1
|
Abramchuk D, Voskresenskaya A, Kuzmichev I, Erofeev A, Gorelkin P, Abakumov M, Beloglazkina E, Krasnovskaya O. BODIPY in Alzheimer's disease diagnostics: A review. Eur J Med Chem 2024; 276:116682. [PMID: 39053190 DOI: 10.1016/j.ejmech.2024.116682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/27/2024]
Abstract
Timely diagnosis and therapy of Alzheimer's disease remains one of the greatest questions in medicinal chemistry of neurodegenerative disease. The lack of low-cost sensors capable of reliable detection of structural changes in AD-related proteins is the driving factor for the development of novel molecules with affinity for AD hallmarks. The development of cheap, safe diagnostic methods is a highly sought-after area of research. Optical fluorescent probes are of great interest due to their non-radioactivity, low cost, and ability of the real-time visualization of AD hallmarks. Boron dipyrromethene (BODIPY)-based fluorophore is one promising fluorescent unit for in vivo labeling due to its high photostability, easy modification, low toxicity, and cell-permeability. In recent years, many fluorescent BODIPY-based probes capable of Aβ plaque, Aβ soluble oligomers, neurofibrillary tangles (NFT) optical detection, as well as probes with copper ion chelating units and viscosity sensors have been developed. In this review, we summarized BODIPY derivatives as fluorescent sensors capable of detecting pathological features of Alzheimer's disease, published from 2009 to 2023, as well as their design strategies, optical properties, and in vitro and in vivo activities.
Collapse
Affiliation(s)
- Daniil Abramchuk
- Chemistry Department, Lomonosov Moscow State University, Leninskie gory 1,3, 119991, Moscow, Russia; Department of Materials Science of Semiconductors and Dielectrics, National University of Science and Technology (MISIS), Leninskiy prospect 4, 101000, Moscow, Russia
| | - Alevtina Voskresenskaya
- Chemistry Department, Lomonosov Moscow State University, Leninskie gory 1,3, 119991, Moscow, Russia
| | - Ilia Kuzmichev
- V.P. Serbsky National Medical Research Center for Psychiatry and Narcology, Kropotkinsky per. 23, 119034, Moscow, Russia
| | - Alexander Erofeev
- Chemistry Department, Lomonosov Moscow State University, Leninskie gory 1,3, 119991, Moscow, Russia; Department of Materials Science of Semiconductors and Dielectrics, National University of Science and Technology (MISIS), Leninskiy prospect 4, 101000, Moscow, Russia
| | - Peter Gorelkin
- Chemistry Department, Lomonosov Moscow State University, Leninskie gory 1,3, 119991, Moscow, Russia; Department of Materials Science of Semiconductors and Dielectrics, National University of Science and Technology (MISIS), Leninskiy prospect 4, 101000, Moscow, Russia
| | - Maxim Abakumov
- Department of Materials Science of Semiconductors and Dielectrics, National University of Science and Technology (MISIS), Leninskiy prospect 4, 101000, Moscow, Russia; Department of Medical Nanobiotechnology, N.I. Pirogov Russian National Research Medical University, Ostrovityanova str., 1, 6, 117997, Moscow, Russia
| | - Elena Beloglazkina
- Chemistry Department, Lomonosov Moscow State University, Leninskie gory 1,3, 119991, Moscow, Russia
| | - Olga Krasnovskaya
- Chemistry Department, Lomonosov Moscow State University, Leninskie gory 1,3, 119991, Moscow, Russia; Department of Materials Science of Semiconductors and Dielectrics, National University of Science and Technology (MISIS), Leninskiy prospect 4, 101000, Moscow, Russia.
| |
Collapse
|
2
|
Butler SM, Ercan B, You J, Schulz LP, Jolliffe KA. A change in metal cation switches selectivity of a phospholipid sensor from phosphatidic acid to phosphatidylserine. Org Biomol Chem 2024; 22:5843-5849. [PMID: 38957899 DOI: 10.1039/d4ob00418c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Phosphatidic acid and phosphatidylserine are anionic phospholipids with emerging signalling roles in cells. Determination of how phosphatidic acid and phosphatidylserine change location and quantity in cells over time requires selective fluorescent sensors that can distinguish these two anionic phospholipids. However, the design of such synthetic sensors that can selectively bind and respond to a single phospholipid within the complex membrane milieu remains challenging. In this work, we present a simple and robust strategy to control the selectivity of synthetic sensors for phosphatidic acid and phosphatidylserine. By changing the coordination metal of a dipicolylamine (DPA) ligand from Zn(II) to Ni(II) on the same synthetic sensor with a peptide backbone, we achieve a complete switch in selectivity from phosphatidic acid to phosphatidylserine in model lipid membranes. Furthermore, this strategy was largely unaffected by the choice and the position of the fluorophores. We envision that this strategy will provide a platform for the rational design of targeted synthetic phospholipid sensors to probe plasma and intracellular membranes.
Collapse
Affiliation(s)
- Stephen M Butler
- School of Chemistry, The University of Sydney, NSW, 2006, Australia.
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, NSW, 2006, Australia
| | - Bilge Ercan
- School of Chemistry, The University of Sydney, NSW, 2006, Australia.
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, NSW, 2006, Australia
| | - Jingyao You
- School of Chemistry, The University of Sydney, NSW, 2006, Australia.
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, NSW, 2006, Australia
| | - Luke P Schulz
- School of Chemistry, The University of Sydney, NSW, 2006, Australia.
| | - Katrina A Jolliffe
- School of Chemistry, The University of Sydney, NSW, 2006, Australia.
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, NSW, 2006, Australia
- The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, NSW, 2006, Australia
| |
Collapse
|
3
|
Sivagnanam S, Mahato P, Das P. An overview on the development of different optical sensing platforms for adenosine triphosphate (ATP) recognition. Org Biomol Chem 2023; 21:3942-3983. [PMID: 37128980 DOI: 10.1039/d3ob00209h] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Adenosine triphosphate (ATP), one of the biological anions, plays a crucial role in several biological processes including energy transduction, cellular respiration, enzyme catalysis and signaling. ATP is a bioactive phosphate molecule, recognized as an important extracellular signaling agent. Apart from serving as a universal energy currency for various cellular events, ATP is also considered a factor responsible for numerous physiological activities. It regulates cellular metabolism by breaking phosphoanhydride bonds. Several diseases have been reported widely based on the levels and behavior of ATP. The variation of ATP concentration usually causes a foreseeable impact on mitochondrial physiological function. Mitochondrial dysfunction is responsible for the occurrence of many severe diseases such as angiocardiopathy, malignant tumors and Parkinson's disease. Therefore, there is high demand for developing a sensitive, fast-responsive, nontoxic and versatile detection platform for the detection of ATP. To this end, considerable efforts have been employed by several research groups throughout the world to develop specific and sensitive detection platforms to recognize ATP. Although a repertoire of optical chemosensors (both colorimetric and fluorescent) for ATP has been developed, many of them are not arrayed appropriately. Therefore, in this present review, we focused on the design and sensing strategy of some chemosensors including metal-free, metal-based, sequential sensors, aptamer-based sensors, nanoparticle-based sensors etc. for ATP recognition via diverse binding mechanisms.
Collapse
Affiliation(s)
- Subramaniyam Sivagnanam
- Department of Chemistry, SRM Institute of Science and Technology, SRM Nagar, Potheri, Kattankulathur, Tamil Nadu-603203, India.
| | - Prasenjit Mahato
- Department of Chemistry, Raghunathpur College, Sidho-Kanho-Birsha University, Purulia, West Bengal-723133, India
| | - Priyadip Das
- Department of Chemistry, SRM Institute of Science and Technology, SRM Nagar, Potheri, Kattankulathur, Tamil Nadu-603203, India.
| |
Collapse
|
4
|
Cabral AD, Radu TB, de Araujo ED, Gunning PT. Optical chemosensors for the detection of proximally phosphorylated peptides and proteins. RSC Chem Biol 2021; 2:815-829. [PMID: 34458812 PMCID: PMC8341930 DOI: 10.1039/d1cb00055a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 04/19/2021] [Indexed: 12/31/2022] Open
Abstract
Proximal multi-site phosphorylation is a critical post-translational modification in protein biology. The additive effects of multiple phosphosite clusters in close spatial proximity triggers integrative and cooperative effects on protein conformation and activity. Proximal phosphorylation has been shown to modulate signal transduction pathways and gene expression, and as a result, is implicated in a broad range of disease states through altered protein function and/or localization including enzyme overactivation or protein aggregation. The role of proximal multi-phosphorylation events is becoming increasingly recognized as mechanistically important, although breakthroughs are limited due to a lack of detection technologies. To date, there is a limited selection of facile and robust sensing tools for proximal phosphorylation. Nonetheless, there have been considerable efforts in developing optical chemosensors for the detection of proximal phosphorylation motifs on peptides and proteins in recent years. This review provides a comprehensive overview of optical chemosensors for proximal phosphorylation, with the majority of work being reported in the past two decades. Optical sensors, in the form of fluorescent and luminescent chemosensors, hybrid biosensors, and inorganic nanoparticles, are described. Emphasis is placed on the rationale behind sensor scaffolds, relevant protein motifs, and applications in protein biology.
Collapse
Affiliation(s)
- Aaron D Cabral
- Department of Chemical and Physical Sciences, University of Toronto Mississauga 3359 Mississauga Road Mississauga Ontario L5L 1C6 Canada
- Department of Chemistry, University of Toronto 80 St George Street Toronto Ontario M5S 3H6 Canada
| | - Tudor B Radu
- Department of Chemical and Physical Sciences, University of Toronto Mississauga 3359 Mississauga Road Mississauga Ontario L5L 1C6 Canada
- Department of Chemistry, University of Toronto 80 St George Street Toronto Ontario M5S 3H6 Canada
| | - Elvin D de Araujo
- Department of Chemical and Physical Sciences, University of Toronto Mississauga 3359 Mississauga Road Mississauga Ontario L5L 1C6 Canada
| | - Patrick T Gunning
- Department of Chemical and Physical Sciences, University of Toronto Mississauga 3359 Mississauga Road Mississauga Ontario L5L 1C6 Canada
- Department of Chemistry, University of Toronto 80 St George Street Toronto Ontario M5S 3H6 Canada
| |
Collapse
|
5
|
Besenius P, Zengerling L, Kemper B, Hellmich UA. Synthesis and Structural Stability of α-Helical Gold(I)-Metallopeptidesy. Synlett 2021. [DOI: 10.1055/a-1290-8412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AbstractThe synthesis of hexa- and dodecapeptides functionalized with two Au(I)–phosphine complexes is reported. The high stability of the Au(I)–phosphine bond allowed orthogonal peptide-protecting-group chemistry, even when using hard Lewis acids like boron tribromide. This enabled the preparation of an Fmoc-protected lysine derivative carrying the Au(I) complex in a side chain, which was used in standard Fmoc-based solid-phase peptide synthesis protocols. Alanine and leucine repeats in the metallododecapeptide formed α-helical secondary structures in 2,2,2-trifluoroethanol–H2O and 1,1,1,3,3,3-hexafluoroisopropanol–H2O mixtures with high thermal stability, as shown by temperature-dependent CD spectroscopy studies.
Collapse
Affiliation(s)
- Pol Besenius
- Department of Chemistry, Johannes Gutenberg-University Mainz
| | | | - Benedict Kemper
- Department of Chemistry, Johannes Gutenberg-University Mainz
| | - Ute A. Hellmich
- Department of Chemistry, Johannes Gutenberg-University Mainz
- Centre for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt
| |
Collapse
|
6
|
Affiliation(s)
- Arundhati Nag
- Carlson School of Chemistry and Biochemistry Clark University Worcester MA 01610 Phone: 15084213897 Fax: 15087937117
| | - Samir Das
- Carlson School of Chemistry and Biochemistry Clark University Worcester MA 01610
| |
Collapse
|
7
|
Bispicolyamine-Based Supramolecular Polymeric Gels Induced by Distinct Different Driving Forces with and Without Zn 2. Int J Mol Sci 2020; 21:ijms21134617. [PMID: 32610553 PMCID: PMC7369882 DOI: 10.3390/ijms21134617] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/24/2020] [Accepted: 06/26/2020] [Indexed: 01/04/2023] Open
Abstract
Metal-coordination polymeric gels are interesting areas as organic/inorganic hybrid supramolecular materials. The bispicolylamine (BPA) based gelator (1) showed excellent gelation with typical fibrillar morphology in acetonitrile. Upon complexing 1 with Zn2+, complexes ([1 + Zn + ACN]2+ and [1 + zinc trifluoromethanesulfonate (ZnOTf)]+) with four coordination numbers were formed, which determine the gel structure significantly. A gel-sol transition was induced, driven by the ratio of the two metal complexes produced. Through nuclear magnetic resonance analysis, the driving forces in the gel formation (i.e., hydrogen-bonding and π-π stacking) were observed in detail. In the absence and the presence of Zn2+, the intermolecular hydrogen-bonds and π-π stacking were the primary driving forces in the gel formation, respectively. In addition, the supramolecular gels exhibited a monolayer lamellar structure irrespective of Zn2+. Conclusively, the gels' elasticity and viscosity reduced in the presence of Zn2+.
Collapse
|
8
|
Mateus P, Delgado R. Zinc(ii) and copper(ii) complexes as tools to monitor/inhibit protein phosphorylation events. Dalton Trans 2020; 49:17076-17092. [DOI: 10.1039/d0dt03503c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A perspective on the advance of copper(ii) and zinc(ii) complexes of varied ligand architectures as binders of phosphorylated peptides/proteins and as sensors of phosphorylation reactions is presented.
Collapse
Affiliation(s)
- Pedro Mateus
- Laboratorio Associado para a Química Verde (LAQV)
- Rede de Química e Tecnologia (REQUIMTE)
- Departamento de Química
- Faculdade de Ciências e Tecnologia
- Universidade Nova de Lisboa
| | - Rita Delgado
- Instituto de Tecnologia Química e Biológica António Xavier
- Universidade Nova de Lisboa (ITQB NOVA)
- 2780-157 Oeiras
- Portugal
| |
Collapse
|
9
|
Enhanced cellular uptake and nuclear accumulation of drug-peptide nanomedicines prepared by enzyme-instructed self-assembly. J Control Release 2019; 317:109-117. [PMID: 31778740 DOI: 10.1016/j.jconrel.2019.11.028] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/10/2019] [Accepted: 11/23/2019] [Indexed: 11/23/2022]
Abstract
Subcellular delivery of nanomedicines has emerged as a promising approach to enhance the therapeutic efficacy of anticancer drugs. Nuclear accumulation of anticancer drugs are essential for its therapeutic efficacy because their targets are generally located within the nucleus. However, strategies for the nuclear accumulation of nanomedicines with anticancer drugs rarely reported. In this study, we reported a promising nanomedicine, comprising a drug-peptide amphiphile, with enhanced cellular uptake and nuclear accumulation capability for cancer therapy. The drug-peptide amphiphile consisted of the peptide ligand PMI (TSFAEYWNLLSP), which was capable of activating the p53 gene by binding with the MDM2 and MDMX located in the cell nucleus. Peptide conformations could be finely tuned by using different strategies including heating-cooling and enzyme-instructed self-assembly (EISA) to trigger molecular self-assembly at different temperatures. Due to the different peptide conformations, the drug-peptide amphiphile self-assembled into nanomedicines with various properties, including stabilities, cellular uptake, and nuclear accumulation. The optimized nanomedicine formed by EISA strategy at a low temperature of 4 °C showed enhanced cellular uptake and nuclear accumulation capability, and thus exhibited superior anticancer ability both in vitro and in vivo. Overall, our study provides a useful strategy for finely tuning the properties and activities of peptide-based supramolecular nanomaterials, which may lead to optimized nanomedicines with enhanced performance.
Collapse
|
10
|
Ge L, Tian Y. Fluorescence Lifetime Imaging of p-tau Protein in Single Neuron with a Highly Selective Fluorescent Probe. Anal Chem 2019; 91:3294-3301. [DOI: 10.1021/acs.analchem.8b03992] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Lihong Ge
- Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Yang Tian
- Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| |
Collapse
|
11
|
Hewitt SH, Liu R, Butler SJ. Recognition of proximally phosphorylated tyrosine residues and continuous analysis of phosphatase activity using a stable europium complex. Supramol Chem 2018; 30:765-771. [PMID: 33173266 PMCID: PMC7116342 DOI: 10.1080/10610278.2017.1410548] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 11/16/2017] [Indexed: 10/18/2022]
Abstract
The recognition of proteins and their post-translational modifications using synthetic molecules is an active area of research. A common post-translational modification is the phosphorylation of serine, threonine or tyrosine residues. The phosphorylation of proximal tyrosine residues occurs in over 1000 proteins in the human proteome, including in disease-related proteins, so the recognition of this motif is of particular interest. We have developed a luminescent europium(III) complex, [Eu.1]+ , capable of the discrimination of proximally phosphorylated tyrosine residues, from analogous mono- and non-phosphorylated tyrosine residues, more distantly-related phosphotyrosine residues and over proximally phosphorylated serine and threonine residues. [Eu.1]+ was used to continuously monitor the phosphatase catalysed dephosphorylation of a peptide containing proximally phosphorylated tyrosine residues.
Collapse
Affiliation(s)
- Sarah H. Hewitt
- Department of Chemistry, Loughborough University, Loughborough, LE11 3TU, UK
| | - Roanna Liu
- Department of Chemistry, Loughborough University, Loughborough, LE11 3TU, UK
| | - Stephen J. Butler
- Department of Chemistry, Loughborough University, Loughborough, LE11 3TU, UK
| |
Collapse
|
12
|
Abstract
Diabetes is a complex immune disorder that requires extensive medical care beyond glycemic control. Recently, the prevalence of diabetes, particularly type 1 diabetes (T1D), has significantly increased from 5% to 10%, and this has affected the health-associated complication incidences in children and adults. The 2012 statistics by the American Diabetes Association reported that 29.1 million Americans (9.3% of the population) had diabetes, and 86 million Americans (age ≥20 years, an increase from 79 million in 2010) had prediabetes. Personalized glucometers allow diabetes management by easy monitoring of the high millimolar blood glucose levels. In contrast, non-glucose diabetes biomarkers, which have gained considerable attention for early prediction and provide insights about diabetes metabolic pathways, are difficult to measure because of their ultra-low levels in blood. Similarly, insulin pumps, sensors, and insulin monitoring systems are of considerable biomedical significance due to their ever-increasing need for managing diabetic, prediabetic, and pancreatic disorders. Our laboratory focuses on developing electrochemical immunosensors and surface plasmon microarrays for minimally invasive insulin measurements in clinical sample matrices. By utilizing antibodies or aptamers as the insulin-selective biorecognition elements in combination with nanomaterials, we demonstrated a series of selective and clinically sensitive electrochemical and surface plasmon immunoassays. This review provides an overview of different electrochemical and surface plasmon immunoassays for insulin. Considering the paramount importance of diabetes diagnosis, treatment, and management and insulin pumps and monitoring devices with focus on both T1D (insulin-deficient condition) and type 2 diabetes (insulin-resistant condition), this review on insulin bioassays is timely and significant.
Collapse
Affiliation(s)
- Vini Singh
- Department of Chemistry, Oklahoma State University, Stillwater, OK 74078, USA.
| | | |
Collapse
|
13
|
Mesquita LM, Mateus P, Fernandes RDV, Iranzo O, André V, Tiago de Oliveira F, Platas-Iglesias C, Delgado R. Recognition of phosphopeptides by a dinuclear copper(ii) macrocyclic complex in a water : methanol 50 : 50 v/v solution. Dalton Trans 2018; 46:9549-9564. [PMID: 28702582 DOI: 10.1039/c7dt01724c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new triethylbenzene-derived tetraazamacrocycle containing pyridyl spacers, L, was prepared and its dinuclear copper(ii) complex was used as a receptor for the recognition of phosphorylated peptides in aqueous solution. A detailed study of the acid-base behaviour of L and its copper(ii) complexation properties as well as of the cascade species with phosphorylated anions including two peptidic substrates was carried out in a H2O/MeOH (50 : 50 v/v) solution using different techniques, such as potentiometry, X-band EPR and DFT calculations. The association constants of the dinuclear receptor with the phosphorylated peptides and other anionic species revealed a clear preference towards phenylic phosphorylated substrates, with values ranging 3.96-5.35 log units. Single-crystal X-ray diffraction determination of the dicopper(ii) complex of L showed the copper centres at a distance of 5.812(1) Å from one another, with the phosphate group of the PhPO42- substrate well accommodated between them. X-band EPR studies indicated a similar structure for this cascade complex and for the other cascade complexes with the phosphorylated anions studied. DFT studies of the [Cu2L(μ-OH)]3+ complex revealed a different conformation of the ligand that brings the two copper centres at a very short distance of 3.94 Å aided by the presence of a bridging hydroxide anion that provides a CuOCu angle of 167.3°. This complex is EPR silent, in line with the singlet ground state obtained using CASSCF(2,2) calculations and DFT calculations with the broken-symmetry approach. This species coexists in solution with a complex in a different conformation, and having a CuCu distance of 6.63 Å, in lower percentage.
Collapse
Affiliation(s)
- Lígia M Mesquita
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal.
| | - Pedro Mateus
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal.
| | - Rui D V Fernandes
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal.
| | - Olga Iranzo
- Aix Marseille Univ., CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Vânia André
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Filipe Tiago de Oliveira
- Laboratório de Instrumentação, Engenharia Biomédica e Física da Radiação (LIBPhys-UNL), Departamento de Física, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, Monte de Caparica, 2829-516 Caparica, Portugal
| | - Carlos Platas-Iglesias
- Centro de Investigaciones Científicas Avanzadas (CICA) and Departamento de Química, Facultade de Ciencias, Universidade da Coruña, Campus da Zapateira-Rúa da Fraga 10, 15008 A Coruña, Spain
| | - Rita Delgado
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal.
| |
Collapse
|
14
|
Abstract
A key challenge in chemical biology is to identify small molecule regulators for every single protein. However, protein surfaces are notoriously difficult to recognise with synthetic molecules, often having large flat surfaces that are poorly matched to traditional small molecules. In the surface mimetic approach, a supramolecular scaffold is used to project recognition groups in such a manner as to make multivalent non-covalent contacts over a large area of protein surface. Metal based supramolecular scaffolds offer unique advantages over conventional organic molecules for protein binding, including greater stereochemical and geometrical diversity conferred through the metal centre and the potential for direct assessment of binding properties and even visualisation in cells without recourse to further functionalisation. This feature article will highlight the current state of the art in protein surface recognition using metal complexes as surface mimetics.
Collapse
Affiliation(s)
- Sarah H Hewitt
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK. and Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| | - Andrew J Wilson
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK. and Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| |
Collapse
|
15
|
BAE SW, KIM JI, CHOI I, SUNG J, HONG JI, YEO WS. Zinc Ion-immobilized Magnetic Microspheres for Enrichment and Identification of Multi-phosphorylated Peptides by Mass Spectrometry. ANAL SCI 2017; 33:1381-1386. [DOI: 10.2116/analsci.33.1381] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Se Won BAE
- Green Chemistry and Materials Group, Korea Institute of Industrial Technology (KITECH)
| | - Jae Il KIM
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University
| | - Inseong CHOI
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University
| | - Jiha SUNG
- Department of Applied Chemistry, Dongduk Women’s University
| | - Jong-In HONG
- Department of Chemistry, Seoul National University
| | - Woon-Seok YEO
- Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University
| |
Collapse
|
16
|
Kraskouskaya D, Cabral AD, Fong R, Bancerz M, Toutah K, Rosa D, Gardiner JE, de Araujo ED, Duodu E, Armstrong D, Fekl U, Gunning PT. Characterization and application studies of ProxyPhos, a chemosensor for the detection of proximally phosphorylated peptides and proteins in aqueous solutions. Analyst 2017; 142:2451-2459. [DOI: 10.1039/c6an02537d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Optimization of ProxyPhos peptide and protein assay conditions along with sample applications are presented.
Collapse
|
17
|
Ke Y, Garg B, Ling YC. A novel graphene-based label-free fluorescence 'turn-on' nanosensor for selective and sensitive detection of phosphorylated species in biological samples and living cells. NANOSCALE 2016; 8:4547-4556. [PMID: 26758942 DOI: 10.1039/c5nr07261a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A novel label-free fluorescence 'turn-on' nanosensor has been developed for highly selective and sensitive detection of phosphorylated species (Ps) in biological samples and living cells. The design strategy relies on the use of Ti(4+)-immobilized polydopamine (PDA) coated reduced graphene oxide (rGO@PDA-Ti(4+)) that serves as an attractive platform to bind riboflavin 5'-monophosphate molecules (FMNs) through ion-pair interactions between phosphate groups and Ti(4+). The as-prepared rGO@PDA-Ti(4+)-FMNs (nanosensor), fluoresce only weakly due to the ineffective Förster resonance energy transfer between the FMNs and rGO@PDA-Ti(4+). The experimental findings revealed that the microwave-assisted interaction of the nanosensor with α-, β-casein, ovalbumin, human serum, non-fat milk, egg white, and living cells (all containing Ps) releases FMNs (due to the high formation constant between phosphate groups and Ti(4+)), leading to an excellent fluorescence 'turn-on' response. The fluorescence spectroscopy, confocal microscopy, and MALDI-TOF MS spectrometry were used to detect Ps both qualitatively and quantitatively. Under the optimized conditions, the nanosensor showed a detection limit of ca. 118.5, 28.9, and 54.8 nM for the tryptic digests of α-, β-casein and ovalbumin, respectively. Furthermore, the standard addition method was used as a bench-mark proof for phosphopeptide quantification in egg white samples. We postulate that the present quantitative assay for Ps holds tremendous potential and may pave the way to disease diagnostics in the near future.
Collapse
Affiliation(s)
- Yaotang Ke
- Department of Chemistry, National Tsing Hua University, Kuang-Fu Road, Hsinchu, 30013, Taiwan.
| | - Bhaskar Garg
- Department of Chemistry, National Tsing Hua University, Kuang-Fu Road, Hsinchu, 30013, Taiwan.
| | - Yong-Chien Ling
- Department of Chemistry, National Tsing Hua University, Kuang-Fu Road, Hsinchu, 30013, Taiwan. and Institute of Nano Engineering and Microsystem, National Tsing Hua University, Kuang-Fu Road, Hsinchu, 30013, Taiwan
| |
Collapse
|
18
|
Duodu E, Kraskouskaya D, Campbell J, Graca-Lima G, Gunning PT. Selective detection of tyrosine-containing proximally phosphorylated motifs using an antenna-free Tb3+ luminescent sensor. Chem Commun (Camb) 2015; 51:6675-7. [DOI: 10.1039/c5cc00679a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Tb(iii) can be used for sensing proximally phosphorylated tyrosine-containing peptide sequences.
Collapse
Affiliation(s)
- Eugenia Duodu
- University of Toronto Mississauga
- Mississauga
- L5L 1C6 Canada
| | | | | | | | | |
Collapse
|
19
|
Kubota R, Hamachi I. Protein recognition using synthetic small-molecular binders toward optical protein sensing in vitro and in live cells. Chem Soc Rev 2015; 44:4454-71. [DOI: 10.1039/c4cs00381k] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This review describes the recognition and sensing techniques of proteins and their building blocks by use of small synthetic binders.
Collapse
Affiliation(s)
- Ryou Kubota
- Department of Synthetic Chemistry and Biological Chemistry
- Graduate School of Engineering
- Kyoto University
- Katsura
- Japan
| | - Itaru Hamachi
- Department of Synthetic Chemistry and Biological Chemistry
- Graduate School of Engineering
- Kyoto University
- Katsura
- Japan
| |
Collapse
|
20
|
Sista P, Ghosh K, Martinez JS, Rocha RC. Metallo-Biopolymers: Conjugation Strategies and Applications. POLYM REV 2014. [DOI: 10.1080/15583724.2014.913063] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
21
|
Chowdhury B, Khatua S, Dutta R, Chakraborty S, Ghosh P. Bis-Heteroleptic Ruthenium(II) Complex of a Triazole Ligand as a Selective Probe for Phosphates. Inorg Chem 2014; 53:8061-70. [DOI: 10.1021/ic5010598] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Bijit Chowdhury
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India
| | | | - Ranjan Dutta
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India
| | - Sourav Chakraborty
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India
| | - Pradyut Ghosh
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata 700032, India
| |
Collapse
|
22
|
Kang JH, Kim HJ, Kwon TH, Hong JI. Phosphorescent sensor for phosphorylated peptides based on an iridium complex. J Org Chem 2014; 79:6000-5. [PMID: 24919563 DOI: 10.1021/jo5005263] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A bis[(4,6-difluorophenyl)pyridinato-N,C(2')]iridium(III) picolinate (FIrpic) derivative coupled with bis(Zn(2+)-dipicolylamine) (ZnDPA) was developed as a sensor (1) for phosphorylated peptides, which are related to many cellular mechanisms. As a control, a fluorescent sensor (2) based on anthracene coupled to ZnDPA was also prepared. When the total negative charge on the phosphorylated peptides was changed to -2, -4, and -6, the emission intensity of sensor 1 gradually increased by factors of up to 7, 11, and 16, respectively. In contrast, there was little change in the emission intensity of sensor 1 upon the addition of a neutral phosphorylated peptide, non-phosphorylated peptides, or various anions such as CO3(2-), NO3(-), SO4(2-), phosphate, azide, and pyrophosphate. Furthermore, sensor 1 could be used to visually discriminate between phosphorylated peptides and adenosine triphosphate in aqueous solution under a UV-vis lamp, unlike fluorescent sensor 2. This enhanced luminance of phosphorescent sensor 1 upon binding to a phosphorylated peptide is attributed to a reduction in the repulsion between the Zn(2+) ions due to the phenoxy anion, its strong metal-to-ligand charge transfer character, and a reduction in self-quenching.
Collapse
Affiliation(s)
- Jung Hyun Kang
- Department of Chemistry, College of Natural Sciences, Seoul National University , Seoul 151-747, South Korea
| | | | | | | |
Collapse
|
23
|
Kraskouskaya D, Bancerz M, Soor HS, Gardiner JE, Gunning PT. An Excimer-Based, Turn-On Fluorescent Sensor for the Selective Detection of Diphosphorylated Proteins in Aqueous Solution and Polyacrylamide Gels. J Am Chem Soc 2014; 136:1234-7. [DOI: 10.1021/ja411492k] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Dziyana Kraskouskaya
- Department of Chemistry and
Department of Chemical and Physical Sciences, University of Toronto, Mississauga, 3359 Mississauga Road North, Mississauga, Ontario, Canada L5L1C6
| | - Matthew Bancerz
- Department of Chemistry and
Department of Chemical and Physical Sciences, University of Toronto, Mississauga, 3359 Mississauga Road North, Mississauga, Ontario, Canada L5L1C6
| | - Harjeet S. Soor
- Department of Chemistry and
Department of Chemical and Physical Sciences, University of Toronto, Mississauga, 3359 Mississauga Road North, Mississauga, Ontario, Canada L5L1C6
| | - Jordan E. Gardiner
- Department of Chemistry and
Department of Chemical and Physical Sciences, University of Toronto, Mississauga, 3359 Mississauga Road North, Mississauga, Ontario, Canada L5L1C6
| | - Patrick T. Gunning
- Department of Chemistry and
Department of Chemical and Physical Sciences, University of Toronto, Mississauga, 3359 Mississauga Road North, Mississauga, Ontario, Canada L5L1C6
| |
Collapse
|
24
|
Mignani S, El Kazzouli S, Bousmina MM, Majoral JP. Dendrimer Space Exploration: An Assessment of Dendrimers/Dendritic Scaffolding as Inhibitors of Protein–Protein Interactions, a Potential New Area of Pharmaceutical Development. Chem Rev 2013; 114:1327-42. [DOI: 10.1021/cr400362r] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Serge Mignani
- Laboratoire de Chimie et de
Biochimie Pharmacologiques
et Toxicologiques, CNRS UMR 8601, Université Paris Descartes, Sorbonne Paris Cité, 45 rue des Saints Pères, 75006 Paris, France
| | - Saïd El Kazzouli
- Euro-Mediterranean University of Fez, Fès-Shore, Route de Sidi harazem, Fès, Morocco
| | - Mosto M. Bousmina
- Euro-Mediterranean University of Fez, Fès-Shore, Route de Sidi harazem, Fès, Morocco
- Hassan II Academy of Science and Technology, Avenue Mohammed
VI, 10222 Rabat, Morocco
| | - Jean-Pierre Majoral
- Laboratoire
de Chimie de Coordination, Centre National de la Recherche Scientifique, 205 route de Narbonne, 31077 Toulouse Cedex 4, France
| |
Collapse
|
25
|
Erdemir S, Malkondu S, Kocyigit O, Alıcı O. A novel colorimetric and fluorescent sensor based on calix[4]arene possessing triphenylamine units. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2013; 114:190-196. [PMID: 23770508 DOI: 10.1016/j.saa.2013.05.069] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 04/13/2013] [Accepted: 05/19/2013] [Indexed: 06/02/2023]
Abstract
A novel colorimetric and fluorometric calix[4]arene probe (CTP) bearing triphenylamine units was synthesized in good yield and characterized by combination of (1)H, (13)C, APT, COSY, FTIR, HRMS, and UV-vis spectral data. Ion-binding studies of CTP were investigated in acetonitrile with a wide range of cations and anions and the recognition process was monitored by luminescence, UV-vis and (1)H NMR spectral changes. CTP exhibited naked eye detection for Hg(2+) ion. Also it showed a significant fluorescence quenching towards F(-) ion.
Collapse
Affiliation(s)
- Serkan Erdemir
- Selcuk University, Science Faculty, Department of Chemistry, Konya 42031, Turkey.
| | | | | | | |
Collapse
|
26
|
Affiliation(s)
- Shohei Tashiro
- Department of Chemistry, Graduate School of Science, The University of Tokyo
| | - Mitsuhiko Shionoya
- Department of Chemistry, Graduate School of Science, The University of Tokyo
| |
Collapse
|
27
|
Goforth SK, Walroth RC, McElwee-White L. Evaluation of Multisite Polypyridyl Ligands as Platforms for the Synthesis of Rh/Zn, Rh/Pd, and Rh/Pt Heterometallic Complexes. Inorg Chem 2013; 52:5692-701. [DOI: 10.1021/ic301810y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Sarah K. Goforth
- Department of Chemistry,
University of Florida, Gainesville, Florida 32611, United States
| | - Richard C. Walroth
- Department of Chemistry,
University of Florida, Gainesville, Florida 32611, United States
| | - Lisa McElwee-White
- Department of Chemistry,
University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
28
|
Kraskouskaya D, Drewry JA, Duodu E, Burger S, Eaton J, Cisneros GA, Gunning PT. Exploring the structural determinants of selective phosphopeptide recognition using bivalent metal-coordination complexes. MEDCHEMCOMM 2013. [DOI: 10.1039/c2md20342a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We demonstrate that Lewis acidic coordination complexes equipped with cationic binding groups might be best utilized as selective receptors for binding phosphopeptides with anionic side chain residues proximal to the phosphorylated residue.
Collapse
Affiliation(s)
- Dziyana Kraskouskaya
- Department of Chemical and Physical Sciences
- University of Toronto
- Mississauga
- Canada
| | - Joel A. Drewry
- Department of Chemical and Physical Sciences
- University of Toronto
- Mississauga
- Canada
| | - Eugenia Duodu
- Department of Chemical and Physical Sciences
- University of Toronto
- Mississauga
- Canada
| | - Steven Burger
- Department of Chemistry
- Wayne State University
- Detroit
- USA
| | - James Eaton
- Department of Chemical and Physical Sciences
- University of Toronto
- Mississauga
- Canada
| | | | - Patrick T. Gunning
- Department of Chemical and Physical Sciences
- University of Toronto
- Mississauga
- Canada
| |
Collapse
|
29
|
Liu H, Lv Z, Ding K, Liu X, Yuan L, Chen H, Li X. Incorporation of tyrosine phosphate into tetraphenylethylene affords an amphiphilic molecule for alkaline phosphatase detection, hydrogelation and calcium mineralization. J Mater Chem B 2013; 1:5550-5556. [DOI: 10.1039/c3tb21024c] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
30
|
Kurishita Y, Kohira T, Ojida A, Hamachi I. Organelle-localizable fluorescent chemosensors for site-specific multicolor imaging of nucleoside polyphosphate dynamics in living cells. J Am Chem Soc 2012; 134:18779-89. [PMID: 23098271 DOI: 10.1021/ja308754g] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
ATP and its derivatives (nucleoside polyphosphates (NPPs)) are implicated in many biological events, so their rapid and convenient detection is important. In particular, live cell detection of NPPs at specific local regions of cells could greatly contribute understanding of the complicated roles of NPPs. We report herein the design of two new fluorescent chemosensors that detect the dynamics of NPPs in specific regions of living cells. To achieve imaging of NPPs on plasma membrane surfaces (2-2Zn(II)), a lipid anchor was introduced into xanthene-based Zn(II) complex 1-2Zn(II), which was previously developed as a turn-on type fluorescent chemosensor for NPPs. Meanwhile, for subcellular imaging of ATP in mitochondria, we designed rhodamine-type Zn(II) complex 3-2Zn(II), which possesses a cationic pyronin ring instead of xanthene. Detailed spectroscopic studies revealed that 2-2Zn(II) and 3-2Zn(II) can sense NPPs with a several-fold increase of their fluorescence intensities through a sensing mechanism similar to 1-2Zn(II), involving binding-induced recovery of the conjugated form of the xanthene or pyronin ring. In live cell imaging, 2-2Zn(II) containing a lipid anchor selectively localized on the plasma membrane surface and detected the extracellular release of NPPs during cell necrosis induced by streptolysin O. On the other hand, rhodamine-type complex 3-2Zn(II) spontaneously localized at mitochondria inside cells, and sensed the local increase of ATP concentration during apoptosis. Multicolor images were obtained through simultaneous use of 2-2Zn(II) and 3-2Zn(II), allowing detection of the dynamics of ATP in different cellular compartments at the same time.
Collapse
Affiliation(s)
- Yasutaka Kurishita
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Japan
| | | | | | | |
Collapse
|
31
|
Rimola A, Aschi M, Orlando R, Ugliengo P. Does adsorption at hydroxyapatite surfaces induce peptide folding? Insights from large-scale B3LYP calculations. J Am Chem Soc 2012; 134:10899-910. [PMID: 22680347 DOI: 10.1021/ja302262y] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Large-scale periodic quantum mechanical calculations (509 atoms, 7852 atomic orbitals) based on the hybrid B3LYP functional focused on the peptide folding induced by the adsorption on the (001) and (010) hydroxyapatite (HA) surfaces give interesting insights on the role of specific interactions between surface sites and the peptide, which stabilize the helix conformation over the "native" random coil ones for in silico designed model peptides. The two peptides were derived from the 12-Gly oligomer, with one (P1, C-tGGKGGGGGGEGGN-t) and two (P2, C-tGGKGGKEGGEGGN-t) glutamic acid (E) and lysine (K) residue mutations. The most stable gas-phase "native" conformation for both peptides resulted in a random coil (RC) structure, with the helix (H) conformation being ≈100 kJ mol(-1) higher in free energy. The two peptide conformations interact with the HA (001) and (010) surfaces by C═O groups via Ca(2+) ions, by hydrogen bond between NH(2) groups and the basic PO(4)(3-) groups and by a relevant fraction due to dispersion forces. Peptide adsorption was studied on the dry (001) surface, the wet one envisaging 2 H(2)O per surface Ca(2+) and, on the latter, also considering the adsorption of microsolvated peptides with 4 H(2)O molecules located at sites responsible of the interaction with the surface. The P1 mutant does prefer to be adsorbed as a random coil by ≈160 kJ/mol, whereas the reverse is computed for P2, preferring the helix conformation by ≈50 kJ/mol. Adsorption as helix of both P1 and P2 mutants brings about proton transfer toward the HA surfaces with a large charge transfer component to the interaction energy.
Collapse
Affiliation(s)
- Albert Rimola
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | | | | | | |
Collapse
|
32
|
Ngo HT, Liu X, Jolliffe KA. Anion recognition and sensing with Zn(II)-dipicolylamine complexes. Chem Soc Rev 2012; 41:4928-65. [PMID: 22688834 DOI: 10.1039/c2cs35087d] [Citation(s) in RCA: 278] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This critical review covers the developments in anion recognition and sensing using Zn(II)-dipicolylamine functionalized receptors over the past decade with emphasis on recent rapid advances in the last five years.
Collapse
Affiliation(s)
- Huy Tien Ngo
- School of Chemistry, The University of Sydney, NSW 2006, Australia
| | | | | |
Collapse
|
33
|
|
34
|
Batalha IL, Lowe CR, Roque AC. Platforms for enrichment of phosphorylated proteins and peptides in proteomics. Trends Biotechnol 2012; 30:100-10. [DOI: 10.1016/j.tibtech.2011.07.004] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 07/21/2011] [Accepted: 07/21/2011] [Indexed: 01/17/2023]
|
35
|
Gao CY, Qiao X, Ma ZY, Wang ZG, Lu J, Tian JL, Xu JY, Yan SP. Synthesis, characterization, DNA binding and cleavage, BSA interaction and anticancer activity of dinuclear zinc complexes. Dalton Trans 2012; 41:12220-32. [DOI: 10.1039/c2dt31306e] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
36
|
Sokkalingam P, Kim DS, Hwang H, Sessler JL, Lee CH. A dicationic calix[4]pyrrole derivative and its use for the selective recognition and displacement-based sensing of pyrophosphate. Chem Sci 2012. [DOI: 10.1039/c2sc20232h] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
37
|
Hargrove AE, Nieto S, Zhang T, Sessler JL, Anslyn EV. Artificial receptors for the recognition of phosphorylated molecules. Chem Rev 2011; 111:6603-782. [PMID: 21910402 PMCID: PMC3212652 DOI: 10.1021/cr100242s] [Citation(s) in RCA: 501] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
38
|
Kim M, Shin DS, Kim J, Lee YS. Substrate screening of protein kinases: detection methods and combinatorial peptide libraries. Biopolymers 2011; 94:753-62. [PMID: 20564046 DOI: 10.1002/bip.21506] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The study of protein kinases has become a matter of great importance in the development of new drugs for the treatment of diseases, including cancer and inflammation. Substrate screening is the first step in the fundamental investigation of protein kinases and the development of inhibitors for use in drug discovery. Towards this goal, various studies have been reported regarding the development of phospho-peptide detection methods and the screening of phosphorylated peptide sites by protein kinases. This review introduces the detection methods for phosphorylation events using the reagents with (γ(32)P)ATP, ligand-linked ATP, phospho-peptide-specific antibodies and metal chelating compounds. Chemical modification methods using β-elimination for the detection of phospho-Ser/Thr peptides are introduced as well. In addition, the implementations of combinatorial peptide libraries for screening peptide substrates of protein kinases are discussed. The phage display approach has been suggested as an alternative method of using synthetic peptides for screening the substrate specificities of protein kinase. However, a solid phase assay using a peptide library-bound polymer resin or a peptide-arrayed glass chip is preferred for high throughput screening (HTS).
Collapse
Affiliation(s)
- Mira Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 151-744 Korea
| | | | | | | |
Collapse
|
39
|
Götzke L, Gloe K, Jolliffe KA, Lindoy LF, Heine A, Doert T, Jäger A, Gloe K. Nickel(II) and zinc(II) complexes of N-substituted di(2-picolyl)amine derivatives: Synthetic and structural studies. Polyhedron 2011. [DOI: 10.1016/j.poly.2010.12.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
40
|
Drewry JA, Gunning PT. Recent advances in biosensory and medicinal therapeutic applications of zinc(II) and copper(II) coordination complexes. Coord Chem Rev 2011. [DOI: 10.1016/j.ccr.2010.10.018] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
41
|
Targeting Protein–Protein Interactions and Fragment-Based Drug Discovery. Top Curr Chem (Cham) 2011; 317:145-79. [DOI: 10.1007/128_2011_265] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
42
|
Kurishita Y, Kohira T, Ojida A, Hamachi I. Rational Design of FRET-Based Ratiometric Chemosensors for in Vitro and in Cell Fluorescence Analyses of Nucleoside Polyphosphates. J Am Chem Soc 2010; 132:13290-9. [DOI: 10.1021/ja103615z] [Citation(s) in RCA: 214] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
43
|
Functional Fe3O4@ZnO magnetic nanoparticle-assisted enrichment and enzymatic digestion of phosphoproteins from saliva. Anal Bioanal Chem 2010; 398:2049-57. [DOI: 10.1007/s00216-010-4174-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Revised: 08/19/2010] [Accepted: 08/29/2010] [Indexed: 01/28/2023]
|
44
|
San-José N, Gómez-Valdemoro A, Ibeas S, García FC, Serna F, García JM. Colorimetric anion sensing by polyamide models containing urea-binding sites. Supramol Chem 2010. [DOI: 10.1080/10610270903531549] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Noelia San-José
- a Departamento de Química, Facultad de Ciencias , Universidad de Burgos , Plaza de Misael Bañuelos s/n, E-09001, Burgos, Spain
| | - Ana Gómez-Valdemoro
- a Departamento de Química, Facultad de Ciencias , Universidad de Burgos , Plaza de Misael Bañuelos s/n, E-09001, Burgos, Spain
| | - Saturnino Ibeas
- a Departamento de Química, Facultad de Ciencias , Universidad de Burgos , Plaza de Misael Bañuelos s/n, E-09001, Burgos, Spain
| | - Félix Clemente García
- a Departamento de Química, Facultad de Ciencias , Universidad de Burgos , Plaza de Misael Bañuelos s/n, E-09001, Burgos, Spain
| | - Felipe Serna
- a Departamento de Química, Facultad de Ciencias , Universidad de Burgos , Plaza de Misael Bañuelos s/n, E-09001, Burgos, Spain
| | - José Miguel García
- a Departamento de Química, Facultad de Ciencias , Universidad de Burgos , Plaza de Misael Bañuelos s/n, E-09001, Burgos, Spain
| |
Collapse
|
45
|
Akiba H, Sumaoka J, Komiyama M. Binuclear Terbium(III) Complex as a Probe for Tyrosine Phosphorylation. Chemistry 2010; 16:5018-25. [DOI: 10.1002/chem.200903379] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
46
|
Dolain C, Hatakeyama Y, Sawada T, Tashiro S, Fujita M. Inducing α-Helices in Short Oligopeptides through Binding by an Artificial Hydrophobic Cavity. J Am Chem Soc 2010; 132:5564-5. [DOI: 10.1021/ja100585w] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Christel Dolain
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, and JST-CREST, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yoshiyuki Hatakeyama
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, and JST-CREST, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Tomohisa Sawada
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, and JST-CREST, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Shohei Tashiro
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, and JST-CREST, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Makoto Fujita
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, and JST-CREST, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
47
|
Muldoon J, Ashcroft AE, Wilson AJ. Selective protein-surface sensing using ruthenium(II) tris(bipyridine) complexes. Chemistry 2010; 16:100-3. [PMID: 19946912 DOI: 10.1002/chem.200902368] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- James Muldoon
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK
| | | | | |
Collapse
|
48
|
P. Beletskaya I, D. Averin A, N. Uglov A, K. Buryak A, G. Bessmertnykh A, Guilard R. Synthesis of Polyazamacrocycles Comprising 6,6’-Diamino-2,2’-bipyridine Moieties via Pd-Catalyzed Amination. HETEROCYCLES 2010. [DOI: 10.3987/com-09-s(s)68] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
49
|
Wang J, Ha CS. Azobenzene-based system for fluorimetric sensing of H2PO4− (Pi) that works as a molecular keypad lock. Analyst 2010; 135:1214-8. [DOI: 10.1039/c0an00119h] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
50
|
Haas KL, Franz KJ. Application of metal coordination chemistry to explore and manipulate cell biology. Chem Rev 2009; 109:4921-60. [PMID: 19715312 PMCID: PMC2761982 DOI: 10.1021/cr900134a] [Citation(s) in RCA: 611] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Kathryn L Haas
- Department of Chemistry, Duke University, 124 Science Drive, Durham, North Carolina 27708-0346, USA
| | | |
Collapse
|