1
|
Tahaoğlu D, Alkan F, Durandurdu M. Theoretical investigation of substituent effects on the relative stabilities and electronic structure of [B nX n] 2- clusters. J Mol Model 2021; 27:365. [PMID: 34845522 DOI: 10.1007/s00894-021-04980-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/08/2021] [Indexed: 10/19/2022]
Abstract
In this study, we provide a theoretical evaluation of relative stabilities and electronic structure for [BnXn]2- clusters (n = 10, 12, 13, 14, 15, 16). Structural and electronic characteristics of [BnXn]2- clusters are examined by comparison with the [B12X12]2- counterparts with a focus on the substituent effects (X = H, F, Cl, Br, CN, BO, OH, NH2) on the electronic structure, electron detachment energies, formation enthalpies, and charge distributions. For the electronic structure and electron detachment energies, substituent effects on boron clusters are shown to follow a very similar trend to the mesomeric and inductive effects (± M and ± I) of π-conjugated systems, and the most stable derivatives in terms of HOMO/LUMO and electron detachment energies are calculated for CN and BO substituents due to strong -M effects. In the case of formation enthalpies for larger boron clusters (n ≥ 13), the icosahedral barrier is shown to increase with the halogen and CN substitution, whereas it is possible to reduce the icosahedral barrier for the cases of X = OH and NH2. It is shown that this reduction results from destabilizing the [B12X12]2- cluster with electronic (+ M) and symmetry effects induced by OH and NH2 ligands.
Collapse
Affiliation(s)
- Duygu Tahaoğlu
- Department of Nanotechnology Engineering, Abdullah Gül University, Kayseri, Turkey
| | - Fahri Alkan
- Department of Nanotechnology Engineering, Abdullah Gül University, Kayseri, Turkey.
| | - Murat Durandurdu
- Department of Nanotechnology Engineering, Abdullah Gül University, Kayseri, Turkey
| |
Collapse
|
2
|
Warneke J, Konieczka SZ, Hou GL, Aprà E, Kerpen C, Keppner F, Schäfer TC, Deckert M, Yang Z, Bylaska EJ, Johnson GE, Laskin J, Xantheas SS, Wang XB, Finze M. Properties of perhalogenated {closo-B10} and {closo-B11} multiply charged anions and a critical comparison with {closo-B12} in the gas and the condensed phase. Phys Chem Chem Phys 2019; 21:5903-5915. [DOI: 10.1039/c8cp05313h] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Dependence of electronic properties and reactivity of closo-borates with size and halogen substituent was investigated.
Collapse
|
3
|
Pan S, Zhao L, Merino G. Improvement in hydrogen binding ability of closo-dicarboranes via functionalization and designing of extended frameworks. J Mol Model 2018; 24:307. [PMID: 30291513 DOI: 10.1007/s00894-018-3827-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 09/11/2018] [Indexed: 10/28/2022]
Abstract
Neutral closo-dicarboboranes are reported to have very low H2 binding ability. Herein, we report an improvement in H2 binding energy (Eb) of C2B4H6 by substituting H atoms with different functional groups like X = F, Cl, Br, and XY = BO, CN and NC via quantum-chemical density functional theory based computations. In going from B6H62- to C2B4H6, the Eb value is reduced from 14.6 kJ mol-1 to 2.7 kJ mol-1. C2B4X6 and C2B4(XY)6 systems, which can bind a total of eight H2 molecules, with one H2 molecule occupying at each B-B-C face, possess an Eb value per H2 in the range of 4.5 kJ mol-1 for X = F, 3.9 kJ mol-1 for X = Cl, 5.9 kJ mol-1 for X = Br, 6.8 kJ mol-1 for XY = BO, 5.8 kJ mol-1 for XY = CN and 5.2 kJ mol-1 for XY = NC. The improvement in Eb value is found to be the highest in case of C2B4(BO)6, which has the ability to bind 6.6 gravimetric wt% of H2. The situation can be made more favorable by applying an external electric field. Energy decomposition analysis reveals that although the dispersion interaction (ca. 55-65%) has significant role in binding H2 with such types of molecules, contribution from electrostatic and orbital interaction is also considerable. Further, we modeled an extended system by linking C2B4(BO)n through 'C ≡ C' units for H2 storage purpose. The energy difference between the highest occupied and the lowest unoccupied molecular orbitals gradually lessens with the increase in molecular length. Therefore, it can be tuned gradually by controlling the chain length, which may further open up their potency in the field of electronics. Graphical abstract C2B4X6 (X = F, Cl, Br) and C2B4(XY)6 (XY = BO, CN, NC) show enhanced H2 binding ability from C2B4H6. Further, 1D, 2D and 3-D frameworks can be built by joining C2B4(BO)n units via 'C ≡ C' linkage.
Collapse
Affiliation(s)
- Sudip Pan
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing, China.
| | - Lili Zhao
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing, China.
| | - Gabriel Merino
- Departamento de Física Aplicada, Centro de Investigación y de Estudios Avanzados, Unidad Mérida, Km 6 Antigua Carretera a Progreso. Apdo. Postal 73, Cordemex, 97310, Mérida, Yuc, Mexico.
| |
Collapse
|
4
|
Zhong M, Zhou J, Jena P. Rational Design of Stable Dianions by Functionalizing Polycyclic Aromatic Hydrocarbons. Chemphyschem 2017; 18:1937-1942. [PMID: 28481439 DOI: 10.1002/cphc.201700346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 05/07/2017] [Indexed: 11/12/2022]
Abstract
Using density functional theory, we have carried out a systematic study of the stability and electronic properties of neutral and multiply charged molecules Bn C10-n X8 (n=0, 1, 2; X=H, F, CN). Our main objective is to explore if the replacements of core C atoms and/or H atoms in naphthalene (C10 H8 ) can enhance the stability of their dianions. Indeed, we find that the dianions of Bn C10-n (CN)8 are more stable than their monoanions with energies of 0.61 eV, 0.57 eV, and 1.97 eV for n=0, 1, 2, respectively. In addition, polycyclic aromatic hydrocarbons become stable as dianions only when H atoms are substituted by more electronegative species. Thus, a rational design approach by tailoring composition and ligands can lead to a new class of organic molecules that are capable of carrying multiple charges.
Collapse
Affiliation(s)
- Mingmin Zhong
- School of Physical Science and Technology, Southwest University, Chongqing, 400715, China.,Department of Physics, Virginia Commonwealth University, Richmond, Virginia, 23284, USA
| | - Jian Zhou
- Department of Physics, Virginia Commonwealth University, Richmond, Virginia, 23284, USA
| | - Puru Jena
- Department of Physics, Virginia Commonwealth University, Richmond, Virginia, 23284, USA
| |
Collapse
|
5
|
Shen YF, Xu C, Cheng LJ. Deciphering chemical bonding in BnHn2−(n = 2–17): flexible multicenter bonding. RSC Adv 2017. [DOI: 10.1039/c7ra06811e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Deciphering flexible multicenter bonding incloso-borane dianions BnHn2−.
Collapse
Affiliation(s)
- Yan-Fang Shen
- Department of Chemistry
- Anhui University
- Hefei
- P. R. China
| | - Chang Xu
- Department of Chemistry
- Anhui University
- Hefei
- P. R. China
| | - Long-Jiu Cheng
- Department of Chemistry
- Anhui University
- Hefei
- P. R. China
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials
| |
Collapse
|
6
|
Zhong M, Zhou J, Fang H, Jena P. Role of ligands in the stability of BnXn and CBn−1Xn (n = 5–10; X = H, F, CN) and their potential as building blocks of electrolytes in lithium ion batteries. Phys Chem Chem Phys 2017; 19:17937-17943. [DOI: 10.1039/c7cp02642k] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We predict a series of boron-cage-based stable (di-)anions, and demonstrate them to be high-performance electrolytes in Li-ion batteries.
Collapse
Affiliation(s)
- MingMin Zhong
- School of Physical Science and Technology
- Southwest University
- Chongqing 400715
- China
- Department of Physics Virginia Commonwealth University Richmond
| | - Jian Zhou
- Department of Physics Virginia Commonwealth University Richmond
- Virginia 23284
- USA
| | - Hong Fang
- Department of Physics Virginia Commonwealth University Richmond
- Virginia 23284
- USA
| | - Puru Jena
- Department of Physics Virginia Commonwealth University Richmond
- Virginia 23284
- USA
| |
Collapse
|
7
|
Zhao H, Zhou J, Jena P. Substituent‐Stabilized Organic Dianions in the Gas Phase and Their Potential Use as Electrolytes in Lithium‐Ion Batteries. Chemphyschem 2016; 17:2992-2997. [DOI: 10.1002/cphc.201600467] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Hongmin Zhao
- Department of Physics School of Science Beijing Jiaotong University Beijing 100044 China
- Department of Physics Virginia Commonwealth University Richmond Virginia 23284 USA
| | - Jian Zhou
- Department of Physics Virginia Commonwealth University Richmond Virginia 23284 USA
| | - Puru Jena
- Department of Physics Virginia Commonwealth University Richmond Virginia 23284 USA
| |
Collapse
|
8
|
ITOH T, KAJITA T, MAEDA T, KASUYA A. In Situ Surface-enhanced Raman Analysis of Water Libration on Silver Electrode in Various Alkali Hydroxide Aqueous Solutions. ELECTROCHEMISTRY 2014. [DOI: 10.5796/electrochemistry.82.396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
9
|
WU HAISHUN, QIN XIAOFANG, JIAO HAIJUN. STRUCTURE AND STABILITY OF MONOCYCLIC $({\rm CH})_{4-n} ({\rm BL})_{n}^{2-}$(L = CO, N2, CS) DIANIONS AND THEIR DILITHIUM COMPLEXES. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2011. [DOI: 10.1142/s0219633608003988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Structure and stability of monocyclic [Formula: see text] dianions ( L = CO , N 2, CS ) with 6π-electrons, which are isolobal with cyclobutadiene dianion [Formula: see text], have been investigated at the B3LYP and CCSD(T) levels of theory. ( CH )3( BL )2- have non-planar singlet ground states. [Formula: see text] have planar singlet ground states, while [Formula: see text] isomers have folded four-membered central rings. Both [Formula: see text] and [Formula: see text] have planar ground states, the ground state of [Formula: see text] has a six-membered ring with two bridging and one terminal CS. Both [Formula: see text] and [Formula: see text] have reduced aromaticity compared to [Formula: see text] as indicated by the less negative nucleus independent chemical shifts (NICS) values. The mono-, di- and trisubstituted ( CH )3( BL )2-, [Formula: see text], and [Formula: see text] also have reduced aromaticity, while the 1,3-substituted [Formula: see text] have positive NICS values due to the localization of the negative charge at the ring carbon centers. In addition, the electrostatic stabilization of Li + in favor of the singlet or triplet states depends on the nature of their structures.
Collapse
Affiliation(s)
- HAI-SHUN WU
- School of Chemistry and Materials Science, Shanxi Normal University, Linfen, 041004, China
| | - XIAO-FANG QIN
- School of Chemistry and Materials Science, Shanxi Normal University, Linfen, 041004, China
| | - HAIJUN JIAO
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Straße, 29a, 18059 Rostock, Germany
| |
Collapse
|
10
|
Lu Y, Lent C. Self-doping of molecular quantum-dot cellular automata: mixed valence zwitterions. Phys Chem Chem Phys 2011; 13:14928-36. [DOI: 10.1039/c1cp21332f] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
|
12
|
Itoh T, Maeda T, Kasuya A. In situ surface-enhanced Raman scattering spectroelectrochemistry of oxygen species. Faraday Discuss 2006; 132:95-109; discussion 147-58. [PMID: 16833110 DOI: 10.1039/b506197k] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In situ surface-enhanced Raman scattering (SERS) combined with electrochemical analysis is applied to the determination of oxygen species on silver electrodes in alkaline hydroxide aqueous solution at room temperature and gold electrodes in carbonate melts at high temperature. This technique, referred to as SERS spectroelectrochemistry, reveals Raman spectral lines in the 500-1100 cm(-1) range under electrode potential scanning, assignable to superoxide ions (O2-) and peroxide ions (O2(2-)) on the electrode surface. These lines for oxygen molecule species have potential dependence with changing potential. In the alkaline hydroxide aqueous solution, the Raman peaks due to oxygen molecules are observed at potentials between 0.2 V and -0.8 V (vs. Ag/AgCl) only in the cathodic scan. This irreversible behavior in cyclic voltammograms indicates the existence of an intermediate stage in the oxygen reduction process, in which oxygen is released from the AgO films on the electrode at potentials corresponding to the onset of the last current peak in the voltammogram. This liberated oxygen molecule remains in solution at the interface until hydroxyls or water molecules are formed when the potential reaches the potential zero charge (PZC). In the high-temperature carbonate melts, Raman lines at 1047, 1080, and 800 cm(-1) are apparent for the eutectic (62 + 38) mol% (Li + K)CO3 melt at 923 K, and at 735 cm(-1) for the Li2CO3 melt at 1123 K. These results suggest that oxygen reduction in the Li2CO3 melt involves only peroxide ions, while that in (62 + 38) mol% (Li + K)CO3 involves both peroxide and superoxide ions at the three-phase boundary interface.
Collapse
Affiliation(s)
- Takashi Itoh
- Center for Interdisciplinary Research, Tohoku University, Aramaki Aoba, Aoba-ku, Sendai 980-8578, Japan.
| | | | | |
Collapse
|
13
|
Ehrler OT, Furche F, Weber JM, Kappes MM. Photoelectron spectroscopy of fullerene dianions C762−, C782−, and C842−. J Chem Phys 2005; 122:094321. [PMID: 15836142 DOI: 10.1063/1.1859272] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We report laser photoelectron spectra of the doubly negatively charged fullerenes C(76) (2-), C(78) (2-), and C(84) (2-) at 2.33, 3.49, and 4.66 eV photon energy. From these spectra, second electron affinities and vertical detachment energies, as well as estimates for the repulsive Coulomb barriers are obtained. These results are discussed in the context of electrostatic models. They reveal that fullerenes are similar to conducting spheres, with electronic properties scaling with their size. The experimental spectra are compared with the accessible excited states of the respective singly charged product ions calculated in the framework of time dependent density functional theory.
Collapse
Affiliation(s)
- Oli T Ehrler
- Institut für Physikalische Chemie, Universität Karlsruhe, Kaiserstrasse 12, D-76128 Karlsruhe, Germany
| | | | | | | |
Collapse
|