1
|
Liang Y, Ma Y, Zhou W, Cui Y, Szostak M, Liu C. Samarium diiodide/samarium-mediated direct deoxygenative hydroborylation of ketones with hydroborane esters. Org Biomol Chem 2024; 22:7956-7960. [PMID: 39258992 DOI: 10.1039/d4ob01287a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
A direct deoxygenative hydroborylation of ketones with hydroborane ester promoted by a combination of samarium diiodide, samarium and nickel has been developed. In this method, secondary alkyl borate esters are synthesized from unactivated ketones with hydroborane esters in one step. A broad substrate scope and excellent selectivity toward CO cleavage has been demonstrated. This approach represents a general method for the construction of versatile secondary alkyl borate esters from unactivated ketones.
Collapse
Affiliation(s)
- Yongqi Liang
- Department of Chemistry, Shanghai University, 99 Shangda Road, Shanghai 200444, China.
| | - Yilin Ma
- Department of Chemistry, Shanghai University, 99 Shangda Road, Shanghai 200444, China.
| | - Wei Zhou
- Department of Chemistry, Shanghai University, 99 Shangda Road, Shanghai 200444, China.
| | - Yongmei Cui
- Department of Chemistry, Shanghai University, 99 Shangda Road, Shanghai 200444, China.
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA.
| | - Chengwei Liu
- Department of Chemistry, Shanghai University, 99 Shangda Road, Shanghai 200444, China.
| |
Collapse
|
2
|
Li H, Shen XF, Lin YS, Lin YH, Hung YT, Chen NH, Watanabe M, Chang YJ. Enhancing DSSCs and Photocatalytic Hydrogen Production with D-A 1-A 2-π-A Sensitizers Containing 10'H-Spiro [Fluorene-9,9'-Phenanthren]-10'-one and Benzo[c][1,2,5]Thiadiazole. Chem Asian J 2024; 19:e202400697. [PMID: 38941239 DOI: 10.1002/asia.202400697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 06/30/2024]
Abstract
Novel D-A1-A2-π-A organic sensitizers (FZ-sensitizer), utilizing spiro [fluorene-9,9'-phenanthren]-10'-one and benzo [c][1,2,5]thiadiazole moiety as two auxiliary acceptors, are synthesized and applied in dye-sensitized solar cells (DSSCs) and hydrogen production. By incorporating a bulky spiro [fluorene-9,9'-phenanthrene]-10'-one (A1) and benzo[c][1,2,5]thiadiazole (A2) between the donor (D) and π-bridge moiety, structural modifications inhibit molecular aggregation, while the carbonyl group enhances the capture of Li+ ions, thereby delaying charge recombination. Furthermore, the extended π-conjugation broadens the light absorption range and enhances the power conversion efficiency (PCE) of FZ-2 under AM1.5 conditions, achieving up to 5.72%. Co-sensitization with N719 and FZ-2 shows PCE of 9.60% under one sun. Under TL84 indoor light conditions, the efficiency is 29.69% at 2500 lux. The superior co-sensitization performance of N719 and FZ-2 can be attributed to FZ-2's high absorptivity at short wavelengths, compensating for N719's shortcomings in this range. FZ-sensitizers also exhibit high efficiency in photocatalytic hydrogen production. The hydrogen production activities of FZ-2 are 9190 μmol/g (1 hour) and 76582 μmol/g (12 hours) respectively, while those of FZ-1 are 7430 μmol/g (1 hour) and 64004 μmol/g (12 hours), indicating that FZ-2 can inject charges into TiO2 more efficiently and utilize them for water splitting. Stability testing of photocatalytic water splitting after 12 hours shows a turnover number (TON) of 4249 for FZ-1 and 5378 for FZ-2.
Collapse
Affiliation(s)
- Hsin Li
- Department of Chemistry, Tunghai University, No.1727, Sec.4, Taiwan Boulevard, Xitun District, Taichung, 40704, Taiwan
| | - Xiao-Feng Shen
- Department of Automotive Science, Graduate School of Integrated Frontier Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, Japan
- International Institute for Carbon-Energy Research (I2CNER), Kyushu University, 819-0385, Motooka 744, Nishi-ku, Fukuoka, Japan
| | - Ying-Sheng Lin
- Department of Chemistry, Tunghai University, No.1727, Sec.4, Taiwan Boulevard, Xitun District, Taichung, 40704, Taiwan
| | - Yu Hsuan Lin
- Department of Chemistry, Tunghai University, No.1727, Sec.4, Taiwan Boulevard, Xitun District, Taichung, 40704, Taiwan
| | - Yu-Tong Hung
- Department of Chemistry, Tunghai University, No.1727, Sec.4, Taiwan Boulevard, Xitun District, Taichung, 40704, Taiwan
| | - Nai-Hwa Chen
- Department of Chemistry, Tunghai University, No.1727, Sec.4, Taiwan Boulevard, Xitun District, Taichung, 40704, Taiwan
| | - Motonori Watanabe
- Department of Automotive Science, Graduate School of Integrated Frontier Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, Japan
- International Institute for Carbon-Energy Research (I2CNER), Kyushu University, 819-0385, Motooka 744, Nishi-ku, Fukuoka, Japan
| | - Yuan Jay Chang
- Department of Chemistry, Tunghai University, No.1727, Sec.4, Taiwan Boulevard, Xitun District, Taichung, 40704, Taiwan
| |
Collapse
|
3
|
Chen Z, Isbrandt ES, Newman SG. Regioselective Synthesis of α-Vinyl Boronates via a Pd-Catalyzed Mizoroki-Heck Reaction. Org Lett 2024; 26:7723-7727. [PMID: 39213511 DOI: 10.1021/acs.orglett.4c02866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
We report a palladium-catalyzed synthesis of α-vinyl boronates via a regioselective Mizoroki-Heck reaction between aryl triflates and vinyl boronates. This selectivity is achieved by the use of a 1,5-diaza-3,7-diphosphacyclooctane (P2N2) ligand, which results in minimal formation of the more commonly observed (linear) β-product. The choice of base, solvent, and presence of water are shown to be critical for controlling this outcome, with organic bases, nonpolar solvents, and anhydrous conditions favoring the Heck product and suppressing the competitive Suzuki-Miyaura coupling product.
Collapse
Affiliation(s)
- Zichuan Chen
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Eric S Isbrandt
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Stephen G Newman
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
4
|
Posada Urrutia M, Dyrager C. Tuning the Emission Properties of 2,1,3-Benzothiadiazoles via Regioselective Substitution. Chemistry 2024; 30:e202400644. [PMID: 38619336 DOI: 10.1002/chem.202400644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/13/2024] [Accepted: 04/15/2024] [Indexed: 04/16/2024]
Abstract
The 2,1,3-benzothiadiazole (BTD) unit is a prominent building block commonly used in various research areas such as optoelectronics and bioimaging. Despite its great versatility, the development of strategies to elaborate BTD has been largely neglected, including exploring its reactivity and understanding how regioselective functionalization can be used to tune the fluorescence emission. Previous focus has primarily been on C4- or C4,C7-substitutions. Here, a series of unsymmetrical mono - and disubstituted BTDs was synthesized and characterized for their photophysical properties. The reaction scope includes all six possible substituent patterns on the BTD benzoid ring (C4-, C5-, C4,C5-, C4,C6-, C4,C7- and C5,C6-substitution), which comprise arrangements that previously been synthetically challenging to access. By introducing a methoxy and/or a phenyl group we demonstrate that the emissive behavior of BTD derivatives strongly depends on the position of the substituent (s). We show that regioselective substitution on BTD can engender long-lived fluorescence and circumvent strong fluorescence quenching in polar protic solvents, which is a limitation of many previously described BTD derivatives.
Collapse
Affiliation(s)
| | - Christine Dyrager
- Department of Chemistry-BMC, Uppsala University, Box 576, 751 23, Uppsala, Sweden
| |
Collapse
|
5
|
Alamer B, Sagadevan A, Bodiuzzaman M, Murugesan K, Alsharif S, Huang RW, Ghosh A, Naveen MH, Dong C, Nematulloev S, Yin J, Shkurenko A, Abulikemu M, Dong X, Han Y, Eddaoudi M, Rueping M, Bakr OM. Planar Core and Macrocyclic Shell Stabilized Atomically Precise Copper Nanocluster Catalyst for Efficient Hydroboration of C-C Multiple Bond. J Am Chem Soc 2024; 146:16295-16305. [PMID: 38816788 PMCID: PMC11177319 DOI: 10.1021/jacs.4c05077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/01/2024]
Abstract
Atomically precise metal nanoclusters (NCs) have become an important class of catalysts due to their catalytic activity, high surface area, and tailored active sites. However, the design and development of bond-forming reaction catalysts based on copper NCs are still in their early stages. Herein, we report the synthesis of an atomically precise copper nanocluster with a planar core and unique shell, [Cu45(TBBT)29(TPP)4(C4H11N)2H14]2+ (Cu45) (TBBT: 4-tert-butylbenzenethiol; TPP: triphenylphosphine), in high yield via a one-pot reduction method. The resulting structurally well-defined Cu45 is a highly efficient catalyst for the hydroboration reaction of alkynes and alkenes. Mechanistic studies show that a single-electron oxidation of the in situ-formed ate complex enables the hydroboration via the formation of boryl-centered radicals under mild conditions. This work demonstrates the promise of tailored copper nanoclusters as catalysts for C-B heteroatom bond-forming reactions. The catalysts are compatible with a wide range of alkynes and alkenes and functional groups for producing hydroborated products.
Collapse
Affiliation(s)
- Badriah Alamer
- KAUST
Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Saudi
Arabia
- Department
of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Arunachalam Sagadevan
- KAUST
Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Saudi
Arabia
| | - Mohammad Bodiuzzaman
- KAUST
Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Saudi
Arabia
| | - Kathiravan Murugesan
- KAUST
Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Saudi
Arabia
| | - Salman Alsharif
- KAUST
Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Saudi
Arabia
| | - Ren-Wu Huang
- Henan
Key Laboratory of Crystalline Molecular Functional Materials, Green
Catalysis Center, College of Chemistry, Henan International Joint
Laboratory of Tumor Theranostic Cluster Materials, Zhengzhou University, Zhengzhou 450001, China
| | - Atanu Ghosh
- Institute
for Organic and Bimolecular Chemistry, Georg-August-University
Goettingen Tammannstr, 237077 Goettingen, Germany
| | - Malenahalli H. Naveen
- KAUST
Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Saudi
Arabia
| | - Chunwei Dong
- KAUST
Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Saudi
Arabia
| | - Saidkhodzha Nematulloev
- KAUST
Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Saudi
Arabia
| | - Jun Yin
- Department
of Applied Physics, The Hong Kong Polytechnic
University, Hung Hom, Kowloon, 999077 Hong Kong, P. R. China
| | - Aleksander Shkurenko
- Division
of Physical Sciences and Engineering and Functional Materials Design,
Discovery and Development Research Group (FMD3), Advanced Membranes
and Porous Materials Center, King Abdullah
University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Mutalifu Abulikemu
- KAUST
Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Saudi
Arabia
| | - Xinglong Dong
- Advanced
Membranes and Porous Materials Center, Physical Sciences and Engineering
Division, King Abdullah University of Science
and Technology (KAUST), Thuwal 23955-6900, Saudi
Arabia
| | - Yu Han
- Advanced
Membranes and Porous Materials Center, Physical Sciences and Engineering
Division, King Abdullah University of Science
and Technology (KAUST), Thuwal 23955-6900, Saudi
Arabia
| | - Mohamed Eddaoudi
- Division
of Physical Sciences and Engineering and Functional Materials Design,
Discovery and Development Research Group (FMD3), Advanced Membranes
and Porous Materials Center, King Abdullah
University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Magnus Rueping
- KAUST
Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Saudi
Arabia
| | - Osman M. Bakr
- KAUST
Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Saudi
Arabia
| |
Collapse
|
6
|
Pawar RB, Karmur MH, Punji B. Ligand-free MnBr 2-Catalyzed Chemo- and Stereoselective Hydroboration of Terminal Alkynes. Chem Asian J 2024; 19:e202400158. [PMID: 38512720 DOI: 10.1002/asia.202400158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 03/23/2024]
Abstract
Developing simple and benign protocols for synthesizing alkenylboronates is crucial as they are synthetically valuable compounds in various organic transformations. In this work, we report a straightforward ligand-free protocol for synthesizing alkenylboronates via atom-economical hydroboration of alkynes with HBpin catalyzed by a manganese salt. The reaction shows a high level of chemo and regioselectivity for the terminal alkynes and exclusively produces E-selective alkenylboronates. The hydroboration scope is vast, with the resilience of a range of synthetically beneficial functionalities, such as halides, ether, alkenyl, silyl and thiophenyl groups. This reaction proceeds through the involvement of a metal-hydride intermediate. The developed alkenylboronate can be smoothly converted to useful C-C, C-N and C-I bond-forming reactions.
Collapse
Affiliation(s)
- Rameshwar B Pawar
- Organometallic Synthesis and Catalysis Lab, Organic Chemistry Division, CSIR - National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411 008, India Ph
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | - Mital H Karmur
- Organometallic Synthesis and Catalysis Lab, Organic Chemistry Division, CSIR - National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411 008, India Ph
| | - Benudhar Punji
- Organometallic Synthesis and Catalysis Lab, Organic Chemistry Division, CSIR - National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411 008, India Ph
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| |
Collapse
|
7
|
Li K, Li R, Cui Y, Liu C. Decarbonylative borylation of aryl anhydrides via rhodium catalysis. Org Biomol Chem 2024; 22:1693-1698. [PMID: 38305759 DOI: 10.1039/d3ob01949g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Decarbonylative borylation of aryl anhydrides by rhodium catalysis has been reported. A base-free system with Rh(PPh3)3Cl as a catalyst enables the efficient synthesis of various arylboronate esters from readily available aryl anhydrides. The reaction involves the cleavage of C(O)-O bonds and the formation of C-B bonds. The experimental results demonstrated that compared with carboxylic acids, amides, and esters, anhydrides have higher reactivity in the decarbonylative borylation reaction under the current conditions. Furthermore, compared with the reported palladium-catalyzed borylation reaction of aryl anhydrides, the present rhodium-catalyzed method has the advantages of a shorter reaction time and a lower reaction temperature.
Collapse
Affiliation(s)
- Kexin Li
- Department of Chemistry, Shanghai University, 99 Shangda Road, Shanghai 200444, China.
| | - Ruxing Li
- Department of Chemistry, Shanghai University, 99 Shangda Road, Shanghai 200444, China.
| | - Yongmei Cui
- Department of Chemistry, Shanghai University, 99 Shangda Road, Shanghai 200444, China.
| | - Chengwei Liu
- Department of Chemistry, Shanghai University, 99 Shangda Road, Shanghai 200444, China.
| |
Collapse
|
8
|
Paul S, Panda S. Synthesis of Boronic Esters from Organometallic Reagents and Bis(pinacolato)diboron. Chem Asian J 2024; 19:e202300911. [PMID: 38131458 DOI: 10.1002/asia.202300911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/04/2023] [Accepted: 12/20/2023] [Indexed: 12/23/2023]
Abstract
Synthesis of alkyl, aryl, and vinyl boronic esters carrying various chiral and achiral diol-protecting groups were synthesized starting from the corresponding alkyl, aryl, and vinyl lithium or Grignard reagents. Good to excellent yields were obtained for a large range of substrates. The reaction can be conducted in a gram scale to obtain the product over 80 % yield. This approach provides direct access to neopentyl, pinene, and other boronic esters that are difficult to achieve. Using trimethoxyborane or 2-isopropoxy pinacolboronic ester. Detailed mechanistic studies have been conducted to understand the mechanism behind the formation of boronic ester starting from organometallic reagents.
Collapse
Affiliation(s)
- Swagata Paul
- Indian Institute of Technology, Kharagpur, 721302, India
| | - Santanu Panda
- Indian Institute of Technology, Kharagpur, 721302, India
| |
Collapse
|
9
|
Ou H, Zhao X, Luo Y. A palladium-catalyzed synthesis of cyclic alkenyl boronates from alkenyl chlorides. Org Biomol Chem 2024; 22:1374-1377. [PMID: 38247387 DOI: 10.1039/d3ob01931d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
A palladium-catalyzed borylation of cyclic alkenyl chlorides with B2pin2 is reported. This transformation allows for the conversion of diverse cyclic alkenyl chlorides into synthetically versatile alkenyl boronates with moderate to excellent yields. The utility of this reaction has been demonstrated with practical Suzuki-Miyaura coupling and aziridination reactions, which allow access to functionalized olefins and valuable boron-substituted aziridines.
Collapse
Affiliation(s)
- Hongru Ou
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering Hefei University of Technology, Hefei, 230009, China.
| | - Xu Zhao
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering Hefei University of Technology, Hefei, 230009, China.
| | - Yunfei Luo
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering Hefei University of Technology, Hefei, 230009, China.
| |
Collapse
|
10
|
Zhang H, Ye Z, Wu Y, Zhang X, Ma W, Zhan ZJ, Zhang F. Electrochemical Reductive Cross-Coupling of Vinyl Bromides for the Synthesis of 1,3-Dienes. Org Lett 2024; 26:994-999. [PMID: 38289335 DOI: 10.1021/acs.orglett.3c03940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
An electroreductive cross-electrophile coupling protocol was developed for the construction of valuable 1,3-dienes from vinyl bromides. Furthermore, this scalable method can also be used to forge complex [4 + 2] cycloadducts in a one-pot manner. One of the most important advantages of this green and sustainable protocol is the in situ release of nickel catalyst from the inexpensive electrodes without the addition of extra harmful metal catalysts and reductant.
Collapse
Affiliation(s)
- Hong Zhang
- School of Pharmacy, Hangzhou Medical College, 311399 Hangzhou, P. R. China
- College of Pharmaceutical Science, Zhejiang University of Technology, 310014 Hangzhou, P. R. China
| | - Zenghui Ye
- School of Pharmacy, Hangzhou Medical College, 311399 Hangzhou, P. R. China
| | - Yanqi Wu
- School of Pharmacy, Hangzhou Medical College, 311399 Hangzhou, P. R. China
| | - Xi Zhang
- School of Pharmacy, Hangzhou Medical College, 311399 Hangzhou, P. R. China
| | - Weiyuan Ma
- School of Pharmacy, Hangzhou Medical College, 311399 Hangzhou, P. R. China
| | - Zha-Jun Zhan
- College of Pharmaceutical Science, Zhejiang University of Technology, 310014 Hangzhou, P. R. China
| | - Fengzhi Zhang
- School of Pharmacy, Hangzhou Medical College, 311399 Hangzhou, P. R. China
| |
Collapse
|
11
|
Corpas J, Gomez-Mendoza M, Arpa EM, de la Peña
O'Shea VA, Durbeej B, Carretero JC, Mauleón P, Arrayás R. Iterative Dual-Metal and Energy Transfer Catalysis Enables Stereodivergence in Alkyne Difunctionalization: Carboboration as Case Study. ACS Catal 2023; 13:14914-14927. [PMID: 38026817 PMCID: PMC10662505 DOI: 10.1021/acscatal.3c03570] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/04/2023] [Indexed: 12/01/2023]
Abstract
Stereochemically defined tetrasubstituted olefins are widespread structural elements of organic molecules and key intermediates in organic synthesis. However, flexible methods enabling stereodivergent access to E and Z isomers of fully substituted alkenes from a common precursor represent a significant challenge and are actively sought after in catalysis, especially those amenable to complex multifunctional molecules. Herein, we demonstrate that iterative dual-metal and energy transfer catalysis constitutes a unique platform for achieving stereodivergence in the difunctionalization of internal alkynes. The utility of this approach is showcased by the stereodivergent synthesis of both stereoisomers of tetrasubstituted β-boryl acrylates from internal alkynoates with excellent stereocontrol via sequential carboboration and photoisomerization. The reluctance of electron-deficient internal alkynes to undergo catalytic carboboration has been overcome through cooperative Cu/Pd-catalysis, whereas an Ir complex was identified as a versatile sensitizer that is able to photoisomerize the resulting sterically crowded alkenes. Mechanistic studies by means of quantum-chemical calculations, quenching experiments, and transient absorption spectroscopy have been applied to unveil the mechanism of both steps.
Collapse
Affiliation(s)
- Javier Corpas
- Department of Organic Chemistry, Faculty of Science;
Institute for Advanced Research in Chemical Sciences (IAdChem); and Centro de
Innovación en Química Avanzada (ORFEO−CINQA),
Universidad Autónoma de Madrid (UAM), Cantoblanco,
28049 Madrid, Spain
| | - Miguel Gomez-Mendoza
- Photoactivated Processes Unit, IMDEA
Energy Institute, Technological Park of Mostoles, Avda. Ramón de la
Sagra 3, 28935 Madrid, Spain
| | - Enrique M. Arpa
- Division of Theoretical Chemistry, IFM,
Linköping University, 581 83 Linköping,
Sweden
| | - Víctor A. de la Peña
O'Shea
- Photoactivated Processes Unit, IMDEA
Energy Institute, Technological Park of Mostoles, Avda. Ramón de la
Sagra 3, 28935 Madrid, Spain
| | - Bo Durbeej
- Division of Theoretical Chemistry, IFM,
Linköping University, 581 83 Linköping,
Sweden
| | - Juan C. Carretero
- Department of Organic Chemistry, Faculty of Science;
Institute for Advanced Research in Chemical Sciences (IAdChem); and Centro de
Innovación en Química Avanzada (ORFEO−CINQA),
Universidad Autónoma de Madrid (UAM), Cantoblanco,
28049 Madrid, Spain
| | - Pablo Mauleón
- Department of Organic Chemistry, Faculty of Science;
Institute for Advanced Research in Chemical Sciences (IAdChem); and Centro de
Innovación en Química Avanzada (ORFEO−CINQA),
Universidad Autónoma de Madrid (UAM), Cantoblanco,
28049 Madrid, Spain
| | - Ramón
Gómez Arrayás
- Department of Organic Chemistry, Faculty of Science;
Institute for Advanced Research in Chemical Sciences (IAdChem); and Centro de
Innovación en Química Avanzada (ORFEO−CINQA),
Universidad Autónoma de Madrid (UAM), Cantoblanco,
28049 Madrid, Spain
| |
Collapse
|
12
|
Gay BL, Wang YN, Bhatt S, Tarasewicz A, Cooke DJ, Milem EG, Zhang B, Gary JB, Neidig ML, Hull KL. Palladium and Iron Cocatalyzed Aerobic Alkene Aminoboration. J Am Chem Soc 2023; 145:18939-18947. [PMID: 37584107 PMCID: PMC10772865 DOI: 10.1021/jacs.3c05790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Aminoboration of simple alkenes with nitrogen nucleophiles remains an unsolved problem in synthetic chemistry; this transformation can be catalyzed by palladium via aminopalladation followed by transmetalation with a diboron reagent. However, this catalytic process faces inherent challenges with instability of the alkylpalladium(II) intermediate toward β-hydride elimination. Herein, we report a palladium/iron cocatalyzed aminoboration, which enables this transformation. We demonstrate these conditions on a variety of alkenes and norbornenes with an array of common nitrogen nucleophiles. In the developed strategy, the iron cocatalyst is crucial to achieving the desired reactivity by serving as a halophilic Lewis acid to release the transmetalation-active cationic alkylpalladium intermediate. Furthermore, it serves as a redox shuttle in the regeneration of the Pd(II) catalyst by reactivation of nanoparticulate palladium.
Collapse
Affiliation(s)
- Brittany L. Gay
- University of Texas at Austin, 100 E. 24 Street, Austin, TX 78712 United States of America
| | - Ya-Nong Wang
- University of Texas at Austin, 100 E. 24 Street, Austin, TX 78712 United States of America
| | - Shreeja Bhatt
- University of Texas at Austin, 100 E. 24 Street, Austin, TX 78712 United States of America
| | - Anika Tarasewicz
- University of Texas at Austin, 100 E. 24 Street, Austin, TX 78712 United States of America
| | - Daniel J. Cooke
- University of Texas at Austin, 100 E. 24 Street, Austin, TX 78712 United States of America
| | - E. Grace Milem
- University of Texas at Austin, 100 E. 24 Street, Austin, TX 78712 United States of America
- Stephen F. Austin State University, P.O. Box 13006, SFA Station, Nacogdoches, TX 75962, United States of America
| | - Bufan Zhang
- University of Rochester, 120 Trustee Road, Rochester, NY 14627, United States of America
| | - J. Brannon Gary
- Stephen F. Austin State University, P.O. Box 13006, SFA Station, Nacogdoches, TX 75962, United States of America
| | - Michael L. Neidig
- University of Rochester, 120 Trustee Road, Rochester, NY 14627, United States of America
- University of Oxford, S Parks Rd, Oxford OX1 3QR, United Kingdom
| | - Kami L. Hull
- University of Texas at Austin, 100 E. 24 Street, Austin, TX 78712 United States of America
| |
Collapse
|
13
|
Abstract
A convenient method for the synthesis of indoles has been developed by the sequential orchestration of the cross-coupling reaction of o-haloaniline and PIFA oxidation of the resulting 2-alkenylanilines. A highlight of this two-step indole synthesis is a modular strategy which is applicable to both acyclic and cyclic starting materials. Particularly noteworthy is the regiochemistry that is complementary to the Fischer indole synthesis and related variants. Direct preparation of N-H indoles with no N-protecting group is also advantageous.
Collapse
Affiliation(s)
- Assia Chebieb
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
- Laboratory of Catalysis and Organic Synthesis LCSCO, University of Tlemcen, Tlemcen 13000, Algeria
| | - Young Gyu Kim
- Department of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Jin Kun Cha
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
14
|
Peng L, Zeng Z, Li K, Liu Y, Lan Y, Yan H. Regiodivergent catalytic asymmetric dearomative cycloaddition of bicyclic heteroaromatics. SCIENCE ADVANCES 2023; 9:eadg1645. [PMID: 36989366 PMCID: PMC10058237 DOI: 10.1126/sciadv.adg1645] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/28/2023] [Indexed: 06/19/2023]
Abstract
The catalytic dearomative cycloaddition of bicyclic heteroaromatics including benzofurans and indoles provides rapid access to functionalized heterocyclic molecules. Because of the inherent stereoelectronic differences, the furan or pyrrole nucleus is more prone to dearomative cycloaddition than the benzene ring. Here, we realized a geometry-based differentiation approach for achieving C6-C7 and C7-C7a regioselectivity. The rotationally restricted σ bond at C7 position respectively placed the C6-C7 and C7-C7a sites of benzofurans or indoles in an optimal spatial orientation toward the axially chiral heterodiene, thus affording two enantioenriched polycyclic compounds from a single racemic heterobiaryl atropisomers. Calculation results of density functional theory interpreted the mechanism of this parallel kinetic resolution. The bioactivity of the dearomatized products was evaluated in cancer cell lines with certain compounds exhibiting interesting biological activities.
Collapse
Affiliation(s)
- Lei Peng
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Zhen Zeng
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, China
| | - Kai Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Yidong Liu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| | - Yu Lan
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, China
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, China
| | - Hailong Yan
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China
| |
Collapse
|
15
|
Lamola JL, Moshapo PT, Holzapfel CW, Makhubela BC, Christopher Maumela M. Efficient system for facile access to ortho-substituted aryl boronates through palladium-catalysed borylation. Tetrahedron Lett 2023. [DOI: 10.1016/j.tetlet.2023.154432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
16
|
Li C, Shi Y, Chen Q, Zhang K, Yang G. Copper Powder and Pd(II) Salts Triggered One-Pot Aromatic Halide Homocoupling via a Radical Pathway. J Org Chem 2023; 88:2306-2313. [PMID: 36719812 DOI: 10.1021/acs.joc.2c02717] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
(sp2)C-(sp2)C bond formation is one of the most utilitarian techniques in target synthesis and material and pharmaceutical production. Biaryls usually emerge with the coupling of aryl halides or pseudohalides and require the prepreparation of an organometallic reagent, which results in low efficiency and atomic economy. The classic Ullmann reactions could be adopted to directly synthesize biaryls from aromatic halides. However, the requirement of extremely high temperatures limits the usage of the methodology in manufacturing. At the same time, the mechanism triggers a wide debate between classic redox and redox reactions involving radicals. In this work, a bimetallic system was demonstrated, referring to stoichiometric copper powder in the presence of a catalytic amount of Pd(OAc)2, which contributed to delivering various symmetric/asymmetric (sp2)C-(sp2)C species. It has been proposed that the coupling process might be promoted via radicals produced by redox between Cu(0) and Pd(IV) species in the heating system. Increasing examples demonstrated the good tolerance of this method for aryl bromide among functional groups.
Collapse
Affiliation(s)
- Chen Li
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300071, P. R. China
| | - Yumeng Shi
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300071, P. R. China
| | - Quan Chen
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300071, P. R. China
| | - Kun Zhang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300071, P. R. China
| | - Guang Yang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
17
|
Boehm P, Kehl N, Morandi B. Rhodium-Catalyzed Anti-Markovnikov Transfer Hydroiodination of Terminal Alkynes. Angew Chem Int Ed Engl 2023; 62:e202214071. [PMID: 36336665 PMCID: PMC10107805 DOI: 10.1002/anie.202214071] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022]
Abstract
A rhodium-catalyzed anti-Markovnikov hydroiodination of aromatic and aliphatic terminal alkynes is reported. Depending on the choice of ligand and substrate, either (E)- or (Z)-configured alkenyl iodides are obtained in high to exclusive isomeric purity. The reaction exhibits a broad substrate scope and high functional group tolerance, employing easily accessible or commercially available aliphatic iodides as HI surrogates through a shuttle process. The synthesized vinyl iodides were applied in several C-C and C-heteroatom bond-forming reactions with full retention of the stereoselectivity. The developed method could be used to significantly shorten the total synthesis of a marine cis-fatty acid. Additionally, initial deuterium-labeling experiments and stoichiometric reactions shed some light on the potential reaction mechanism.
Collapse
Affiliation(s)
- Philip Boehm
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir-Prelog-Weg 3, HCI, 8093, Zürich, Switzerland
| | - Niklas Kehl
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir-Prelog-Weg 3, HCI, 8093, Zürich, Switzerland
| | - Bill Morandi
- Laboratorium für Organische Chemie, ETH Zürich, Vladimir-Prelog-Weg 3, HCI, 8093, Zürich, Switzerland
| |
Collapse
|
18
|
Stephens SM, Bray JM, Weierbach SM, Adornato GM, Schrider JA, Lambert KM. Facile access to 1,3-bis(boryl) dienes to build molecular complexity through cycloadditions. Tetrahedron Lett 2023. [DOI: 10.1016/j.tetlet.2023.154381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
19
|
Yang X, Yuan C, Ge S. Ligand-enabled stereodivergence in nickel-catalyzed regioselective hydroboration of internal allenes. Chem 2023. [DOI: 10.1016/j.chempr.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
20
|
Dai Y, Yuan B, Li Z, Zhang L, Li L, Pu M, Lei M. Density Functional Theory Study on the H 2-Acceptorless Dehydrogenative Boration of Alkenes Catalyzed by a Zirconium Complex. J Org Chem 2022; 87:16632-16643. [PMID: 36446027 DOI: 10.1021/acs.joc.2c02287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
For the synthesis of vinyl boronate esters, the direct catalytic H2-acceptorless dehydrogenative boration of alkenes is one of the promising strategies. In this paper, the density functional theory method was employed to investigate the reaction mechanism of dehydrogenative boration and transfer boration of alkenes catalyzed by a zirconium complex (Cp2ZrH2). There are two possible pathways for this reaction: the alkene insertion followed by the dehydrogenative boration (path A) and the alkene insertion after the dehydrogenative boration (path B). The calculated results showed that path A is more favorable than path B, and that the rate-determining step is the C-B coupling step with an energy barrier of 18.7 kcal/mol. The reaction modes of the C-B coupling assisted dehydrogenative boration and the alkene insertion were also discussed. These analyses reveal a novel hydrogen release behavior in dehydrogenative boration and the alkene insertion modes and sequences were proposed to be of importance in the chemoselectivity of this reaction. In addition, the X ligand effect (X = H, Cl) on the catalytic activity of the zirconium complex was explored, indicating that the H ligand could enhance the catalytic activity of the complex for styrene dehydrogenative boration.
Collapse
Affiliation(s)
- Yulan Dai
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Science, Beijing University of Chemical Technology, Beijing 100029, China
| | - Binfang Yuan
- School of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408100, China
| | - Zhewei Li
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Science, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lin Zhang
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Science, Beijing University of Chemical Technology, Beijing 100029, China.,State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Longfei Li
- College of Pharmaceutical Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding, Hebei 071002, China
| | - Min Pu
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Science, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ming Lei
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Science, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
21
|
Regueiro-Ren A, Sit SY, Chen Y, Chen J, Swidorski JJ, Liu Z, Venables BL, Sin N, Hartz RA, Protack T, Lin Z, Zhang S, Li Z, Wu DR, Li P, Kempson J, Hou X, Gupta A, Rampulla R, Mathur A, Park H, Sarjeant A, Benitex Y, Rahematpura S, Parker D, Phillips T, Haskell R, Jenkins S, Santone KS, Cockett M, Hanumegowda U, Dicker I, Meanwell NA, Krystal M. The Discovery of GSK3640254, a Next-Generation Inhibitor of HIV-1 Maturation. J Med Chem 2022; 65:11927-11948. [PMID: 36044257 DOI: 10.1021/acs.jmedchem.2c00879] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
GSK3640254 is an HIV-1 maturation inhibitor (MI) that exhibits significantly improved antiviral activity toward a range of clinically relevant polymorphic variants with reduced sensitivity toward the second-generation MI GSK3532795 (BMS-955176). The key structural difference between GSK3640254 and its predecessor is the replacement of the para-substituted benzoic acid moiety attached at the C-3 position of the triterpenoid core with a cyclohex-3-ene-1-carboxylic acid substituted with a CH2F moiety at the carbon atom α- to the pharmacophoric carboxylic acid. This structural element provided a new vector with which to explore structure-activity relationships (SARs) and led to compounds with improved polymorphic coverage while preserving pharmacokinetic (PK) properties. The approach to the design of GSK3640254, the development of a synthetic route and its preclinical profile are discussed. GSK3640254 is currently in phase IIb clinical trials after demonstrating a dose-related reduction in HIV-1 viral load over 7-10 days of dosing to HIV-1-infected subjects.
Collapse
Affiliation(s)
- Alicia Regueiro-Ren
- Small Molecule Drug Discovery, Bristol Myers Squibb Research and Early Development, Princeton, New Jersey08543, United States
| | - Sing-Yuen Sit
- Department of Discovery Chemistry, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Yan Chen
- Department of Discovery Chemistry, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Jie Chen
- Department of Discovery Chemistry, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Jacob J Swidorski
- Department of Discovery Chemistry, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Zheng Liu
- Department of Discovery Chemistry, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Brian L Venables
- Department of Discovery Chemistry, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Ny Sin
- Department of Discovery Chemistry, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Richard A Hartz
- Department of Discovery Chemistry, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Tricia Protack
- Department of Virology, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Zeyu Lin
- Department of Virology, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Sharon Zhang
- Department of Virology, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Zhufang Li
- Department of Virology, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Dauh-Rurng Wu
- Department of Discovery Synthesis, Bristol Myers Squibb Research and Early Development, PO Box 4000, Princeton, New Jersey08543, United States
| | - Peng Li
- Department of Discovery Synthesis, Bristol Myers Squibb Research and Early Development, PO Box 4000, Princeton, New Jersey08543, United States
| | - James Kempson
- Department of Discovery Synthesis, Bristol Myers Squibb Research and Early Development, PO Box 4000, Princeton, New Jersey08543, United States
| | - Xiaoping Hou
- Department of Discovery Synthesis, Bristol Myers Squibb Research and Early Development, PO Box 4000, Princeton, New Jersey08543, United States
| | - Anuradha Gupta
- Department of Discovery Synthesis; Bristol Myers Squibb Research and Early Development, Bangalore 560099, India
| | - Richard Rampulla
- Department of Discovery Synthesis, Bristol Myers Squibb Research and Early Development, PO Box 4000, Princeton, New Jersey08543, United States
| | - Arvind Mathur
- Department of Discovery Synthesis, Bristol Myers Squibb Research and Early Development, PO Box 4000, Princeton, New Jersey08543, United States
| | - Hyunsoo Park
- Bristol Myers Squibb Chemical and Synthetic Development, New Brunswick, New Jersey08901, United States
| | - Amy Sarjeant
- Bristol Myers Squibb Chemical and Synthetic Development, New Brunswick, New Jersey08901, United States
| | - Yulia Benitex
- Department of Pharmaceutical Candidate Optimization, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Sandhya Rahematpura
- Department of Pharmaceutical Candidate Optimization, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Dawn Parker
- Department of Pharmaceutical Candidate Optimization, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Thomas Phillips
- Department of Pharmaceutical Candidate Optimization, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Roy Haskell
- Department of Pharmaceutical Candidate Optimization, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Susan Jenkins
- Department of Pharmaceutical Candidate Optimization, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Kenneth S Santone
- Department of Pharmaceutical Candidate Optimization, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Mark Cockett
- Department of Virology, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Umesh Hanumegowda
- Department of Pharmaceutical Candidate Optimization, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Ira Dicker
- Department of Virology, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| | - Nicholas A Meanwell
- Small Molecule Drug Discovery, Bristol Myers Squibb Research and Early Development, Princeton, New Jersey08543, United States
| | - Mark Krystal
- Department of Virology, Bristol Myers Squibb Research and Early Development, 5 Research Parkway, Wallingford, Connecticut06492, United States
| |
Collapse
|
22
|
Zhang Y, Li X, Mo Q, Shi W, Zhao J, Zhu S. Highly Regioselective Cobalt‐Catalyzed Hydroboration of Internal Alkynes. Angew Chem Int Ed Engl 2022; 61:e202208473. [DOI: 10.1002/anie.202208473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Indexed: 12/18/2022]
Affiliation(s)
- Yan‐Dong Zhang
- Frontiers Science Center for New Organic Matter, the State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Xiao‐Yu Li
- Frontiers Science Center for New Organic Matter, the State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Qian‐Kun Mo
- Frontiers Science Center for New Organic Matter, the State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Wen‐Bin Shi
- Frontiers Science Center for New Organic Matter, the State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Jia‐Bao Zhao
- Frontiers Science Center for New Organic Matter, the State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
| | - Shou‐Fei Zhu
- Frontiers Science Center for New Organic Matter, the State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
- Haihe Laboratory of Sustainable Chemical Transformations Tianjin 300192 China
| |
Collapse
|
23
|
Li X, Chen Z, Liu Y, Luo N, Chen W, Liu C, Yu F, Huang J. Nickel-Catalyzed Reductive Borylation of Enaminones via C(sp 2)-N Bond Cleavage. J Org Chem 2022; 87:10349-10358. [PMID: 35895906 DOI: 10.1021/acs.joc.2c00096] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The cleavage and transformation of alkenyl C(sp2)-N bonds is a significant synthetic challenge. Herein we described an unprecedented nickel-catalyzed reductive borylation of enaminones to synthesize β-ketone boronic esters. Notably, B2pin2 played the dual role in this process, and water served as a hydrogen source, which was transferred to target products. The air-stable nickel catalyst was applied to the cleavage of alkenyl C(sp2)-N bonds, concomitant with the reductive process of the alkenyl boronic ester intermediates, on the basis of the mechanism study.
Collapse
Affiliation(s)
- Xiaoning Li
- School of Pharmacy, Gannan Medical University, Ganzhou 341000, PR China.,Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 341000, PR China
| | - Zunsheng Chen
- School of Pharmacy, Gannan Medical University, Ganzhou 341000, PR China
| | - Yan Liu
- School of Pharmacy, Gannan Medical University, Ganzhou 341000, PR China
| | - Nianhua Luo
- School of Pharmacy, Gannan Medical University, Ganzhou 341000, PR China
| | - Weiming Chen
- School of Pharmacy, Gannan Medical University, Ganzhou 341000, PR China
| | - Chenfu Liu
- School of Pharmacy, Gannan Medical University, Ganzhou 341000, PR China
| | - Fuchao Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Jiuzhong Huang
- School of Pharmacy, Gannan Medical University, Ganzhou 341000, PR China.,Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 341000, PR China
| |
Collapse
|
24
|
Zhang YD, Li XY, Mo QK, Shi WB, Zhao JB, Zhu SF. Highly Regioselective Cobalt‐Catalyzed Hydroboration of Internal Alkynes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Xiao-Yu Li
- Nankai University College of Chemistry CHINA
| | - Qian-Kun Mo
- Nankai University College of Chemistry CHINA
| | - Wen-Bin Shi
- Nankai University College of Chemistry CHINA
| | | | - Shou-Fei Zhu
- Nankai University Sate Key Laboratory and Institute of Elemento-Organic Chemistry 94 Wijin Road 300071 Tianjin CHINA
| |
Collapse
|
25
|
Zhao Q, Wu XF, Xiao X, Wang ZY, Zhao J, Wang BW, Lei H. Group 4 Metallocene Complexes Supported by a Redox-Active O, C-Chelating Ligand. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Qiuting Zhao
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Xiao-Fan Wu
- Beijing National Laboratory of Molecular Science, Beijing Key Laboratory for Magnetoelectric Materials and Devices, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xiang Xiao
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Zi-Yu Wang
- Beijing National Laboratory of Molecular Science, Beijing Key Laboratory for Magnetoelectric Materials and Devices, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jixing Zhao
- Analysis and Testing Center, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Bing-Wu Wang
- Beijing National Laboratory of Molecular Science, Beijing Key Laboratory for Magnetoelectric Materials and Devices, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Hao Lei
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| |
Collapse
|
26
|
Robinson DJ, Ortiz KG, O’Hare NP, Karimov RR. Dearomatization of Heteroarenium Salts with ArBpin Reagents. Application to the Total Synthesis of a Nuphar Alkaloid. Org Lett 2022; 24:3445-3449. [DOI: 10.1021/acs.orglett.2c00976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Donovan J. Robinson
- Department of Chemistry and Biochemistry, Auburn University, 179 Chemistry Building, Auburn, Alabama 36849, United States
| | - Kacey G. Ortiz
- Department of Chemistry and Biochemistry, Auburn University, 179 Chemistry Building, Auburn, Alabama 36849, United States
| | - Nathan P. O’Hare
- Department of Chemistry and Biochemistry, Auburn University, 179 Chemistry Building, Auburn, Alabama 36849, United States
| | - Rashad R. Karimov
- Department of Chemistry and Biochemistry, Auburn University, 179 Chemistry Building, Auburn, Alabama 36849, United States
| |
Collapse
|
27
|
Gong L, Li C, Yuan F, Liu S, Zeng X. Chromium-Catalyzed Selective Borylation of Vinyl Triflates and Unactivated Aryl Carboxylic Esters with Pinacolborane. Org Lett 2022; 24:3227-3231. [DOI: 10.1021/acs.orglett.2c01015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Li Gong
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Chao Li
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Fangyan Yuan
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Senlin Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaoming Zeng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
28
|
Guo H, Zhang S, Li Y, Yu X, Feng X, Yamamoto Y, Bao M. Palladium-Catalyzed Tail-to-Tail Reductive Dimerization of Terminal Alkynes to 2,3-Dibranched Butadienes. Angew Chem Int Ed Engl 2022; 61:e202116870. [PMID: 35103393 DOI: 10.1002/anie.202116870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Indexed: 11/05/2022]
Abstract
The palladium-catalyzed tail-to-tail reductive dimerization of terminal alkynes is described for the first time. Aromatic terminal alkynes bearing diverse and sensitive functional groups as well as aliphatic terminal alkynes are efficiently transformed to 2,3-dibranched butadienes. The key to achieve a selective tail-to-tail reductive dimerization reaction is to control appropriately the acidity of the reaction solution, which is accomplished by a combined use of pivalic acid and para-toluenesulfonic acid. The tail-to-tail reductive dimerization reaction is proposed to proceed via a cationic alkenyl palladium intermediate under acidic conditions.
Collapse
Affiliation(s)
- Hongyu Guo
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116023, China
| | - Sheng Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116023, China
| | - Yang Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116023, China
| | - Xiaoqiang Yu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116023, China
| | - Xiujuan Feng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116023, China
| | - Yoshinori Yamamoto
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116023, China.,Department of Chemistry, Tohoku University, Sendai, 980-8578, Japan
| | - Ming Bao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116023, China
| |
Collapse
|
29
|
Ha MW, Kim J, Paek SM. Recent Achievements in Total Synthesis for Integral Structural Revisions of Marine Natural Products. Mar Drugs 2022; 20:md20030171. [PMID: 35323470 PMCID: PMC8951824 DOI: 10.3390/md20030171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/20/2022] [Accepted: 02/21/2022] [Indexed: 02/01/2023] Open
Abstract
A great effort to discover new therapeutic ingredients is often initiated through the discovery of the existence of novel marine natural products. Since substances produced by the marine environment might be structurally more complex and unique than terrestrial natural products, there have been cases of misassignments of their structures despite the availability of modern spectroscopic and computational chemistry techniques. When it comes to refutation to erroneously or tentatively proposed structures empirical preparations through organic chemical synthesis has the greatest contribution along with close and sophiscated inspection of spectroscopic data. Herein, we analyzed the total synthetic studies that have decisively achieved in revelation of errors, ambiguities, or incompleteness of the isolated structures of marine natural products covering the period from 2018 to 2021.
Collapse
Affiliation(s)
- Min Woo Ha
- Jeju Research Institute of Pharmaceutical Sciences, College of Pharmacy, Jeju National University, 102 Jejudaehak-ro, Jeju 63243, Jeju-do, Korea;
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, 102 Jejudaehak-ro, Jeju 63243, Jeju-do, Korea
| | - Jonghoon Kim
- Department of Chemistry, Soongsil University, 369 Sangdo-ro, Dongjak-gu, Seoul 06978, Korea;
| | - Seung-Mann Paek
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Gyeongnam-do, Korea
- Correspondence: ; Tel.: +82-55-772-2424
| |
Collapse
|
30
|
Guo H, Zhang S, Li Y, Yu X, Feng X, Yamamoto Y, Bao M. Palladium‐Catalyzed Tail‐to‐Tail Reductive Dimerization of Terminal Alkynes to 2,3‐Dibranched Butadienes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hongyu Guo
- State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian 116023 China
| | - Sheng Zhang
- State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian 116023 China
| | - Yang Li
- State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian 116023 China
| | - Xiaoqiang Yu
- State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian 116023 China
| | - Xiujuan Feng
- State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian 116023 China
| | - Yoshinori Yamamoto
- State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian 116023 China
- Department of Chemistry Tohoku University Sendai 980-8578 Japan
| | - Ming Bao
- State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian 116023 China
| |
Collapse
|
31
|
Marciniec B, Pietraszuk C, Pawluć P, Maciejewski H. Inorganometallics (Transition Metal-Metalloid Complexes) and Catalysis. Chem Rev 2022; 122:3996-4090. [PMID: 34967210 PMCID: PMC8832401 DOI: 10.1021/acs.chemrev.1c00417] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Indexed: 11/28/2022]
Abstract
While the formation and breaking of transition metal (TM)-carbon bonds plays a pivotal role in the catalysis of organic compounds, the reactivity of inorganometallic species, that is, those involving the transition metal (TM)-metalloid (E) bond, is of key importance in most conversions of metalloid derivatives catalyzed by TM complexes. This Review presents the background of inorganometallic catalysis and its development over the last 15 years. The results of mechanistic studies presented in the Review are related to the occurrence of TM-E and TM-H compounds as reactive intermediates in the catalytic transformations of selected metalloids (E = B, Si, Ge, Sn, As, Sb, or Te). The Review illustrates the significance of inorganometallics in catalysis of the following processes: addition of metalloid-hydrogen and metalloid-metalloid bonds to unsaturated compounds; activation and functionalization of C-H bonds and C-X bonds with hydrometalloids and bismetalloids; activation and functionalization of C-H bonds with vinylmetalloids, metalloid halides, and sulfonates; and dehydrocoupling of hydrometalloids. This first Review on inorganometallic catalysis sums up the developments in the catalytic methods for the synthesis of organometalloid compounds and their applications in advanced organic synthesis as a part of tandem reactions.
Collapse
Affiliation(s)
- Bogdan Marciniec
- Faculty
of Chemistry, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego
8, 61-614 Poznań, Poland
- Center
for Advanced Technology, Adam Mickiewicz
University, Poznań,
Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland
| | - Cezary Pietraszuk
- Faculty
of Chemistry, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego
8, 61-614 Poznań, Poland
| | - Piotr Pawluć
- Faculty
of Chemistry, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego
8, 61-614 Poznań, Poland
- Center
for Advanced Technology, Adam Mickiewicz
University, Poznań,
Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland
| | - Hieronim Maciejewski
- Faculty
of Chemistry, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego
8, 61-614 Poznań, Poland
| |
Collapse
|
32
|
Grygorenko OO, Moskvina VS, Kleban I, Hryshchyk OV. Synthesis of saturated and partially saturated heterocyclic boronic derivatives. Tetrahedron 2022. [DOI: 10.1016/j.tet.2021.132605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
33
|
Lamola JL, Moshapo PT, Holzapfel CW, Christopher Maumela M. Palladium-catalyzed borylation of aryl bromides and chlorides using phosphatrioxa-adamantane ligands. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2021.153572] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
34
|
Huang Y, Du Y, Su W. Convenient and Flexible Syntheses of gem-Dimethyl Carboxylic Triggers via Mono-Selective β-C(sp3)-H Arylation of Pivalic Acid with ortho-Substituted Aryl Iodides. Org Chem Front 2022. [DOI: 10.1039/d2qo00478j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This work presents a palladium(II)-catalyzed mono-selective C(sp3)-H arylation of pivalic acid for rapid construction of an important library of 3-aryl-2,2-dimethylpropanoic acids, especially those ortho-substituted-aryl compounds. The strategy greatly streamlines the...
Collapse
|
35
|
Yuan Y, Xu JX, Wu XF. Cooperative Cu/Pd-catalyzed borocarbonylation of ethylene. Chem Commun (Camb) 2022; 58:12110-12113. [DOI: 10.1039/d2cc04907d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A general procedure for the synthesize of β-boryl ketones enabled by cooperative Cu/Pd-catalyzed borocarbonylation of ethylene has been developed.
Collapse
Affiliation(s)
- Yang Yuan
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, Liaoning, P. R. China
| | - Jian-Xing Xu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, Liaoning, P. R. China
| | - Xiao-Feng Wu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, Liaoning, P. R. China
- Leibniz-Institut für Katalyse e. V. Albert-Einstein-Strasse 29a, 18059, Rostock, Germany
| |
Collapse
|
36
|
|
37
|
Zhang W, Bie F, Ma J, Zhou F, Szostak M, Liu C. Palladium-Catalyzed Decarbonylative Borylation of Aryl Anhydrides. J Org Chem 2021; 86:17445-17452. [PMID: 34747599 DOI: 10.1021/acs.joc.1c02134] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A palladium-catalyzed base-free decarbonylative borylation of aryl anhydrides has been developed. Catalyst system consisting of Pd(OAc)2/dppb enables readily available aryl anhydrides to be employed as electrophiles for the synthesis of versatile arylboronate esters via O-C(O) bond activation and decarbonylation. This method is characterized by an excellent functional group tolerance and broad substrate scope, using bench stable aryl anhydrides as aryl electrophiles in C-B bond formation. Mechanistic studies and functionalization of late-stage pharmaceutical molecules are disclosed.
Collapse
Affiliation(s)
- Wenzhi Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Zaozhuang University, 1 Bei'an Road, Zaozhuang, Shandong 277160, China
| | - Fusheng Bie
- Shandong Lunan Coal Chemical Research Institute of Engineering and Technology, Zaozhuang University, 1 Bei'an Road, Zaozhuang, Shandong 277160, China
| | - Jie Ma
- College of Chemistry, Chemical Engineering and Materials Science, Zaozhuang University, 1 Bei'an Road, Zaozhuang, Shandong 277160, China
| | - Fengyan Zhou
- College of Chemistry, Chemical Engineering and Materials Science, Zaozhuang University, 1 Bei'an Road, Zaozhuang, Shandong 277160, China
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Chengwei Liu
- School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing, Jiangsu 210044, China
| |
Collapse
|
38
|
Michalland J, Zard SZ. A Convergent, Stereoselective Route to Trisubstituted Alkenyl Boronates. Org Lett 2021; 23:8018-8022. [PMID: 34617761 DOI: 10.1021/acs.orglett.1c03022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A modular, stereoselective route to trisubstituted (Z)-alkenyl (MIDA)boronates is described, consisting of the radical addition-fragmentation of dithiocarbonates to 2-(MIDA)boronyl-3-(2'-fluoro-pyridyl-6'-oxy)-alkenes. The bulky (MIDA)boronate ensures a highly stereoselective fragmentation that is enhanced by the poor stabilization of the radical adjacent to the tetravalent boron atom. The vinyl boronate precursors are prepared from propargyl alcohols by copper-catalyzed regioselective protoboration of their fluoropyridoxy derivatives, with the fluoropyridine acting as an internal directing group.
Collapse
Affiliation(s)
- Jean Michalland
- Laboratoire de Synthèse Organique, CNRS UMR 7652, Ecole Polytechnique, 91128 Palaiseau Cedex, France
| | - Samir Z Zard
- Laboratoire de Synthèse Organique, CNRS UMR 7652, Ecole Polytechnique, 91128 Palaiseau Cedex, France
| |
Collapse
|
39
|
Miyamoto Y, Sumida Y, Ohmiya H. Generation of Functionalized Alkyl Radicals via the Direct Photoexcitation of 2,2'-(Pyridine-2,6-diyl)diphenol-Based Borates. Org Lett 2021; 23:5865-5870. [PMID: 34236860 DOI: 10.1021/acs.orglett.1c01996] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A new type of alkylborate was developed for the purpose of generating radicals via direct photoexcitation. These borates were prepared using 2,2'-(pyridine-2,6-diyl)diphenol as a tridentate ligand together with organoboronic acids or potassium trifluoroborates. The ready availability of organoboron compounds is a significant advantage of this direct photoexcitation protocol. The excited states of these borates can also serve as strong reductants, enabling various transformations.
Collapse
Affiliation(s)
- Yusuke Miyamoto
- Division of Pharmaceutical Science, Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Yuto Sumida
- Division of Pharmaceutical Science, Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Hirohisa Ohmiya
- Division of Pharmaceutical Science, Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.,JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
40
|
Xu S, Geng P, Li Y, Liu G, Zhang L, Guo Y, Huang Z. Pincer Iron Hydride Complexes for Alkene Isomerization: Catalytic Approach to Trisubstituted ( Z)-Alkenyl Boronates. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02432] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Songgen Xu
- The State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Peiyu Geng
- The State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Yuling Li
- The State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Guixia Liu
- The State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- Chang-Kung Chuang Institute, East China Normal University, Shanghai 200062, China
| | - Lei Zhang
- School of Chemistry and Material Sciences, Hangzhou Institute of Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
| | - Yinlong Guo
- The State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Zheng Huang
- The State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School of Chemistry and Material Sciences, Hangzhou Institute of Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
| |
Collapse
|
41
|
Nimje RY, Kuppusamy P, Krishnamoorthy S, Shanmugam Y, Ramasamy D, Manoharan H, Arunachalam PN, Balog A, Cherney EC, Zhang L, Borzilleri RM, Hong Z, Kempson J, Rampulla RR, Mathur A, Gupta A. Development of a Stereoselective and Scalable Synthesis for the Potent Indoleamine 2,3-Dioxygenase 1 (IDO1) Inhibitor, BMT-297376; N-(( R)-1-(( cis)-4-(3-(Difluoromethyl)-2-methoxypyridin-4-yl)cyclohexyl)propyl)-6-methoxynicotinamide. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.1c00142] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Roshan Y. Nimje
- Department of Discovery Synthesis, Biocon Bristol Myers Squibb R&D Centre, Syngene International Limited, Biocon Park, Plot No. 2 & 3, Bommasandra−Jigani Road, Bangalore 560099, India
| | - Prakasam Kuppusamy
- Department of Discovery Synthesis, Biocon Bristol Myers Squibb R&D Centre, Syngene International Limited, Biocon Park, Plot No. 2 & 3, Bommasandra−Jigani Road, Bangalore 560099, India
| | - Suresh Krishnamoorthy
- Department of Discovery Synthesis, Biocon Bristol Myers Squibb R&D Centre, Syngene International Limited, Biocon Park, Plot No. 2 & 3, Bommasandra−Jigani Road, Bangalore 560099, India
| | - Yoganand Shanmugam
- Department of Discovery Synthesis, Biocon Bristol Myers Squibb R&D Centre, Syngene International Limited, Biocon Park, Plot No. 2 & 3, Bommasandra−Jigani Road, Bangalore 560099, India
| | - Duraisamy Ramasamy
- Department of Discovery Synthesis, Biocon Bristol Myers Squibb R&D Centre, Syngene International Limited, Biocon Park, Plot No. 2 & 3, Bommasandra−Jigani Road, Bangalore 560099, India
| | - Haridhas Manoharan
- Department of Discovery Synthesis, Biocon Bristol Myers Squibb R&D Centre, Syngene International Limited, Biocon Park, Plot No. 2 & 3, Bommasandra−Jigani Road, Bangalore 560099, India
| | - Pirama Nayagam Arunachalam
- Department of Discovery Synthesis, Biocon Bristol Myers Squibb R&D Centre, Syngene International Limited, Biocon Park, Plot No. 2 & 3, Bommasandra−Jigani Road, Bangalore 560099, India
| | - Aaron Balog
- Small Molecule Drug Discovery, Bristol Myers Squibb Research and Early Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Emily C. Cherney
- Small Molecule Drug Discovery, Bristol Myers Squibb Research and Early Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Liping Zhang
- Small Molecule Drug Discovery, Bristol Myers Squibb Research and Early Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Robert M. Borzilleri
- Small Molecule Drug Discovery, Bristol Myers Squibb Research and Early Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Zhenqiu Hong
- Small Molecule Drug Discovery, Bristol Myers Squibb Research and Early Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - James Kempson
- Small Molecule Drug Discovery, Bristol Myers Squibb Research and Early Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Richard R. Rampulla
- Small Molecule Drug Discovery, Bristol Myers Squibb Research and Early Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Arvind Mathur
- Small Molecule Drug Discovery, Bristol Myers Squibb Research and Early Development, P.O. Box 4000, Princeton, New Jersey 08543-4000, United States
| | - Anuradha Gupta
- Department of Discovery Synthesis, Biocon Bristol Myers Squibb R&D Centre, Syngene International Limited, Biocon Park, Plot No. 2 & 3, Bommasandra−Jigani Road, Bangalore 560099, India
| |
Collapse
|
42
|
Abstract
Transition metal-catalyzed cross-electrophile coupling (XEC) is a powerful tool for forging C(sp2)-C(sp2) bonds in biaryl molecules from abundant aromatic halides. While syntheses of unsymmetrical biaryl compounds through multimetallic XEC is of high synthetic value, selective XEC of two heteroaromatic halides remains elusive and challenging. Herein we report a homogeneous XEC method which relies on a zirconaaziridine complex as a shuttle for dual palladium catalyzed processes. The zirconaaziridine-mediated palladium (ZAPd) catalyzed reaction shows excellent compatibility with various functional groups and diverse heteroaromatic scaffolds. In accord with density functional theory (DFT) calculations, a redox-transmetallation between the oxidative addition product and the zirconaaziridine is proposed as the crucial elementary step. Thus, cross-coupling selectivity using a single transition metal catalyst is controlled by the relative rate of oxidative addition of Pd(0) into the aromatic halide. Overall, the concept of a combined reducing and transmetallating agent offers opportunities for development of transition-metal reductive coupling catalysis.
Collapse
|
43
|
Ping Y, Wang R, Wang Q, Chang T, Huo J, Lei M, Wang J. Synthesis of Alkenylboronates from N-Tosylhydrazones through Palladium-Catalyzed Carbene Migratory Insertion. J Am Chem Soc 2021; 143:9769-9780. [PMID: 34157838 DOI: 10.1021/jacs.1c02331] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The palladium-catalyzed oxidative borylation reaction of N-tosylhydrazones has been developed. The reaction features mild conditions, broad substrate scope, and good functional group tolerance. It thus represents a highly efficient and practical method for the synthesis of di-, tri-, and tetrasubstituted alkenylboronates from readily available N-tosylhydrazones. One-pot Suzuki coupling and other transformations highlight the synthetic utility of the approach. DFT calculations have revealed that palladium-carbene formation and subsequent boryl migratory insertion are the key steps in the catalytic cycle. The high stereoselectivity observed in the formation of trisubstituted alkenylboronates has been explained by distortion-interaction analysis and NBO analysis.
Collapse
Affiliation(s)
- Yifan Ping
- Beijing National Laboratory of Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Rui Wang
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Qianyue Wang
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Taiwei Chang
- Beijing National Laboratory of Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Jingfeng Huo
- Beijing National Laboratory of Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Ming Lei
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jianbo Wang
- Beijing National Laboratory of Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China.,The State Key Laboratory of Organometallic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
44
|
Sha Y, Liu J, Wang L, Liang D, Wu D, Gong H. Nickel-catalyzed reductive 1,3-diene formation from the cross-coupling of vinyl bromides. Org Biomol Chem 2021; 19:4887-4890. [PMID: 34021299 DOI: 10.1039/d1ob00791b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Facile construction of 1,3-dienes building upon cross-electrophile coupling of two open-chain vinyl halides is disclosed in this work, showing moderate chemoselectivities between the terminal bromoalkenes and internal vinyl bromides. The present method is mild and tolerates a range of functional groups and can be applied to the total synthesis of a tobacco fragrance solanone.
Collapse
Affiliation(s)
- Yunfei Sha
- Technical Center, Shanghai Tobacco Group Corporation Ltd, 3733 Xiu-Pu Road, Shanghai 201315, China.
| | - Jiandong Liu
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, Shanghai University, 99 Shang-Da Road, Shanghai 200444, China.
| | - Liang Wang
- Technical Center, Shanghai Tobacco Group Corporation Ltd, 3733 Xiu-Pu Road, Shanghai 201315, China.
| | - Demin Liang
- Technical Center, Shanghai Tobacco Group Corporation Ltd, 3733 Xiu-Pu Road, Shanghai 201315, China.
| | - Da Wu
- Technical Center, Shanghai Tobacco Group Corporation Ltd, 3733 Xiu-Pu Road, Shanghai 201315, China.
| | - Hegui Gong
- Center for Supramolecular Chemistry and Catalysis and Department of Chemistry, Shanghai University, 99 Shang-Da Road, Shanghai 200444, China.
| |
Collapse
|
45
|
Roscales S, Csáky AG. Synthesis of Ketones by C−H Functionalization of Aldehydes with Boronic Acids under Transition‐Metal‐Free Conditions. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Silvia Roscales
- Instituto Pluridisciplinar Universidad Complutense Campus de Excelencia Internacional Moncloa Paseo de Juan XXIII, 1 28040 Madrid Spain
| | - Aurelio G. Csáky
- Instituto Pluridisciplinar Universidad Complutense Campus de Excelencia Internacional Moncloa Paseo de Juan XXIII, 1 28040 Madrid Spain
| |
Collapse
|
46
|
Swidorski JJ, Jenkins S, Hanumegowda U, Parker DD, Beno BR, Protack T, Ng A, Gupta A, Shanmugam Y, Dicker IB, Krystal M, Meanwell NA, Regueiro-Ren A. Design and exploration of C-3 benzoic acid bioisosteres and alkyl replacements in the context of GSK3532795 (BMS-955176) that exhibit broad spectrum HIV-1 maturation inhibition. Bioorg Med Chem Lett 2021; 36:127823. [PMID: 33508465 DOI: 10.1016/j.bmcl.2021.127823] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/11/2021] [Accepted: 01/18/2021] [Indexed: 11/30/2022]
Abstract
GSK3532795 (formerly BMS-955176) is a second-generation HIV-1 maturation inhibitor that has shown broad spectrum antiviral activity and preclinical PK predictive of once-daily dosing in humans. Although efficacy was confirmed in clinical trials, the observation of gastrointestinal intolerability and the emergence of drug resistant virus in a Phase 2b clinical study led to the discontinuation of GSK3532795. As part of the effort to further map the maturation inhibitor pharmacophore and provide additional structural options, the evaluation of alternates to the C-3 phenyl substituent in this chemotype was pursued. A cyclohexene carboxylic acid provided exceptional inhibition of wild-type, V370A and ΔV370 mutant viruses in addition to a suitable PK profile following oral dosing to rats. In addition, a novel spiro[3.3]hept-5-ene was designed to extend the carboxylic acid further from the triterpenoid core while reducing side chain flexibility compared to the other alkyl substituents. This modification was shown to closely emulate the C-3 benzoic acid moiety of GSK3532795 from both a potency and PK perspective, providing a non-traditional, sp3-rich bioisostere of benzene. Herein, we detail additional modifications to the C-3 position of the triterpenoid core that offer effective replacements for the benzoic acid of GSK3532795 and capture the interplay between these new C-3 elements and C-17 modifications that contribute to enhanced polymorph coverage.
Collapse
Affiliation(s)
- Jacob J Swidorski
- Department of Discovery Chemistry, Bristol Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, USA.
| | - Susan Jenkins
- Department of Pharmaceutical Candidate Optimization, Bristol Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, USA
| | - Umesh Hanumegowda
- Department of Pharmaceutical Candidate Optimization, Bristol Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, USA
| | - Dawn D Parker
- Department of Pharmaceutical Candidate Optimization, Bristol Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, USA
| | - Brett R Beno
- Department of Computer-Assisted Drug Design, Bristol Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, USA
| | - Tricia Protack
- Department of Virology, Bristol Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, USA
| | - Alicia Ng
- Department of Discovery Chemistry, Bristol Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, USA
| | - Anuradha Gupta
- Biocon Bristol Myers Squibb Research & Development Center, Bangalore, India
| | - Yoganand Shanmugam
- Biocon Bristol Myers Squibb Research & Development Center, Bangalore, India
| | - Ira B Dicker
- Department of Virology, Bristol Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, USA
| | - Mark Krystal
- Department of Virology, Bristol Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, USA
| | - Nicholas A Meanwell
- Department of Discovery Chemistry, Bristol Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, USA
| | - Alicia Regueiro-Ren
- Department of Discovery Chemistry, Bristol Myers Squibb Research and Development, 5 Research Parkway, Wallingford, CT 06492, USA
| |
Collapse
|
47
|
Roscales S, Csáky AG. Synthesis of Ketones by C-H Functionalization of Aldehydes with Boronic Acids under Transition-Metal-Free Conditions. Angew Chem Int Ed Engl 2021; 60:8728-8732. [PMID: 33476411 DOI: 10.1002/anie.202015835] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/30/2020] [Indexed: 12/11/2022]
Abstract
A method for the synthesis of ketones from aldehydes and boronic acids via a transition-metal-free C-H functionalization reaction is reported. The method employs nitrosobenzene as a reagent to drive the simultaneous activation of the boronic acid as a boronate and the activation of the C-H bond of the aldehyde as an iminium species that triggers the key C-C bond-forming step via an intramolecular migration from boron to carbon. These findings constitute a practical, scalable, and operationally straightforward method for the synthesis of ketones.
Collapse
Affiliation(s)
- Silvia Roscales
- Instituto Pluridisciplinar, Universidad Complutense, Campus de Excelencia Internacional Moncloa, Paseo de Juan XXIII, 1, 28040, Madrid, Spain
| | - Aurelio G Csáky
- Instituto Pluridisciplinar, Universidad Complutense, Campus de Excelencia Internacional Moncloa, Paseo de Juan XXIII, 1, 28040, Madrid, Spain
| |
Collapse
|
48
|
Gomez-Angel AR, Donald JR, Firth JD, De Fusco C, Ian Storer R, Cox DJ, O’Brien P. Synthesis and functionalisation of a bifunctional normorphan 3D building block for medicinal chemistry. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.131961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
49
|
Tang J, Xie T, Yuan Y, Hua J, Zhuang T, Luo Y, Geng J. Degradation of Polydienes Induced by Alkyllithium: Characterization and Reaction Mechanism. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c01934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jian Tang
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-plastics, Qingdao University of Science and Technology, Qingdao 266042, P.R. China
| | - Tinghao Xie
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-plastics, Qingdao University of Science and Technology, Qingdao 266042, P.R. China
| | - Yuka Yuan
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-plastics, Qingdao University of Science and Technology, Qingdao 266042, P.R. China
| | - Jing Hua
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-plastics, Qingdao University of Science and Technology, Qingdao 266042, P.R. China
| | - Tao Zhuang
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-plastics, Qingdao University of Science and Technology, Qingdao 266042, P.R. China
| | - Yi Luo
- School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, P.R. China
| | - Jieting Geng
- Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-plastics, Qingdao University of Science and Technology, Qingdao 266042, P.R. China
| |
Collapse
|
50
|
Yang C, Dai DT, Lu HX, Zhang FL, Fu Y, Xu YH. Controllable regio- and stereo-selective coupling reactions of homoallenylboronates. Org Chem Front 2021. [DOI: 10.1039/d1qo00291k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Unprecedented palladium-catalysed regio- and stereo-selective coupling reactions of homoallenylboronates with (hetero)aryl iodides, allyl bromides and alkynyl bromides in aqueous solution were successfully developed.
Collapse
Affiliation(s)
- Chao Yang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry
- University of Science and Technology of China
- Hefei
- PR China
| | - Dong-Ting Dai
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry
- University of Science and Technology of China
- Hefei
- PR China
| | - Huan-Xuan Lu
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry
- University of Science and Technology of China
- Hefei
- PR China
| | - Feng-Lian Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry
- University of Science and Technology of China
- Hefei
- PR China
| | - Yao Fu
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry
- University of Science and Technology of China
- Hefei
- PR China
| | - Yun-He Xu
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry
- University of Science and Technology of China
- Hefei
- PR China
- State Key Laboratory and Institute of Elemento-Organic Chemistry
| |
Collapse
|