidative metalation of meso-triarylcorroles with [Re2 (CO)10 ] in refluxing decalin has provided a facile and relatively high-yielding route to rhenium(V)-oxo corroles. The complexes synthesized could all be fully characterized by single-crystal X-ray structure analyses.
Collapse
Affiliation(s)
- Rune F Einrem
- Department of Chemistry, UiT - The Arctic University of Norway, 9037 Tromsø (Norway)
| | - Kevin J Gagnon
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720-8229 (USA)
| | - Abraham B Alemayehu
- Department of Chemistry, UiT - The Arctic University of Norway, 9037 Tromsø (Norway).
| | - Abhik Ghosh
- Department of Chemistry, UiT - The Arctic University of Norway, 9037 Tromsø (Norway).
| |
Collapse
|
36
|
Capar J, Berg S, Thomas KE, Beavers CM, Gagnon KJ, Ghosh A. Improved syntheses of β-octabromo-meso-triarylcorrole derivatives. J Inorg Biochem 2015; 153:162-166. [DOI: 10.1016/j.jinorgbio.2015.07.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Revised: 07/13/2015] [Accepted: 07/19/2015] [Indexed: 11/15/2022]
|
37
|
Thomas KE, Vazquez-Lima H, Fang Y, Song Y, Gagnon KJ, Beavers CM, Kadish KM, Ghosh A. Ligand Noninnocence in Coinage Metal Corroles: A Silver Knife-Edge. Chemistry 2015; 21:16839-47. [PMID: 26345592 DOI: 10.1002/chem.201502150] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Indexed: 11/11/2022]
Abstract
A silver β-octabromo-meso-triarylcorrole has been found to exhibit a strongly saddled geometry, providing the first instance of a strongly saddled corrole complex involving a metal other than copper. The Soret maxima of the Ag octabromocorroles also redshift markedly in response to increasingly electron-donating para substituents on the meso-aryl groups. In both these respects, the Ag octabromocorroles differ from simple Ag triarylcorrole derivatives, which exhibit only mild saddling and substituent-insensitive Soret maxima. These results have been rationalized in terms of an innocent M(III)-corrole(3-) description for the simple Ag corroles and a noninnocent M(II)-corrole(·2-) description for the Ag octabromocorroles. In contrast, all copper corroles are thought to be noninnocent, while all gold corroles are innocent. Uniquely among metallocorroles, silver corroles thus seem poised on a knife-edge, so to speak, between innocent and noninnocent electronic structures and may tip either way, depending on the exact nature of the corrole ligand.
Collapse
Affiliation(s)
- Kolle E Thomas
- Department of Chemistry and Center for Theoretical and Computational Chemistry, UiT - The Arctic University of Norway, 9037 Tromsø (Norway)
| | - Hugo Vazquez-Lima
- Department of Chemistry and Center for Theoretical and Computational Chemistry, UiT - The Arctic University of Norway, 9037 Tromsø (Norway)
| | - Yuanyuan Fang
- Department of Chemistry, University of Houston, Houston, TX 77204-5003 (USA)
| | - Yang Song
- Department of Chemistry, University of Houston, Houston, TX 77204-5003 (USA)
| | - Kevin J Gagnon
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720-8229 (USA)
| | - Christine M Beavers
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720-8229 (USA)
| | - Karl M Kadish
- Department of Chemistry, University of Houston, Houston, TX 77204-5003 (USA).
| | - Abhik Ghosh
- Department of Chemistry and Center for Theoretical and Computational Chemistry, UiT - The Arctic University of Norway, 9037 Tromsø (Norway).
| |
Collapse
|
38
|
Schweyen P, Brandhorst K, Wicht R, Wolfram B, Bröring M. The Corrole Radical. Angew Chem Int Ed Engl 2015; 54:8213-6. [DOI: 10.1002/anie.201503624] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Indexed: 11/12/2022]
|
39
|
|
40
|
Basumatary B, Raja Sekhar A, Ramana Reddy RV, Sankar J. Corrole-BODIPY Dyads: Synthesis, Structure, and Electrochemical and Photophysical Properties. Inorg Chem 2015; 54:4257-67. [DOI: 10.1021/ic502919s] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Biju Basumatary
- Department
of Chemistry, Indian Institute of Science Education and Research Bhopal, Indore Bypass Road, Bhopal, India 462066
| | - Adiki Raja Sekhar
- Department
of Chemistry, Indian Institute of Science Education and Research Bhopal, Indore Bypass Road, Bhopal, India 462066
| | - R. V. Ramana Reddy
- Department
of Chemistry, Indian Institute of Science Education and Research Bhopal, Indore Bypass Road, Bhopal, India 462066
| | - Jeyaraman Sankar
- Department
of Chemistry, Indian Institute of Science Education and Research Bhopal, Indore Bypass Road, Bhopal, India 462066
| |
Collapse
|
41
|
Vazquez-Lima H, Norheim HK, Einrem RF, Ghosh A. Cryptic noninnocence: FeNO corroles in a new light. Dalton Trans 2015; 44:10146-51. [DOI: 10.1039/c5dt01495f] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Multiple lines of evidence, including electronic absorption spectroscopy, infrared spectroscopy, and broken-symmetry DFT calculations, indicate that the well-known FeNO corroles, long assumed to be {FeNO}6 complexes, are in fact better described as {FeNO}7-(corrole˙2−).
Collapse
Affiliation(s)
- Hugo Vazquez-Lima
- Department of Chemistry and Center for Theoretical and Computational Chemistry
- UiT – The Arctic University of Norway
- 9037 Tromsø
- Norway
| | - Hans-Kristian Norheim
- Department of Chemistry and Center for Theoretical and Computational Chemistry
- UiT – The Arctic University of Norway
- 9037 Tromsø
- Norway
| | - Rune F. Einrem
- Department of Chemistry and Center for Theoretical and Computational Chemistry
- UiT – The Arctic University of Norway
- 9037 Tromsø
- Norway
| | - Abhik Ghosh
- Department of Chemistry and Center for Theoretical and Computational Chemistry
- UiT – The Arctic University of Norway
- 9037 Tromsø
- Norway
| |
Collapse
|
42
|
Alemayehu AB, Gagnon KJ, Terner J, Ghosh A. Oxidative Metalation as a Route to Size‐Mismatched Macrocyclic Complexes: Osmium Corroles. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201405890] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Abraham B. Alemayehu
- Department of Chemistry, UiT—The Arctic University of Norway, 9037 Tromsø (Norway)
| | - Kevin J. Gagnon
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720‐8229 (USA)
| | - James Terner
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA 23284‐2006 (USA)
| | - Abhik Ghosh
- Department of Chemistry, UiT—The Arctic University of Norway, 9037 Tromsø (Norway)
| |
Collapse
|
43
|
Alemayehu AB, Gagnon KJ, Terner J, Ghosh A. Oxidative metalation as a route to size-mismatched macrocyclic complexes: osmium corroles. Angew Chem Int Ed Engl 2014; 53:14411-4. [PMID: 25346094 DOI: 10.1002/anie.201405890] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Indexed: 01/24/2023]
Abstract
Heavy-element corroles are of great interest as optical sensors, near-IR dyes, phosphors, organic light-emitting diodes, and anticancer compounds. Insertion of 5d metals into corroles, however, is often a difficult and unpredictable process. Against this backdrop, oxidative metalation of meso triarylcorroles with [Os3 (CO)12 ]/NaN3 in refluxing 1:2 diethylene glycol monomethyl ether/glycol has provided a convenient and relatively high-yielding route to nitridoosmium(VI) corroles, three of which could be characterized with single-crystal X-ray structure analysis.
Collapse
Affiliation(s)
- Abraham B Alemayehu
- Department of Chemistry, UiT-The Arctic University of Norway, 9037 Tromsø (Norway)
| | | | | | | |
Collapse
|
44
|
Nardis S, Cicero DO, Licoccia S, Pomarico G, Berionni Berna B, Sette M, Ricciardi G, Rosa A, Fronczek FR, Smith KM, Paolesse R. Phenyl derivative of iron 5,10,15-tritolylcorrole. Inorg Chem 2014; 53:4215-27. [PMID: 24697623 PMCID: PMC4002138 DOI: 10.1021/ic5003572] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Indexed: 01/10/2023]
Abstract
The phenyl-iron complex of 5,10,15-tritolylcorrole was prepared by reaction of the starting chloro-iron complex with phenylmagnesium bromide in dichloromethane. The organometallic complex was fully characterized by a combination of spectroscopic methods, X-ray crystallography, and density functional theory (DFT) calculations. All of these techniques support the description of the electronic structure of this phenyl-iron derivative as a low-spin iron(IV) coordinated to a closed-shell corrolate trianion and to a phenyl monoanion. Complete assignments of the (1)H and (13)C NMR spectra of the phenyl-iron derivative and the starting chloro-iron complex were performed on the basis of the NMR spectra of the regioselectively β-substituted bromo derivatives and the DFT calculations.
Collapse
Affiliation(s)
- Sara Nardis
- Department
of Chemical Science and Technologies, Università
di Roma Tor Vergata, 00133 Roma, Italy
| | - Daniel O. Cicero
- Department
of Chemical Science and Technologies, Università
di Roma Tor Vergata, 00133 Roma, Italy
| | - Silvia Licoccia
- Department
of Chemical Science and Technologies, Università
di Roma Tor Vergata, 00133 Roma, Italy
| | - Giuseppe Pomarico
- Department
of Chemical Science and Technologies, Università
di Roma Tor Vergata, 00133 Roma, Italy
| | - Beatrice Berionni Berna
- Department
of Chemical Science and Technologies, Università
di Roma Tor Vergata, 00133 Roma, Italy
| | - Marco Sette
- Department
of Chemical Science and Technologies, Università
di Roma Tor Vergata, 00133 Roma, Italy
| | | | - Angela Rosa
- Dipartimento di
Scienze, Università della Basilicata, 85100 Potenza, Italy
| | - Frank R. Fronczek
- Department of Chemistry, Louisiana State University, Baton
Rouge, Louisiana 70803, United States
| | - Kevin M. Smith
- Department of Chemistry, Louisiana State University, Baton
Rouge, Louisiana 70803, United States
| | - Roberto Paolesse
- Department
of Chemical Science and Technologies, Università
di Roma Tor Vergata, 00133 Roma, Italy
| |
Collapse
|
45
|
Sinha W, Deibel N, Agarwala H, Garai A, Schweinfurth D, Purohit CS, Lahiri GK, Sarkar B, Kar S. Synthesis, Spectral Characterization, Structures, and Oxidation State Distributions in [(corrolato)FeIII(NO)]n (n = 0, +1, −1) Complexes. Inorg Chem 2014; 53:1417-29. [DOI: 10.1021/ic402304e] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Woormileela Sinha
- School
of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, 751005, India
| | - Naina Deibel
- Institut
für Chemie und Biochemie, Anorganische Chemie, Freie Universität Berlin, Fabeckstraße 34-36, D-14195, Berlin, Germany
- Institut
für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring
55, D-70550, Stuttgart, Germany
| | - Hemlata Agarwala
- Department
of Chemistry, Indian Institute of Technology−Bombay, Powai, Mumbai 400076, India
| | - Antara Garai
- School
of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, 751005, India
| | - David Schweinfurth
- Institut
für Chemie und Biochemie, Anorganische Chemie, Freie Universität Berlin, Fabeckstraße 34-36, D-14195, Berlin, Germany
| | - Chandra Shekhar Purohit
- School
of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, 751005, India
| | - Goutam Kumar Lahiri
- Department
of Chemistry, Indian Institute of Technology−Bombay, Powai, Mumbai 400076, India
| | - Biprajit Sarkar
- Institut
für Chemie und Biochemie, Anorganische Chemie, Freie Universität Berlin, Fabeckstraße 34-36, D-14195, Berlin, Germany
| | - Sanjib Kar
- School
of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, 751005, India
| |
Collapse
|
46
|
Leeladee P, Jameson GNL, Siegler MA, Kumar D, de Visser SP, Goldberg DP. Generation of a high-valent iron imido corrolazine complex and NR group transfer reactivity. Inorg Chem 2013; 52:4668-82. [PMID: 23527920 DOI: 10.1021/ic400280x] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The generation of a new high-valent iron terminal imido complex prepared with a corrolazine macrocycle is reported. The reaction of [Fe(III)(TBP8Cz)] (TBP8Cz = octakis(4-tert-butylphenyl)corrolazinato) with the commercially available chloramine-T (Na(+)TsNCl(-)) leads to oxidative N-tosyl transfer to afford [Fe(IV)(TBP8Cz(+•))(NTs)] in dichloromethane/acetonitrile at room temperature. This complex was characterized by UV-vis, Mössbauer (δ = -0.05 mm s(-1), ΔE(Q) = 2.94 mm s(-1)), and EPR (X-band (15 K), g = 2.10, 2.00) spectroscopies, and together with reactivity patterns and DFT calculations has been established as an iron(IV) species antiferromagnetically coupled with a Cz-π-cation-radical (S(total) = 1/2 ground state). Reactivity studies with triphenylphosphine as substrate show that [Fe(IV)(TBP8Cz(+•))(NTs)] is an efficient NTs transfer agent, affording the phospharane product Ph3P═NTs under both stoichiometric and catalytic conditions. Kinetic analysis of this reaction supports a bimolecular NTs transfer mechanism with rate constant of 70(15) M(-1) s(-1). These data indicate that [Fe(IV)(TBP8Cz(+•))(NTs)] reacts about 100 times faster than analogous Mn terminal arylimido corrole analogues. It was found that two products crystallize from the same reaction mixture of Fe(III)(TBP8Cz) + chloramine-T + PPh3, [Fe(IV)(TBP8Cz)(NPPh3)] and [Fe(III)(TBP8Cz)(OPPh3)], which were definitively characterized by X-ray crystallography. The sequential production of Ph3P═NTs, Ph3P═NH, and Ph3P═O was observed by (31)P NMR spectroscopy and led to a proposed mechanism that accounts for all of the observed products. The latter Fe(III) complex was then rationally synthesized and structurally characterized from Fe(III)(TBP8Cz) and OPPh3, providing an important benchmark compound for spectroscopic studies. A combination of Mössbauer and EPR spectroscopies led to the characterization of both intermediate spin (S = 3/2 and low spin (S = 1/2) Fe(III) corrolazines, as well as a formally Fe(IV) corrolazine which may also be described by its valence tautomer Fe(III)(Cz(+•)).
Collapse
Affiliation(s)
- Pannee Leeladee
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | | | | | | | | | | |
Collapse
|
47
|
Palmer JH, Lancaster KM. Molecular redox: revisiting the electronic structures of the group 9 metallocorroles. Inorg Chem 2012; 51:12473-82. [PMID: 23116160 DOI: 10.1021/ic3018826] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The electronic structures of monocationic tris[(5,10,15-pentafluorophenyl)-corrolato]iridium compounds, [Ir(tpfc)L2](+), where L = 4-cyanopyridine [1](+), pyridine [2](+), 4-methoxypyridine [3](+), or 4-(N,N'-dimethylamino)pyridine [4](+), have been probed by electron paramagnetic resonance (EPR) spectroscopy, Ir L3,2-edge X-ray absorption spectroscopy (XAS), UV/visible (UV-vis) spectroelectrochemistry, and density functional theoretical (DFT) calculations. The data demonstrate that these complexes, which have been previously formulated as either of the limiting cases [Ir(III)(tpfc(•))L2](+) or [Ir(IV)(tpfc)L2](+), are best described as possessing a singly occupied molecular orbital (SOMO) dominated by tpfc with small but significant Ir admixture. EPR g-values and electronic absorption spectra are reproduced well using a simple DFT approach. These quantities depend profoundly upon Ir orbital contribution to the SOMO. To wit, the calculated Ir spin population ranges from 10.6% for [1](+) to 16.3% for [4](+), reflecting increased Ir d mixing into the SOMO with increasingly electron-rich axial ligation. This gives rise to experimentally measured gz values ranging from 2.335 to 2.533, metal-to-ligand charge transfer (MLCT) bands ranging from 14730 and 14330 cm(-1), and [Ir(tpfc)L2](+/0) reduction potentials ranging from 0.305 to 0.035 V vs Fc(+/0). In addition, the calculated Ir character in the SOMO tracks with estimated Ir L3,2 XAS branching ratios (EBR), reflecting the increasing degree of Ir d orbital character upon proceeding from [1](+) to [4](+).
Collapse
Affiliation(s)
- Joshua H Palmer
- Beckman Institute , California Institute of Technology, Pasadena, California 91125, United States
| | | |
Collapse
|
48
|
Zhao H, Pierloot K, Langner EHG, Swarts JC, Conradie J, Ghosh A. Low-Energy States of Manganese–Oxo Corrole and Corrolazine: Multiconfiguration Reference ab Initio Calculations. Inorg Chem 2012; 51:4002-6. [DOI: 10.1021/ic201972f] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Hailiang Zhao
- Department
of Chemistry, University of Leuven, Celestijnenlaan
200F, B-3001
Heverlee-Leuven, Belgium
| | - Kristine Pierloot
- Department
of Chemistry, University of Leuven, Celestijnenlaan
200F, B-3001
Heverlee-Leuven, Belgium
| | - Ernie H. G. Langner
- Department of Chemistry, University of the Free State, 9300 Bloemfontein, Republic
of South Africa
| | - Jannie C. Swarts
- Department of Chemistry, University of the Free State, 9300 Bloemfontein, Republic
of South Africa
| | - Jeanet Conradie
- Department of Chemistry, University of the Free State, 9300 Bloemfontein, Republic
of South Africa
- Department
of Chemistry and Center
for Theoretical and Computational Chemistry, University of Tromsø, 9037 Tromsø, Norway
| | - Abhik Ghosh
- Department
of Chemistry and Center
for Theoretical and Computational Chemistry, University of Tromsø, 9037 Tromsø, Norway
| |
Collapse
|
49
|
Fryxelius J, Eilers G, Feyziyev Y, Magnuson A, Sun L, Lomoth R. Synthesis and redox properties of a [meso-tris(4-nitrophenyl) corrolato]Mn(III) complex. J PORPHYR PHTHALOCYA 2012. [DOI: 10.1142/s1088424605000472] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The Mn complexated corrole [ T (4- NO 2 P ) Corr ] Mn ( py ) (3) has been prepared ( py = pyridine ) where [ T (4- NO 2 P ) Corr ] is the trianion of the electron-poor 5,10,15-tris(4-nitrophenyl)corrole (1). The preparation of 3 includes a new synthetic method to form the corrole ligand 1 in a two-step synthesis. The Mn(III) complex gives a parallel mode EPR signal centered around g = 8.2 with six distinct hyperfine lines ( A || = 139 × 10-4 cm -1). Electrochemically 3 undergoes one reversible oxidation ( E 1/2 = 0.12 V vs Fc) and two reversible reductions ( E 1/2 = -1.45, -1.61 V). The oxidation is metal-centered and the product has been characterized by EPR spectroscopy as an S = 3/2 Mn(IV) species with no indication for oxidation of the macrocycle. The reductions of complex 3 are ligand based, and at the potential of the second reduction step a stable nitrogen centered radical with g = 2.0055 is generated. Chemical oxidation of 3 by iodosobenzene yields a Mn(IV) complex and epoxidation of cis-stilbene is not catalyzed by the Mn complex.
Collapse
Affiliation(s)
- Jacob Fryxelius
- Department of Organic Chemistry, Arrhenius Laboratories, Stockholm University, S-106 91 Stockholm, Sweden
| | - Gerriet Eilers
- Department of Physical Chemistry, BMC, Uppsala University, P.O. Box 579, S-751 23 Uppsala, Sweden
| | - Yashar Feyziyev
- Molecular Biomimetics, Uppsala University, Villavägen 6, S-752 36 Uppsala, Sweden
| | - Ann Magnuson
- Molecular Biomimetics, Uppsala University, Villavägen 6, S-752 36 Uppsala, Sweden
| | - Licheng Sun
- Department of Organic Chemistry, Arrhenius Laboratories, Stockholm University, S-106 91 Stockholm, Sweden
| | - Reiner Lomoth
- Department of Physical Chemistry, BMC, Uppsala University, P.O. Box 579, S-751 23 Uppsala, Sweden
| |
Collapse
|
50
|
Ou Z, Erben C, Autret M, Will S, Rosen D, Lex J, Vogel E, Kadish KM. Manganese(III) and manganese(IV) corroles: synthesis, spectroscopic, electrochemical and X-ray structural characterization. J PORPHYR PHTHALOCYA 2012. [DOI: 10.1142/s1088424605000502] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The synthesis, spectroscopic characterization and electrochemistry of four Mn(III) and Mn(IV) octaethylcorroles are reported and the potentials of the Mn(III) / Mn(IV) and Mn(IV) / Mn(III) processes examined as a function of the axial ligand. The investigated compounds are represented as ( OEC ) Mn , ( OEC ) MnCl , ( OEC ) Mn ( py ) and ( OEC ) Mn ( C 6 H 5) where OEC is the trianion of octaethylcorrole. The first one-electron oxidation of ( OEC ) Mn III and ( OEC ) Mn III ( py ) in PhCN or pyridine containing 0.1 M TBAP leads to the facile formation of a Mn(IV) species while the first one-electron reduction of ( OEC ) Mn IV Cl and ( OEC ) Mn IV ( C 6 H 5) in the same two solvents leads to the Mn(III) corrole. All other redox reactions occur at the corrole macrocycle to give π-cation radicals or π-anion radicals and there is no evidence for electrogeneration of a compound with a Mn(II) oxidation state as is the case for manganese(III) porphyrins which are all easily reduced to the Mn(II) state in nonaqueous media. The products of each Mn(III)/Mn(IV) redox reaction were characterized by UV-visible and/or ESR spectroscopy and the structures of ( OEC ) MnCl , ( OEC ) Mn ( py ) and ( OEC ) Mn ( C 6 H 5) were determined by single-crystal X-ray diffraction.
Collapse
Affiliation(s)
- Zhongping Ou
- Department of Chemistry, University of Houston, Houston, TX 77204-5003, USA
| | - Christoph Erben
- Institut für Organische Chemie, Universität zu Köln, Greinstraße 4, 50939 Köln, Germany
| | - Marie Autret
- Department of Chemistry, University of Houston, Houston, TX 77204-5003, USA
| | - Stefan Will
- Institut für Organische Chemie, Universität zu Köln, Greinstraße 4, 50939 Köln, Germany
| | - Daniel Rosen
- Institut für Organische Chemie, Universität zu Köln, Greinstraße 4, 50939 Köln, Germany
| | - Johann Lex
- Institut für Organische Chemie, Universität zu Köln, Greinstraße 4, 50939 Köln, Germany
| | - Emanuel Vogel
- Institut für Organische Chemie, Universität zu Köln, Greinstraße 4, 50939 Köln, Germany
| | - Karl M. Kadish
- Department of Chemistry, University of Houston, Houston, TX 77204-5003, USA
| |
Collapse
|