1
|
Cogswell TJ, Lewis RJ, Sköld C, Nordqvist A, Ahlqvist M, Knerr L. The effect of gem-difluorination on the conformation and properties of a model macrocyclic system. Chem Sci 2024; 15:19770-19776. [PMID: 39568894 PMCID: PMC11575594 DOI: 10.1039/d4sc05424e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/01/2024] [Indexed: 11/22/2024] Open
Abstract
Conformational control of drug candidates to engineer improved potency and ADME properties is an ongoing area of research. Macrocyclic rings tend to offer a greater degree of rigidity than non-cyclised small molecules, and, as a result they are perfect platforms to instil conformational controls. In this study, the difluoroalkoxyphenyl moiety is examined as a tool to alter the conformation of macrocycles. A fluorinated and non-fluorinated macrocyclic matched pair is compared in terms of conformation preferences and related ADME properties. The synthesised macrocycles are found to give similar major conformations exhibiting a trans amide in the macrocyclic backbone. However, for the fluorinated macrocycle, the major trans amide conformation is in equilibrium with a cis amide minor conformation, seen by 1H NMR in a 4 : 1 ratio of trans/cis. The conformational fits for the minor fluorinated isomer demonstrate the out of plane preference of the difluoroalkoxy system encouraging the amide within the macrocycle backbone to adopt a cis conformation. The fluorinated macrocycle was less metabolically stable compared to the non-fluorinated, postulated to be a result of the interconversion of trans amide to the cis amide, which potentially could be more readily metabolised.
Collapse
Affiliation(s)
- T J Cogswell
- Medicinal Chemistry, Early Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca Gothenburg Sweden
| | - R J Lewis
- Medicinal Chemistry, Early Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca Gothenburg Sweden
| | - C Sköld
- Drug Design and Discovery, Department of Medicinal Chemistry, BMC, Uppsala University P.O. Box 574 SE751 23 Uppsala Sweden
| | - A Nordqvist
- Medicinal Chemistry, Early Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca Gothenburg Sweden
| | - M Ahlqvist
- DMPK, Early Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca Gothenburg Sweden
| | - L Knerr
- Medicinal Chemistry, Early Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca Gothenburg Sweden
| |
Collapse
|
2
|
Swenson CS, Mandava G, Thomas DM, Moellering RE. Tackling Undruggable Targets with Designer Peptidomimetics and Synthetic Biologics. Chem Rev 2024; 124:13020-13093. [PMID: 39540650 DOI: 10.1021/acs.chemrev.4c00423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The development of potent, specific, and pharmacologically viable chemical probes and therapeutics is a central focus of chemical biology and therapeutic development. However, a significant portion of predicted disease-causal proteins have proven resistant to targeting by traditional small molecule and biologic modalities. Many of these so-called "undruggable" targets feature extended, dynamic protein-protein and protein-nucleic acid interfaces that are central to their roles in normal and diseased signaling pathways. Here, we discuss the development of synthetically stabilized peptide and protein mimetics as an ever-expanding and powerful region of chemical space to tackle undruggable targets. These molecules aim to combine the synthetic tunability and pharmacologic properties typically associated with small molecules with the binding footprints, affinities and specificities of biologics. In this review, we discuss the historical and emerging platforms and approaches to design, screen, select and optimize synthetic "designer" peptidomimetics and synthetic biologics. We examine the inspiration and design of different classes of designer peptidomimetics: (i) macrocyclic peptides, (ii) side chain stabilized peptides, (iii) non-natural peptidomimetics, and (iv) synthetic proteomimetics, and notable examples of their application to challenging biomolecules. Finally, we summarize key learnings and remaining challenges for these molecules to become useful chemical probes and therapeutics for historically undruggable targets.
Collapse
Affiliation(s)
- Colin S Swenson
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Gunasheil Mandava
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Deborah M Thomas
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Raymond E Moellering
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
3
|
Stefan A, Gentilucci L, Ruffolo F, Rossi V, Sordi S, He T, di Stefano G, Santino F, Brigotti M, Scotti C, Iamele L, de Jonge H, Piaz FD, Santarcangelo DR, Hochkoeppler A. Peptides inhibiting the assembly of monomeric human l-lactate dehydrogenase into catalytically active homotetramer decrease the synthesis of lactate in cultured cells. Protein Sci 2024; 33:e5161. [PMID: 39276013 PMCID: PMC11400633 DOI: 10.1002/pro.5161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/25/2024] [Accepted: 08/19/2024] [Indexed: 09/16/2024]
Abstract
The energetic metabolism of cancer cells relies on a substantial commitment of pyruvate to the catalytic action of lactate-generating dehydrogenases. This coupling mainly depends on lactate dehydrogenase A (LDH-A), which is overexpressed in different types of cancers, and therefore represents an appealing therapeutic target. Taking into account that the activity of LDHs is exclusively exerted by their tetrameric forms, it was recently shown that peptides perturbing the monomers-to-tetramer assembly inhibit human LDH-A (hLDH-A). However, to identify these peptides, tetrameric hLDH-A was transiently exposed to strongly acidic conditions inducing its dissociation into monomers, which were tested as a target for peptides at low pH. Nevertheless, the availability of native monomeric hLDH-A would allow performing similar screenings under physiological conditions. Here we report on the unprecedented isolation of recombinant monomeric hLDH-A at neutral pH, and on its use to identify peptides inhibiting the assembly of the tetrameric enzyme. Remarkably, the GQNGISDL octapeptide, mimicking the 296-303 portion of hLDH-A C-terminal region, was observed to effectively inhibit the target enzyme. Moreover, by dissecting the action of this octapeptide, the cGQND cyclic tetrapeptide was found to act as the parental compound. Furthermore, we performed assays using MCF7 and BxPC3 cultured cells, exclusively expressing hLDH-A and hLDH-B, respectively. By means of these assays we detected a selective action of linear and cyclic GQND tetrapeptides, inhibiting lactate secretion in MCF7 cells only. Overall, our observations suggest that peptides mimicking the C-terminal region of hLDH-A effectively interfere with protein-protein interactions responsible for the assembly of the tetrameric enzyme.
Collapse
Affiliation(s)
- Alessandra Stefan
- Department of Pharmacy and BiotechnologyUniversity of BolognaBolognaItaly
- CSGI, University of FirenzeSesto FiorentinoItaly
| | - Luca Gentilucci
- Department of Chemistry “Giacomo Ciamician”University of BolognaBolognaItaly
| | - Francesca Ruffolo
- Department of Pharmacy and BiotechnologyUniversity of BolognaBolognaItaly
| | - Valentina Rossi
- Department of Medical and Surgical SciencesUniversity of BolognaBolognaItaly
| | - Sofia Sordi
- Department of Pharmacy and BiotechnologyUniversity of BolognaBolognaItaly
| | - Tingting He
- Department of Chemistry “Giacomo Ciamician”University of BolognaBolognaItaly
| | | | - Federica Santino
- Department of Chemistry “Giacomo Ciamician”University of BolognaBolognaItaly
| | - Maurizio Brigotti
- Department of Medical and Surgical SciencesUniversity of BolognaBolognaItaly
| | - Claudia Scotti
- Department of Molecular MedicineUniversity of PaviaPaviaItaly
| | - Luisa Iamele
- Department of Molecular MedicineUniversity of PaviaPaviaItaly
| | - Hugo de Jonge
- Department of Molecular MedicineUniversity of PaviaPaviaItaly
| | | | | | - Alejandro Hochkoeppler
- Department of Pharmacy and BiotechnologyUniversity of BolognaBolognaItaly
- CSGI, University of FirenzeSesto FiorentinoItaly
| |
Collapse
|
4
|
Jwad R, Weissberger D, Hunter L. Strategies for Fine-Tuning the Conformations of Cyclic Peptides. Chem Rev 2020; 120:9743-9789. [PMID: 32786420 DOI: 10.1021/acs.chemrev.0c00013] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cyclic peptides are promising scaffolds for drug development, attributable in part to their increased conformational order compared to linear peptides. However, when optimizing the target-binding or pharmacokinetic properties of cyclic peptides, it is frequently necessary to "fine-tune" their conformations, e.g., by imposing greater rigidity, by subtly altering certain side chain vectors, or by adjusting the global shape of the macrocycle. This review systematically examines the various types of structural modifications that can be made to cyclic peptides in order to achieve such conformational control.
Collapse
Affiliation(s)
- Rasha Jwad
- Department of Chemistry, College of Science, Al-Nahrain University, Baghdad, Iraq
| | - Daniel Weissberger
- School of Chemistry, University of New South Wales (UNSW) Sydney, New South Wales 2052, Australia
| | - Luke Hunter
- School of Chemistry, University of New South Wales (UNSW) Sydney, New South Wales 2052, Australia
| |
Collapse
|
5
|
Sarojini V, Cameron AJ, Varnava KG, Denny WA, Sanjayan G. Cyclic Tetrapeptides from Nature and Design: A Review of Synthetic Methodologies, Structure, and Function. Chem Rev 2019; 119:10318-10359. [PMID: 31418274 DOI: 10.1021/acs.chemrev.8b00737] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Small cyclic peptides possess a wide range of biological properties and unique structures that make them attractive to scientists working in a range of areas from medicinal to materials chemistry. However, cyclic tetrapeptides (CTPs), which are important members of this family, are notoriously difficult to synthesize. Various synthetic methodologies have been developed that enable access to natural product CTPs and their rationally designed synthetic analogues having novel molecular structures. These methodologies include the use of reversible protecting groups such as pseudoprolines that restrict conformational freedom, ring contraction strategies, on-resin cyclization approaches, and optimization of coupling reagents and reaction conditions such as temperature and dilution factors. Several fundamental studies have documented the impacts of amino acid configurations, N-alkylation, and steric bulk on both synthetic success and ensuing conformations. Carefully executed retrosynthetic ring dissection and the unique structural features of the linear precursor sequences that result from the ring dissection are crucial for the success of the cyclization step. Other factors that influence the outcome of the cyclization step include reaction temperature, solvent, reagents used as well as dilution levels. The purpose of this review is to highlight the current state of affairs on naturally occurring and rationally designed cyclic tetrapeptides, including strategies investigated for their syntheses in the literature, the conformations adopted by these molecules, and specific examples of their function. Using selected examples from the literature, an in-depth discussion of the synthetic techniques and reaction parameters applied for the successful syntheses of 12-, 13-, and 14-membered natural product CTPs and their novel analogues are presented, with particular focus on the cyclization step. Selected examples of the three-dimensional structures of cyclic tetrapeptides studied by NMR, and X-ray crystallography are also included.
Collapse
Affiliation(s)
- Vijayalekshmi Sarojini
- School of Chemical Sciences and the Centre for Green Chemical Science , University of Auckland , Auckland 1142 , New Zealand.,The MacDiarmid Institute for Advanced Materials and Nanotechnology , Wellington 6140 , New Zealand
| | - Alan J Cameron
- School of Chemical Sciences and the Centre for Green Chemical Science , University of Auckland , Auckland 1142 , New Zealand
| | - Kyriakos G Varnava
- School of Chemical Sciences and the Centre for Green Chemical Science , University of Auckland , Auckland 1142 , New Zealand
| | | | - Gangadhar Sanjayan
- Division of Organic Chemistry , CSIR-National Chemical Laboratory , Dr. Homi Bhabha Road , Pune 411 008 , India
| |
Collapse
|
6
|
Appavoo SD, Huh S, Diaz DB, Yudin AK. Conformational Control of Macrocycles by Remote Structural Modification. Chem Rev 2019; 119:9724-9752. [DOI: 10.1021/acs.chemrev.8b00742] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Solomon D. Appavoo
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario, Canada M5S 3H6
| | - Sungjoon Huh
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario, Canada M5S 3H6
| | - Diego B. Diaz
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario, Canada M5S 3H6
| | - Andrei K. Yudin
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario, Canada M5S 3H6
| |
Collapse
|
7
|
Zarezin DP, Nenajdenko VG. Diazocarbonyl derivatives of amino acids: unique chiral building blocks for the synthesis of biologically active compounds. RUSSIAN CHEMICAL REVIEWS 2019. [DOI: 10.1070/rcr4852] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This review deals with applications of chiral α-amino diazoketones, α-amino acid derivatives, in the synthesis of various biologically active compounds. General approaches to the synthesis of chiral α-amino diazoketones, including the Arndt – Eistert reaction, acylation of trimethylsilyldiazomethanes, etc., are discussed. Due to the presence of three functional groups, these building blocks can be used to produce a wide range of organic compounds with potential physiological activity, ranging from various heterocyclic compounds to peptidomimetics. Methods for the synthesis of β-amino acid-containing peptides and depsipeptides, amino acid derivatives and heterocyclic compounds with three- to seven-membered rings are considered.
The bibliography includes 226 references.
Collapse
|
8
|
Müntener T, Thommen F, Joss D, Kottelat J, Prescimone A, Häussinger D. Synthesis of chiral nine and twelve-membered cyclic polyamines from natural building blocks. Chem Commun (Camb) 2019; 55:4715-4718. [DOI: 10.1039/c9cc00720b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A rational strategy for the facile and efficient cyclization of amino acid-based linear precursors forming nine and twelve-membered cyclic peptidomimetics is reported.
Collapse
Affiliation(s)
- Thomas Müntener
- Department of Chemistry
- University of Basel
- 4056 Basel
- Switzerland
| | | | - Daniel Joss
- Department of Chemistry
- University of Basel
- 4056 Basel
- Switzerland
| | - Jérémy Kottelat
- School of Engineering and Architecture of Fribourg
- 1705 Fribourg
- Switzerland
| | | | | |
Collapse
|
9
|
Gless BH, Olsen CA. Direct Peptide Cyclization and One-Pot Modification Using the MeDbz Linker. J Org Chem 2018; 83:10525-10534. [DOI: 10.1021/acs.joc.8b01237] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Bengt H. Gless
- Center for Biopharmaceuticals and Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Christian A. Olsen
- Center for Biopharmaceuticals and Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| |
Collapse
|
10
|
Cameron AJ, Squire CJ, Edwards PJB, Harjes E, Sarojini V. Crystal and NMR Structures of a Peptidomimetic β-Turn That Provides Facile Synthesis of 13-Membered Cyclic Tetrapeptides. Chem Asian J 2017; 12:3195-3202. [PMID: 29098772 DOI: 10.1002/asia.201701422] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 10/30/2017] [Indexed: 12/31/2022]
Abstract
Herein we report the unique conformations adopted by linear and cyclic tetrapeptides (CTPs) containing 2-aminobenzoic acid (2-Abz) in solution and as single crystals. The crystal structure of the linear tetrapeptide H2 N-d-Leu-d-Phe-2-Abz-d-Ala-COOH (1) reveals a novel planar peptidomimetic β-turn stabilized by three hydrogen bonds and is in agreement with its NMR structure in solution. While CTPs are often synthetically inaccessible or cyclize in poor yield, both 1 and its N-Me-d-Phe analogue (2) adopt pseudo-cyclic frameworks enabling near quantitative conversion to the corresponding CTPs 3 and 4. The crystal structure of the N-methylated peptide (4) is the first reported for a CTP containing 2-Abz and reveals a distinctly planar 13-membered ring, which is also evident in solution. The N-methylation of d-Phe results in a peptide bond inversion compared to the conformation of 3 in solution.
Collapse
Affiliation(s)
- Alan J Cameron
- School of Chemical Sciences, The University of Auckland, Auckland, 1142, New Zealand
| | - Christopher J Squire
- School of Biological Sciences, The University of Auckland, Auckland, 1142, New Zealand
| | - Patrick J B Edwards
- Institute of Fundamental Sciences, Massey University, Palmerston North, 4442, New Zealand
| | - Elena Harjes
- Institute of Fundamental Sciences, Massey University, Palmerston North, 4442, New Zealand
| | | |
Collapse
|
11
|
Marshall GR, Ballante F. Limiting Assumptions in the Design of Peptidomimetics. Drug Dev Res 2017; 78:245-267. [DOI: 10.1002/ddr.21406] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Garland R. Marshall
- Department of Biochemistry and Molecular Biophysics; Washington University School of Medicine; St. Louis Missouri 63110
| | - Flavio Ballante
- Department of Biochemistry and Molecular Biophysics; Washington University School of Medicine; St. Louis Missouri 63110
| |
Collapse
|
12
|
Mendoza-Sanchez R, Corless VB, Nguyen QNN, Bergeron-Brlek M, Frost J, Adachi S, Tantillo DJ, Yudin AK. Cyclols Revisited: Facile Synthesis of Medium-Sized Cyclic Peptides. Chemistry 2017; 23:13319-13322. [PMID: 28771904 DOI: 10.1002/chem.201703616] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Indexed: 12/21/2022]
Abstract
Medium-sized rings, particularly the corresponding cyclic peptides, are challenging synthetic targets. In the present study, we report an approach to medium-sized cyclic peptides through targeted formation and collapse of cyclol intermediates. This methodology operates on β-amino imides derived from 2,5-diketopiperazines and offers a straightforward transition from frequently examined scaffolds in drug discovery to a rarely visited class of medium-sized rings.
Collapse
Affiliation(s)
- Rodrigo Mendoza-Sanchez
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George St., Toronto, ON, M5S 3H6, Canada
| | - Victoria B Corless
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George St., Toronto, ON, M5S 3H6, Canada
| | - Q Nhu N Nguyen
- Department of Chemistry, University of California Davis, 1 Shields Avenue, Davis, CA, USA
| | - Milan Bergeron-Brlek
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George St., Toronto, ON, M5S 3H6, Canada
| | - John Frost
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George St., Toronto, ON, M5S 3H6, Canada
| | - Shinya Adachi
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George St., Toronto, ON, M5S 3H6, Canada
| | - Dean J Tantillo
- Department of Chemistry, University of California Davis, 1 Shields Avenue, Davis, CA, USA
| | - Andrei K Yudin
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George St., Toronto, ON, M5S 3H6, Canada
| |
Collapse
|
13
|
Chen CC, Wang SF, Su YY, Lin YA, Lin PC. Copper(I)-Mediated Denitrogenative Macrocyclization for the Synthesis of Cyclic α3
β-Tetrapeptide Analogues. Chem Asian J 2017; 12:1326-1337. [DOI: 10.1002/asia.201700339] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 03/23/2017] [Indexed: 12/23/2022]
Affiliation(s)
- Chun-Chi Chen
- Department of Chemistry; Nation Sun Yat-sen University; 70 Lienhai Rd. Kaohsiung 80424 Taiwan
| | - Sheng-Fu Wang
- Department of Chemistry; Nation Sun Yat-sen University; 70 Lienhai Rd. Kaohsiung 80424 Taiwan
| | - Yung-Yu Su
- Department of Chemistry; Nation Sun Yat-sen University; 70 Lienhai Rd. Kaohsiung 80424 Taiwan
| | - Yuya A. Lin
- Department of Chemistry; Nation Sun Yat-sen University; 70 Lienhai Rd. Kaohsiung 80424 Taiwan
| | - Po-Chiao Lin
- Department of Chemistry; Nation Sun Yat-sen University; 70 Lienhai Rd. Kaohsiung 80424 Taiwan
| |
Collapse
|
14
|
Maolanon AR, Kristensen HME, Leman LJ, Ghadiri MR, Olsen CA. Natural and Synthetic Macrocyclic Inhibitors of the Histone Deacetylase Enzymes. Chembiochem 2016; 18:5-49. [DOI: 10.1002/cbic.201600519] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Alex R. Maolanon
- Center for Biopharmaceuticals and; Department of Drug Design and Pharmacology; University of Copenhagen; Universitetsparken 2 2100 Copenhagen Denmark
| | - Helle M. E. Kristensen
- Center for Biopharmaceuticals and; Department of Drug Design and Pharmacology; University of Copenhagen; Universitetsparken 2 2100 Copenhagen Denmark
| | - Luke J. Leman
- Department of Chemistry; The Skaggs Institute for Chemical Biology; The Scripps Research Institute; 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - M. Reza Ghadiri
- Department of Chemistry; The Skaggs Institute for Chemical Biology; The Scripps Research Institute; 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Christian A. Olsen
- Center for Biopharmaceuticals and; Department of Drug Design and Pharmacology; University of Copenhagen; Universitetsparken 2 2100 Copenhagen Denmark
| |
Collapse
|
15
|
Chung BKW, White CJ, Scully CCG, Yudin AK. The reactivity and conformational control of cyclic tetrapeptides derived from aziridine-containing amino acids. Chem Sci 2016; 7:6662-6668. [PMID: 28567256 PMCID: PMC5450523 DOI: 10.1039/c6sc01687a] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 06/29/2016] [Indexed: 12/25/2022] Open
Abstract
Among the smallest of the macrocyclic peptides, 12- and 13-membered cyclic tetrapeptides are particularly noteworthy because they exhibit a broad spectrum of biological activities due to their innate capacity to mimic β-turns in proteins. In this report, we demonstrate that aziridine-containing cyclic tetrapeptides offer a platform to interrogate the conformational properties of tetrapeptides. We show that aziridine ring-opening of 12-membered cyclic tetrapeptides yields exclusively 13-membered α3β macrocycles, regardless of peptide sequence, nucleophile, aziridine β-carbon substitution, or stereochemistry. NMR and computational studies on two related aziridine-containing cyclic tetrapeptides revealed that the amide conformations of their N-acyl aziridines are similar, and are likely the determinant of the observed ring-opening regioselectivity. Interestingly, some of the resulting 13-membered α3β macrocycles were found to be conformationally heterogeneous. This study on the reactivity and conformational control of aziridine-containing cyclic tetrapeptides provides useful insight on the design and development of macrocyclic therapeutics.
Collapse
Affiliation(s)
- Benjamin K W Chung
- Davenport Research Laboratories , Department of Chemistry , The University of Toronto , 80 St. George Street , Toronto , Ontario M5S 3H6 , Canada .
| | - Christopher J White
- Davenport Research Laboratories , Department of Chemistry , The University of Toronto , 80 St. George Street , Toronto , Ontario M5S 3H6 , Canada .
| | - Conor C G Scully
- Davenport Research Laboratories , Department of Chemistry , The University of Toronto , 80 St. George Street , Toronto , Ontario M5S 3H6 , Canada .
| | - Andrei K Yudin
- Davenport Research Laboratories , Department of Chemistry , The University of Toronto , 80 St. George Street , Toronto , Ontario M5S 3H6 , Canada .
| |
Collapse
|
16
|
Diaz DB, Scully CCG, Liew SK, Adachi S, Trinchera P, St Denis JD, Yudin AK. Synthesis of Aminoboronic Acid Derivatives from Amines and Amphoteric Boryl Carbonyl Compounds. Angew Chem Int Ed Engl 2016; 55:12659-63. [PMID: 27584917 DOI: 10.1002/anie.201605754] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Indexed: 12/17/2022]
Abstract
Herein, we demonstrate the use of α-boryl aldehydes and acyl boronates in the synthesis of aminoboronic acid derivatives. This work highlights the untapped potential of boron-substituted iminium ions and offers insights into the behavior of N-methyliminodiacetyl (MIDA) boronates during condensation and tautomerization processes. The preparative value of this contribution lies in the demonstration that various amines, including linear and cyclic peptides, can be readily conjugated with boron-containing fragments. A mild deprotection of amino MIDA-boronates enables access to α- and β-aminoboronic acids in high chemical yields. This simple process should be applicable to the synthesis of a wide range of bioactive molecules as well as precursors for cross-coupling reactions.
Collapse
Affiliation(s)
- Diego B Diaz
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George St., Toronto, ON, M5S 3H6, Canada
| | - Conor C G Scully
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George St., Toronto, ON, M5S 3H6, Canada
| | - Sean K Liew
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George St., Toronto, ON, M5S 3H6, Canada
| | - Shinya Adachi
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George St., Toronto, ON, M5S 3H6, Canada
| | - Piera Trinchera
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George St., Toronto, ON, M5S 3H6, Canada
| | - Jeffrey D St Denis
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George St., Toronto, ON, M5S 3H6, Canada
| | - Andrei K Yudin
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George St., Toronto, ON, M5S 3H6, Canada.
| |
Collapse
|
17
|
Diaz DB, Scully CCG, Liew SK, Adachi S, Trinchera P, St. Denis JD, Yudin AK. Synthesis of Aminoboronic Acid Derivatives from Amines and Amphoteric Boryl Carbonyl Compounds. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201605754] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Diego B. Diaz
- Davenport Research Laboratories; Department of Chemistry; University of Toronto; 80 St. George St. Toronto ON M5S 3H6 Canada
| | - Conor C. G. Scully
- Davenport Research Laboratories; Department of Chemistry; University of Toronto; 80 St. George St. Toronto ON M5S 3H6 Canada
| | - Sean K. Liew
- Davenport Research Laboratories; Department of Chemistry; University of Toronto; 80 St. George St. Toronto ON M5S 3H6 Canada
| | - Shinya Adachi
- Davenport Research Laboratories; Department of Chemistry; University of Toronto; 80 St. George St. Toronto ON M5S 3H6 Canada
| | - Piera Trinchera
- Davenport Research Laboratories; Department of Chemistry; University of Toronto; 80 St. George St. Toronto ON M5S 3H6 Canada
| | - Jeffrey D. St. Denis
- Davenport Research Laboratories; Department of Chemistry; University of Toronto; 80 St. George St. Toronto ON M5S 3H6 Canada
| | - Andrei K. Yudin
- Davenport Research Laboratories; Department of Chemistry; University of Toronto; 80 St. George St. Toronto ON M5S 3H6 Canada
| |
Collapse
|
18
|
Gentilucci L, Gallo F, Meloni F, Mastandrea M, Del Secco B, De Marco R. Controlling Cyclopeptide Backbone Conformation with β/α-Hybrid Peptide-Heterocycle Scaffolds. European J Org Chem 2016. [DOI: 10.1002/ejoc.201600448] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Luca Gentilucci
- Department of Chemistry “G. Ciamician”; University of Bologna; Via Selmi 2 40126 Bologna Italy
| | - Francesca Gallo
- Department of Chemistry “G. Ciamician”; University of Bologna; Via Selmi 2 40126 Bologna Italy
| | - Fernanda Meloni
- Department of Chemistry “G. Ciamician”; University of Bologna; Via Selmi 2 40126 Bologna Italy
| | - Marco Mastandrea
- Department of Chemistry “G. Ciamician”; University of Bologna; Via Selmi 2 40126 Bologna Italy
| | - Benedetta Del Secco
- Department of Chemistry “G. Ciamician”; University of Bologna; Via Selmi 2 40126 Bologna Italy
| | - Rossella De Marco
- Department of Chemistry “G. Ciamician”; University of Bologna; Via Selmi 2 40126 Bologna Italy
| |
Collapse
|
19
|
Xin D, Burgess K. Anthranilic acid-containing cyclic tetrapeptides: at the crossroads of conformational rigidity and synthetic accessibility. Org Biomol Chem 2016; 14:5049-58. [PMID: 27173439 PMCID: PMC4916954 DOI: 10.1039/c6ob00693k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Each amino acid in a peptide contributes three atom units to main-chains, hence natural cyclic peptides can be 9, 12, 15, …. i.e. 3n membered-rings, where n is the number of amino acids. Cyclic peptides that are 9 or 12-membered ring compounds tend to be hard to prepare because of strain, while their one amino acid homologs (15-membered cyclic pentapeptides) are not conformationally homogeneous unless constrained by strategically placed proline or d-amino acid residues. We hypothesized that replacing one genetically encoded amino acid in a cyclic tetrapeptide with a rigid β-amino acid would render peptidomimetic designs that rest at a useful crossroads between synthetic accessibility and conformational rigidity. Thus this research explored non-proline containing 13-membered ring peptides 1 featuring one anthranilic acid (Anth) residue. Twelve cyclic peptides of this type were prepared, and in doing so the viability of both solution- and solid-phase methods was demonstrated. The library produced contained a complete set of four diastereoisomers of the sequence 1aaf (i.e. cyclo-AlaAlaPheAnth). Without exception, these four diastereoisomers each adopted one predominant conformation in solution; basically these conformations feature amide N-H vectors puckering above and below the equatorial plane, and approximately oriented their N-H[combining low line] atoms towards the polar axis. Moreover, the shapes of these conformers varied in a logical and predictable way (NOE, temperature coefficient, D/H exchange, circular dichroism). Comparisons were made of the side-chain orientations presented by compounds 1aaa in solution with ideal secondary structures and protein-protein interaction interfaces. Various 1aaa stereoisomers in solution present side-chains in similar orientations to regular and inverse γ-turns, and to the most common β-turns (types I and II). Consistent with this, compounds 1aaa have a tendency to mimic various turns and bends at protein-protein interfaces. Finally, proteolytic- and hydrolytic stabilities of the compounds at different pHs indicate they are robust relative to related linear peptides, and rates of permeability through an artificial membrane indicate their structures are conducive to cell permeability.
Collapse
Affiliation(s)
- Dongyue Xin
- Department of Chemistry, Texas A & M University, Box 30012, College Station, TX 77842, USA.
| | | |
Collapse
|
20
|
Magpusao AN, Rutledge K, Hamlin TA, Lawrence J, Mercado BQ, Leadbeater NE, Peczuh MW. Rules of Macrocycle Topology: A [13]‐Macrodilactone Case Study. Chemistry 2016; 22:6001-11. [DOI: 10.1002/chem.201504684] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 02/23/2016] [Indexed: 12/29/2022]
Affiliation(s)
- Anniefer N. Magpusao
- Department of Chemistry University of Connecticut 55 N. Eagleville Road, U3060 Storrs CT 06269-3060 USA
| | - Kelli Rutledge
- Department of Chemistry University of Connecticut 55 N. Eagleville Road, U3060 Storrs CT 06269-3060 USA
| | - Trevor A. Hamlin
- Department of Chemistry University of Connecticut 55 N. Eagleville Road, U3060 Storrs CT 06269-3060 USA
- Department of Theoretical Chemistry VU University Amsterdam De Boelelaan 1083 1081 HV Amsterdam The Netherlands
| | - Jean‐Marc Lawrence
- Department of Chemistry University of Connecticut 55 N. Eagleville Road, U3060 Storrs CT 06269-3060 USA
| | - Brandon Q. Mercado
- Department of Chemistry Yale University 225 Prospect Street New Haven CT 06520 USA
| | - Nicholas E. Leadbeater
- Department of Chemistry University of Connecticut 55 N. Eagleville Road, U3060 Storrs CT 06269-3060 USA
| | - Mark W. Peczuh
- Department of Chemistry University of Connecticut 55 N. Eagleville Road, U3060 Storrs CT 06269-3060 USA
| |
Collapse
|
21
|
Piekielna J, Kluczyk A, Gentilucci L, Cerlesi MC, Calo' G, Tomböly C, Łapiński K, Janecki T, Janecka A. Ring size in cyclic endomorphin-2 analogs modulates receptor binding affinity and selectivity. Org Biomol Chem 2016; 13:6039-46. [PMID: 25948019 DOI: 10.1039/c5ob00565e] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The study reports the solid-phase synthesis and biological evaluation of a series of new side chain-to-side chain cyclized opioid peptide analogs of the general structure Tyr-[D-Xaa-Phe-Phe-Asp]NH2, where Xaa = Lys (1), Orn (2), Dab (3), or Dap (4) (Dab = 2,4-diaminobutyric acid, Dap = 2,3-diaminopropionic acid), containing 17- to 14-membered rings. The influence of the ring size on binding to the MOP, DOP and KOP opioid receptors was studied. In general, the reduction of the size of the macrocyclic ring increased the selectivity for the MOP receptor. The cyclopeptide incorporating Xaa = Lys displayed subnanomolar MOP affinity but modest selectivity over the KOP receptor, while the analog with the Orn residue showed increased affinity and selectivity for MOP. The analog with Dab was a weak MOP agonist and did not bind to the other two opioid receptors. Finally, the peptide with Xaa = Dap was completely MOP receptor-selective with subnanomolar affinity. Interestingly, the deletion of one Phe residue from 1 led to the 14-membered Tyr-c[D-Lys-Phe-Asp]NH2 (5), a potent and selective MOP receptor ligand. The in vitro potencies of the new analogs were determined in a calcium mobilization assay performed in Chinese Hamster Ovary (CHO) cells expressing human recombinant opioid receptors and chimeric G proteins. A good correlation between binding and the functional test results was observed. The influence of the ring size, solid support and the N-terminal protecting group on the formation of cyclodimers was studied.
Collapse
Affiliation(s)
- Justyna Piekielna
- Department of Biomolecular Chemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
De Marco R, Tolomelli A, Juaristi E, Gentilucci L. Integrin Ligands with α/β-Hybrid Peptide Structure: Design, Bioactivity, and Conformational Aspects. Med Res Rev 2016; 36:389-424. [PMID: 26777675 DOI: 10.1002/med.21383] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Integrins are cell surface receptors for proteins of the extracellular matrix and plasma-borne adhesive proteins. Their involvement in diverse pathologies prompted medicinal chemists to develop small-molecule antagonists, and very often such molecules are peptidomimetics designed on the basis of the short native ligand-integrin recognition motifs. This review deals with peptidomimetic integrin ligands composed of α- and β-amino acids. The roles exerted by the β-amino acid components are discussed in terms of biological activity, bioavailability, and selectivity. Special attention is paid to the synthetic accessibility and efficiency of conformationally constrained heterocyclic scaffolds incorporating α/β-amino acid span.
Collapse
Affiliation(s)
- Rossella De Marco
- Department of Chemistry "G. Ciamician,", University of Bologna, via Selmi 2, 40126, Bologna, Italy
| | - Alessandra Tolomelli
- Department of Chemistry "G. Ciamician,", University of Bologna, via Selmi 2, 40126, Bologna, Italy
| | - Eusebio Juaristi
- Department of Chemistry, Centro de Investigacion y de Estudios Avanzados del IPN, Avenida IPN 2508, esquina Ticoman, Mexico, D.F., 07360, Mexico
| | - Luca Gentilucci
- Department of Chemistry "G. Ciamician,", University of Bologna, via Selmi 2, 40126, Bologna, Italy
| |
Collapse
|
23
|
De Leon Rodriguez LM, Weidkamp AJ, Brimble MA. An update on new methods to synthesize cyclotetrapeptides. Org Biomol Chem 2015; 13:6906-21. [PMID: 26022908 DOI: 10.1039/c5ob00880h] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cyclotetrapeptides are important bioactive lead drug molecules that display a wide spectrum of pharmacological activities. However, the synthesis of cyclotetrapeptides from their linear precursors is challenging due to the highly constrained conformation required for cyclisation, thus hampering their progress to a clinical setting. This review provides an account of the reported methods used for the synthesis of cyclotetrapeptides.
Collapse
Affiliation(s)
- Luis M De Leon Rodriguez
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| | | | | |
Collapse
|
24
|
Ceballos-Alcantarilla E, Agulló C, Abad-Fuentes A, Abad-Somovilla A, Mercader JV. Rational design of a fluopyram hapten and preparation of bioconjugates and antibodies for immunoanalysis. RSC Adv 2015. [DOI: 10.1039/c5ra09124a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A fluopyram mimicking hapten was designed, immunochemically active bioconjugates were produced and high-affinity and specific antibodies to fluopyram were generated.
Collapse
Affiliation(s)
| | - C. Agulló
- Department of Organic Chemistry
- Universitat de València
- València
- Spain
| | - A. Abad-Fuentes
- Department of Biotechnology
- Institute of Agrochemistry and Food Technology
- Consejo Superior de Investigaciones Científicas (IATA–CSIC)
- València
- Spain
| | | | - J. V. Mercader
- Department of Biotechnology
- Institute of Agrochemistry and Food Technology
- Consejo Superior de Investigaciones Científicas (IATA–CSIC)
- València
- Spain
| |
Collapse
|
25
|
Yudin AK. Macrocycles: lessons from the distant past, recent developments, and future directions. Chem Sci 2015; 6:30-49. [PMID: 28553456 PMCID: PMC5424464 DOI: 10.1039/c4sc03089c] [Citation(s) in RCA: 354] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 11/01/2014] [Indexed: 12/20/2022] Open
Abstract
A noticeable increase in molecular complexity of drug targets has created an unmet need in the therapeutic agents that are larger than traditional small molecules. Macrocycles, which are cyclic compounds comprising 12 atoms or more, are now recognized as molecules that "are up to the task" to interrogate extended protein interfaces. However, because macrocycles (particularly the ones based on peptides) are equipped with large polar surface areas, achieving cellular permeability and bioavailability is anything but straightforward. While one might consider this to be the Achilles' heel of this class of compounds, the synthetic community continues to develop creative approaches toward the synthesis of macrocycles and their site-selective modification. This perspective provides an overview of both mechanistic and structural issues that bear on macrocycles as a unique class of molecules. The reader is offered a historical foray into some of the classic studies that have resulted in the current renaissance of macrocycles. In addition, an attempt is made to overview the more recent developments that give hope that macrocycles might indeed turn into a useful therapeutic modality.
Collapse
Affiliation(s)
- Andrei K Yudin
- Department of Chemistry , University of Toronto , 80 St. George Street , Toronto , Ontario M5S 3H6 , Canada . ; Blog: http://www.amphoteros.com
| |
Collapse
|
26
|
Krishna Y, Sharma S, Ampapathi RS, Koley D. Furan-Based Locked Z-Vinylogous γ-Amino Acid Stabilizing Protein α-Turn in Water-Soluble Cyclic α3γ Tetrapeptides. Org Lett 2014; 16:2084-7. [DOI: 10.1021/ol5002126] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yarkali Krishna
- Medicinal and Process Chemistry
Division and ‡Centre for Nuclear Magnetic Resonance,
SAIF, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India
| | - Shrikant Sharma
- Medicinal and Process Chemistry
Division and ‡Centre for Nuclear Magnetic Resonance,
SAIF, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India
| | - Ravi S. Ampapathi
- Medicinal and Process Chemistry
Division and ‡Centre for Nuclear Magnetic Resonance,
SAIF, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India
| | - Dipankar Koley
- Medicinal and Process Chemistry
Division and ‡Centre for Nuclear Magnetic Resonance,
SAIF, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India
| |
Collapse
|
27
|
White CJ, Hickey JL, Scully CCG, Yudin AK. Site-specific integration of amino acid fragments into cyclic peptides. J Am Chem Soc 2014; 136:3728-31. [PMID: 24533886 DOI: 10.1021/ja412256f] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The concept of site-specific integration of fragments into macrocyclic entities has not yet found application in the realm of synthetic chemistry. Here we show that the reduced amidicity of aziridine amide bonds provides an entry point for the site-specific integration of amino acids and peptide fragments into the homodetic cyclic peptide architecture. This new synthetic operation improves both the convergence and divergence of cyclic peptide synthesis.
Collapse
Affiliation(s)
- Christopher J White
- Davenport Research Laboratories, Department of Chemistry, University of Toronto , 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | | | | | | |
Collapse
|
28
|
White CJ, Yudin AK. A versatile scaffold for site-specific modification of cyclic tetrapeptides. Org Lett 2012; 14:2898-901. [PMID: 22612626 DOI: 10.1021/ol301178r] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A novel scaffold that can be used to prepare conformationally homogeneous cyclic tetrapeptides equipped with a β-amino acid residue is disclosed. It is shown that regioselective structural modification can be accomplished using thiols and azide nucleophiles, commonly associated with rich downstream chemistry. The method should find application in efforts to constrain privileged tripeptide sequences in rigid molecular scaffolds.
Collapse
Affiliation(s)
- Christopher J White
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
| | | |
Collapse
|
29
|
Sharma A, Sharma S, Tripathi RP, Ampapathi RS. Robust Turn Structures in α3β Cyclic Tetrapeptides Induced and Controlled by Carbo-β3 Amino Acid. J Org Chem 2012; 77:2001-7. [DOI: 10.1021/jo2019834] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Anindra Sharma
- Divisions
of Medicinal and Process Chemistry and ‡NMR Centre, SAIF, Central Drug Research Institute (CSIR), Lucknow-226001,
India
| | - Shrikant Sharma
- Divisions
of Medicinal and Process Chemistry and ‡NMR Centre, SAIF, Central Drug Research Institute (CSIR), Lucknow-226001,
India
| | - Rama P. Tripathi
- Divisions
of Medicinal and Process Chemistry and ‡NMR Centre, SAIF, Central Drug Research Institute (CSIR), Lucknow-226001,
India
| | - Ravi Sankar Ampapathi
- Divisions
of Medicinal and Process Chemistry and ‡NMR Centre, SAIF, Central Drug Research Institute (CSIR), Lucknow-226001,
India
| |
Collapse
|
30
|
Stoermer MJ, Flanagan B, Beyer RL, Madala PK, Fairlie DP. Structures of peptide agonists for human protease activated receptor 2. Bioorg Med Chem Lett 2012; 22:916-9. [PMID: 22209488 DOI: 10.1016/j.bmcl.2011.12.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2011] [Revised: 12/02/2011] [Accepted: 12/05/2011] [Indexed: 10/14/2022]
Abstract
Protease activated receptor 2 (PAR2) is an unusual G-protein coupled receptor in being self-activated, after pruning of the N-terminus by serine proteases like trypsin and tryptase. Short synthetic peptides corresponding to the newly exposed N-terminal hexapeptide sequence also activate PAR2 on immunoinflammatory, cancer and many normal cell types. (1)H nuclear magnetic resonance (NMR) and circular dichroism (CD) spectroscopy were used here to search for structural clues to activating mechanisms of the hexapeptide agonists SLIGRL (rat), SLIGKV (human) and the peptidomimetic analogue, 2-furoyl-LIGRLO. Either with a free or acetyl capped N-terminus, these agonist peptides display significant propensity in aprotic (DMSO) or lipidic (water-SDS) solvents for turn-like conformations, which are predicted to be receptor-binding conformations in the transmembrane or loops region of PAR2. These motifs may be valuable for the design of small molecule PAR2 agonists and antagonists as prospective new drugs for regulating inflammatory and proliferative diseases.
Collapse
Affiliation(s)
- Martin J Stoermer
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | | | | | | | | |
Collapse
|
31
|
Hirsch BM, Du Z, Li X, Sylvester JA, Wesdemiotis C, Wang Z, Zheng W. Potent sirtuin inhibition bestowed by l-2-amino-7-carboxamidoheptanoic acid (l-ACAH), a Nε-acetyl-lysine analog. MEDCHEMCOMM 2011. [DOI: 10.1039/c0md00212g] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
32
|
Duchène T, Mihai C, Willem R, Tourwé D. Monitoring the allyl ester deprotection by HR MAS NMR in BAL-solid phase peptide synthesis. J Pept Sci 2010; 16:679-86. [PMID: 20818798 DOI: 10.1002/psc.1278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The backbone amide linker strategy, in which the growing peptide chain is anchored to a solid support via a backbone amide nitrogen, has proven to be successful for the synthesis of cyclic peptides. Optimisation of the reaction conditions for the synthesis of c(Gly-Trp-βAla-Phe) could be accomplished by the help of high resolution magic angle spinning (HR MAS) NMR and the results are presented here. Signal vanishing of HR MAS NMR resonances were encountered and proven to be originated from interchain aggregations of peptide chains.
Collapse
Affiliation(s)
- T Duchène
- Department of Organic Chemistry, Vrije Universiteit Brussel, Brussels, Belgium
| | | | | | | |
Collapse
|
33
|
Jogalekar AS. Conformations of stevastelin C3 analogs: Computational deconvolution of NMR data reveals conformational heterogeneity and novel motifs. Biopolymers 2010; 93:968-76. [DOI: 10.1002/bip.21504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
34
|
Mwakwari SC, Patil V, Guerrant W, Oyelere AK. Macrocyclic histone deacetylase inhibitors. Curr Top Med Chem 2010; 10:1423-40. [PMID: 20536416 PMCID: PMC3144151 DOI: 10.2174/156802610792232079] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2010] [Accepted: 05/08/2010] [Indexed: 01/12/2023]
Abstract
Histone deacetylase inhibitors (HDACi) are an emerging class of novel anti-cancer drugs that cause growth arrest, differentiation, and apoptosis of tumor cells. In addition, they have shown promise as anti-parasitic, anti-neurodegenerative, anti-rheumatologic and immunosuppressant agents. To date, several structurally distinct small molecule HDACi have been reported including aryl hydroxamates, benzamides, short-chain fatty acids, electrophilic ketones, and macrocyclic peptides. Macrocyclic HDACi possess the most complex cap-groups which interact with HDAC enzyme's outer rim and have demonstrated excellent HDAC inhibition potency and isoform selectivity. This review focuses on the recent progress and current state of macrocyclic HDACi.
Collapse
Affiliation(s)
- Sandra C. Mwakwari
- School of Chemistry and Biochemistry, Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332-0400
| | - Vishal Patil
- School of Chemistry and Biochemistry, Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332-0400
| | - William Guerrant
- School of Chemistry and Biochemistry, Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332-0400
| | - Adegboyega K. Oyelere
- School of Chemistry and Biochemistry, Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332-0400
| |
Collapse
|
35
|
Olsen CA, Ghadiri MR. Discovery of potent and selective histone deacetylase inhibitors via focused combinatorial libraries of cyclic alpha3beta-tetrapeptides. J Med Chem 2009; 52:7836-46. [PMID: 19705846 DOI: 10.1021/jm900850t] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Histone deacetylase (HDAC) inhibitors are powerful tools in understanding epigenetic regulation and have proven especially promising for the treatment of various cancers, but the discovery of potent, isoform-selective HDAC inhibitors has been a major challenge. We recently developed a cyclic alpha(3)beta-tetrapeptide scaffold for the preparation of HDAC inhibitors with novel selectivity profiles ( J. Am. Chem. Soc. 2009 , 131 , 3033 ). In this study, we elaborate this scaffold with respect to side chain diversity by synthesizing one-bead-one-compound combinatorial libraries of cyclic tetrapeptide analogues and applying two generations of these focused libraries to the discovery of potent HDAC ligands using a convenient screening platform. Our studies led to the first HDAC6-selective cyclic tetrapeptide analogue, which extends the use of cyclic tetrapeptides to the class II HDAC isoforms. These findings highlight the persistent potential of cyclic tetrapeptides as epigenetic modulators and possible anticancer drug lead compounds.
Collapse
Affiliation(s)
- Christian A Olsen
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | |
Collapse
|
36
|
Gentilucci L, Cardillo G, Spampinato S, Tolomelli A, Squassabia F, De Marco R, Bedini A, Baiula M, Belvisi L, Civera M. Antiangiogenic Effect of Dual/Selective α5β1/αvβ3 Integrin Antagonists Designed on Partially Modified Retro-Inverso Cyclotetrapeptide Mimetics. J Med Chem 2009; 53:106-18. [DOI: 10.1021/jm9013532] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Luca Gentilucci
- Department of Chemistry “G. Ciamician”, Università degli Studi di Bologna, via Selmi 2, 40126 Bologna, Italy
| | - Giuliana Cardillo
- Department of Chemistry “G. Ciamician”, Università degli Studi di Bologna, via Selmi 2, 40126 Bologna, Italy
| | - Santi Spampinato
- Department of Pharmacology, Università degli Studi di Bologna, via Irnerio 48, 40126 Bologna, Italy
| | - Alessandra Tolomelli
- Department of Chemistry “G. Ciamician”, Università degli Studi di Bologna, via Selmi 2, 40126 Bologna, Italy
| | | | - Rossella De Marco
- Department of Chemistry “G. Ciamician”, Università degli Studi di Bologna, via Selmi 2, 40126 Bologna, Italy
| | - Andrea Bedini
- Department of Pharmacology, Università degli Studi di Bologna, via Irnerio 48, 40126 Bologna, Italy
| | - Monica Baiula
- Department of Pharmacology, Università degli Studi di Bologna, via Irnerio 48, 40126 Bologna, Italy
| | - Laura Belvisi
- Department of Organic and Industrial Chemistry and CISI, University of Milano, Via Venezian 21, Milano, Italy
| | - Monica Civera
- Department of Organic and Industrial Chemistry and CISI, University of Milano, Via Venezian 21, Milano, Italy
| |
Collapse
|
37
|
Mocquet C, Salaün A, Claudon P, Le Grel B, Potel M, Guichard G, Jamart-Grégoire B, Le Grel P. Aza-β 3 -cyclopeptides: A New Way of Controlling Nitrogen Chirality. J Am Chem Soc 2009; 131:14521-5. [DOI: 10.1021/ja9058074] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Clémence Mocquet
- ICMV and CSM, UMR CNRS 6226, Université de Rennes I, 263 avenue du Général Leclerc 35042 Rennes Cedex, France, CNRS, Institut de Biologie Moléculaire et Cellulaire, Laboratoire d’Immunologie et Chimie Thérapeutiques, 15 rue Descartes,67000 Strasbourg, France, and UMR CNRS-INPL 7568, B.P. 451, 54001 Nancy, France
| | - Arnaud Salaün
- ICMV and CSM, UMR CNRS 6226, Université de Rennes I, 263 avenue du Général Leclerc 35042 Rennes Cedex, France, CNRS, Institut de Biologie Moléculaire et Cellulaire, Laboratoire d’Immunologie et Chimie Thérapeutiques, 15 rue Descartes,67000 Strasbourg, France, and UMR CNRS-INPL 7568, B.P. 451, 54001 Nancy, France
| | - Paul Claudon
- ICMV and CSM, UMR CNRS 6226, Université de Rennes I, 263 avenue du Général Leclerc 35042 Rennes Cedex, France, CNRS, Institut de Biologie Moléculaire et Cellulaire, Laboratoire d’Immunologie et Chimie Thérapeutiques, 15 rue Descartes,67000 Strasbourg, France, and UMR CNRS-INPL 7568, B.P. 451, 54001 Nancy, France
| | - Barbara Le Grel
- ICMV and CSM, UMR CNRS 6226, Université de Rennes I, 263 avenue du Général Leclerc 35042 Rennes Cedex, France, CNRS, Institut de Biologie Moléculaire et Cellulaire, Laboratoire d’Immunologie et Chimie Thérapeutiques, 15 rue Descartes,67000 Strasbourg, France, and UMR CNRS-INPL 7568, B.P. 451, 54001 Nancy, France
| | - Michel Potel
- ICMV and CSM, UMR CNRS 6226, Université de Rennes I, 263 avenue du Général Leclerc 35042 Rennes Cedex, France, CNRS, Institut de Biologie Moléculaire et Cellulaire, Laboratoire d’Immunologie et Chimie Thérapeutiques, 15 rue Descartes,67000 Strasbourg, France, and UMR CNRS-INPL 7568, B.P. 451, 54001 Nancy, France
| | - Gilles Guichard
- ICMV and CSM, UMR CNRS 6226, Université de Rennes I, 263 avenue du Général Leclerc 35042 Rennes Cedex, France, CNRS, Institut de Biologie Moléculaire et Cellulaire, Laboratoire d’Immunologie et Chimie Thérapeutiques, 15 rue Descartes,67000 Strasbourg, France, and UMR CNRS-INPL 7568, B.P. 451, 54001 Nancy, France
| | - Brigitte Jamart-Grégoire
- ICMV and CSM, UMR CNRS 6226, Université de Rennes I, 263 avenue du Général Leclerc 35042 Rennes Cedex, France, CNRS, Institut de Biologie Moléculaire et Cellulaire, Laboratoire d’Immunologie et Chimie Thérapeutiques, 15 rue Descartes,67000 Strasbourg, France, and UMR CNRS-INPL 7568, B.P. 451, 54001 Nancy, France
| | - Philippe Le Grel
- ICMV and CSM, UMR CNRS 6226, Université de Rennes I, 263 avenue du Général Leclerc 35042 Rennes Cedex, France, CNRS, Institut de Biologie Moléculaire et Cellulaire, Laboratoire d’Immunologie et Chimie Thérapeutiques, 15 rue Descartes,67000 Strasbourg, France, and UMR CNRS-INPL 7568, B.P. 451, 54001 Nancy, France
| |
Collapse
|
38
|
Beierle J, Horne W, van Maarseveen J, Waser B, Reubi J, Ghadiri M. Conformationally Homogeneous Heterocyclic Pseudotetrapeptides as Three‐Dimensional Scaffolds for Rational Drug Design: Receptor‐Selective Somatostatin Analogues. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200805901] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
39
|
Gentilucci L, Cardillo G, Tolomelli A, De Marco R, Garelli A, Spampinato S, Spartà A, Juaristi E. Synthesis and Conformational Analysis of Cyclotetrapeptide Mimetic β-Turn Templates and Validation as 3D Scaffolds. ChemMedChem 2009; 4:517-23. [DOI: 10.1002/cmdc.200800407] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
40
|
Montero A, Beierle JM, Olsen CA, Ghadiri MR. Design, synthesis, biological evaluation, and structural characterization of potent histone deacetylase inhibitors based on cyclic alpha/beta-tetrapeptide architectures. J Am Chem Soc 2009; 131:3033-41. [PMID: 19239270 PMCID: PMC2751792 DOI: 10.1021/ja809508f] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Histone deacetylases (HDACs) are a family of enzymes found in bacteria, fungi, plants, and animals that profoundly affect cellular function by catalyzing the removal of acetyl groups from -N-acetylated lysine residues of various protein substrates including histones, transcription factors, alpha-tubulin, and nuclear importers. Although the precise roles of HDAC isoforms in cellular function are not yet completely understood, inhibition of HDAC activity has emerged as a promising approach for reversing the aberrant epigenetic states associated with cancer and other chronic diseases. Potent new isoform-selective HDAC inhibitors would therefore help expand our understanding of the HDAC enzymes and represent attractive lead compounds for drug design, especially if combined with high-resolution structural analyses of such inhibitors to shed light on the three-dimensional pharmacophoric features necessary for the future design of more potent and selective compounds. Here we present structural and functional analyses of a series of beta-amino-acid-containing HDAC inhibitors inspired by cyclic tetrapeptide natural products. To survey a diverse ensemble of pharmacophoric configurations, we systematically varied the position of the beta-amino acid, amino acid chirality, functionalization of the Zn(2+)-coordinating amino acid side chain, and alkylation of the backbone amide nitrogen atoms around the macrocycle. In many cases, the compounds were a single conformation in solution and exhibited potent activities against a number of HDAC isoforms as well as effective antiproliferative and cytotoxic activities against human tumor cells. High-resolution NMR solution structures were determined for a selection of the inhibitors, providing a useful means of correlating detailed structural information with potency. The structure-based approach described here is expected to furnish valuable insights toward the future design of more selective HDAC inhibitors.
Collapse
Affiliation(s)
- Ana Montero
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| | - John M. Beierle
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| | - Christian A. Olsen
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| | - M. Reza Ghadiri
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| |
Collapse
|
41
|
Beierle JM, Horne WS, van Maarseveen JH, Waser B, Reubi JC, Reza Ghadiri M. Conformationally homogeneous heterocyclic pseudotetrapeptides as three-dimensional scaffolds for rational drug design: receptor-selective somatostatin analogues. Angew Chem Int Ed Engl 2009; 48:4725-9. [PMID: 19266506 PMCID: PMC3080139 DOI: 10.1002/anie.200805901] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A would-be amide: A 1,4-disubstituted 1,2,3-triazole was used as a surrogate for a trans amide bond to create a library of 16 diastereomeric pseudotetrapeptides as beta-turn mimetics. High-resolution structural analysis indicated that these scaffolds adopt distinct, rigid, conformationally homogeneous beta-turn-like structures (see example), some of which bind somatostatin receptor subtypes selectively, and some of which show broad-spectrum activity.
Collapse
Affiliation(s)
- John M. Beierle
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037 (USA)
| | - W. Seth Horne
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037 (USA)
| | - Jan H. van Maarseveen
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037 (USA)
| | - Beatrice Waser
- Division of Cell Biology and Experimental Cancer Research University of Berne Berne, Switzerland 3010
| | - Jean Claude Reubi
- Division of Cell Biology and Experimental Cancer Research University of Berne Berne, Switzerland 3010
| | - M. Reza Ghadiri
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037 (USA)
| |
Collapse
|
42
|
Salaün A, Mocquet C, Perochon R, Lecorgne A, Le Grel B, Potel M, Le Grel P. Aza-β3-cyclotetrapeptides. J Org Chem 2008; 73:8579-82. [DOI: 10.1021/jo8013963] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Arnaud Salaün
- ICMV and CSM, UMR CNRS 6226, Université de Rennes I, 263 avenue du Général Leclerc, 35042 Rennes, Cedex, France
| | - Clémence Mocquet
- ICMV and CSM, UMR CNRS 6226, Université de Rennes I, 263 avenue du Général Leclerc, 35042 Rennes, Cedex, France
| | - Romain Perochon
- ICMV and CSM, UMR CNRS 6226, Université de Rennes I, 263 avenue du Général Leclerc, 35042 Rennes, Cedex, France
| | - Aurélien Lecorgne
- ICMV and CSM, UMR CNRS 6226, Université de Rennes I, 263 avenue du Général Leclerc, 35042 Rennes, Cedex, France
| | - Barbara Le Grel
- ICMV and CSM, UMR CNRS 6226, Université de Rennes I, 263 avenue du Général Leclerc, 35042 Rennes, Cedex, France
| | - Michel Potel
- ICMV and CSM, UMR CNRS 6226, Université de Rennes I, 263 avenue du Général Leclerc, 35042 Rennes, Cedex, France
| | - Philippe Le Grel
- ICMV and CSM, UMR CNRS 6226, Université de Rennes I, 263 avenue du Général Leclerc, 35042 Rennes, Cedex, France
| |
Collapse
|
43
|
Tai DF, Lin YF. Molecularly imprinted cavities template the macrocyclization of tetrapeptides. Chem Commun (Camb) 2008:5598-600. [PMID: 18997964 DOI: 10.1039/b813439a] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cavities formed using cyclic tetrapeptides (CTPs) or heat-induced conformers act as templates for cyclization; the cavities bind to linear tetrapeptides and enforce turn conformations to enhance cyclization to constrained CTPs.
Collapse
Affiliation(s)
- Dar-Fu Tai
- Department of Chemistry, National Dong-Hwa University, Hualien, Taiwan.
| | | |
Collapse
|
44
|
Bisek N, Wetzel S, Arndt HD, Waldmann H. Synthesis and Conformational Analysis of Stevastelin C3 Analogues and Their Activity Against the Dual-Specific Vaccina H1-Related Phosphatase. Chemistry 2008; 14:8847-8860. [DOI: 10.1002/chem.200800692] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
45
|
Gentilucci L, Cardillo G, Tolomelli A, Spampinato S, Sparta A, Squassabia F. Cyclotetrapeptide Mimics Based on a 13-Membered, Partially Modified Retro-Inverso Structure. European J Org Chem 2008. [DOI: 10.1002/ejoc.200700932] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
46
|
Abstract
Pancreatic ribonuclease A (EC 3.1.27.5, RNase) is, perhaps, the best-studied enzyme of the 20th century. It was isolated by René Dubos, crystallized by Moses Kunitz, sequenced by Stanford Moore and William Stein, and synthesized in the laboratory of Bruce Merrifield, all at the Rockefeller Institute/University. It has proven to be an excellent model system for many different types of experiments, both as an enzyme and as a well-characterized protein for biophysical studies. Of major significance was the demonstration by Chris Anfinsen at NIH that the primary sequence of RNase encoded the three-dimensional structure of the enzyme. Many other prominent protein chemists/enzymologists have utilized RNase as a dominant theme in their research. In this review, the history of RNase and its offspring, RNase S (S-protein/S-peptide), will be considered, especially the work in the Merrifield group, as a preface to preliminary data and proposed experiments addressing topics of current interest. These include entropy-enthalpy compensation, entropy of ligand binding, the impact of protein modification on thermal stability, and the role of protein dynamics in enzyme action. In continuing to use RNase as a prototypical enzyme, we stand on the shoulders of the giants of protein chemistry to survey the future.
Collapse
Affiliation(s)
- Garland R Marshall
- Center for Computational Biology, Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | | | |
Collapse
|
47
|
Izzo I, Maulucci N, Bifulco G, De Riccardis F. Total synthesis of azumamides A and E. Angew Chem Int Ed Engl 2007; 45:7557-60. [PMID: 16960909 DOI: 10.1002/anie.200602033] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Irene Izzo
- Department of Chemistry, University of Salerno, Via Ponte Don Melillo, 84084 Fisciano/Salerno, Italy.
| | | | | | | |
Collapse
|
48
|
Kahnberg P, Lucke AJ, Glenn MP, Boyle GM, Tyndall JDA, Parsons PG, Fairlie DP. Design, Synthesis, Potency, and Cytoselectivity of Anticancer Agents Derived by Parallel Synthesis from α-Aminosuberic Acid. J Med Chem 2006; 49:7611-22. [PMID: 17181145 DOI: 10.1021/jm050214x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chemotherapy in the last century was characterized by cytotoxic drugs that did not discriminate between cancerous and normal cell types and were consequently accompanied by toxic side effects that were often dose limiting. The ability of differentiating agents to selectively kill cancer cells or transform them to a nonproliferating or normal phenotype could lead to cell- and tissue-specific drugs without the side effects of current cancer chemotherapeutics. This may be possible for a new generation of histone deacetylase inhibitors derived from amino acids. Structure-activity relationships are now reported for 43 compounds derived from 2-aminosuberic acid that kill a range of cancer cells, 26 being potent cytotoxins against MM96L melanoma cells (IC50 20 nM-1 microM), while 17 were between 5- and 60-fold more selective in killing MM96L melanoma cells versus normal (neonatal foreskin fibroblasts, NFF) cells. This represents a 10- to 100-fold increase in potency and up to a 10-fold higher selectivity over previously reported compounds derived from cysteine (J. Med. Chem. 2004, 47, 2984). Selectivity is also an underestimate, because the normal cells, NFF, are rarely all killed by the drugs that also induce selective blockade of the cell cycle for normal but not cancer cells. Selected compounds were tested against a panel of human cancer cell lines (melanomas, prostate, breast, ovarian, cervical, lung, and colon) and found to be both selective and potent cytotoxins (IC50 20 nM-1 microM). Compounds in this class typically inhibit human histone deacetylases, as evidenced by hyperacetylation of histones in both normal and cancer cells, induce expression of p21, and differentiate surviving cancer cells to a nonproliferating phenotype. These compounds may be valuable leads for the development of new chemotherapeutic agents.
Collapse
Affiliation(s)
- Pia Kahnberg
- Centre for Drug Design and Development, Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia
| | | | | | | | | | | | | |
Collapse
|
49
|
Izzo I, Maulucci N, Bifulco G, De Riccardis F. Total Synthesis of Azumamides A and E. Angew Chem Int Ed Engl 2006. [DOI: 10.1002/ange.200602033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
50
|
Norgren AS, Büttner F, Prabpai S, Kongsaeree P, Arvidsson PI. β2-Amino Acids in the Design of Conformationally Homogeneous cyclo-Peptide Scaffolds. J Org Chem 2006; 71:6814-21. [PMID: 16930031 DOI: 10.1021/jo060854n] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein, we report studies on the influence of chiral beta(2)-amino acids in the design of conformationally homogeneous cyclic tetrapeptide scaffolds. The cyclic alpha-tetrapeptide cyclo(-Phe-D-Pro-Lys-Phe-) (1) and its four mixed analogues, having one of the alpha-Phe replaced by either an (S)- or an (R)-beta(2)hPhe residue (i.e., cyclo(-(R)-beta(2)hPhe-D-Pro-Lys-Phe) (2a), cyclo(-(S)-beta(2)hPhe-D-Pro-Lys-Phe-) (2b), cyclo(-Phe-D-Pro-Lys-(R)-beta(2)hPhe-) (3a), and cyclo(-Phe-D-Pro-Lys-(R)-beta(2)hPhe-) (3b)), were all synthesized through solid-phase procedures followed by solution-phase cyclization. Initially, all five cyclo-peptides were analyzed by (1)H NMR spectroscopic studies in different solvents and at variable temperatures. Subsequently, a detailed 2D NMR spectroscopic analysis of three of the mixed peptides in water was performed, and the information thus extracted was used as restraints in a computational study on the peptides' conformational preference. An X-ray crystallographic study on the side chain-protected (Boc) 2a revealed the solid-state structure of this peptide. The results presented herein, together with previous literature data on beta(3)-amino acid residues, conclusively demonstrate the potential of beta-amino acids in the design of conformationally homogeneous cyclic peptides that are homologous to peptides with known applications in biomedicinal chemistry and as molecular receptors.
Collapse
Affiliation(s)
- Anna S Norgren
- Department of Biochemistry and Organic Chemistry, Uppsala University, Box 576, SE-75123 Uppsala, Sweden
| | | | | | | | | |
Collapse
|