1
|
Wu G, Dai Y, Hung I, Gan Z, Terskikh V. 1H/ 17O Chemical Shift Waves in Carboxyl-Bridged Hydrogen Bond Networks in Organic Solids. J Phys Chem A 2024; 128:4288-4296. [PMID: 38748612 DOI: 10.1021/acs.jpca.4c01866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
We report solid-state 1H and 17O NMR results for four 17O-labeled organic compounds each containing an extensive carboxyl-bridged hydrogen bond (CBHB) network in the crystal lattice: tetrabutylammonium hydrogen di-[17O2]salicylate (1), [17O4]quinolinic acid (2), [17O4]dinicotinic acid (3), and [17O2]Gly/[17O2]Gly·HCl cocrystal (4). The 1H isotropic chemical shifts found for protons involved in different CBHB networks are between 8.2 and 20.5 ppm, which reflect very different hydrogen-bonding environments. Similarly, the 17O isotropic chemical shifts found for the carboxylate oxygen atoms in CBHB networks, spanning a large range between 166 and 341 ppm, are also remarkably sensitive to the hydrogen-bonding environments. We introduced a simple graphical representation in which 1H and 17O chemical shifts are displayed along the H and O atomic chains that form the CBHB network. In such a depiction, because wavy patterns are often observed, we refer to these wavy patterns as 1H/17O chemical shift waves. Typical patterns of 1H/17O chemical shift waves in CBHB networks are discussed. The reported 1H and 17O NMR parameters for the CBHB network models examined in this study can serve as benchmarks to aid in spectral interpretation for CBHB networks in proteins.
Collapse
Affiliation(s)
- Gang Wu
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston Ontario K7L 3N6, Canada
| | - Yizhe Dai
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston Ontario K7L 3N6, Canada
| | - Ivan Hung
- National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, United States
| | - Zhehong Gan
- National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, United States
| | - Victor Terskikh
- Metrology, National Research Council Canada, Ottawa K1A 0R6, Canada
| |
Collapse
|
2
|
Shen J, Terskikh V, Struppe J, Hassan A, Monette M, Hung I, Gan Z, Brinkmann A, Wu G. Solid-state 17O NMR study of α-d-glucose: exploring new frontiers in isotopic labeling, sensitivity enhancement, and NMR crystallography. Chem Sci 2022; 13:2591-2603. [PMID: 35340864 PMCID: PMC8890099 DOI: 10.1039/d1sc06060k] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/31/2021] [Indexed: 01/03/2023] Open
Abstract
We report the first “total synthesis” of 17O-labeled d-glucose and its solid-state 17O NMR characterization with unprecedented sensitivity and resolution.
Collapse
Affiliation(s)
- Jiahui Shen
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario K7L 3N6, Canada
| | - Victor Terskikh
- Metrology, National Research Council Canada, Ottawa, Ontario K1A 0R6, Canada
| | - Jochem Struppe
- Bruker Biospin Corporation, 15 Fortune Drive, Billerica, MA 01821, USA
| | - Alia Hassan
- Bruker Switzerland AG, Fällanden, Switzerland
| | - Martine Monette
- Bruker Biospin Ltd., 2800 High Point Drive, Suite 206, Milton, Ontario L9T 6P4, Canada
| | - Ivan Hung
- National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, USA
| | - Zhehong Gan
- National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, USA
| | - Andreas Brinkmann
- Metrology, National Research Council Canada, Ottawa, Ontario K1A 0R6, Canada
| | - Gang Wu
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
3
|
Holmes ST, Vojvodin CS, Schurko RW. Dispersion-Corrected DFT Methods for Applications in Nuclear Magnetic Resonance Crystallography. J Phys Chem A 2020; 124:10312-10323. [DOI: 10.1021/acs.jpca.0c06372] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sean T. Holmes
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
- National High Magnetic Field Laboratory, Tallahassee, Florida 32310, United States
| | - Cameron S. Vojvodin
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
- National High Magnetic Field Laboratory, Tallahassee, Florida 32310, United States
| | - Robert W. Schurko
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
- National High Magnetic Field Laboratory, Tallahassee, Florida 32310, United States
| |
Collapse
|
4
|
Stare J, Gradišek A, Seliger J. Nuclear quadrupole resonance supported by periodic quantum calculations: a sensitive tool for precise structural characterization of short hydrogen bonds. Phys Chem Chem Phys 2020; 22:27681-27689. [PMID: 33237040 DOI: 10.1039/d0cp04710d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Systems with short hydrogen bonds (H-bonds) are notoriously difficult to describe even using cutting edge experimental techniques supported by advanced computational protocols. One of the most challenging issues is the highly dislocated H-bonded proton, which is typically smeared over a large area, featuring complex dynamics governed by pronounced nuclear quantum effects. Thus, in combination with experimental results, these systems offer a rich platform for the benchmarking of various computational approaches and methods. Herein, we present a methodology combining experimental and computational assessment of H-bond observables probed by the nuclear quadrupole resonance technique. Focusing on the case of picolinic acid N-oxide featuring one of the shortest known hydrogen bonds (ROO ∼ 2.425 Å), we compare the predictions of nuclear quadrupole coupling constants (NQCCs) for a series of computational models differing in fine structural details of the H-bond. By comparing the computed 14N and 17O NQCCs with the measured ones and by analyzing the sensitivity of NQCCs to H-bond geometry variations, we demonstrate that NQCCs represent a very sensitive probe for H-bond geometry, particularly the proton location, thereby offering, in conjunction with computations, an accurate and reliable tool for the fine structural characterization of short H-bonds. Importantly, the present methodology is a good compromise between accuracy and computational cost.
Collapse
Affiliation(s)
- Jernej Stare
- Theory Department, National Institute of Chemistry, Ljubljana, Slovenia.
| | | | | |
Collapse
|
5
|
Keeler EG, Michaelis VK, Colvin MT, Hung I, Gor'kov PL, Cross TA, Gan Z, Griffin RG. 17O MAS NMR Correlation Spectroscopy at High Magnetic Fields. J Am Chem Soc 2017; 139:17953-17963. [PMID: 29111706 DOI: 10.1021/jacs.7b08989] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The structure of two protected amino acids, FMOC-l-leucine and FMOC-l-valine, and a dipeptide, N-acetyl-l-valyl-l-leucine (N-Ac-VL), were studied via one- and two-dimensional solid-state nuclear magnetic resonance (NMR) spectroscopy. Utilizing 17O magic-angle spinning (MAS) NMR at multiple magnetic fields (17.6-35.2 T/750-1500 MHz for 1H) the 17O quadrupolar and chemical shift parameters were determined for the two oxygen sites of each FMOC-protected amino acids and the three distinct oxygen environments of the dipeptide. The one- and two-dimensional, 17O, 15N-17O, 13C-17O, and 1H-17O double-resonance correlation experiments performed on the uniformly 13C,15N and 70% 17O-labeled dipeptide prove the attainability of 17O as a probe for structure studies of biological systems. 15N-17O and 13C-17O distances were measured via one-dimensional REAPDOR and ZF-TEDOR experimental buildup curves and determined to be within 15% of previously reported distances, thus demonstrating the use of 17O NMR to quantitate interatomic distances in a fully labeled dipeptide. Through-space hydrogen bonding of N-Ac-VL was investigated by a two-dimensional 1H-detected 17O R3-R-INEPT experiment, furthering the importance of 17O for studies of structure in biomolecular solids.
Collapse
Affiliation(s)
- Eric G Keeler
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Vladimir K Michaelis
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Michael T Colvin
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Ivan Hung
- National High Magnetic Field Laboratory, Florida State University , Tallahassee, Florida 32310, United States
| | - Peter L Gor'kov
- National High Magnetic Field Laboratory, Florida State University , Tallahassee, Florida 32310, United States
| | - Timothy A Cross
- National High Magnetic Field Laboratory, Florida State University , Tallahassee, Florida 32310, United States
| | - Zhehong Gan
- National High Magnetic Field Laboratory, Florida State University , Tallahassee, Florida 32310, United States
| | - Robert G Griffin
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| |
Collapse
|
6
|
Czernek J, Brus J. Describing the anisotropic 133Cs solid state NMR interactions in cesium chromate. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.06.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Holmes ST, Iuliucci RJ, Mueller KT, Dybowski C. Semi-empirical refinements of crystal structures using 17O quadrupolar-coupling tensors. J Chem Phys 2017; 146:064201. [DOI: 10.1063/1.4975170] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Sean T. Holmes
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | - Robbie J. Iuliucci
- Department of Chemistry, Washington and Jefferson College, Washington, Pennsylvania 15301, USA
| | - Karl T. Mueller
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | - Cecil Dybowski
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| |
Collapse
|
8
|
Nour S, Widdifield CM, Kobera L, Burgess KMN, Errulat D, Terskikh VV, Bryce DL. Oxygen-17 NMR spectroscopy of water molecules in solid hydrates. CAN J CHEM 2016. [DOI: 10.1139/cjc-2015-0547] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
17O solid-state NMR studies of waters of hydration in crystalline solids are presented. The 17O quadrupolar coupling and chemical shift (CS) tensors, and their relative orientations, are measured experimentally at room temperature for α-oxalic acid dihydrate, barium chlorate monohydrate, lithium sulfate monohydrate, potassium oxalate monohydrate, and sodium perchlorate monohydrate. The 17O quadrupolar coupling constants (CQ) range from 6.6 to 7.35 MHz and the isotropic chemical shifts range from –17 to 19.7 ppm. The oxygen CS tensor spans vary from 25 to 78 ppm. These represent the first complete CS and electric field gradient tensor measurements for water coordinated to metals in the solid state. Gauge-including projector-augmented wave density functional theory calculations overestimate the values of CQ, likely due to librational dynamics of the water molecules. Computed CS tensors only qualitatively match the experimental data. The lack of strong correlations between the experimental and computed data, and between these data and any single structural feature, is attributed to motion of the water molecules and to the relatively small overall range in the NMR parameters relative to their measurement precision. Nevertheless, the isotropic chemical shift, quadrupolar coupling constant, and CS tensor span clearly differentiate between the samples studied and establish a ‘fingerprint’ 17O spectral region for water coordinated to metals in solids.
Collapse
Affiliation(s)
- Sherif Nour
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Cory M. Widdifield
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Libor Kobera
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Kevin M. N. Burgess
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON N5V 4T3, Canada
| | - Dylan Errulat
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Victor V. Terskikh
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - David L. Bryce
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
9
|
Rorick A, Michael MA, Yang L, Zhang Y. Toward Relatively General and Accurate Quantum Chemical Predictions of Solid-State (17)O NMR Chemical Shifts in Various Biologically Relevant Oxygen-Containing Compounds. J Phys Chem B 2015; 119:11618-25. [PMID: 26274812 PMCID: PMC4583422 DOI: 10.1021/acs.jpcb.5b06536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Oxygen is an important element in most biologically significant molecules, and experimental solid-state (17)O NMR studies have provided numerous useful structural probes to study these systems. However, computational predictions of solid-state (17)O NMR chemical shift tensor properties are still challenging in many cases, and in particular, each of the prior computational works is basically limited to one type of oxygen-containing system. This work provides the first systematic study of the effects of geometry refinement, method, and basis sets for metal and nonmetal elements in both geometry optimization and NMR property calculations of some biologically relevant oxygen-containing compounds with a good variety of XO bonding groups (X = H, C, N, P, and metal). The experimental range studied is of 1455 ppm, a major part of the reported (17)O NMR chemical shifts in organic and organometallic compounds. A number of computational factors toward relatively general and accurate predictions of (17)O NMR chemical shifts were studied to provide helpful and detailed suggestions for future work. For the studied kinds of oxygen-containing compounds, the best computational approach results in a theory-versus-experiment correlation coefficient (R(2)) value of 0.9880 and a mean absolute deviation of 13 ppm (1.9% of the experimental range) for isotropic NMR shifts and an R(2) value of 0.9926 for all shift-tensor properties. These results shall facilitate future computational studies of (17)O NMR chemical shifts in many biologically relevant systems, and the high accuracy may also help the refinement and determination of active-site structures of some oxygen-containing substrate-bound proteins.
Collapse
Affiliation(s)
- Amber Rorick
- Department of Chemistry, Chemical Biology and Biomedical Engineering, Stevens Institute of Technology, 1 Castle Point on Hudson, Hoboken NJ 07030, USA
| | - Matthew A. Michael
- Department of Chemistry, Chemical Biology and Biomedical Engineering, Stevens Institute of Technology, 1 Castle Point on Hudson, Hoboken NJ 07030, USA
| | - Liu Yang
- Department of Chemistry, Chemical Biology and Biomedical Engineering, Stevens Institute of Technology, 1 Castle Point on Hudson, Hoboken NJ 07030, USA
| | - Yong Zhang
- Department of Chemistry, Chemical Biology and Biomedical Engineering, Stevens Institute of Technology, 1 Castle Point on Hudson, Hoboken NJ 07030, USA
| |
Collapse
|
10
|
Kong X, Terskikh V, Toubaei A, Wu G. A solid-state 17O NMR study of platinum-carboxylate complexes: carboplatin and oxaliplatin. CAN J CHEM 2015. [DOI: 10.1139/cjc-2015-0019] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We report synthesis and solid-state NMR characterization of two 17O-labeled platinum anticancer drugs: cis-diammine(1,1-cyclobutane-[17O4]dicarboxylato)platinum(II) (carboplatin) and ([17O4]oxalato)[(1R, 2R)-(−)-1,2-cyclohexanediamine)]platinum(II) (oxaliplatin). Both 17O chemical shift (CS) and quadrupolar coupling (QC) tensors were measured for the carboxylate groups in these two compounds. With the aid of plane wave DFT computations, the 17O CS and QC tensor orientations were determined in the molecular frame of reference. Significant changes in the 17O CS and QC tensors were observed for the carboxylate oxygen atom upon its coordination to Pt(II). In particular, the 17O isotropic chemical shifts for the oxygen atoms directly bonded to Pt(II) are found to be smaller (more shielded) by 200 ppm than those for the non-Pt-coordinated oxygen atoms within the same carboxylate group. Examination of the 17O CS tensor components reveals that such a large 17O coordination shift is primarily due to the shielding increase along the direction that is within the O=C–O–Pt plane and perpendicular to the O–Pt bond. This result is interpreted as due to the σ donation from the oxygen nonbonding orbital (electron lone pair) to the Pt(II) empty dyz orbital, which results in large energy gaps between σ(Pt–O) and unoccupied molecular orbitals, thus reducing the paramagnetic shielding contribution along the direction perpendicular to the O–Pt bond. We found that the 17O QC tensor of the carboxylate oxygen is also sensitive to Pt(II) coordination, and that 17O CS and QC tensors provide complementary information about the O–Pt bonding.
Collapse
Affiliation(s)
- Xianqi Kong
- Department of Chemistry, Queen’s University, 90 Bader Lane, Kingston, ON K7L 3N6, Canada
| | - Victor Terskikh
- Department of Chemistry, Queen’s University, 90 Bader Lane, Kingston, ON K7L 3N6, Canada
- Department of Chemistry, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Abouzar Toubaei
- Department of Chemistry, Queen’s University, 90 Bader Lane, Kingston, ON K7L 3N6, Canada
| | - Gang Wu
- Department of Chemistry, Queen’s University, 90 Bader Lane, Kingston, ON K7L 3N6, Canada
| |
Collapse
|
11
|
Stare J, Hadži D. Cooperativity Assisted Shortening of Hydrogen Bonds in Crystalline Oxalic Acid Dihydrate: DFT and NBO Model Studies. J Chem Theory Comput 2014; 10:1817-23. [DOI: 10.1021/ct500167n] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Jernej Stare
- National
Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Dušan Hadži
- National
Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| |
Collapse
|
12
|
Esrafili MD, Behzadi H. A theoretical study on H-bonding interactions in maleic acid: calculated17O,1H NMR parameters and QTAIM analysis. MOLECULAR SIMULATION 2012. [DOI: 10.1080/08927022.2012.669477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
13
|
DFT study of 17O, 1H and 13C NMR chemical shifts in two forms of native cellulose, I and I. Carbohydr Res 2012; 347:99-106. [DOI: 10.1016/j.carres.2011.10.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 10/19/2011] [Accepted: 10/26/2011] [Indexed: 11/19/2022]
|
14
|
Esrafili MD. Intra- and inter-molecular interactions in salicylic acid — Theoretical calculations of 17O and 1H chemical shielding tensors and QTAIM analysis. CAN J CHEM 2011. [DOI: 10.1139/v11-105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A density functional theory (DFT) study was performed to examine intra- and inter-molecular hydrogen bond (HB) properties in crystalline salicylic acid (SA). BLYP, B3LYP, and M06 functionals with 6–311++G** basis set were employed to calculate NMR chemical shielding isotropy (σiso) and anisotropy (Δσ) at the sites of the 17O and 1H nuclei of SA. From this study, it appears that the intra- and inter-molecular O–H···O as well as C–H···O HBs around the SA molecule in the crystal lattice have a major influence on the chemical shielding tensors and more specifically on the carbonyl 17O isotropy value. The quantum theory of atoms in molecules (QTAIM) analysis was also employed to elucidate the interaction characteristics in SA H-bonded network. Based on QTAIM results, a partial covalent character is attributed to the intra- and inter-molecular O–H···O HBs in SA.
Collapse
Affiliation(s)
- Mehdi D. Esrafili
- Laboratory of Theoretical Chemistry, Department of Chemistry, University of Maragheh, Maragheh, Iran
| |
Collapse
|
15
|
Zhu J, Lau JYC, Wu G. A solid-state (17)O NMR study of L-tyrosine in different ionization states: implications for probing tyrosine side chains in proteins. J Phys Chem B 2010; 114:11681-8. [PMID: 20712305 DOI: 10.1021/jp1055123] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report experimental characterization of (17)O quadrupole coupling (QC) and chemical shift (CS) tensors for the phenolic oxygen in three l-tyrosine (l-Tyr) compounds: l-Tyr, l-Tyr.HCl, and Na(2)(l-Tyr). This is the first time that these fundamental (17)O NMR tensors are completely determined for phenolic oxygens in different ionization states. We find that, while the (17)O QC tensor changes very little upon phenol ionization, the (17)O CS tensor displays a remarkable sensitivity. In particular, the isotropic (17)O chemical shift increases by approximately 60 ppm upon phenol ionization, which is 6 times larger than the corresponding change in the isotropic (13)C chemical shift for the C(zeta) nucleus of the same phenol group. By examining the CS tensor orientation in the molecular frame of reference, we discover a "cross-over" effect between delta(11) and delta(22) components for both (17)O and (13)C CS tensors. We demonstrate that the knowledge of such "cross-over" effects is crucial for understanding the relationship between the observed CS tensor components and chemical bonding. Our results suggest that solid-state (17)O NMR can potentially be used to probe the ionization state of tyrosine side chains in proteins.
Collapse
Affiliation(s)
- Jianfeng Zhu
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario, Canada K7L 3N6
| | | | | |
Collapse
|
16
|
Vasa SK, van Eck ERH, Janssen JWG, Kentgens APM. Full quadrupolar tensor determination by NMR using a micro-crystal spinning at the magic angle. Phys Chem Chem Phys 2010; 12:4813-20. [DOI: 10.1039/b927449a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Zhu J, Geris AJ, Wu G. Solid-state 17O NMR as a sensitive probe of keto and gem-diol forms of α-keto acid derivatives. Phys Chem Chem Phys 2009; 11:6972-80. [DOI: 10.1039/b906438a] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
18
|
Esrafili MD, Behzadi H, Hadipour NL. Influence of N–H…O and O–H…O hydrogen bonds on the 17O, 15N and 13C chemical shielding tensors in crystalline acetaminophen: A density functional theory study. Biophys Chem 2007; 128:38-45. [PMID: 17418477 DOI: 10.1016/j.bpc.2007.03.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2007] [Revised: 03/01/2007] [Accepted: 03/01/2007] [Indexed: 11/21/2022]
Abstract
A computational investigation was carried out to characterize the (17)O, (15)N and (13)C chemical shielding tensors in crystalline acetaminophen. We found that N-H...O and O-H...O hydrogen bonds around the acetaminophen molecule in the crystal lattice have different influences on the calculated (17)O, (15)N and (13)C chemical shielding eigenvalues and their orientations in the molecular frame of axes. The calculations were performed with the B3LYP method and 6-311++G(d, p) and 6-311+G(d) standard basis sets using the Gaussian 98 suite of programs. Calculated chemical shielding tensors were used to evaluate the (17)O, (15)N, and (13)C NMR chemical shift tensors in crystalline acetaminophen, which are in reasonable agreement with available experimental data. The difference between the calculated NMR parameters of the monomer and molecular clusters shows how much hydrogen-bonding interactions affect the chemical shielding tensors of each nucleus. The computed (17)O chemical shielding tensor on O(1), which is involved in two intermolecular hydrogen bonds, shows remarkable sensitivity toward the choice of the cluster model, whereas the (17)O chemical shielding tensor on O(2) involved in one N-H...O hydrogen bond, shows smaller improvement toward the hydrogen-bonding interactions. Also, a reasonably good agreement between the experimentally obtained solid-state (15)N and (13)C NMR chemical shifts and B3LYP/6-311++G(d, p) calculations is achievable only in molecular cluster model where a complete hydrogen-bonding network is considered. Moreover, at the B3LYP/6-311++G(d, p) level of theory, the calculated (17)O, (15)N and (13)C chemical shielding tensor orientations are able to reproduce the experimental values to a reasonably good degree of accuracy.
Collapse
Affiliation(s)
- Mehdi D Esrafili
- Department of Chemistry, Tarbiat Modares University, P.O. Box: 14115-175, Tehran, Iran
| | | | | |
Collapse
|
19
|
Kwan ICM, Mo X, Wu G. Probing Hydrogen Bonding and Ion−Carbonyl Interactions by Solid-State 17O NMR Spectroscopy: G-Ribbon and G-Quartet. J Am Chem Soc 2007; 129:2398-407. [PMID: 17269776 DOI: 10.1021/ja067991m] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report solid-state 17O NMR determination of the 17O NMR tensors for the keto carbonyl oxygen (O6) of guanine in two 17O-enriched guanosine derivatives: [6-17O]guanosine (G1) and 2',3',5'-O-triacetyl-[6-17O]guanosine (G2). In G1.2H2O, guanosine molecules form hydrogen-bonded G-ribbons where the guanine bases are linked by O6...H-N2 and N7...H-N7 hydrogen bonds in a zigzag fashion. In addition, the keto carbonyl oxygen O6 is also weakly hydrogen-bonded to two water molecules of hydration. The experimental 17O NMR tensors determined for the two independent molecules in the asymmetric unit of G1.2H2O are: Molecule A, CQ=7.8+/-0.1 MHz, etaQ=0.45+/-0.05, deltaiso=263+/-2, delta11=460+/-5, delta22=360+/-5, delta33=-30+/-5 ppm; Molecule B, CQ=7.7+/-0.1 MHz, etaQ=0.55+/-0.05, deltaiso=250+/-2, delta11=440+/-5, delta22=340+/-5, delta33=-30+/-5 ppm. In G1/K+ gel, guanosine molecules form extensively stacking G-quartets. In each G-quartet, four guanine bases are linked together by four pairs of O6...H-N1 and N7...H-N2 hydrogen bonds in a cyclic fashion. In addition, each O6 atom is simultaneously coordinated to two K+ ions. For G1/K+ gel, the experimental 17O NMR tensors are: CQ=7.2+/-0.1 MHz, etaQ=0.68+/-0.05, deltaiso=232+/-2, delta11=400+/-5, delta22=300+/-5, delta33=-20+/-5 ppm. In the presence of divalent cations such as Sr2+, Ba2+, and Pb2+, G2 molecules form discrete octamers containing two stacking G-quartets and a central metal ion, that is, (G2)4-M2+-(G2)4. In this case, each O6 atom of the G-quartet is coordinated to only one metal ion. For G2/M2+ octamers, the experimental 17O NMR parameters are: Sr2+, CQ=6.8+/-0.1 MHz, etaQ=1.00+/-0.05, deltaiso=232+/-2 ppm; Ba2+, CQ=7.0+/-0.1 MHz, etaQ=0.68+/-0.05, deltaiso=232+/-2 ppm; Pb2+, CQ=7.2+/-0.1 MHz, etaQ=1.00+/-0.05, deltaiso=232+/-2 ppm. We also perform extensive quantum chemical calculations for the 17O NMR tensors in both G-ribbons and G-quartets. Our results demonstrate that the 17O chemical shift tensor and quadrupole coupling tensor are very sensitive to the presence of hydrogen bonding and ion-carbonyl interactions. Furthermore, the effect from ion-carbonyl interactions is several times stronger than that from hydrogen-bonding interactions. Our results establish a basis for using solid-state 17O NMR as a probe in the study of ion binding in G-quadruplex DNA and ion channel proteins.
Collapse
Affiliation(s)
- Irene C M Kwan
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario, Canada K7L 3N6
| | | | | |
Collapse
|
20
|
Wong A, Pike KJ, Jenkins R, Clarkson GJ, Anupõld T, Howes AP, Crout DHG, Samoson A, Dupree R, Smith ME. Experimental and Theoretical 17O NMR Study of the Influence of Hydrogen-Bonding on CO and O−H Oxygens in Carboxylic Solids. J Phys Chem A 2006; 110:1824-35. [PMID: 16451014 DOI: 10.1021/jp055807y] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A systematic solid-state 17O NMR study of a series of carboxylic compounds, maleic acid, chloromaleic acid, KH maleate, KH chloromaleate, K2 chloromaleate, and LiH phthalate.MeOH, is reported. Magic-angle spinning (MAS), triple-quantum (3Q) MAS, and double angle rotation (DOR) 17O NMR spectra were recorded at high magnetic fields (14.1 and 18.8 T). 17O MAS NMR for metal-free carboxylic acids and metal-containing carboxylic salts show featured spectra and demonstrate that this combined, where necessary, with DOR and 3QMAS, can yield site-specific information for samples containing multiple oxygen sites. In addition to 17O NMR spectroscopy, extensive quantum mechanical calculations were carried out to explore the influence of hydrogen bonding at these oxygen sites. B3LYP/6-311G++(d,p) calculations of 17O NMR parameters yielded good agreement with the experimental values. Linear correlations are observed between the calculated 17O NMR parameters and the hydrogen bond strengths, suggesting the possibility of estimating H-bonding information from 17O NMR data. The calculations also revealed intermolecular H-bond effects on the 17O NMR shielding tensors. It is found that the delta11 and delta22 components of the chemical shift tensor at O-H and C=O, respectively, are aligned nearly parallel with the strong H-bond and shift away from this direction as the H-bond interaction weakens.
Collapse
Affiliation(s)
- Alan Wong
- Department of Physics, University of Warwick, Coventry, CV4 7AL, U. K
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Ida R, De Clerk M, Wu G. Influence of N−H···O and C−H···O Hydrogen Bonds on the 17O NMR Tensors in Crystalline Uracil: Computational Study. J Phys Chem A 2005; 110:1065-71. [PMID: 16420009 DOI: 10.1021/jp0554947] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We report a computational study for the 17O NMR tensors (electric field gradient and chemical shielding tensors) in crystalline uracil. We found that N-H...O and C-H...O hydrogen bonds around the uracil molecule in the crystal lattice have quite different influences on the 17O NMR tensors for the two C=O groups. The computed 17O NMR tensors on O4, which is involved in two strong N-H...O hydrogen bonds, show remarkable sensitivity toward the choice of cluster model, whereas the 17O NMR tensors on O2, which is involved in two weak C-H...O hydrogen bonds, show much smaller improvement when the cluster model includes the C-H...O hydrogen bonds. Our results demonstrate that it is important to have accurate hydrogen atom positions in the molecular models used for 17O NMR tensor calculations. In the absence of low-temperature neutron diffraction data, an effective way to generate reliable hydrogen atom positions in the molecular cluster model is to employ partial geometry optimization for hydrogen atom positions using a cluster model that includes all neighboring hydrogen-bonded molecules. Using an optimized seven-molecule model (a total of 84 atoms), we were able to reproduce the experimental 17O NMR tensors to a reasonably good degree of accuracy. However, we also found that the accuracy for the calculated 17O NMR tensors at O2 is not as good as that found for the corresponding tensors at O4. In particular, at the B3LYP/6-311++G(d,p) level of theory, the individual 17O chemical shielding tensor components differ by less than 10 and 30 ppm from the experimental values for O4 and O2, respectively. For the 17O quadrupole coupling constant, the calculated values differ by 0.30 and 0.87 MHz from the experimental values for O4 and O2, respectively.
Collapse
Affiliation(s)
- Ramsey Ida
- Department of Chemistry, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | | | | |
Collapse
|
22
|
Waddell KW, Chekmenev EY, Wittebort RJ. Single-Crystal Studies of Peptide Prolyl and Glycyl 15N Shielding Tensors. J Am Chem Soc 2005; 127:9030-5. [PMID: 15969580 DOI: 10.1021/ja044204h] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
15N shielding tensors were determined for the central peptide groups in GGV, AGG, and APG by single-crystal NMR. We find that the angle between the downfield component (delta11) and the N-H or the N-C(delta) (pro) bonds is in the range of 20-23 degrees and in accord with previous solid-state NMR measurements. However, AGG, unlike APG or GGV, has a distorted peptide plane, and delta11 lies approximately in the plane of N, C(alpha), and H rather than in the peptide plane defined by heavy atoms. Accurate orientations of delta22 and delta33 were determined, and the usual assumption that delta22 is along the peptide normal was found only in APG which has a highly nonaxial tensor. More generally, delta22 and delta33 are rotated about the delta11 axis (36 degrees in GGV). These results are compared with DFT calculations to gain a structural understanding of the effects of intermolecular interactions on shielding tensor principal components and orientations. Trimeric clusters containing H-bonded neighbors predict the orientations of the principal components within 2-3 degrees, but calculated principal components are less quantitative. Possible reasons for this disagreement are explored.
Collapse
Affiliation(s)
- Kevin W Waddell
- Department of Chemistry, 2320 South Brook Street, University of Louisville, Louisville, Kentucky 40292, USA
| | | | | |
Collapse
|
23
|
Lemaître V, Smith ME, Watts A. A review of oxygen-17 solid-state NMR of organic materials--towards biological applications. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2004; 26:215-235. [PMID: 15388187 DOI: 10.1016/j.ssnmr.2004.04.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2004] [Revised: 03/31/2004] [Indexed: 05/24/2023]
Abstract
17O solid state NMR of organic materials is developing rapidly. This article provides a snapshot of the current state of development of this field. The NMR techniques and enrichment protocols that are driving this progress are outlined. The (17)O parameters derived from solid-state NMR experiments are summarized and the structural sensitivity of the approach to effects such as hydrogen bonding highlighted. The prospects and challenges for (17)O solid-state NMR of biomolecules are discussed.
Collapse
Affiliation(s)
- V Lemaître
- Biomembrane Structure Unit, Department of Biochemistry, Oxford University, South Parks Road, Oxford OX1 3QU, UK
| | | | | |
Collapse
|