1
|
Belov K, Brel V, Sobornova V, Fedorova I, Khodov I. Conformational Analysis of 1,5-Diaryl-3-Oxo-1,4-Pentadiene Derivatives: A Nuclear Overhauser Effect Spectroscopy Investigation. Int J Mol Sci 2023; 24:16707. [PMID: 38069031 PMCID: PMC10706324 DOI: 10.3390/ijms242316707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
1,5-Diaryl-3-Oxo-1,4-Pentadiene derivatives are intriguing organic compounds with a unique structure featuring a pentadiene core, aryl groups, and a ketone group. This study investigates the influence of fluorine atoms on the conformational features of these derivatives in deuterated chloroform (CDCl3) solution. Through nuclear magnetic resonance (NMR) spectroscopy and quantum chemical calculations, we discerned variations in interatomic distances and established predominant conformer proportions. The findings suggest that the non-fluorinated entity exhibits a uniform distribution across various conformer groups. The introduction of a fluorine atom induces substantial alterations, resulting in the predominance of a specific conformer group. This structural insight may hold the key to their diverse anticancer activities, previously reported in the literature.
Collapse
Affiliation(s)
- Konstantin Belov
- G.A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences, 153045 Ivanovo, Russia; (K.B.); (V.S.); (I.F.)
| | - Valery Brel
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 119334 Moscow, Russia;
| | - Valentina Sobornova
- G.A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences, 153045 Ivanovo, Russia; (K.B.); (V.S.); (I.F.)
| | - Irina Fedorova
- G.A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences, 153045 Ivanovo, Russia; (K.B.); (V.S.); (I.F.)
| | - Ilya Khodov
- G.A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences, 153045 Ivanovo, Russia; (K.B.); (V.S.); (I.F.)
| |
Collapse
|
2
|
Taiwo KM, Nam H, LeBlanc RM, Longhini AP, Dayie TK. Cross-correlated relaxation rates provide facile exchange signature in selectively labeled RNA. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2022; 342:107245. [PMID: 35908529 DOI: 10.1016/j.jmr.2022.107245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 05/21/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Gerhard Wagner has made numerous contributions to NMR spectroscopy, particularly his developments in the field of spin-relaxation stand out in directly mapping the spectral density functions of proteins. He and his group developed experimental techniques to reveal the importance of dynamics to protein biological function and drug discovery. On his 75th birthday, we take this opportunity to highlight how some of those seminal ideas developed for proteins are being extended to RNAs. The role of dynamics in the structure and function of RNA has been a major interest in drug design and therapeutics. Here we present the use of cross-correlated relaxation rates (ηxy) from anti-TROSY (R2α) and TROSY (R2β) to rapidly obtain qualitative information about the chemical exchange taking place within the bacterial and human A-site RNA system while reducing the sets of relaxation experiments required to map dynamics. We show that ηxy correlates with the order parameter which gives information on how flexible or rigid a residue is. We further show R2β/ηxy can rapidly be used to probe chemical exchange as seen from its agreement with Rex. In addition, we report the ability of R2β/ηxy to determine chemical exchange taking place within the bacterial A-site RNA during structural transitions at pH 6.2 and 6.5. Finally, comparison of the R2β/ηxy ratios indicates bacterial A-site has greater R2β/ηxy values for G19 (1.34 s-1), A20 (1.38 s-1), U23 (1.63 s-1) and C24 (1.51 s-1) than human A-site [A19 (0.76 s-1), A20 (1.01 s-1), U23 (0.74 s-1) and C24 (0.71 s-1)]. Taken together, we have shown that the chemical exchange can quickly be analyzed for RNA systems from cross-correlated relaxation rates.
Collapse
Affiliation(s)
- Kehinde M Taiwo
- Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, United States.
| | - Hyeyeon Nam
- Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, United States
| | - Regan M LeBlanc
- Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, United States
| | - Andrew P Longhini
- Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, United States
| | - Theodore K Dayie
- Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, United States.
| |
Collapse
|
3
|
Vögeli B, Vugmeyster L. Distance-independent Cross-correlated Relaxation and Isotropic Chemical Shift Modulation in Protein Dynamics Studies. Chemphyschem 2019; 20:178-196. [PMID: 30110510 PMCID: PMC9206835 DOI: 10.1002/cphc.201800602] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Indexed: 01/09/2023]
Abstract
Cross-correlated relaxation (CCR) in multiple-quantum coherences differs from other relaxation phenomena in its theoretical ability to be mediated across an infinite distance. The two interfering relaxation mechanisms may be dipolar interactions, chemical shift anisotropies, chemical shift modulations or quadrupolar interactions. These properties make multiple-quantum CCR an attractive probe for structure and dynamics of biomacromolecules not accessible from other measurements. Here, we review the use of multiple-quantum CCR measurements in dynamics studies of proteins. We compile a list of all experiments proposed for CCR rate measurements, provide an overview of the theory with a focus on protein dynamics, and present applications to various protein systems.
Collapse
Affiliation(s)
- Beat Vögeli
- Department of Biochemistry and Molecular Genetics, University of Colorado at Denver, 12801 East 17 Avenue, Aurora, CO 80045, United States
| | - Liliya Vugmeyster
- Department of Chemistry, University of Colorado at Denver, 1201 Laurimer Street Denver, CO 80204, United States
| |
Collapse
|
4
|
Ikeya T, Ban D, Lee D, Ito Y, Kato K, Griesinger C. Solution NMR views of dynamical ordering of biomacromolecules. Biochim Biophys Acta Gen Subj 2017; 1862:287-306. [PMID: 28847507 DOI: 10.1016/j.bbagen.2017.08.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/22/2017] [Accepted: 08/24/2017] [Indexed: 01/01/2023]
Abstract
BACKGROUND To understand the mechanisms related to the 'dynamical ordering' of macromolecules and biological systems, it is crucial to monitor, in detail, molecular interactions and their dynamics across multiple timescales. Solution nuclear magnetic resonance (NMR) spectroscopy is an ideal tool that can investigate biophysical events at the atomic level, in near-physiological buffer solutions, or even inside cells. SCOPE OF REVIEW In the past several decades, progress in solution NMR has significantly contributed to the elucidation of three-dimensional structures, the understanding of conformational motions, and the underlying thermodynamic and kinetic properties of biomacromolecules. This review discusses recent methodological development of NMR, their applications and some of the remaining challenges. MAJOR CONCLUSIONS Although a major drawback of NMR is its difficulty in studying the dynamical ordering of larger biomolecular systems, current technologies have achieved considerable success in the structural analysis of substantially large proteins and biomolecular complexes over 1MDa and have characterised a wide range of timescales across which biomolecular motion exists. While NMR is well suited to obtain local structure information in detail, it contributes valuable and unique information within hybrid approaches that combine complementary methodologies, including solution scattering and microscopic techniques. GENERAL SIGNIFICANCE For living systems, the dynamic assembly and disassembly of macromolecular complexes is of utmost importance for cellular homeostasis and, if dysregulated, implied in human disease. It is thus instructive for the advancement of the study of the dynamical ordering to discuss the potential possibilities of solution NMR spectroscopy and its applications. This article is part of a Special Issue entitled "Biophysical Exploration of Dynamical Ordering of Biomolecular Systems" edited by Dr. Koichi Kato.
Collapse
Affiliation(s)
- Teppei Ikeya
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 Minamiosawa, Hachioji, Tokyo 192-0373, Japan; CREST, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan.
| | - David Ban
- Department of Medicine, James Graham Brown Cancer Center, University of Louisville, 505 S. Hancock St., Louisville, KY 40202, USA
| | - Donghan Lee
- Department of Medicine, James Graham Brown Cancer Center, University of Louisville, 505 S. Hancock St., Louisville, KY 40202, USA
| | - Yutaka Ito
- Department of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 Minamiosawa, Hachioji, Tokyo 192-0373, Japan; CREST, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Koichi Kato
- Okazaki Institute for Integrative Bioscience and Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan; Graduate School of Pharmaceutical Sciences, Nagoya City University, Tanabe-dori 3-1, Mizuho-ku, Nagoya 467-8603, Japan
| | - Christian Griesinger
- Department of Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen 37077, Germany.
| |
Collapse
|
5
|
Villa A, Stock G. What NMR Relaxation Can Tell Us about the Internal Motion of an RNA Hairpin: A Molecular Dynamics Simulation Study. J Chem Theory Comput 2015; 2:1228-36. [PMID: 26626832 DOI: 10.1021/ct600160z] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Classical molecular dynamics simulations of a 14-mer UUCG RNA hairpin are performed to study its conformational dynamics and corresponding NMR relaxation parameters. The direct calculation of the relaxation rates from the trajectory yields good agreement with experiment, indicating the validity of the theoretical model. Various ways to provide a link between theory and experiment are considered, including the "model-free approach" of Lipari and Szabo and Gaussian axial fluctuation model of Brüschweilwer. It is studied if the underlying assumptions of these approaches are satisfied in the case of a flexible RNA hairpin. Being consistent with the analysis of the NMR experiments, Lipari-Szabo fits of the first 100 or 1000 ps of the internal correlation functions lead to a nice agreement between calculated and experimental order parameters and internal correlation times. Finally, the relation between NMR order parameters and the underlying internal motion of the RNA hairpin is discussed in detail. A principal component analysis reveals that the principal motions of the molecule account only partially for the measured NMR order parameters, because the latter are insensitive to internal dynamics occurring on a nanosecond time scale due to molecular tumbling.
Collapse
Affiliation(s)
- Alessandra Villa
- Institute for Physical and Theoretical Chemistry, J. W. Goethe University, Max-von-Laue-Strasse 7, 60438 Frankfurt am Main, Germany
| | - Gerhard Stock
- Institute for Physical and Theoretical Chemistry, J. W. Goethe University, Max-von-Laue-Strasse 7, 60438 Frankfurt am Main, Germany
| |
Collapse
|
6
|
Giambaşu GM, York DM, Case DA. Structural fidelity and NMR relaxation analysis in a prototype RNA hairpin. RNA (NEW YORK, N.Y.) 2015; 21:963-74. [PMID: 25805858 PMCID: PMC4408802 DOI: 10.1261/rna.047357.114] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 01/17/2015] [Indexed: 05/16/2023]
Abstract
RNA hairpins are widespread and very stable motifs that contribute decisively to RNA folding and biological function. The GTP1G2C3A4C5U6U7C8G9G10U11G12C13C14 construct (with a central UUCG tetraloop) has been extensively studied by solution NMR, and offers and excellent opportunity to evaluate the structure and dynamical description afforded by molecular dynamics (MD) simulations. Here, we compare average structural parameters and NMR relaxation rates estimated from a series of multiple independent explicit solvent MD simulations using the two most recent RNA AMBER force fields (ff99 and ff10). Predicted overall tumbling times are ∼20% faster than those inferred from analysis of NMR data and follow the same trend when temperature and ionic strength is varied. The Watson-Crick stem and the "canonical" UUCG loop structure are maintained in most simulations including the characteristic syn conformation along the glycosidic bond of G9, although some key hydrogen bonds in the loop are partially disrupted. Our analysis pinpoints G9-G10 backbone conformations as a locus of discrepancies between experiment and simulation. In general the results for the more recent force-field parameters (ff10) are closer to experiment than those for the older ones (ff99). This work provides a comprehensive and detailed comparison of state of the art MD simulations against a wide variety of solution NMR measurements.
Collapse
Affiliation(s)
- George M Giambaşu
- BioMaPS Institute for Quantitative Biology and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Darrin M York
- BioMaPS Institute for Quantitative Biology and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, USA
| | - David A Case
- BioMaPS Institute for Quantitative Biology and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, USA
| |
Collapse
|
7
|
Toukach FV, Ananikov VP. Recent advances in computational predictions of NMR parameters for the structure elucidation of carbohydrates: methods and limitations. Chem Soc Rev 2013; 42:8376-415. [DOI: 10.1039/c3cs60073d] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
8
|
Fonville JM, Swart M, Vokáčová Z, Sychrovský V, Šponer JE, Šponer J, Hilbers CW, Bickelhaupt FM, Wijmenga SS. Chemical shifts in nucleic acids studied by density functional theory calculations and comparison with experiment. Chemistry 2012; 18:12372-87. [PMID: 22899588 DOI: 10.1002/chem.201103593] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Indexed: 11/10/2022]
Abstract
NMR chemical shifts are highly sensitive probes of local molecular conformation and environment and form an important source of structural information. In this study, the relationship between the NMR chemical shifts of nucleic acids and the glycosidic torsion angle, χ, has been investigated for the two commonly occurring sugar conformations. We have calculated by means of DFT the chemical shifts of all atoms in the eight DNA and RNA mono-nucleosides as a function of these two variables. From the DFT calculations, structures and potential energy surfaces were determined by using constrained geometry optimizations at the BP86/TZ2P level of theory. The NMR parameters were subsequently calculated by single-point calculations at the SAOP/TZ2P level of theory. Comparison of the (1)H and (13)C NMR shifts calculated for the mono-nucleosides with the shifts determined by NMR spectroscopy for nucleic acids demonstrates that the theoretical shifts are valuable for the characterization of nucleic acid conformation. For example, a clear distinction can be made between χ angles in the anti and syn domains. Furthermore, a quantitative determination of the χ angle in the syn domain is possible, in particular when (13)C and (1)H chemical shift data are combined. The approximate linear dependence of the C1' shift on the χ angle in the anti domain provides a good estimate of the angle in this region. It is also possible to derive the sugar conformation from the chemical shift information. The DFT calculations reported herein were performed on mono-nucleosides, but examples are also provided to estimate intramolecularly induced shifts as a result of hydrogen bonding, polarization effects, or ring-current effects.
Collapse
Affiliation(s)
- Judith M Fonville
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Sychrovský V, Sochorová Vokáčová Z, Trantírek L. Guanine bases in DNA G-quadruplex adopt nonplanar geometries owing to solvation and base pairing. J Phys Chem A 2012; 116:4144-51. [PMID: 22471881 DOI: 10.1021/jp2110049] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The effect of base pairing and solvation on pyramidalization of the glycosidic nitrogen found in the residues of parallel G-quadruplex with NDB ID UDF062 is analyzed and explained with theoretical calculations. The extent of the pyramidalization depends on the local geometry of the 2'-deoxyguanosine residues, namely on their glycosidic torsion and sugar pucker, which are predetermined by the 3D-architecture of G-quadruplex. Pyramidal inversion of the glycosidic nitrogen found in 2'-deoxyguanosines of G-quadruplex is induced owing to site-specifically coordinated solvent. Different adiabatic structural constraints used for fixing the base-to-sugar orientation of 2'-deoxyguanosine in geometry optimizations result in different extents of pyramidalization and induce pyramidal inversion of the glycosidic nitrogen. These model geometry constraints helped us analyze the effect of real constraints represented by explicit molecular environment of selected residues of the G-quadruplex. The maximal extent of the glycosidic nitrogen pyramidalization found in the high-resolution crystal structure corresponds to the calculation to deformation energy of only 1 kcal mol(-1). The out-of-plane deformations of nucleobases thus provide a way for compensating the site-specific external environmental stress on the G-quadruplex.
Collapse
Affiliation(s)
- Vladimír Sychrovský
- Institute of Organic Chemistry and Biochemistry, v.v.i., Academy of Sciences of the Czech Republic, Flemingovo square 2, 166 10 Prague 6, Czech Republic.
| | | | | |
Collapse
|
10
|
Benda L, Sochorová Vokáčová Z, Straka M, Sychrovský V. Correlating the 31P NMR chemical shielding tensor and the 2J(P,C) spin-spin coupling constants with torsion angles ζ and α in the backbone of nucleic acids. J Phys Chem B 2012; 116:3823-33. [PMID: 22380464 DOI: 10.1021/jp2099043] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Determination of nucleic acid (NA) structure with NMR spectroscopy is limited by the lack of restraints on conformation of NA phosphate. In this work, the (31)P chemical shielding tensor, the Γ(P,C5'H5'1) and Γ(P,C5'H5'2) cross-correlated relaxation rates, and the (2)J(P,C3'), (2)J(P,C5'), and (3)J(P,C4') coupling constants were calculated in dependence on NA backbone torsion angles ζ and α. While the orientation of the (31)P chemical shielding tensor was almost independent of the NA phosphate conformation, the principal tensor components varied by up to ~40 ppm. This variation and the dependence of the phosphate geometry on torsion angles ζ and α had only a minor influence on the calculated Γ(P,C5'H5'1) and Γ(P,C5'H5'2) cross-correlated relaxation rates, and therefore, the so-called rigid tensor approximation was here validated. For the first time, the (2)J(P,C) spin-spin coupling constants were correlated with the conformation of NA phosphate. Although each of the two J-couplings was significantly modulated by both torsions ζ and α, the (2)J(P,C3') coupling could be structurally assigned to torsion ζ and the (2)J(P,C5') coupling to torsion α. We propose qualitative rules for their structural interpretation as loose restraints on torsion angles ζ and α. The (3)J(P,C4') coupling assigned to torsion angle β was found dependent also on torsions ζ and α, implying that the uncertainty in determination of β with standard Karplus curves could be as large as ~25°. The calculations provided a unified picture of NMR parameters applicable for the determination of NA phosphate conformation.
Collapse
Affiliation(s)
- Ladislav Benda
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, vvi, Prague, Czech Republic.
| | | | | | | |
Collapse
|
11
|
Nozinovic S, Gupta P, Fürtig B, Richter C, Tüllmann S, Duchardt-Ferner E, Holthausen MC, Schwalbe H. Determination of the Conformation of the 2′OH Group in RNA by NMR Spectroscopy and DFT Calculations. Angew Chem Int Ed Engl 2011; 50:5397-400. [DOI: 10.1002/anie.201007844] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Indexed: 01/04/2023]
|
12
|
Nozinovic S, Gupta P, Fürtig B, Richter C, Tüllmann S, Duchardt-Ferner E, Holthausen MC, Schwalbe H. Konformationsbestimmung der 2′OH-Gruppe in RNA durch NMR-Spektroskopie und Dichtefunktionalrechnungen. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201007844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
13
|
Roldós V, Cañada FJ, Jiménez-Barbero J. Carbohydrate-Protein Interactions: A 3D View by NMR. Chembiochem 2011; 12:990-1005. [DOI: 10.1002/cbic.201000705] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Indexed: 12/29/2022]
|
14
|
Nozinovic S, Richter C, Rinnenthal J, Fürtig B, Duchardt-Ferner E, Weigand JE, Schwalbe H. Quantitative 2D and 3D Gamma-HCP experiments for the determination of the angles alpha and zeta in the phosphodiester backbone of oligonucleotides. J Am Chem Soc 2010; 132:10318-29. [PMID: 20614918 DOI: 10.1021/ja910015n] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The quantitative Gamma-(HCP) experiment, a novel heteronuclear NMR pulse sequence for the determination of the RNA backbone angles alpha(O3'(i-1)-P(i)-O5'(i)-C5'(i)) and zeta(C3'(i)-O3'(i)-P(i+1)-O5'(i+1)) in (13)C-labeled RNA, is introduced. The experiment relies on the interaction between the CH bond vector dipole and the (31)P chemical shift anisotropy (CSA), which affects the relaxation of the (13)C,(31)P double- and zero-quantum coherence and thus the intensity of the detectable magnetization. With the new pulse sequence, five different cross-correlated relaxation rates along the phosphodiester backbone can be measured in a quantitative manner, allowing projection-angle and torsion-angle restraints for the two backbone angles alpha and zeta to be extracted. Two versions of the pulse sequence optimized for the CH and CH(2) groups are introduced and demonstrated for a 14-mer cUUCGg tetraloop RNA model system and for a 27-mer RNA with a previously unknown structure. The restraints were incorporated into the calculation of a very high resolution structure of the RNA model system (Nozinovic, S.; et al. Nucleic Acids Res. 2010, 38, 683). Comparison with the X-ray structure of the cUUCGg tetraloop confirmed the high quality of the data, suggesting that the method can significantly improve the quality of RNA structure determination.
Collapse
Affiliation(s)
- Senada Nozinovic
- Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt am Main, Germany
| | | | | | | | | | | | | |
Collapse
|
15
|
Sychrovsky V, Foldynova-Trantirkova S, Spackova N, Robeyns K, Van Meervelt L, Blankenfeldt W, Vokacova Z, Sponer J, Trantirek L. Revisiting the planarity of nucleic acid bases: Pyramidilization at glycosidic nitrogen in purine bases is modulated by orientation of glycosidic torsion. Nucleic Acids Res 2010; 37:7321-31. [PMID: 19786496 PMCID: PMC2790901 DOI: 10.1093/nar/gkp783] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We describe a novel, fundamental property of nucleobase structure, namely, pyramidilization at the N1/9 sites of purine and pyrimidine bases. Through a combined analyses of ultra-high-resolution X-ray structures of both oligonucleotides extracted from the Nucleic Acid Database and isolated nucleotides and nucleosides from the Cambridge Structural Database, together with a series of quantum chemical calculations, molecular dynamics (MD) simulations, and published solution nuclear magnetic resonance (NMR) data, we show that pyramidilization at the glycosidic nitrogen is an intrinsic property. This property is common to isolated nucleosides and nucleotides as well as oligonucleotides—it is also common to both RNA and DNA. Our analysis suggests that pyramidilization at N1/9 sites depends in a systematic way on the local structure of the nucleoside. Of note, the pyramidilization undergoes stereo-inversion upon reorientation of the glycosidic bond. The extent of the pyramidilization is further modulated by the conformation of the sugar ring. The observed pyramidilization is more pronounced for purine bases, while for pyrimidines it is negligible. We discuss how the assumption of nucleic acid base planarity can lead to systematic errors in determining the conformation of nucleotides from experimental data and from unconstrained MD simulations.
Collapse
Affiliation(s)
- Vladimir Sychrovsky
- Institute of Organic Chemistry and Biochemistry AS CR, v.v.i. Flemingovo namesti 2, CZ, 16610 Prague, Czech Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Maliňáková K, Novosadová L, Lahtinen M, Kolehmainen E, Brus J, Marek R. 13C Chemical Shift Tensors in Hypoxanthine and 6-Mercaptopurine: Effects of Substitution, Tautomerism, and Intermolecular Interactions. J Phys Chem A 2010; 114:1985-95. [DOI: 10.1021/jp9100619] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kateřina Maliňáková
- National Center for Biomolecular Research, Masaryk University, Kamenice 5/A4, CZ-62500 Brno, Czech Republic, Department of Chemistry, University of Jyväskylä, P. O. Box 35, FIN-40014, Finland, and Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovského nám. 2, CZ-16206 Prague, Czech Republic
| | - Lucie Novosadová
- National Center for Biomolecular Research, Masaryk University, Kamenice 5/A4, CZ-62500 Brno, Czech Republic, Department of Chemistry, University of Jyväskylä, P. O. Box 35, FIN-40014, Finland, and Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovského nám. 2, CZ-16206 Prague, Czech Republic
| | - Manu Lahtinen
- National Center for Biomolecular Research, Masaryk University, Kamenice 5/A4, CZ-62500 Brno, Czech Republic, Department of Chemistry, University of Jyväskylä, P. O. Box 35, FIN-40014, Finland, and Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovského nám. 2, CZ-16206 Prague, Czech Republic
| | - Erkki Kolehmainen
- National Center for Biomolecular Research, Masaryk University, Kamenice 5/A4, CZ-62500 Brno, Czech Republic, Department of Chemistry, University of Jyväskylä, P. O. Box 35, FIN-40014, Finland, and Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovského nám. 2, CZ-16206 Prague, Czech Republic
| | - Jiří Brus
- National Center for Biomolecular Research, Masaryk University, Kamenice 5/A4, CZ-62500 Brno, Czech Republic, Department of Chemistry, University of Jyväskylä, P. O. Box 35, FIN-40014, Finland, and Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovského nám. 2, CZ-16206 Prague, Czech Republic
| | - Radek Marek
- National Center for Biomolecular Research, Masaryk University, Kamenice 5/A4, CZ-62500 Brno, Czech Republic, Department of Chemistry, University of Jyväskylä, P. O. Box 35, FIN-40014, Finland, and Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovského nám. 2, CZ-16206 Prague, Czech Republic
| |
Collapse
|
17
|
Nozinovic S, Fürtig B, Jonker HRA, Richter C, Schwalbe H. High-resolution NMR structure of an RNA model system: the 14-mer cUUCGg tetraloop hairpin RNA. Nucleic Acids Res 2009; 38:683-94. [PMID: 19906714 PMCID: PMC2811024 DOI: 10.1093/nar/gkp956] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
We present a high-resolution nuclear magnetic resonance (NMR) solution structure of a 14-mer RNA hairpin capped by cUUCGg tetraloop. This short and very stable RNA presents an important model system for the study of RNA structure and dynamics using NMR spectroscopy, molecular dynamics (MD) simulations and RNA force-field development. The extraordinary high precision of the structure (root mean square deviation of 0.3 A) could be achieved by measuring and incorporating all currently accessible NMR parameters, including distances derived from nuclear Overhauser effect (NOE) intensities, torsion-angle dependent homonuclear and heteronuclear scalar coupling constants, projection-angle-dependent cross-correlated relaxation rates and residual dipolar couplings. The structure calculations were performed with the program CNS using the ARIA setup and protocols. The structure quality was further improved by a final refinement in explicit water using OPLS force field parameters for non-bonded interactions and charges. In addition, the 2'-hydroxyl groups have been assigned and their conformation has been analyzed based on NOE contacts. The structure currently defines a benchmark for the precision and accuracy amenable to RNA structure determination by NMR spectroscopy. Here, we discuss the impact of various NMR restraints on structure quality and discuss in detail the dynamics of this system as previously determined.
Collapse
Affiliation(s)
- Senada Nozinovic
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt am Main, Germany
| | | | | | | | | |
Collapse
|
18
|
Benda L, Bour P, Müller N, Sychrovský V. Theoretical study of the effective Chemical Shielding Anisotropy (CSA) in peptide backbone, rating the impact of CSAs on the cross-correlated relaxations in L-alanyl-L-alanine. J Phys Chem B 2009; 113:5273-81. [PMID: 19301831 DOI: 10.1021/jp8105452] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The dependence of the effective chemical shielding anisotropy (effective CSA, Deltasigma(eff)) on the phi and psi peptide backbone torsion angles was calculated in the l-alanyl-l-alanine (LALA) peptide using the DFT method. The effects of backbone conformation, molecular charge including the cation, zwitterion, and anion forms of the LALA peptide, and the scaling taking into account the length of the dipolar vector were calculated for the effective CSAs in order to assess their structural behaviors and to predict their magnitudes which can be probed for the beta-sheet and alpha-helix backbone conformations via measurement of the cross-correlated relaxation rates (CCR rates). Twenty different CSA-DD cross-correlation mechanisms involving the amide nitrogen and carbonyl carbon chemical shielding tensors and the C(alpha)H(alpha) (alpha-carbon group), NH(N) (amide group), C(alpha)H(N), NH(alpha), C'H(alpha), and C'H(N) (alpha = alpha1, alpha2) dipolar vectors were investigated. The X-C(alpha)H(alpha) (X = N, C'; alpha = alpha1, alpha2) cross-correlations, which had already been studied experimentally, exhibited overall best performance of the calculated effective CSAs in the LALA molecule; they spanned the largest range of values upon variation of the psi and phi torsions and depended dominantly on only one of the two backbone torsion angles. The X-NH(N) (X = N, C') cross-correlations, which had been also probed experimentally, depended on both backbone torsions, which makes their structural assignment more difficult. The N-NH(alpha2) and N-C'H(alpha1) cross-correlations were found to be promising for the determination of various backbone conformations due to the large calculated range of the scaled effective CSA values and due to their predominant dependence on the psi and phi torsions, respectively. The 20 calculated dependencies of effective CSAs on the two backbone torsion angles can facilitate the structural interpretation of CCR rates.
Collapse
Affiliation(s)
- Ladislav Benda
- Institute of Organic Chemistry and Biochemistry v.v.i., Academy of Sciences of the Czech Republic, Flemingovo nam. 2, 166 10 Praha 6, Czech Republic
| | | | | | | |
Collapse
|
19
|
Brumovská E, Sychrovský V, Vokácová Z, Sponer J, Schneider B, Trantírek L. Effect of local sugar and base geometry on 13C and 15N magnetic shielding anisotropy in DNA nucleosides. JOURNAL OF BIOMOLECULAR NMR 2008; 42:209-223. [PMID: 18853259 DOI: 10.1007/s10858-008-9278-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Revised: 09/17/2008] [Accepted: 09/17/2008] [Indexed: 05/26/2023]
Abstract
Density functional theory was employed to study the dependence of 13C and 15N magnetic shielding tensors on the glycosidic torsion angle (chi) and conformation of the sugar ring in 2'-deoxyadenosine, 2'-deoxyguanosine, 2'-deoxycytidine, and 2'-deoxythymidine. In general, the magnetic shielding of the glycosidic nitrogens and the sugar carbons was found to depend on both the conformation of the sugar ring and chi. Our calculations indicate that the magnetic shielding anisotropy of the C6 atom in pyrimidine and the C8 atom in purine bases depends strongly on chi. The remaining base carbons were found to be insensitive to both sugar pucker and chi re-orientation. These results call into question the underlying assumptions of currently established methods for interpreting residual chemical shift anisotropies and 13C and 15N auto- and cross-correlated relaxation rates and highlight possible limitations of DNA applications of these methods.
Collapse
Affiliation(s)
- Eva Brumovská
- Faculty of Science, University of South Bohemia and Biology Centre AS CR v.v.i., Branisovská 31, 370 05, Ceské Budejovice, Czech Republic
| | | | | | | | | | | |
Collapse
|
20
|
Abstract
This chapter reviews the methodologies for RNA structure determination by liquid-state nuclear magnetic resonance (NMR). The routine production of milligram quantities of isotopically labeled RNA remains critical to the success of NMR-based structure studies. The standard method for the preparation of isotopically labeled RNA for structural studies in solution is in vitro transcription from DNA oligonucleotide templates using T7 RNA polymerase and unlabeled or isotopically labeled nucleotide triphosphates (NTPs). The purification of the desired RNA can be performed by either denaturing polyacrylamide gel electrophoresis (PAGE) or anion-exchange chromatography. Our basic strategy for studying RNA in solution by NMR is outlined. The topics covered include RNA resonance assignment, restraint collection, and the structure calculation process. Selected examples of NMR spectra are given for a correctly folded 30 nucleotide-containing RNA.
Collapse
|
21
|
Rinnenthal J, Richter C, Ferner J, Duchardt E, Schwalbe H. Quantitative gamma-HCNCH: determination of the glycosidic torsion angle chi in RNA oligonucleotides from the analysis of CH dipolar cross-correlated relaxation by solution NMR spectroscopy. JOURNAL OF BIOMOLECULAR NMR 2007; 39:17-29. [PMID: 17641824 DOI: 10.1007/s10858-007-9167-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2007] [Revised: 05/22/2007] [Accepted: 05/22/2007] [Indexed: 05/16/2023]
Abstract
A novel NMR pulse sequence is introduced to determine the glycosidic torsion angle chi in (13)C,(15)N-labeled oligonucleotides. The quantitative Gamma-HCNCH measures the dipolar cross-correlated relaxation rates Gamma(DD,DD)(C8H8,C1'H1') (pyrimidines) and Gamma(DD,DD)(C6H6,C1'H1') (purines). Cross-correlated relaxation rates of a (13)C,(15)N-labeled RNA 14mer containing a cUUCGg tetraloop were determined and yielded chi-angles that agreed remarkably well with data derived from the X-ray structure of the tetraloop. In addition, the method was applied to the larger stemloop D (SLD) subdomain of the Coxsackievirus B3 cloverleaf 30mer RNA and the effect of anisotropic rotational motion was examined for this molecule. It could be shown that the chi-angle determination especially for nucleotides in the anti conformation was very accurate and the method was ideally suited to distinguish between the syn and the anti-conformation of all four types of nucleotides.
Collapse
Affiliation(s)
- Jörg Rinnenthal
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, Johann Wolfgang Goethe-University, Max-von-Laue-Strasse 7, 60438 Frankfurt/Main, Germany
| | | | | | | | | |
Collapse
|
22
|
Hansen AL, Al-Hashimi HM. Insight into the CSA tensors of nucleobase carbons in RNA polynucleotides from solution measurements of residual CSA: towards new long-range orientational constraints. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2006; 179:299-307. [PMID: 16431143 DOI: 10.1016/j.jmr.2005.12.012] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2005] [Revised: 12/30/2005] [Accepted: 12/31/2005] [Indexed: 05/06/2023]
Abstract
Using residual chemical shift anisotropies (RCSAs) measured in a weakly aligned stem-loop RNA, we examined the carbon chemical shift anisotropy (CSA) tensors of nucleobase adenine C2, pyrimidine C5 and C6, and purine C8. The differences between the measured RCSAs and the values back-calculated using three nucleobase carbon CSA sets [D. Stueber, D.M. Grant, 13C and 15N chemical shift tensors in adenosine, guanosine dihydrate, 2'-deoxythymidine, and cytidine, J. Am. Chem. Soc. 124 (2002) 10539-10551; D. Sitkoff, D.A. Case, Theories of chemical shift anisotropies in proteins and nucleic acids, Prog. NMR Spectrosc. 32 (1998) 165-190; R. Fiala, J. Czernek, V. Sklenar, Transverse relaxation optimized triple-resonance NMR experiments for nucleic acids, J. Biomol. NMR 16 (2000) 291-302] reported previously for mononucleotides (1.4 Hz) is significantly smaller than the predicted RCSA range (-10-10 Hz) but remains larger than the RCSA measurement uncertainty (0.8 Hz). Fitting of the traceless principal CSA values to the measured RCSAs using a grid search procedure yields a cytosine C5 CSA magnitude (CSAa=(3/2.(delta11(2)+delta22(2)+delta33(2)))1/2=173+/-21 ppm), which is significantly higher than the reported mononucleotide values (131-138 ppm) and a guanine C8 CSAa (148+/-13 ppm) that is in very good agreement with the mononucleotide value reported by solid-state NMR [134 ppm, D. Stueber, D.M. Grant, 13C and (15)N chemical shift tensors in adenosine, guanosine dihydrate, 2'-deoxythymidine, and cytidine, J. Am. Chem. Soc. 124 (2002) 10539-10551]. Owing to a unique sensitivity to directions normal to the base plane, the RCSAs can be translated into useful long-range orientational constraints for RNA structure determination even after allowing for substantial uncertainty in the nucleobase carbon CSA tensors.
Collapse
Affiliation(s)
- Alexandar L Hansen
- Department of Chemistry and Biophysics Research Division, The University of Michigan, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
23
|
Al-Hashimi HM. Dynamics-based amplification of RNA function and its characterization by using NMR spectroscopy. Chembiochem 2006; 6:1506-19. [PMID: 16138302 DOI: 10.1002/cbic.200500002] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The ever-increasing cellular roles ascribed to RNA raise fundamental questions regarding how a biopolymer composed of only four chemically similar building-block nucleotides achieves such functional diversity. Here, I discuss how RNA achieves added mechanistic and chemical complexity by undergoing highly controlled conformational changes in response to a variety of cellular signals. I examine pathways for achieving selectivity in these conformational changes that rely to different extents on the structure and dynamics of RNA. Finally, I review solution-state NMR techniques that can be used to characterize RNA structural dynamics and its relationship to function.
Collapse
Affiliation(s)
- Hashim M Al-Hashimi
- Department of Chemistry and Biophysics Research Division, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
24
|
Sychrovský V, Müller N, Schneider B, Smrecki V, Spirko V, Sponer J, Trantírek L. Sugar pucker modulates the cross-correlated relaxation rates across the glycosidic bond in DNA. J Am Chem Soc 2006; 127:14663-7. [PMID: 16231919 DOI: 10.1021/ja050894t] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The dependence of N1/9 and C1' chemical shielding (CS) tensors on the glycosidic bond orientation (chi) and sugar pucker (P) in the DNA nucleosides 2'-deoxyadenosine, 2'-deoxyguanosine, 2'-deoxycytidine, and 2'-deoxythymidine was studied using the calculation methods of quantum chemistry. The results indicate that these CS-tensors exhibit a significant degree of conformational dependence on chi and P structural parameters. The presented data test underlying assumptions of currently established methods for interpretation of cross-correlated relaxation rates between the N1/9 chemical shielding tensor and C1'-H1' dipole-dipole (Ravindranathan et al. J. Biomol. NMR 2003, 27, 365-75. Duchardt et al. J. Am. Chem. Soc. 2004, 126, 1962-70) and highlight possible limitations of these methods when applied to DNA.
Collapse
Affiliation(s)
- Vladimír Sychrovský
- Institute of Organic Chemistry and Biochemistry AS CR, Prague, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
25
|
Pichumani K, Chandra T, Zou X, Brown KL. Cross-Correlated Relaxation between H1‘ Chemical Shift Anisotropy and H1‘−H2‘ Dipolar Relaxation Mechanisms in Ribonucleosides: Application to the Characterization of Their Anomeric Configuration. J Phys Chem B 2005; 110:5-8. [PMID: 16471486 DOI: 10.1021/jp055774m] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cross-correlated nuclear spin relaxation between 1H chemical shift anisotropy (CSA) and 1H-1H dipolar relaxation mechanisms in ribonucleosides in solution phase are observed and used to identify their anomeric configuration. Only alpha-ribonucleosides showed the presence of cross-correlated spin relaxation through differential spin-lattice relaxation (T1) of the H1' doublet. Dependence of the magnitude and the orientation of the H1' CSA tensor values on the glycosidic torsion angle and the fast time-scale internal motions present in the ribose moiety play a significant role in the characterization of the anomeric configuration of the nucleosides via cross-correlated relaxation.
Collapse
Affiliation(s)
- Kumar Pichumani
- Department of Chemistry and Biochemistry, Ohio University, Athens, Ohio 45701, USA
| | | | | | | |
Collapse
|
26
|
Van Melckebeke H, Pardi A, Boisbouvier J, Simorre JP, Brutscher B. Resolution-enhanced base-type-edited HCN experiment for RNA. JOURNAL OF BIOMOLECULAR NMR 2005; 32:263-71. [PMID: 16211480 DOI: 10.1007/s10858-005-8872-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2005] [Accepted: 06/07/2005] [Indexed: 05/04/2023]
Abstract
New base-type-edited transverse-relaxation optimized CT-HCN(C) experiments are presented that yield intra-base and sugar-to-base correlations for 13C-15N labeled RNA. High spectral resolution in the 13C and 15N dimensions is achieved by constant time (CT) frequency editing. A spectral editing filter applied during the CT 15N labeling period separates the correlation peaks arising from G/U and A/C nucleotide bases. This provides the increased spectral resolution required to unambiguously connect the 1H and 13C resonances in sugar and base moieties of RNA nucleotides. In addition, the experiment allows base type identification for each residue, and therefore presents an attractive spectroscopic alternative to nucleotide-specific isotope labeling. Application to a 33-nucleotide RNA aptamer demonstrates the performance of the new pulse scheme.
Collapse
Affiliation(s)
- Hélène Van Melckebeke
- Laboratoire de RMN, Institut de Biologie Structurale--Jean-Pierre Ebel, UMR, 5075 CNRS-CEA-UJF, 41, rue Jules Horowitz, 38027, Cedex, Grenoble, France
| | | | | | | | | |
Collapse
|
27
|
Loth K, Pelupessy P, Bodenhausen G. Chemical Shift Anisotropy Tensors of Carbonyl, Nitrogen, and Amide Proton Nuclei in Proteins through Cross-Correlated Relaxation in NMR Spectroscopy. J Am Chem Soc 2005; 127:6062-8. [PMID: 15839707 DOI: 10.1021/ja042863o] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The principal components and orientations of the chemical shift anisotropy (CSA) tensors of the carbonyl (C'), nitrogen (N), and amide proton (H(N)) nuclei of 64 distinct amide bonds in human ubiquitin have been determined in isotropic solution by a set of 14 complementary auto- and cross-correlated relaxation rates involving the CSA interactions of the nuclei of interest and several dipole-dipole (DD) interactions. The CSA parameters thus obtained depend to some degree on the models used for local motions. Three cases have been considered: restricted isotropic diffusion, three-dimensional Gaussian axial fluctuations (3D-GAF), and independent out-of-plane motions of the NH(N) vectors with respect to the peptide planes.
Collapse
Affiliation(s)
- Karine Loth
- Département de Chimie, Associé au CNRS, Ecole Normale Supérieure, 24 rue Lhomond, 75231 Paris Cedex 05, France
| | | | | |
Collapse
|
28
|
Abstract
The application of techniques based on magnetic resonance, specifically electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR), has provided a wealth of new information on RNA structures, as well as insights into the dynamics and function of these important biomolecules. NMR spectroscopy is very successful for determining the solution structures of small RNA domains, aptamers and ribozymes, and exploring their intramolecular dynamics and interactions with ligands. EPR-based methods have been used to map local dynamic and structural features of RNA, to explore different modes of RNA-ligand interaction, to obtain long-range structural restraints and to probe metal-ion-binding sites.
Collapse
Affiliation(s)
- Peter Z Qin
- Department of Chemistry, University of Southern California, LJS-251, 840 Downey Way, Los Angeles, California 90089-0744, USA.
| | | |
Collapse
|
29
|
Prestegard JH, Bougault CM, Kishore AI. Residual Dipolar Couplings in Structure Determination of Biomolecules. Chem Rev 2004; 104:3519-40. [PMID: 15303825 DOI: 10.1021/cr030419i] [Citation(s) in RCA: 340] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- J H Prestegard
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA.
| | | | | |
Collapse
|