1
|
Zhou L, Fu XP, Wang R, Wang CX, Luo F, Yan H, He Y, Jia CJ, Li J, Liu JC. Dynamic phase transitions dictate the size effect and activity of supported gold catalysts. SCIENCE ADVANCES 2024; 10:eadr4145. [PMID: 39705346 DOI: 10.1126/sciadv.adr4145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 11/15/2024] [Indexed: 12/22/2024]
Abstract
The landmark discovery of gold catalysts has aroused substantial interest in heterogeneous catalysis, yet the catalytic mechanism remains elusive. For carbon monoxide oxidation on gold nanoparticles (NPs) supported on ceria surfaces, it is widely believed that carbon monoxide adsorbs on the gold particles, while the reaction occurs at the gold/ceria interface. Here, we have investigated the dynamic changes of supported gold NPs with various sizes in a carbon monoxide oxidation atmosphere using deep potential molecular dynamics simulations. Our results reveal that the structure of tiny gold particles in carbon monoxide atmospheres becomes highly disordered and undergoes phase transition. Such a liquid-like structure provides massive reactive sites, enabling facile carbon monoxide oxidation on the solid-state gold NP rather than just at the gold/ceria interface. This result is further corroborated by catalytic experiments. This work sheds light on both the size effects and activity in noble metal catalysis and provides insights for the design of more effective nanocatalysts.
Collapse
Affiliation(s)
- Lei Zhou
- Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
| | - Xin-Pu Fu
- Key Laboratory for Colloid and Interface Chemistry, Key Laboratory of Special Aggregated Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Ruixing Wang
- Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
| | - Cong-Xiao Wang
- Key Laboratory for Colloid and Interface Chemistry, Key Laboratory of Special Aggregated Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Feng Luo
- Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
| | - Han Yan
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Yang He
- Department of Materials Science, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Chun-Jiang Jia
- Key Laboratory for Colloid and Interface Chemistry, Key Laboratory of Special Aggregated Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Jun Li
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 100084, China
- Fundamental Science Center of Rare Earths, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China
| | - Jin-Cheng Liu
- Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
| |
Collapse
|
2
|
Wenzel S, Boden D, Groot IMN. Gold oxide formation on Au(111) under CO oxidation conditions at room temperature. Phys Chem Chem Phys 2024; 26:23623-23630. [PMID: 39206806 PMCID: PMC11359969 DOI: 10.1039/d4cp00611a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024]
Abstract
Although gold-based catalysts are promising candidates for selective low-temperature CO oxidation, the reaction mechanism is not fully understood. On a Au(111) model catalyst, we observe the formation of gold oxide islands under exposure to atmospheric pressures of oxygen or CO oxidation reaction conditions in an in situ scanning tunneling microscope. The gold oxide formation is interpreted in line with the water-enabled dissociation of O2 on the step edges of Au(111). Contaminants on the gold surface can strongly promote the gold oxide formation even on the terraces. On the other hand, TiO2 nanoparticles on the Au(111) do not show any influence on the formation of the gold oxide and are thus not providing a significant amount of atomic oxygen to the gold at room temperature. Overall, the presence of gold oxide is likely under industrial conditions.
Collapse
Affiliation(s)
- Sabine Wenzel
- Leiden Institute of Chemistry Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Dajo Boden
- Leiden Institute of Chemistry Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Irene M N Groot
- Leiden Institute of Chemistry Einsteinweg 55 2333 CC Leiden The Netherlands
| |
Collapse
|
3
|
Hefnawy MA, Fadlallah SA, El-Sherif RM, Medany SS. Systematic DFT studies of CO-Tolerance and CO oxidation on Cu-doped Ni surfaces. J Mol Graph Model 2023; 118:108343. [PMID: 36208590 DOI: 10.1016/j.jmgm.2022.108343] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 09/03/2022] [Accepted: 09/21/2022] [Indexed: 11/29/2022]
Abstract
Nickel-based surfaces have received significant attention as an efficient substrate for electrooxidation. This work studied doped nickel surfaces with Cu atoms to enhance the CO-Tolerance. A comparative study was performed for CO adsorption upon different cleavage facets of pristine and Cu-doped nickel surfaces, whereas the adsorption energy, charge transfer, and density of state for CO were estimated using GGA-RPBE calculation method. Several adsorption probabilities were considered, and the change in adsorption energy and bond lengths were used to explain the CO adsorption mechanism. Otherwise, the density of state was employed to study the 3σ and 1π orbital to demonstrate the adsorption of CO onto the different facets. According to our analysis, the Cu-doped nickel surface showed higher CO tolerance than the pristine nickel surface. Whereas the calculated CO adsorption energies of Cu-doped surfaces have more positive values than the non-doped counterparts. The catalytic ability of pristine and Cu-doped Ni(111) was studied to evaluate the ability of surface poisoning resistance. Thus, oxidation of CO to CO2 was studied using the Eley-Rideal mechanism upon the pristine and Cu-doped surfaces of Ni(100) where the rate-determining step for CO oxidation upon the reported surfaces was estimated as CO + O2* → CO2* + O* by an energy barrier of 1.05 and 0.9 eV for pristine, and Cu-doped Ni (100).
Collapse
Affiliation(s)
- Mahmoud A Hefnawy
- Chemistry Department, Faculty of Science, Cairo University, 12613-Giza, Egypt
| | - Sahar A Fadlallah
- Chemistry Department, Faculty of Science, Cairo University, 12613-Giza, Egypt
| | - Rabab M El-Sherif
- Chemistry Department, Faculty of Science, Cairo University, 12613-Giza, Egypt
| | - Shymaa S Medany
- Chemistry Department, Faculty of Science, Cairo University, 12613-Giza, Egypt.
| |
Collapse
|
4
|
Whitcomb CA, Sviripa A, Schapowal MI, Mamedov K, Unocic RR, Paolucci C, Davis RJ. Mechanistic Insights on the Low-Temperature Oxidation of CO Catalyzed by Isolated Co Ions in N-Doped Carbon. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Colby A. Whitcomb
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia22903, United States
| | - Anna Sviripa
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia22903, United States
| | - Michael I. Schapowal
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia22903, United States
| | - Konstantin Mamedov
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia22903, United States
| | - Raymond R. Unocic
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee37831, United States
| | - Christopher Paolucci
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia22903, United States
| | - Robert J. Davis
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia22903, United States
| |
Collapse
|
5
|
Molina L, Arranz-Simón C, Alonso J. Mechanistic insight into the CO oxidation reaction at pure, Nb-doped and Mo-doped medium size Pt clusters. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Shi Y, Ruan S, Xu K, He C, Qin C, Zhang L. Theoretical investigation of chemical reaction kinetics of CO catalytic combustion over NiNx-Gr. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Ma S, Liu ZP. Machine learning potential era of zeolite simulation. Chem Sci 2022; 13:5055-5068. [PMID: 35655579 PMCID: PMC9093109 DOI: 10.1039/d2sc01225a] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/05/2022] [Indexed: 11/21/2022] Open
Abstract
Zeolites, owing to their great variety and complexity in structure and wide applications in chemistry, have long been the hot topic in chemical research. This perspective first presents a short retrospect of theoretical investigations on zeolites using the tools from classical force fields to quantum mechanics calculations and to the latest machine learning (ML) potential simulations. ML potentials as the next-generation technique for atomic simulation open new avenues to simulate and interpret zeolite systems and thus hold great promise for finally predicting the structure-functionality relation of zeolites. Recent advances using ML potentials are then summarized from two main aspects: the origin of zeolite stability and the mechanism of zeolite-related catalytic reactions. We also discussed the possible scenarios of ML potential application aiming to provide instantaneous and easy access of zeolite properties. These advanced applications could now be accomplished by combining cloud-computing-based techniques with ML potential-based atomic simulations. The future development of ML potentials for zeolites in the respects of improving the calculation accuracy, expanding the application scope and constructing the zeolite-related datasets is finally outlooked.
Collapse
Affiliation(s)
- Sicong Ma
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 China
| | - Zhi-Pan Liu
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 China
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry, Fudan University Shanghai 200433 China
- Shanghai Qi Zhi Institution Shanghai 200030 China
| |
Collapse
|
8
|
Strain boosts CO oxidation on Ni single-atom-catalyst supported by defective graphene. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.03.118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
|
10
|
Li Q, Wu C, Wang K, Wang X, Chen X, Dai W, Fu X. Comparison of the catalytic performance of Au/TiO2 prepared by in situ photodeposition and deposition precipitation methods for CO oxidation at room temperature under visible light irradiation. Catal Sci Technol 2022. [DOI: 10.1039/d1cy01829a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As compared with Au/TiO2-DP, the Au/TiO2-PD sample showed more electron transfer from TiO2 to Au sites, more activation of O2 induced by oxygen vacancies, and the more obvious photo-promoting effect induced by the LSPR effect.
Collapse
Affiliation(s)
- Qiuzhong Li
- Research Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350108, China
- College of Chemistry and Material, Ningde Normal University, Ningde, 352100, China
| | - Caijie Wu
- Research Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350108, China
- Qingyuan Innovation Laboratory, Quanzhou 362801, China
| | - Ke Wang
- Research Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350108, China
- Qingyuan Innovation Laboratory, Quanzhou 362801, China
| | - Xiaoxiao Wang
- Research Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350108, China
- Qingyuan Innovation Laboratory, Quanzhou 362801, China
| | - Xun Chen
- Research Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350108, China
- Qingyuan Innovation Laboratory, Quanzhou 362801, China
| | - Wenxin Dai
- Research Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350108, China
- Qingyuan Innovation Laboratory, Quanzhou 362801, China
| | - Xianzhi Fu
- Research Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350108, China
| |
Collapse
|
11
|
Piccini G, Lee MS, Yuk SF, Zhang D, Collinge G, Kollias L, Nguyen MT, Glezakou VA, Rousseau R. Ab initio molecular dynamics with enhanced sampling in heterogeneous catalysis. Catal Sci Technol 2022. [DOI: 10.1039/d1cy01329g] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Enhanced sampling ab initio simulations enable to study chemical phenomena in catalytic systems including thermal effects & anharmonicity, & collective dynamics describing enthalpic & entropic contributions, which can significantly impact on reaction free energy landscapes.
Collapse
Affiliation(s)
- GiovanniMaria Piccini
- Basic & Applied Molecular Foundations, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99352, USA
- Istituto Eulero, Università della Svizzera italiana, Via Giuseppe Buffi 13, Lugano, Ticino, Switzerland
| | - Mal-Soon Lee
- Basic & Applied Molecular Foundations, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Simuck F. Yuk
- Basic & Applied Molecular Foundations, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99352, USA
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA
| | - Difan Zhang
- Basic & Applied Molecular Foundations, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Greg Collinge
- Basic & Applied Molecular Foundations, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Loukas Kollias
- Basic & Applied Molecular Foundations, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Manh-Thuong Nguyen
- Basic & Applied Molecular Foundations, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Vassiliki-Alexandra Glezakou
- Basic & Applied Molecular Foundations, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Roger Rousseau
- Basic & Applied Molecular Foundations, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| |
Collapse
|
12
|
Mohan AT, Ghosh P. Low cost bimetallic AuCu 3 tetramer on Ti 2CO 2 MXene as an efficient catalyst for CO oxidation: A theoretical prediction. Phys Chem Chem Phys 2022; 24:19512-19520. [DOI: 10.1039/d2cp02787a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Abatement of CO, due to its poisonous nature, is an extensively researched topic. Oxidation to CO2 is one of the strategies deployed and finds application in automobiles and fuel cells....
Collapse
|
13
|
Etim UJ, Bai P, Gazit OM, Zhong Z. Low-Temperature Heterogeneous Oxidation Catalysis and Molecular Oxygen Activation. CATALYSIS REVIEWS 2021. [DOI: 10.1080/01614940.2021.1919044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Ubong J. Etim
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong, China
| | - Peng Bai
- College of Chemical Engineering, China University of Petroleum, Qingdao, China
| | - Oz M. Gazit
- Wolfson Faculty of Chemical Engineering, Technion – Israel Institute of Technology, Haifa, Israel
| | - Ziyi Zhong
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong, China
- Technion Israel Institute of Technology (IIT), Haifa, Israel
| |
Collapse
|
14
|
Mansley ZR, Paull RJ, Savereide L, Tatro S, Greenstein EP, Gosavi A, Cheng E, Wen J, Poeppelmeier KR, Notestein JM, Marks LD. Identifying Support Effects in Au-Catalyzed CO Oxidation. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zachary R. Mansley
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Ryan J. Paull
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Louisa Savereide
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Scott Tatro
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Emily P. Greenstein
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Abha Gosavi
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Emily Cheng
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Jianguo Wen
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | | | - Justin M. Notestein
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Laurence D. Marks
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
15
|
Makkar P, Ghosh NN. A review on the use of DFT for the prediction of the properties of nanomaterials. RSC Adv 2021; 11:27897-27924. [PMID: 35480718 PMCID: PMC9037996 DOI: 10.1039/d1ra04876g] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/10/2021] [Indexed: 01/07/2023] Open
Abstract
Nanostructured materials have gained immense attraction because of their extraordinary properties compared to the bulk materials to be used in a plethora of applications in myriad fields. In this review article, we have discussed how the Density Functional Theory (DFT) calculation can be used to explain some of the properties of nanomaterials. With some specific examples here, it has been shown that how closely the different properties of nanomaterials (such as optical, optoelectronics, catalytic and magnetic) predicted by DFT calculations match well with the experimentally determined values. Some examples were discussed in detail to inspire the experimental scientists to conduct DFT-based calculations along with the experiments to derive a better understanding of the experimentally obtained results as well as to predict the properties of the nanomaterial. We have pointed out the challenges associated with DFT, and potential future perspectives of this new exciting field.
Collapse
Affiliation(s)
- Priyanka Makkar
- Nano-materials Lab, Department of Chemistry, Birla Institute of Technology and Science, Pilani K K Birla Goa Campus Goa 403726 India +91 832 25570339 +91 832 2580318
| | - Narendra Nath Ghosh
- Nano-materials Lab, Department of Chemistry, Birla Institute of Technology and Science, Pilani K K Birla Goa Campus Goa 403726 India +91 832 25570339 +91 832 2580318
| |
Collapse
|
16
|
Sun G, Wang F, Jin Y, Chen X, Chai P, Wu L, Teng BT, Huang W. Oxidative Coupling of Methanol with Molecularly Adsorbed Oxygen on Au Surface to Methyl Formate. J Phys Chem Lett 2021; 12:6941-6945. [PMID: 34282915 DOI: 10.1021/acs.jpclett.1c01564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Supported Au catalysts efficiently catalyze the oxidative coupling of methanol with O2 to methyl formate, in which the atomic O species (O(a)) formed via O2 dissociation on the Au surface has been considered as the active oxygen species. Herein we report for the first time that the oxidative coupling of methanol can occur facilely with molecularly adsorbed O2 species (O2(a)) on a Au(997) surface at temperatures as low as around 125 K, while that with O(a) occurs at around 175 K. Both experimental and theoretical calculation results demonstrate a novel reaction mechanism of oxidative coupling of CH3OH with O2(a) via a dioxymethylene (H2COO) intermediate, resulting in the production of both HCOOCH3 and HCOOCH3. These results reveal the unique reactivity of molecularly adsorbed O2 species on Au surfaces for low-temperature oxidation reactions.
Collapse
Affiliation(s)
- Guanghui Sun
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Fang Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, P. R. China
| | - Yuekang Jin
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Xuanye Chen
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Peng Chai
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Longxia Wu
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Bo-Tao Teng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, P. R. China
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Weixin Huang
- Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, P. R. China
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Dalian 116023, P. R. China
| |
Collapse
|
17
|
Ma S, Liu ZP. The Role of Zeolite Framework in Zeolite Stability and Catalysis from Recent Atomic Simulation. Top Catal 2021. [DOI: 10.1007/s11244-021-01473-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
18
|
Rupprechter G. Operando Surface Spectroscopy and Microscopy during Catalytic Reactions: From Clusters via Nanoparticles to Meso-Scale Aggregates. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2004289. [PMID: 33694320 PMCID: PMC11475487 DOI: 10.1002/smll.202004289] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 02/16/2021] [Indexed: 05/16/2023]
Abstract
Operando characterization of working catalysts, requiring per definitionem the simultaneous measurement of catalytic performance, is crucial to identify the relevant catalyst structure, composition and adsorbed species. Frequently applied operando techniques are discussed, including X-ray absorption spectroscopy, near ambient pressure X-ray photoelectron spectroscopy and infrared spectroscopy. In contrast to these area-averaging spectroscopies, operando surface microscopy by photoemission electron microscopy delivers spatially-resolved data, directly visualizing catalyst heterogeneity. For thorough interpretation, the experimental results should be complemented by density functional theory. The operando approach enables to identify changes of cluster/nanoparticle structure and composition during ongoing catalytic reactions and reveal how molecules interact with surfaces and interfaces. The case studies cover the length-scales from clusters via nanoparticles to meso-scale aggregates, and demonstrate the benefits of specific operando methods. Restructuring, ligand/atom mobility, and surface composition alterations during the reaction may have pronounced effects on activity and selectivity. The nanoscale metal/oxide interface steers catalytic performance via a long ranging effect. Combining operando spectroscopy with switching gas feeds or concentration-modulation provides further mechanistic insights. The obtained fundamental understanding is a prerequisite for improving catalytic performance and for rational design.
Collapse
Affiliation(s)
- Günther Rupprechter
- Institute of Materials ChemistryTechnische Universität WienGetreidemarkt 9/BC/01Vienna1060Austria
| |
Collapse
|
19
|
Single Cu atom supported on modified h-BN monolayer as n-p codoped catalyst for CO oxidation: A computational study. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.03.058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
20
|
Behravesh E, Melander MM, Wärnå J, Salmi T, Honkala K, Murzin DY. Oxidative dehydrogenation of ethanol on gold: Combination of kinetic experiments and computation approach to unravel the reaction mechanism. J Catal 2021. [DOI: 10.1016/j.jcat.2020.07.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
21
|
Li H, Zhao H, Xie Z, Li C, bai C. Stability and catalytic activity of Au30M12 (M = Au, Ag, Cu, Pt) icosahedral clusters. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2020.138186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
22
|
Miyazaki R, Jin X, Yoshii D, Yatabe T, Yabe T, Mizuno N, Yamaguchi K, Hasegawa JY. Mechanistic study of C–H bond activation by O2 on negatively charged Au clusters: α,β-dehydrogenation of 1-methyl-4-piperidone by supported Au catalysts. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00178g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aerobic C–H activation by Au/OMS-2 catalyst is driven by charge transfer from OMS-2 to adsorbed O2via Au cluster.
Collapse
Affiliation(s)
- Ray Miyazaki
- Institute for Catalysis
- Hokkaido University
- Sapporo
- Japan
| | - Xiongjie Jin
- Department of Chemistry and Biotechnology
- School of Engineering
- The University of Tokyo
- Tokyo 113-8656
- Japan
| | - Daichi Yoshii
- Department of Applied Chemistry
- School of Engineering
- The University of Tokyo
- Tokyo 113-8656
- Japan
| | - Takafumi Yatabe
- Department of Applied Chemistry
- School of Engineering
- The University of Tokyo
- Tokyo 113-8656
- Japan
| | - Tomohiro Yabe
- Department of Applied Chemistry
- School of Engineering
- The University of Tokyo
- Tokyo 113-8656
- Japan
| | - Noritaka Mizuno
- Department of Applied Chemistry
- School of Engineering
- The University of Tokyo
- Tokyo 113-8656
- Japan
| | - Kazuya Yamaguchi
- Department of Applied Chemistry
- School of Engineering
- The University of Tokyo
- Tokyo 113-8656
- Japan
| | | |
Collapse
|
23
|
Chen KY, Wu SY, Chen HT. Unraveling Catalytic Mechanisms for CO Oxidation on Boron-Doped Fullerene: A Computational Study. ACS OMEGA 2020; 5:28870-28876. [PMID: 33195940 PMCID: PMC7659142 DOI: 10.1021/acsomega.0c04532] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 10/19/2020] [Indexed: 06/11/2023]
Abstract
By means of spin-polarized density functional theory (DFT) computations, we unravel the reaction mechanisms of catalytic CO oxidation on B-doped fullerene. It is shown that O2 species favors to be chemically adsorbed via side-on configuration at the hex-C-B site with an adsorption energy of -1.07 eV. Two traditional pathways, Eley-Rideal (ER) and Langmuir-Hinshelwood (LH) mechanisms, are considered for the CO oxidation starting from O2 adsorption. CO species is able to bind at the B-top site of the B-doped fullerene with an adsorption energy of -0.78 eV. Therefore, CO oxidation that occurs starting from CO adsorption is also taken into account. Second reaction of CO oxidation occurs by the reaction of CO + O → CO2 with a very high energy barrier of 1.56 eV. A trimolecular Eley-Rideal (TER) pathway is proposed to avoid leaving the O atom on the B-doped fullerene after the first CO oxidation. These predictions manifest that boron-doped fullerene is a potential metal-free catalyst for CO oxidation.
Collapse
Affiliation(s)
- Kai-Yang Chen
- Department of Chemistry, Chung Yuan Christian University, Chungli District, Taoyuan
City 32023, Taiwan
| | - Shiuan-Yau Wu
- Department of Chemistry, Chung Yuan Christian University, Chungli District, Taoyuan
City 32023, Taiwan
| | - Hsin-Tsung Chen
- Department of Chemistry, Chung Yuan Christian University, Chungli District, Taoyuan
City 32023, Taiwan
| |
Collapse
|
24
|
Ma S, Liu ZP. Machine Learning for Atomic Simulation and Activity Prediction in Heterogeneous Catalysis: Current Status and Future. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03472] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Sicong Ma
- Collaborative Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Zhi-Pan Liu
- Collaborative Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry, Fudan University, Shanghai 200433, China
| |
Collapse
|
25
|
Collinge G, Yuk SF, Nguyen MT, Lee MS, Glezakou VA, Rousseau R. Effect of Collective Dynamics and Anharmonicity on Entropy in Heterogenous Catalysis: Building the Case for Advanced Molecular Simulations. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01501] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Greg Collinge
- Basic & Applied Molecular Foundations, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Simuck F. Yuk
- Basic & Applied Molecular Foundations, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Manh-Thuong Nguyen
- Basic & Applied Molecular Foundations, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Mal-Soon Lee
- Basic & Applied Molecular Foundations, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Vassiliki-Alexandra Glezakou
- Basic & Applied Molecular Foundations, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Roger Rousseau
- Basic & Applied Molecular Foundations, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
26
|
García-Aguilar J, Fernández-Catalá J, Juan-Juan J, Such-Basáñez I, Chinchilla L, Calvino-Gámez J, Cazorla-Amorós D, Berenguer-Murcia Á. Novelty without nobility: Outstanding Ni/Ti-SiO2 catalysts for propylene epoxidation. J Catal 2020. [DOI: 10.1016/j.jcat.2020.04.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
27
|
Ghosh S, Mammen N, Narasimhan S. Support work function as a descriptor and predictor for the charge and morphology of deposited Au nanoparticles. J Chem Phys 2020; 152:144704. [PMID: 32295372 DOI: 10.1063/1.5143642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We show, using density functional theory calculations, that the charge, magnetic moment, and morphology of deposited Au nanoclusters can be tuned widely by doping the oxide support with aliovalent cations and anions. As model systems, we have considered Aun (n = 1, 2, or 20) deposited on doped MgO and MgO/Mo supports. The supports have been substitutionally doped with varying concentrations θ of F, Al, N, Na, or Li. At θ = 2.78%, by varying the dopant species, we are able to tune the charge of the Au monomer between -0.84e and +0.21e, the Au dimer between -0.87e and -0.16e, and, most interestingly, Au20 between -3.97e and +0.49e. These ranges can be further extended by varying θ. These changes in charge are correlated with changes in adsorption and/or cluster geometry and magnetic moment. We find that the work function Φ of the bare support is a good predictor and descriptor of both the geometry and charge of the deposited Au cluster; it can, therefore, be used to quickly estimate which dopant species and concentration can result in a desired cluster morphology and charge state. This is of interest as these parameters are known to significantly impact cluster reactivity, with positively or negatively charged clusters being preferred as catalysts for different chemical reactions. It is particularly noteworthy that the Na-doped and Li-doped supports succeed in making Au20 positively charged, given the high electronegativity of Au.
Collapse
Affiliation(s)
- Sukanya Ghosh
- Theoretical Sciences Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Nisha Mammen
- Theoretical Sciences Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Shobhana Narasimhan
- Theoretical Sciences Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| |
Collapse
|
28
|
Mato J, Guidez EB. Accuracy of the PM6 and PM7 Methods on Bare and Thiolate-Protected Gold Nanoclusters. J Phys Chem A 2020; 124:2601-2615. [DOI: 10.1021/acs.jpca.9b11474] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Joani Mato
- Department of Chemistry, University of Colorado Denver, Denver, Colorado 80217, United States
| | - Emilie B. Guidez
- Department of Chemistry, University of Colorado Denver, Denver, Colorado 80217, United States
| |
Collapse
|
29
|
Buendía F, Anzaldo AT, Vital C, Beltrán MR. O 2 activation by AuAg clusters on a defective (100)MgO surface. J Chem Phys 2020; 152:024303. [PMID: 31941299 DOI: 10.1063/1.5129462] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
In the present work, we discuss the electronic properties of supported dispersed bimetallic clusters with respect to their size, geometry, and Aun/Agm (n + m = 6) composition. We have studied with supercell-density functional theory calculations the role of the charge transfer from the MgO defective support toward the cluster in the activation of O2 by AunAgm clusters. We first considered gas-phase clusters with different atomic compositions; then, we deposited all of them on a pristine (100)MgO surface and finally on a more realistic (100)MgO F-center. We performed a global and unrestricted search of the (cluster + surface) geometry. The Mexican enhanced genetic algorithm has been used to exhaustively explore the potential energy surface. Our results show that O2 activation depends on the Aun/Agm ratio. It has been found that both metals involved play different and important roles toward (a) the actual O2 dissociation and (b) weakening of the oxygen-cluster bond, which, in turn, may promote the possibility of a catalytic process to take place, such as the oxidation process of CO and NOx among others.
Collapse
Affiliation(s)
- F Buendía
- Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, 01000 CDMX, Mexico
| | - A T Anzaldo
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Apdo. 70-360, C. P. 04510, Coyoacán, Ciudad de México, Mexico
| | - Carlos Vital
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Apdo. 70-360, C. P. 04510, Coyoacán, Ciudad de México, Mexico
| | - M R Beltrán
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Apdo. 70-360, C. P. 04510, Coyoacán, Ciudad de México, Mexico
| |
Collapse
|
30
|
Gold Nanoparticles Supported on Urchin-Like CuO: Synthesis, Characterization, and Their Catalytic Performance for CO Oxidation. NANOMATERIALS 2019; 10:nano10010067. [PMID: 31892172 PMCID: PMC7022736 DOI: 10.3390/nano10010067] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 12/21/2019] [Accepted: 12/24/2019] [Indexed: 01/25/2023]
Abstract
Gold catalysts have been studied in-depth due to their unique activities for catalytic CO oxidation. Supports have intrinsic motivation for the high activity of gold catalysts. Thermally stable urchin-like CuO microspheres, which are potential support for gold catalysts, were prepared by facile solution-method. Then gold nanoparticles were loaded on them by deposition-precipitation method. The obtained gold catalysts were characterized by SEM, XRD, TEM, BET, ICP, and XPS. Their catalytic activity for CO oxidation was also evaluated. TEM results revealed that the gold nanoparticles with small sizes were highly distributed on the CuO surface in Au1.0/CuO-300. XPS observations demonstrated that the gold species in Au1.0/CuO-300 was of metallic state. Among the as-prepared catalysts, the Au1.0/CuO-300 catalyst displayed the best performance for CO oxidation and achieved 100% CO oxidation at 80 °C. It kept 100% conversion for 20 h at a reaction temperature of 180 °C, and showed good reusability after three reaction-cycles. The possible catalytic mechanism of Au1.0/CuO-300 catalyst for CO oxidation was also briefly proposed.
Collapse
|
31
|
Huang SD, Shang C, Liu ZP. Ultrasmall Au clusters supported on pristine and defected CeO 2: Structure and stability. J Chem Phys 2019; 151:174702. [PMID: 31703502 DOI: 10.1063/1.5126187] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The atomistic simulation of supported metal catalysts has long been challenging due to the increased complexity of dual components. In order to determine the metal/support interface, efficient theoretical tools to map out the potential energy surface (PES) are generally required. This work represents the first attempt to apply the recently developed SSW-NN method, stochastic surface walking (SSW) global optimization based on global neural network potential (G-NN), to explore the PES of a highly controversial supported metal catalyst, Au/CeO2, system. By establishing the ternary Au-Ce-O G-NN potential based on first principles global dataset, we have searched for the global minima for a series of Au/CeO2 systems. The segregation and diffusion pathway for Au clusters on CeO2(111) are then explored by using enhanced molecular dynamics. Our results show that the ultrasmall cationic Au clusters, e.g., Au4O2, attaching to surface structural defects are the only stable structural pattern and the other clusters on different CeO2 surfaces all have a strong energy preference to grow into a bulky Au metal. Despite the thermodynamics tendency of sintering, Au clusters on CeO2 have a high kinetics barrier (>1.4 eV) in segregation and diffusion. The high thermodynamics stability of ultrasmall cationic Au clusters and the high kinetics stability for Au clusters on CeO2 are thus the origin for the high activity of Au/CeO2 catalysts in a range of low temperature catalytic reactions. We demonstrate that the global PES exploration is critical for understanding the morphology and kinetics of metal clusters on oxide support, which now can be realized via the SSW-NN method.
Collapse
Affiliation(s)
- Si-Da Huang
- Collaborative Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science (Ministry of Education), Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Cheng Shang
- Collaborative Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science (Ministry of Education), Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Zhi-Pan Liu
- Collaborative Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science (Ministry of Education), Department of Chemistry, Fudan University, Shanghai 200433, China
| |
Collapse
|
32
|
Gauthier JA, Dickens CF, Heenen HH, Vijay S, Ringe S, Chan K. Unified Approach to Implicit and Explicit Solvent Simulations of Electrochemical Reaction Energetics. J Chem Theory Comput 2019; 15:6895-6906. [DOI: 10.1021/acs.jctc.9b00717] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Joseph A. Gauthier
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Colin F. Dickens
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Hendrik H. Heenen
- Department of Physics, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark
| | - Sudarshan Vijay
- Department of Physics, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark
| | - Stefan Ringe
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Karen Chan
- Department of Physics, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark
| |
Collapse
|
33
|
Shakerzadeh E, Hamadi H, Esrafili MD. Computational mechanistic insights into CO oxidation reaction over Fe decorated C24N24 fullerene. INORG CHEM COMMUN 2019. [DOI: 10.1016/j.inoche.2019.06.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
34
|
First-Principles Investigations of Single Metal Atoms (Sc, Ti, V, Cr, Mn, and Ni) Embedded in Hexagonal Boron Nitride Nanosheets for the Catalysis of CO Oxidation. CONDENSED MATTER 2019. [DOI: 10.3390/condmat4030065] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We evaluated isolated transition metal atoms (Sc, Ti, V, Cr, Mn, and Ni) embedded in hexagonal-BN as novel single atom catalysts for CO oxidation. We predicted that embedded Ni atoms should have superior performance for this task. Ti, V, and Mn bind CO2 too strongly and so the reaction will not proceed smoothly. We studied the detailed reaction processes for Sc, Cr, and Ni. The Langmuir–Hinshelwood (LH), Eley–Rideal (ER), and the new termolecular Eley–Rideal (TER) processes for CO oxidation were investigated. Sc was not effective. Cr primarily used the ER process, although the barrier was relatively large at 1.30 eV. Ni was the best of the group, with a 0.44 eV barrier for LH, and a 0.47 eV barrier for TER. Therefore, we predicted that the LH and TER processes could operate at relatively low temperatures between 300 and 500 K.
Collapse
|
35
|
Ammonia borane dehydrogenation tendencies using Pt4, Au4, and Pt2Au2 clusters as catalysts. MOLECULAR CATALYSIS 2019. [DOI: 10.1016/j.mcat.2019.04.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
36
|
A first principles study of CO oxidation over gold clusters: The catalytic role of boron nitride support and water. MOLECULAR CATALYSIS 2019. [DOI: 10.1016/j.mcat.2019.04.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
37
|
Hussein HA, Gao M, Hou Y, Horswell SL, Johnston RL. Physico-Chemical Insights into Gas-Phase and Oxide-Supported Sub-Nanometre AuCu Clusters. Z PHYS CHEM 2019. [DOI: 10.1515/zpch-2018-1356] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Catalysis by AuCu nanoclusters is a promising scientific field. However, our fundamental understanding of the underlying mechanisms of mixing in AuCu clusters at the sub-nanometre scale and their physico-chemical properties in both the gas-phase and on oxide supports is limited. We have identified the global minima of gas-phase and MgO(100)-supported AuCu clusters with 3–10 atoms using the Mexican Enhanced Genetic Algorithm coupled with density functional theory. Au and Cu adatoms and supported dimers have been also simulated at the same level of theory. The most stable composition, as calculated from mixing and binding energies, is obtained when the Cu proportion is close to 50%. The structures of the most stable free AuCu clusters exhibit Cu-core/Au-shell segregation. On the MgO surface however, there is a preference for Cu atoms to lie at the cluster-substrate interface. Due to the interplay between the number of interfacial Cu atoms and surface-induced cluster rearrangement, on the MgO surface 3D structures become more stable than 2D structures. The O-site of MgO surface is found to be the most favourable adsorption site for both metals. All dimers favour vertical (V) configurations on the surface and their adsorption energies are in the order: AuCu < CuCu < AuAu < AuCu (where the underlined atom is bound to the O-site). For both adatoms and AuCu dimers, adsorption via Cu is more favourable than Au-adsorbed configurations, but, this disagrees with the ordering for the pure dimers due to a combination of electron transfer and the metal-on-top effect. Binding energy (and second difference) and HOMO-LUMO gap calculations show that even-atom (even-electron) clusters are more stable than the neighbouring odd-atom (odd- electron) clusters, which is expected for closed- and open-shell systems. Supporting AuCu clusters on the MgO(100) surface decreases the charge transfer between Au and Cu atoms calculated in free clusters. The results of this study may serve as a foundation for designing better AuCu catalysts.
Collapse
Affiliation(s)
- Heider A. Hussein
- School of Chemistry, University of Birmingham , Birmingham B15 2TT , UK
- Department of Chemistry , College of Science, University of Kufa , Najaf , Iraq
| | - Mansi Gao
- School of Chemistry, University of Birmingham , Birmingham B15 2TT , UK
| | - Yiyun Hou
- School of Chemistry, University of Birmingham , Birmingham B15 2TT , UK
| | - Sarah L. Horswell
- School of Chemistry, University of Birmingham , Birmingham B15 2TT , UK
| | - Roy L. Johnston
- School of Chemistry, University of Birmingham , Birmingham B15 2TT , UK
| |
Collapse
|
38
|
Fang Y, Gong X. Genetic algorithm aided density functional theory simulations unravel the kinetic nature of Au(100) in catalytic CO oxidation. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2018.12.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
39
|
Zhou S, Pei W, Du Q, Zhao J. Foreign atom encapsulated Au 12 golden cages for catalysis of CO oxidation. Phys Chem Chem Phys 2019; 21:10587-10593. [PMID: 31074754 DOI: 10.1039/c9cp01517e] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Gold clusters are known for their unique catalytic properties, among which, endohedral gold clusters doped with heteroatoms have remarkable stabilities, with electronic structures tunable by both cluster size and doping element. Thus, it is intriguing and imperative to understand the principles for modulating the catalytic behaviors of these novel clusters. Here, we exploit experimentally produced M@Au12 (M = transition metal) cage clusters for catalysis of CO oxidation. The doping effects of 3d, 4d and 5d transition metals (V, Cr, Mn, Nb, Mo, Ta, W and Re) on the catalytic properties were systematically explored by first-principles calculations. Among the considered M@Au12 clusters, Cr@Au12 and Mn@Au12 provide a suitable binding strength with reaction intermediates and are highly active for CO oxidation with reaction barriers of 0.41 eV under the Langmuir-Hinshelwood mechanism. More importantly, we establish a distinct relationship between catalytic activity and the M-Au bond order and the d orbital center of the M@Au12 clusters, which would help tailor their catalytic performance with atomistic precision and enable utilization of these stable gold cages for catalysis of various chemical processes.
Collapse
Affiliation(s)
- Si Zhou
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, China.
| | - Wei Pei
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, China.
| | - Qiuying Du
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, China.
| | - Jijun Zhao
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, China.
| |
Collapse
|
40
|
Qian K, Huang W. A new strategy to enhance quantum efficiency of photo-mediated hydrogen evolution. Catal Today 2019. [DOI: 10.1016/j.cattod.2018.04.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
41
|
Dononelli W, Tomaschun G, Klüner T, Moskaleva LV. Understanding Oxygen Activation on Nanoporous Gold. ACS Catal 2019. [DOI: 10.1021/acscatal.9b00682] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Wilke Dononelli
- Institute of Chemistry, Carl von Ossietzky University of Oldenburg, 26129 Oldenburg, Germany
| | - Gabriele Tomaschun
- Institute of Chemistry, Carl von Ossietzky University of Oldenburg, 26129 Oldenburg, Germany
| | - Thorsten Klüner
- Institute of Chemistry, Carl von Ossietzky University of Oldenburg, 26129 Oldenburg, Germany
| | - Lyudmila V. Moskaleva
- Department of Chemistry, University of the Free State, PO Box 339, Bloemfontein 9300, South Africa
- Institute of Applied and Physical Chemistry and Center for Environmental Research and Sustainable Technology, University of Bremen, 28359 Bremen, Germany
| |
Collapse
|
42
|
García T, López JM, Solsona B, Sanchis R, Willock DJ, Davies TE, Lu L, He Q, Kiely CJ, Taylor SH. The Key Role of Nanocasting in Gold‐based Fe
2
O
3
Nanocasted Catalysts for Oxygen Activation at the Metal‐support Interface. ChemCatChem 2019. [DOI: 10.1002/cctc.201900210] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Tomás García
- Instituto de Carboquímica (CSIC) C/Miguel Luesma Castán 4 50018 Zaragoza Spain
| | - José M. López
- Instituto de Carboquímica (CSIC) C/Miguel Luesma Castán 4 50018 Zaragoza Spain
| | - Benjamín Solsona
- Departament d'Enginyeria QuímicaUniversitat de València C/ Dr. Moliner 50 46100 Burjassot Valencia Spain
| | - Rut Sanchis
- Departament d'Enginyeria QuímicaUniversitat de València C/ Dr. Moliner 50 46100 Burjassot Valencia Spain
| | - David J. Willock
- Cardiff Catalysis Institute, School of ChemistryCardiff University Main Building Park Place Cardiff CF10 3AT UK
| | - Thomas E. Davies
- Cardiff Catalysis Institute, School of ChemistryCardiff University Main Building Park Place Cardiff CF10 3AT UK
| | - Li Lu
- Department of Materials Science and EngineeringLehigh University 5 East Packer Avenue Bethlehem PA 18015–3195 USA
| | - Qian He
- Cardiff Catalysis Institute, School of ChemistryCardiff University Main Building Park Place Cardiff CF10 3AT UK
| | - Christopher J. Kiely
- Cardiff Catalysis Institute, School of ChemistryCardiff University Main Building Park Place Cardiff CF10 3AT UK
- Department of Materials Science and EngineeringLehigh University 5 East Packer Avenue Bethlehem PA 18015–3195 USA
| | - Stuart H. Taylor
- Cardiff Catalysis Institute, School of ChemistryCardiff University Main Building Park Place Cardiff CF10 3AT UK
| |
Collapse
|
43
|
Jia C, Wang X, Zhong W, Wang Z, Prezhdo OV, Luo Y, Jiang J. Catalytic Chemistry Predicted by a Charge Polarization Descriptor: Synergistic O 2 Activation and CO Oxidation by Au-Cu Bimetallic Clusters on TiO 2(101). ACS APPLIED MATERIALS & INTERFACES 2019; 11:9629-9640. [PMID: 30741519 DOI: 10.1021/acsami.9b00925] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The versatile properties of bimetallic nanoparticles greatly expand the range of catalyzed chemical reactions. We demonstrate that surface chemistry can be understood and predicted using a simple adsorbate-surface interaction descriptor that relates charge polarization to chemical reactivity. Our density functional theory studies of O2 activation and CO oxidation catalyzed by Au7-Cu1 bimetallic nanoparticles supported on the TiO2(101) surface demonstrate that the generated oxidized Cu atom (CuO x) can efficiently inhibit the aggregation of the active Cu sites. Moreover, because of the strong dipole-dipole interaction between the surface and the adsorbate on the oxidized Cu site, the adsorption of CO + O2/CO + O can be significantly enhanced, which can decrease the CO oxidation barriers and further improve catalytic performance. The product of the two electric dipole moments provides a parameter that allows us to predict the key catalytic properties for different adsorption sites and reaction pathways. The reported findings provide important insights into the mechanism of chemical reactivity of metallic clusters and generate a valuable principle for catalyst design.
Collapse
Affiliation(s)
| | - Xijun Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Mechanical Behavior and Design of Materials, School of Chemistry and Materials Science , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | | | | | - Oleg V Prezhdo
- Department of Chemistry , University of Southern California , Los Angeles , California 90089 , United States
| | - Yi Luo
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Mechanical Behavior and Design of Materials, School of Chemistry and Materials Science , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Jun Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Mechanical Behavior and Design of Materials, School of Chemistry and Materials Science , University of Science and Technology of China , Hefei , Anhui 230026 , China
| |
Collapse
|
44
|
Rao YC, Duan XM. Pd/Pt embedded CN monolayers as efficient catalysts for CO oxidation. Phys Chem Chem Phys 2019; 21:25743-25748. [DOI: 10.1039/c9cp04636d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The catalytic performance of Pd/Pt embedded planar carbon nitride for CO oxidation has been investigated via spin-polarized density functional theory calculations.
Collapse
Affiliation(s)
- Yong-Chao Rao
- Department of Physics
- Faculty of Science
- Ningbo University
- Ningbo 315211
- P. R. China
| | - Xiang-Mei Duan
- Department of Physics
- Faculty of Science
- Ningbo University
- Ningbo 315211
- P. R. China
| |
Collapse
|
45
|
Gao B, Chen G. CO oxidization catalyzed by B, N, and their co-doped fullerenes: a first-principles investigation. RSC Adv 2019; 9:21626-21636. [PMID: 35518886 PMCID: PMC9066515 DOI: 10.1039/c9ra02172h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 07/02/2019] [Indexed: 11/21/2022] Open
Abstract
The novel catalytic properties of the oxides of B and N, and their co-doped fullerenes are investigated.
Collapse
Affiliation(s)
- Boya Gao
- School of Physics and Technology
- University of Jinan
- Shandong 250022
- China
| | - Gang Chen
- School of Physics and Technology
- University of Jinan
- Shandong 250022
- China
| |
Collapse
|
46
|
Zhao T, Tian Y, Wang Y, Yan L, Su Z. Mechanistic insight into electroreduction of carbon dioxide on FeNx (x = 0–4) embedded graphene. Phys Chem Chem Phys 2019; 21:23638-23644. [DOI: 10.1039/c9cp03370j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In this work, the catalytic performance of FeNx–gra (x = 0–4) towards CO2ER was investigated. Based on the computed free energy profiles of CO2ER on FeNx–gra (x = 0–4), FeN3–gra exhibits considerably low overpotential for CH3OH and CH4 generation.
Collapse
Affiliation(s)
- Tingting Zhao
- Institute of Functional Material Chemistry
- National & Local United Engineering Lab for Power Battery
- Key Laboratory of Polyoxometalate Science of Ministry of Education
- Faculty of Chemistry
- Northeast Normal University
| | - Yu Tian
- Institute of Functional Material Chemistry
- National & Local United Engineering Lab for Power Battery
- Key Laboratory of Polyoxometalate Science of Ministry of Education
- Faculty of Chemistry
- Northeast Normal University
| | - Yuelin Wang
- Institute of Functional Material Chemistry
- National & Local United Engineering Lab for Power Battery
- Key Laboratory of Polyoxometalate Science of Ministry of Education
- Faculty of Chemistry
- Northeast Normal University
| | - Likai Yan
- Institute of Functional Material Chemistry
- National & Local United Engineering Lab for Power Battery
- Key Laboratory of Polyoxometalate Science of Ministry of Education
- Faculty of Chemistry
- Northeast Normal University
| | - Zhongmin Su
- School of Chemistry & Environmental Engineering
- Changchun University of Science and Technology
- Changchun 130022
- China
| |
Collapse
|
47
|
Soni Y, Kavya I, Ajithkumar TG, Vinod CP. One pot ligand exchange method for a highly stable Au-SBA-15 catalyst and its room temperature CO oxidation. Chem Commun (Camb) 2018; 54:12412-12415. [PMID: 30307460 DOI: 10.1039/c8cc06887a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A modified deposition precipitation (DP) method has been developed to address a fundamental issue of supporting well dispersed Au nanoparticles on silica. Ammonium chloride (NH4Cl) plays an important role in in situ modifying the gold precursor (HAuCl4·3H2O) solution allowing facile deposition of gold NPs in the channels of SBA-15. The Au-SBA-15 catalyst (2.8 wt%) synthesized by this procedure showed 100% conversion for CO oxidation at room temperature with excellent stability at room temperature and high temperature.
Collapse
Affiliation(s)
- Yogita Soni
- Catalysis and Inorganic Chemistry Division, Anusandhan Bhavan, 2 Rafi Marg, New Delhi 110001, India.
| | | | | | | |
Collapse
|
48
|
Cheng C, Zhang X, Yang Z, Zhou Z. Cu 3-Cluster-Doped Monolayer Mo 2CO 2 (MXene) as an Electron Reservoir for Catalyzing a CO Oxidation Reaction. ACS APPLIED MATERIALS & INTERFACES 2018; 10:32903-32912. [PMID: 30157637 DOI: 10.1021/acsami.8b12318] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The catalytic oxidation of CO on Cu3-cluster-decorated pristine and defective Mo2CO2 (MXene) monolayers (Cu3/p-Mo2CO2 and Cu3/d-Mo2CO2) was investigated by first-principles calculations. The stability of the designed catalysts was comprehensively demonstrated via analysis of the energies, geometry distortion, and molecular dynamics simulations at finite temperatures. The difference in the individual adsorption energies, as well as the oxidation and poisoning of Cu3/p(d)-Mo2CO2 under CO and O2 gas atmospheres, was tested to estimate the catalytic ability. We found that Cu3/d-Mo2CO2 might be a superior catalyst with good stability and reactivity for CO oxidation. The active sites of the Cu3 cluster acting as an electron reservoir governed its electron-donating and -accepting ability. Different adsorption configurations of O2 on Cu3/d-Mo2CO2 also gave rise to different reaction activities. The facile rate-limiting energy barrier was attributed to the charge buffer capacity of the Cu3 cluster that mediates the reaction. Our results may provide clues to fabricate MXene-based materials by depositing small clusters on MXenes and exploring the advanced applications of these materials.
Collapse
Affiliation(s)
| | | | | | - Zhen Zhou
- School of Materials Science and Engineering, National Institute for Advanced Materials, Institute of New Energy Material Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Nankai University , Tianjin 300350 , China
| |
Collapse
|
49
|
Song Y, Grabow LC. Activity Trends for Catalytic CO and NO Co-Oxidation at Low Temperature Diesel Emission Conditions. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b01905] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yuying Song
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| | - Lars C. Grabow
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| |
Collapse
|
50
|
Esrafili MD, Asadollahi S. A Single Pd Atom Stabilized on Boron-Vacancy of h-BN Nanosheet: A Promising Catalyst for CO Oxidation. ChemistrySelect 2018. [DOI: 10.1002/slct.201801848] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Mehdi D. Esrafili
- Laboratory of Theoretical Chemistry; Department of Chemistry; University of Maragheh, Maragheh; Iran
| | - Soheila Asadollahi
- Laboratory of Theoretical Chemistry; Department of Chemistry; University of Maragheh, Maragheh; Iran
| |
Collapse
|