1
|
Williams DR, Okha FM, Ward SA. Studies Toward the Synthesis of Leiodolide A. Org Lett 2025; 27:2279-2283. [PMID: 40044593 DOI: 10.1021/acs.orglett.5c00208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Studies have described a highly convergent plan toward the synthesis of leiodolide A (1), a potent cytotoxic sponge metabolite. The enantiocontrolled preparation of aldehyde 6 is achieved with the application of several advances in methodology for the synthesis of substituted 1,3-oxazoles. Efforts have examined the halogen dance reaction, the selectivity of Stille cross coupling reactions of 4-bromo-1,3-oxazoles, and nucleophilic displacement of the 2-phenylsulfonyl substituent with organolithium reagents as preparatively useful reactions. These techniques have facilitated the efficient synthesis of 6 from the starting bromide 12, alkenylstannane 16, and the primary nonracemic alcohol 25.
Collapse
Affiliation(s)
- David R Williams
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Fese M Okha
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Sarah A Ward
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
2
|
Lin F, Tang R, Liu S, Tan Y. Recent advances in the synthetic applications of nitrosoarene chemistry. Org Biomol Chem 2025; 23:1253-1291. [PMID: 39692149 DOI: 10.1039/d4ob01654h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Nitroso groups are widely present in biologically active compounds in medicinal chemistry, and nitroso compounds serve as important building blocks in organic chemistry and materials science. Nitrosoarenes, in particular, showcase remarkable versatility, functioning as both electrophilic and nucleophilic reagents in a broad spectrum of organic reactions, thereby holding significant relevance in organic chemistry. This review aims to provide a comprehensive overview of the latest advancements in nitrosoarene reactions spanning a decade. Special attention is given to the synthesis of products derived from nitrosoarenes and the conditions that promote these reactions, as well as the type of catalysts. The exploration covers various facets of nitrosoarene chemistry, including cyclization, reactions involving attacks at the oxygen or nitrogen terminus, dimerization, rearrangement, coordination, and other significant reactions. By delving into these diverse reaction pathways and mechanisms, this review aspires to serve as a valuable resource for researchers seeking to deepen their understanding of nitrosoarene chemistry and its applications in both fundamental and applied scientific research.
Collapse
Affiliation(s)
- Feng Lin
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China.
| | - Rongzhi Tang
- School of Energy and Environment, City University of Hong Kong, Kowloon 999077, Hong Kong, China
| | - Sheng Liu
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China.
- The Key Lab of Low-Carbon Chemistry & Energy Conservation of Guangdong, China
| | - Yu Tan
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China.
| |
Collapse
|
3
|
Nakashima Y, Rakumitsu K, Ishikawa H. Recent advances in the total synthesis of alkaloids using chiral secondary amine organocatalysts. Org Biomol Chem 2024; 22:9319-9341. [PMID: 39512145 DOI: 10.1039/d4ob01590h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Since the early 21st century, organocatalytic reactions have undergone significant advancements. Notably, numerous asymmetric reactions utilizing chiral secondary amine catalysts have been developed and applied in the total synthesis of natural products. In this review, we provide an overview of alkaloid syntheses reported since 2017, categorized by scaffold, with a focus on key steps involving asymmetric reactions catalyzed by secondary amine organocatalysts.
Collapse
Affiliation(s)
- Yuta Nakashima
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan.
| | - Kenta Rakumitsu
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan.
| | - Hayato Ishikawa
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan.
| |
Collapse
|
4
|
Ervik K, Reinertsen AF, Koenis DS, Dalli J, Hansen TV. Stereoselective Synthesis, Pro-resolution, and Anti-inflammatory Actions of RvD5 n-3 DPA. JOURNAL OF NATURAL PRODUCTS 2023; 86:2546-2553. [PMID: 37879110 PMCID: PMC10683074 DOI: 10.1021/acs.jnatprod.3c00769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Indexed: 10/27/2023]
Abstract
The methyl ester of resolvin D5n-3 DPA, a lipid mediator biosynthesized from the omega-3 fatty acid n-3 docosapentaenoic acid, was stereoselectively prepared in 8% yield over 12 steps (longest linear sequence). The key steps for the introduction of the two stereogenic secondary alcohols were an organocatalyzed oxyamination and the Midland Alpine borane reduction. For the assembly of the carbon chain, the Sonogashira cross-coupling reaction and the Takai olefination were utilized. The physical properties, including retention time in liquid chromatography and tandem mass spectra, of the synthetic material were matched against material from human peripheral blood and mouse infectious exudates. Synthetic RvD5n-3 DPA, obtained just prior to biological experiments, displayed potent leukocyte-directed activities, upregulating the ability of neutrophils and macrophages to phagocytose bacteria, known as hallmark bioactions of specialized pro-resolving endogenous mediators.
Collapse
Affiliation(s)
- Karina Ervik
- Department
of Pharmacy, Section for Pharmaceutical Chemistry, University of Oslo, P.O. Box 1068, 0316 Oslo, Norway
| | - Amalie F. Reinertsen
- Department
of Pharmacy, Section for Pharmaceutical Chemistry, University of Oslo, P.O. Box 1068, 0316 Oslo, Norway
| | - Duco S. Koenis
- Lipid
Mediator Unit, Center for Biochemical Pharmacology, William Harvey
Research, Institute, Barts and The London School of Medicine, Queen Mary University of London Charterhouse Square, London EC1M 6BQ, U.K.
| | - Jesmond Dalli
- Lipid
Mediator Unit, Center for Biochemical Pharmacology, William Harvey
Research, Institute, Barts and The London School of Medicine, Queen Mary University of London Charterhouse Square, London EC1M 6BQ, U.K.
| | - Trond V. Hansen
- Department
of Pharmacy, Section for Pharmaceutical Chemistry, University of Oslo, P.O. Box 1068, 0316 Oslo, Norway
| |
Collapse
|
5
|
Kee Cheng J, Tan B. Chiral Phosphoric Acid-Catalyzed Enantioselective Synthesis of Axially Chiral Compounds Involving Indole Derivatives. CHEM REC 2023; 23:e202300147. [PMID: 37358342 DOI: 10.1002/tcr.202300147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/02/2023] [Indexed: 06/27/2023]
Abstract
Indoles are one of the most ubiquitous subclass of N-heterocycles and are increasingly incorporated to design new axially chiral scaffolds. The rich profile of reactivity and N-H functionality allow chemical derivatization for enhanced medicinal, material and catalytic properties. Although asymmetric C-C coupling of two arenes gives the most direct access of axially chiral biaryl scaffolds, this chemistry has been the remit of metal catalysis and works efficiently on limited substrates. Our group has devoted special interest in devising novel organocatalytic arylation reactions to fabricate biaryl atropisomers. In this realm, indoles and derivatives have been reliably used as the arylation partners in combination with azoarenes, nitrosonapthalenes and quinone derivatives. Their efficient interaction with chiral phosphoric acid catalyst as well as the tunability of electronics and sterics have enabled excellent control of stereo-, chemo- and regioselectivity to furnish diverse scaffolds. In addition, indoles could act as nucleophiles in desymmetrization of 1,2,4-triazole-3,5-diones. This account provides a succinct illustration of these developments.
Collapse
Affiliation(s)
- Jun Kee Cheng
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Bin Tan
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
6
|
Uwaso Y, Yokoyama N, Kano T. Synthesis of biphenyl-based chiral amine catalysts from dibromopyrenes and their application in enamine catalysis. Org Biomol Chem 2023; 21:6484-6487. [PMID: 37526571 DOI: 10.1039/d3ob01059g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Novel axially chiral biphenyl-based amine catalysts have been designed and synthesized from dibromopyrenes. These chiral amines function as effective catalysts for asymmetric reactions through enamine intermediates.
Collapse
Affiliation(s)
- Yuki Uwaso
- Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Naoki Yokoyama
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan.
| | - Taichi Kano
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan.
| |
Collapse
|
7
|
Aursnes M, Primdahl KG, Liwara D, Solum EJ. A Modular Strategy for the Synthesis of Dothideopyrones E and F, Secondary Metabolites from an Endolichenic Fungus. JOURNAL OF NATURAL PRODUCTS 2023; 86:804-811. [PMID: 37001015 PMCID: PMC10152449 DOI: 10.1021/acs.jnatprod.2c00991] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Indexed: 05/04/2023]
Abstract
Endolichenic fungi are a rich source of natural products with a wide range of potent bioactivities. Herein, syntheses of the two naturally occurring α-pyrones dothideopyrone E and F are presented. These natural products were isolated from a culture of the endolichenic fungus Dothideomycetes sp. EL003334. The outlined strategy includes a Fu-Suzuki akyl-alkyl cross-coupling, a MacMillan α-oxyamination, and a Sato's pericyclic cascade process to construct the 4-hydroxy-2-pyrone ring system. All the obtained data on the synthesized compounds matched with that of the isolated material.
Collapse
Affiliation(s)
- Marius Aursnes
- Department
of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, NO-1433 Ås, Norway
- Department
of Pharmacy, Section for Pharmaceutical Chemistry, University of Oslo, P.O. Box 1068, 0316 Oslo, Norway
| | - Karoline Gangestad Primdahl
- Department
of Pharmacy, Section for Pharmaceutical Chemistry, University of Oslo, P.O. Box 1068, 0316 Oslo, Norway
| | - David Liwara
- Department
of Chemistry, Faculty of Natural Sciences, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
- Ecole
Centrale de Marseille, 13013 Marseille, France
| | - Eirik Johansson Solum
- Department
of Chemistry, Faculty of Natural Sciences, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
- Faculty
of Health Sciences, Nord University, 8026 Bodø, Norway
| |
Collapse
|
8
|
Yang SQ, Han AJ, Liu Y, Tang XY, Lin GQ, He ZT. Catalytic Asymmetric Hydroalkoxylation and Formal Hydration and Hydroaminoxylation of Conjugated Dienes. J Am Chem Soc 2023; 145:3915-3925. [PMID: 36763785 DOI: 10.1021/jacs.2c11843] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
The straightforward construction of stereogenic centers bearing unprotected functional groups, as in nature, has been a persistent pursuit in synthetic chemistry. Abundant applications of free enantioenriched allyl alcohol and allyl hydroxylamine motifs have made the asymmetric hydration and hydroaminoxylation of conjugated dienes from water and hydroxylamine, respectively, intriguing and efficient routes that have, however, been unachievable thus far. A fundamental challenge is the failure to realize transition-metal-catalyzed enantioselective C-O bond constructions via hydrofunctionalization of conjugated dienes. Here, we perform a comprehensive study toward the stereoselective formal hydration and hydroaminoxylation of conjugated dienes by synthesizing a set of new P,N-ligands and identifying an aryl-derived oxime as a surrogate for both water and hydroxylamine. Asymmetric hydroalkoxylation with new P,N-ligands is also elucidated. Furthermore, versatile derivatizations following hydration provide indirect but concise routes to formal hydrophenoxylation, hydrofluoroalkoxylation, and hydrocarboxylation of conjugated dienes that have been unreported thus far. Finally, a ligand-to-ligand hydrogen transfer process is proposed based on the results of preliminary mechanistic experiments.
Collapse
Affiliation(s)
- Shao-Qian Yang
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Ai-Jun Han
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Yang Liu
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Xin-Yuan Tang
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Guo-Qiang Lin
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhi-Tao He
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
9
|
Han F, Zhang D, Salli S, Ye J, Li Y, Rosei F, Wen XD, Niemantsverdriet H, Richards E, Su R. Copper Cocatalyst Modulated Radical Generation for Selective Heterogeneous Photosynthesis of α-Haloketones. ACS Catal 2023; 13:248-255. [PMID: 36644650 PMCID: PMC9830627 DOI: 10.1021/acscatal.2c05189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/23/2022] [Indexed: 12/23/2022]
Abstract
The α-haloketones are important precursors for synthetic chemistry and pharmaceutical applications; however, their production relies heavily on traditional synthetic methods via halogenation of ketones that are toxic and environmentally risky. Here, we report a heterogeneous photosynthetic strategy of α-haloketone production from aromatic olefins using copper-modified graphitic carbon nitride (Cu-C3N4) under mild reaction conditions. By employing NiX2 (X = Cl, Br) as the halogen source, a series of α-haloketones can be synthesized using atmospheric air as the oxidant under visible-light irradiation. In comparison with pristine carbon nitride, the addition of Cu as a cocatalyst provides a moderate generation rate of halogen radicals and selective reduction of molecular oxygen into •OOH radicals, thus leading to a high selectivity to α-haloketones. The Cu-C3N4 also exhibits high stability and versatility, rendering it a promising candidate for solar-driven synthetic applications.
Collapse
Affiliation(s)
- Feiyu Han
- Soochow
Institute for Energy and Materials Innovations (SIEMIS), Soochow University, Suzhou, Jiangsu 215006, China,SynCat@Beijing, Synfuels China Technology Co. Ltd., Leyuan South Street II, No.1, Huairou, Beijing 101407, China
| | - Dongsheng Zhang
- Soochow
Institute for Energy and Materials Innovations (SIEMIS), Soochow University, Suzhou, Jiangsu 215006, China,SynCat@Beijing, Synfuels China Technology Co. Ltd., Leyuan South Street II, No.1, Huairou, Beijing 101407, China
| | - Sofia Salli
- School
of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, U.K.
| | - Jiani Ye
- Soochow
Institute for Energy and Materials Innovations (SIEMIS), Soochow University, Suzhou, Jiangsu 215006, China
| | - Yongwang Li
- SynCat@Beijing, Synfuels China Technology Co. Ltd., Leyuan South Street II, No.1, Huairou, Beijing 101407, China,State
Key Laboratory of Coal Conversion, Institute
of Coal Chemistry, CAS, Taiyuan 030001, China
| | - Federico Rosei
- Center
for Energy, Materials and Telecommunications, Institut National de la Recherche Scientifique, 1650 Boulevard Lionel-Boulet, Varennes, Québec J3X 1P7, Canada
| | - Xiao-Dong Wen
- SynCat@Beijing, Synfuels China Technology Co. Ltd., Leyuan South Street II, No.1, Huairou, Beijing 101407, China,State
Key Laboratory of Coal Conversion, Institute
of Coal Chemistry, CAS, Taiyuan 030001, China
| | - Hans Niemantsverdriet
- SynCat@Beijing, Synfuels China Technology Co. Ltd., Leyuan South Street II, No.1, Huairou, Beijing 101407, China,SynCat@DIFFER, Syngaschem BV, HH Eindhoven 6336, The
Netherlands
| | - Emma Richards
- School
of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, U.K.,
Emma Richards ()
| | - Ren Su
- Soochow
Institute for Energy and Materials Innovations (SIEMIS), Soochow University, Suzhou, Jiangsu 215006, China,SynCat@Beijing, Synfuels China Technology Co. Ltd., Leyuan South Street II, No.1, Huairou, Beijing 101407, China,Ren Su ()
| |
Collapse
|
10
|
First total synthesis of 4(R),17(R)-Resolvin D6 stereoisomer, a potent neuroprotective docosanoid. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Ramos De Dios SM, Tiwari VK, McCune CD, Dhokale RA, Berkowitz DB. Biomacromolecule-Assisted Screening for Reaction Discovery and Catalyst Optimization. Chem Rev 2022; 122:13800-13880. [PMID: 35904776 DOI: 10.1021/acs.chemrev.2c00213] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Reaction discovery and catalyst screening lie at the heart of synthetic organic chemistry. While there are efforts at de novo catalyst design using computation/artificial intelligence, at its core, synthetic chemistry is an experimental science. This review overviews biomacromolecule-assisted screening methods and the follow-on elaboration of chemistry so discovered. All three types of biomacromolecules discussed─enzymes, antibodies, and nucleic acids─have been used as "sensors" to provide a readout on product chirality exploiting their native chirality. Enzymatic sensing methods yield both UV-spectrophotometric and visible, colorimetric readouts. Antibody sensors provide direct fluorescent readout upon analyte binding in some cases or provide for cat-ELISA (Enzyme-Linked ImmunoSorbent Assay)-type readouts. DNA biomacromolecule-assisted screening allows for templation to facilitate reaction discovery, driving bimolecular reactions into a pseudo-unimolecular format. In addition, the ability to use DNA-encoded libraries permits the barcoding of reactants. All three types of biomacromolecule-based screens afford high sensitivity and selectivity. Among the chemical transformations discovered by enzymatic screening methods are the first Ni(0)-mediated asymmetric allylic amination and a new thiocyanopalladation/carbocyclization transformation in which both C-SCN and C-C bonds are fashioned sequentially. Cat-ELISA screening has identified new classes of sydnone-alkyne cycloadditions, and DNA-encoded screening has been exploited to uncover interesting oxidative Pd-mediated amido-alkyne/alkene coupling reactions.
Collapse
Affiliation(s)
| | - Virendra K Tiwari
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Christopher D McCune
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Ranjeet A Dhokale
- Higuchi Biosciences Center, University of Kansas, Lawrence, Kansas 66047, United States
| | - David B Berkowitz
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| |
Collapse
|
12
|
Skolia E, Gkizis PL, Kokotos CG. A sustainable photochemical aerobic sulfide oxidation: access to sulforaphane and modafinil. Org Biomol Chem 2022; 20:5836-5844. [PMID: 35838682 DOI: 10.1039/d2ob01066f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Sulfoxide-containing molecules are an important class of compounds in the pharmaceutical industry and many efforts have been made to develop new and green protocols, targeting the chemoselective transformation of sulfides into sulfoxides. Photochemistry is a rapidly expanding research field employing light as the energy source. Photochemical aerobic processes possess additional advantages to photochemistry and may find applications in the chemical industries. Herein, a 370 nm catalyst-free aerobic protocol was developed, using 2-Me-THF as the green solvent. At the same time, two low-catalyst-loading anthraquinone-based processes (under a CFL lamp or 427 nm irradiation) in 2-Me-THF were developed. Furthermore, a broad range of substrates was tested. We also implemented our protocols towards the synthesis of the pharmaceutical active ingredients (APIs) sulforaphane and modafinil.
Collapse
Affiliation(s)
- Elpida Skolia
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis 15771, Athens, Greece. .,Center of Excellence for Drug Design and Discovery, National and Kapodistrian University of Athens, Panepistimiopolis 15771, Athens, Greece
| | - Petros L Gkizis
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis 15771, Athens, Greece. .,Center of Excellence for Drug Design and Discovery, National and Kapodistrian University of Athens, Panepistimiopolis 15771, Athens, Greece
| | - Christoforos G Kokotos
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis 15771, Athens, Greece. .,Center of Excellence for Drug Design and Discovery, National and Kapodistrian University of Athens, Panepistimiopolis 15771, Athens, Greece
| |
Collapse
|
13
|
Nshimiyimana R, Lam TF, Aggarwal S, Serhan CN, Petasis NA. First stereoselective total synthesis of 4( S),5( S)-oxido-17( S)-hydroxy-6( E),8( E),10( Z),13( Z),15( E),19( Z)-docosahexaenoic acid, the biosynthetic precursor of resolvins D3 and D4. RSC Adv 2022; 12:11613-11618. [PMID: 35481084 PMCID: PMC9015894 DOI: 10.1039/d2ra01537d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 03/19/2022] [Indexed: 01/07/2023] Open
Abstract
The first total convergent synthesis of 4(S),5(S)-oxido-17(S)-hydroxy-6(E),8(E),10(Z),13(Z),15(E),19(Z)-docosahexaenoic acid (1) is described. The reported synthesis led to confirmation of the native epoxydocosahexaenoic acid as the biosynthetic precursor of lipid mediators resolvin D3 and resolvin D4. These potent enzymatic products of docosahexaenoic acid (DHA) are important signaling molecules in the resolution of inflammation. A stereocontrolled and chiral pool-based synthetic strategy was employed, with key features including epoxide transposition under basic conditions to form the oxirane ring, and a cis-selective Wittig reaction to secure the target docosahexaenoate backbone.
Collapse
Affiliation(s)
- Robert Nshimiyimana
- Department of Chemistry and Loker Hydrocarbon Research Institute, University of Southern CaliforniaLos AngelesCalifornia 90089USA
| | - Ting Fung Lam
- Department of Chemistry and Loker Hydrocarbon Research Institute, University of Southern CaliforniaLos AngelesCalifornia 90089USA
| | - Shubhangi Aggarwal
- Department of Chemistry and Loker Hydrocarbon Research Institute, University of Southern CaliforniaLos AngelesCalifornia 90089USA
| | - Charles N. Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Harvard Institutes of Medicine, Brigham and Women's Hospital and Harvard Medical SchoolBostonMassachusetts 02115USA
| | - Nicos A. Petasis
- Department of Chemistry and Loker Hydrocarbon Research Institute, University of Southern CaliforniaLos AngelesCalifornia 90089USA
| |
Collapse
|
14
|
Gupta E, Vaishanv NK, Kumar S, Purshottam RK, Kant R, Mohanan K. Organocatalytic asymmetric nitroso aldol reaction of α-substituted malonamates. Beilstein J Org Chem 2022; 18:217-224. [PMID: 35280951 PMCID: PMC8895028 DOI: 10.3762/bjoc.18.25] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 02/11/2022] [Indexed: 11/23/2022] Open
Abstract
A practical enantioselective N-selective nitroso aldol reaction of α-methylmalonamates with a nitrosoarene is reported. The reaction employs the Takemoto thiourea catalyst for the induction of enantioselectivity, and the corresponding optically active oxyaminated malonamates were obtained in reasonably good yields.
Collapse
Affiliation(s)
- Ekta Gupta
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram extension, Sitapur Road, P.O. Box 173, Lucknow 226031, India
| | - Narendra Kumar Vaishanv
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram extension, Sitapur Road, P.O. Box 173, Lucknow 226031, India
| | - Sandeep Kumar
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram extension, Sitapur Road, P.O. Box 173, Lucknow 226031, India
| | - Raja Krishnan Purshottam
- Sophisticated Analytical Instrument Facility CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram extension, Sitapur Road, P.O. Box 173, Lucknow 226031, India
| | - Ruchir Kant
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram extension, Sitapur Road, P.O. Box 173, Lucknow 226031, India
| | - Kishor Mohanan
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram extension, Sitapur Road, P.O. Box 173, Lucknow 226031, India
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| |
Collapse
|
15
|
Chevis PJ, Promchai T, Richardson C, Limtharakul T, Pyne SG. Synthesis of syn- and enantioenriched anti-β-amino alcohols by highly diastereoselective borono-Mannich allylation reactions. Chem Commun (Camb) 2022; 58:2220-2223. [PMID: 35072667 DOI: 10.1039/d1cc06775c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A highly diastereoselective method for the synthesis of syn-β-amino alcohols and enantioenriched anti-β-amino alcohols has been developed involving α-hydroxyl aldehydes and chiral α-phenylaminoxyaldehydes or α-benzoyloxyaldehydes, respectively in Petasis borono-Mannich allylation reactions. This study broadens the scope and utility of the Petasis reaction to include pinacol allylboronate and highlights its unique reactivity and stereochemical outcomes.
Collapse
Affiliation(s)
- Philip J Chevis
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, 2522, Australia.
| | - Thanika Promchai
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, 2522, Australia. .,Department of Chemistry, Faculty of Science and Research Center on Chemistry for Development of Health Promoting Products from Northern Resources, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Christopher Richardson
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, 2522, Australia.
| | - Thunwadee Limtharakul
- Department of Chemistry, Faculty of Science and Research Center on Chemistry for Development of Health Promoting Products from Northern Resources, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Stephen G Pyne
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, 2522, Australia.
| |
Collapse
|
16
|
Homma C, Kano T. Design and Synthesis of Phenylcyclopropane-based Chiral Amine Catalysts and Their Application in Asymmetric Reactions. J SYN ORG CHEM JPN 2022. [DOI: 10.5059/yukigoseikyokaishi.80.92] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Taichi Kano
- Department of Applied Chemistry, Tokyo University of Agriculture and Technology
| |
Collapse
|
17
|
Sansinenea E, Ortiz A. Asymmetric Organocatalytic Syntheses of Bioactive Compounds. Curr Org Synth 2022; 19:148-165. [DOI: 10.2174/1570179418666210728145206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/10/2021] [Accepted: 06/25/2021] [Indexed: 11/22/2022]
Abstract
Background:
The total syntheses of complex natural products have evolved to include new methodologies to save time, simplifying the form to achieve these natural compounds.
Objective:
In this review, we have described the asymmetric synthesis of different natural products and biologically active compounds of the last ten years until the current day.
Results:
An asymmetric organocatalytic reaction is a key to generate stereoselectively the main structure with the required stereochemistry.
Conclusion:
Even more remarkable, the organocatalytic cascade reactions, which are carried out with high stereoselectivity, as well as a possible approximation of the organocatalysts activation with sub-strates are also described.
Collapse
Affiliation(s)
- Estibaliz Sansinenea
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Aurelio Ortiz
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, México
| |
Collapse
|
18
|
Kerru N, Katari NK, Jonnalagadda SB. Critical trends in synthetic organic chemistry in terms of organocatalysis. PHYSICAL SCIENCES REVIEWS 2022. [DOI: 10.1515/psr-2021-0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The utilization of small organic compounds as catalysts has advanced rapidly, and organocatalysis has emerged as a dominant technique complementary to metal-catalyzed organic conversions. The organocatalysis field has enhanced the progression of innovative approaches to make varied chiral molecules. Researchers have placed enormous effort towards designing and blending simpler organocatalysts to synthesize enantioselective molecules in good yields. This work emphasized the impact of enamine, iminium, hydrogen bonding, and phase transfer organocatalysts in organic synthesis. The monograph focused on the crucial methods to construct valuable molecules with high enantiomeric purity.
Collapse
Affiliation(s)
- Nagaraju Kerru
- Department of Chemistry , GITAM School of Science, GITAM University, Bengaluru Campus , Karnataka 561203 , India
- School of Chemistry & Physics, University of KwaZulu-Natal, Westville Campus , Chiltern Hills , Durban 4000 , South Africa
| | - Naresh Kumar Katari
- Department of Chemistry , School of Science, GITAM deemed to be University , Hyderabad , Telangana 502329 , India
- School of Chemistry & Physics, University of KwaZulu-Natal, Westville Campus , Chiltern Hills , Durban 4000 , South Africa
| | - Sreekantha B. Jonnalagadda
- School of Chemistry & Physics, University of KwaZulu-Natal, Westville Campus , Chiltern Hills , Durban 4000 , South Africa
| |
Collapse
|
19
|
Pasuparthy SD, Maiti B. Enantioselective Organocatalytic Michael Addition Reactions Catalyzed by Proline/Prolinol/Supported Proline based Organocatalysts: An Overview. ChemistrySelect 2022. [DOI: 10.1002/slct.202104261] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Sai Deepak Pasuparthy
- Department of Chemistry School of Advanced Sciences Vellore Institute of Technology Vellore 632014 India
| | - Barnali Maiti
- Department of Chemistry School of Advanced Sciences Vellore Institute of Technology Vellore 632014 India
| |
Collapse
|
20
|
Chiral Ionic Liquids Based on l-Cysteine Derivatives for Asymmetric Aldol Reaction. Catalysts 2022. [DOI: 10.3390/catal12010047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Structure, and consequently properties, of ionic liquids can be easily tailored by changing cation/anion combinations and/or attaching functional groups. By grafting enantiopure moieties to the framework of ionic liquid it is possible to prepare bioinspired chiral molecules that can serve as a reaction medium, additive or even asymmetric catalyst. In this context, new chiral ionic liquids (CILs), based on biomolecules, such as aminoacids (l-Cysteine derivatives), have been synthesised and tested in asymmetric aldol condensation of aldehydes and ketones. The best results were obtained for CILs composed of S-methyl-l-cysteine cation and bis(trifluoromethane)sulfonimide anion, in the reaction of 2- or 4-nitrobenzaldehyde with acetone or cyclohexanone, giving the aldol product in moderate yields 70–76% and high ee values (up to 96%).
Collapse
|
21
|
Joseph V, Levine M. Ronald C.D. Breslow (1931-2017): A career in review. Bioorg Chem 2021; 115:104868. [PMID: 34523507 DOI: 10.1016/j.bioorg.2021.104868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/23/2021] [Indexed: 11/26/2022]
Abstract
Reviewed herein are key research accomplishments of Professor Ronald Charles D. Breslow (1931-2017) throughout his more than 60 year research career. These accomplishments span a wide range of topics, most notably physical organic chemistry, medicinal chemistry, and bioorganic chemistry. These topics are reviewed, as are topics of molecular electronics and origin of chirality, which combine to make up the bulk of this review. Also reviewed briefly are Breslow's contributions to the broader chemistry profession, including his work for the American Chemical Society and his work promoting gender equity. Throughout the article, efforts are made to put Breslow's accomplishments in the context of other work being done at the time, as well as to include subsequent iterations and elaborations of the research.
Collapse
Affiliation(s)
- Vincent Joseph
- Department of Chemical Sciences, Ariel University, Israel
| | - Mindy Levine
- Department of Chemical Sciences, Ariel University, Israel.
| |
Collapse
|
22
|
Kamanna K. Amino Acids and Peptides Organocatalysts: A Brief Overview on Its Evolution and Applications in Organic Asymmetric Synthesis. CURRENT ORGANOCATALYSIS 2021. [DOI: 10.2174/2213337207999201117093848] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This review highlights the application of biopolymers of natural α-amino acids and its
derived wild-type peptides employed as organocatalysts for the asymmetric synthesis of various important
compounds published by researchers across the globe. The α-amino acid with L-configuration
is available commercially in the pure form and plays a crucial role in enantioselective chiral
molecule synthesis. Out of twenty natural amino acids, only one secondary amine-containing proline
amino acid exhibited revolution in the field of organocatalysis because of its rigid structure
and the formation of an imine like transition state during the reaction, which leads to more stereoselectivity.
Hence, it is referred to as a simple enzyme in organocatalyst. Chiral enantioselective organic
molecule synthesis has been further discussed by employing oligopeptides derived from the
natural amino acids as a robust biocatalyst that replaced enzyme catalysts. The di-, tri, tetra-,
penta- and oligopeptide derived from the natural amino acids are demonstrated as a potential
organocatalyst, whose catalytic activity and mechanistic pathways are reviewed in the present paper.
Several choices of organocatalyst are developed to achieve a facile and efficient stereoselective
synthesis of many complex natural products with optically pure isomer. Subsequently, the researcher
developed green and sustainable heterogeneous catalytic system containing organocatalyst
immobilized onto solid inorganic support or porous material for accelerating reaction rate with
asymmetric one isomer product through the heterogeneous phase. Further, researchers developed
heterogeneous organocatalysts-Metal-Organic Frameworks (MOFs) that emerged as alternative
simple and facile heterogeneous catalysts for the bulk production and flow reactor for enantioselective
synthesis. This review compiled many outstanding discoveries in organocatalysts derivative of
amino acids, peptides and heterogenized-MOFs employed for many organic transformations in research
and industrial applications.
Collapse
Affiliation(s)
- Kantharaju Kamanna
- Department of Chemistry, Peptide and Medicinal Chemistry Research Laboratory, Rani Channamma University, Vidyasangama, P-B, NH-4, Belagavi -591156, Karnataka, India
| |
Collapse
|
23
|
Reinertsen AF, Primdahl KG, Shay AE, Serhan CN, Hansen TV, Aursnes M. Stereoselective Synthesis and Structural Confirmation of the Specialized Pro-Resolving Mediator Resolvin E4. J Org Chem 2021; 86:3535-3545. [PMID: 33534565 PMCID: PMC7901022 DOI: 10.1021/acs.joc.0c02913] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
![]()
Herein, we report the stereoselective
and convergent synthesis
of resolvin E4, a newly identified specialized pro-resolving mediator.
This synthesis proves the absolute configuration and exact olefin
geometry. Key elements of the successful strategy include a highly
stereoselective MacMillan organocatalytic oxyamination, a Midland
Alpine borane reduction, and the use of a 1,4-pentadiyne unit as a
linchpin building block. The application of reaction telescoping in
several of the synthetic transformations enabled the preparation of
the resolvin E4 methyl ester in 10% yield over 10 steps (longest linear
sequence). The physical property (UV–Vis and LC–MS/MS)
data of synthetic resolvin E4 matched those obtained from biologically
produced material.
Collapse
Affiliation(s)
- Amalie Føreid Reinertsen
- Department of Pharmacy, Section for Pharmaceutical Chemistry, University of Oslo, P.O. Box 1068, 0316 Oslo, Norway
| | - Karoline Gangestad Primdahl
- Department of Pharmacy, Section for Pharmaceutical Chemistry, University of Oslo, P.O. Box 1068, 0316 Oslo, Norway
| | - Ashley Elizabeth Shay
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Hale Building for Transformative Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Charles Nicholas Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Hale Building for Transformative Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Trond Vidar Hansen
- Department of Pharmacy, Section for Pharmaceutical Chemistry, University of Oslo, P.O. Box 1068, 0316 Oslo, Norway
| | - Marius Aursnes
- Department of Pharmacy, Section for Pharmaceutical Chemistry, University of Oslo, P.O. Box 1068, 0316 Oslo, Norway
| |
Collapse
|
24
|
Cai M, Xu K, Li Y, Nie Z, Zhang L, Luo S. Chiral Primary Amine/Ketone Cooperative Catalysis for Asymmetric α-Hydroxylation with Hydrogen Peroxide. J Am Chem Soc 2021; 143:1078-1087. [PMID: 33399468 DOI: 10.1021/jacs.0c11787] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Carbonyls and amines are yin and yang in organocatalysis as they mutually activate and transform each other. These intrinsically reacting partners tend to condense with each other, thus depleting their individual activity when used together as cocatalysts. Though widely established in many prominent catalytic strategies, aminocatalysis and carbonyl catalysis do not coexist well, and, as such, a cooperative amine/carbonyl dual catalysis remains essentially unknown. Here we report a cooperative primary amine and ketone dual catalytic approach for the asymmetric α-hydroxylation of β-ketocarbonyls with H2O2. Besides participating in the typical enamine catalytic cycle, the chiral primary amine catalyst was found to work cooperatively with a ketone catalyst to activate H2O2 via an oxaziridine intermediate derived from an in-situ-generated ketimine. Ultimately, this enamine-oxaziridine coupling facilitated the highly controlled α-hydroxylation of several β-ketocarbonyls in excellent yield and enantioselectivity. Notably, late-stage hydroxylation for peptidyl amide or chiral esters can also be achieved with high stereoselectivity. In addition to its operational simplicity and mild conditions, this cooperative amine/ketone catalytic approach also provides a new strategy for the catalytic activation of H2O2 and expands the domain of typical amine and carbonyl catalysis to include this challenging transformation.
Collapse
Affiliation(s)
- Mao Cai
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kaini Xu
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yuze Li
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zongxiu Nie
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Long Zhang
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Sanzhong Luo
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
25
|
Schmidt B. The Role of Total Synthesis in Structure Revision and Elucidation of Decanolides (Nonanolides). PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2021; 115:1-57. [PMID: 33797640 DOI: 10.1007/978-3-030-64853-4_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Ten-membered lactones are commonly observed structures of natural products. They are mostly fungal metabolites, which often act as plant pathogens, but recently ten-membered lactones were identified as pheromones of frogs and termites. Although modern spectroscopic methods are nowadays routinely used to elucidate the structure of natural products, structural assignments of ten-membered lactones often remain incomplete or are surprisingly often erroneous. Most errors concern the absolute configuration. The examples discussed in this chapter demonstrate that enantioselective total synthesis is not only an efficient tool for corroborating or revising a proposed structure, but that the synthesis of different stereoisomers as references for gas chromatographic investigations can be a vital part of the structure elucidation process if only minute amounts of material are available. As a method of outstanding importance for the synthesis of ten-membered lactones olefin metathesis has emerged. Most of the examples discussed herein use one or more olefin metathesis reactions as key steps.
Collapse
Affiliation(s)
- Bernd Schmidt
- Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Strasse 24-25, 14476, Potsdam-Golm, Germany.
| |
Collapse
|
26
|
Chevis PJ, Pyne SG. Synthesis of enantioenriched α-heteroatom functionalised aldehydes by chiral organocatalysis and their synthetic applications. Org Chem Front 2021. [DOI: 10.1039/d1qo00101a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Asymmetric organocatalysis is a versatile method for the enantioselective α-functionalisation of aldehydes. The synthetic scope for chiral α-heteroatom substituted aldehydes is examined including their applications in synthesis.
Collapse
Affiliation(s)
- Philip J. Chevis
- School of Chemistry and Molecular Bioscience
- University of Wollongong
- Wollongong
- Australia
| | - Stephen G. Pyne
- School of Chemistry and Molecular Bioscience
- University of Wollongong
- Wollongong
- Australia
| |
Collapse
|
27
|
Affiliation(s)
- Laurent Ferrié
- BioCIS Faculté de Pharmacie Université Paris‐Saclay 5 rue J. B. Clément 92290 Châtenay‐Malabry France
| | - Ondine Picot
- Molecular, Macromolecular Chemistry and Materials, ESPCI Paris PSL University CNRS 75005 Paris France
| | - Amandine Guérinot
- Molecular, Macromolecular Chemistry and Materials, ESPCI Paris PSL University CNRS 75005 Paris France
| | - Janine Cossy
- Molecular, Macromolecular Chemistry and Materials, ESPCI Paris PSL University CNRS 75005 Paris France
| |
Collapse
|
28
|
Schofield K, Foley C, Hulme C. 5- Endo Trig Oxidative Radical Cyclizations of Ugi-3CR Products toward 1,4-Imidazolidinones. Org Lett 2020; 23:107-112. [PMID: 33306404 DOI: 10.1021/acs.orglett.0c03785] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A 5-endo trig oxidative radical cyclization of benzylamine-derived Ugi three-component reaction products rapidly affords imidazolidinones with three diversity elements. This adaptation of our previously described multicomponent reaction-oxidation methodology further showcases manipulation of the diversity elements in multicomponent reaction products via oxidative radical cyclizations, which generates highly decorated privileged heterocycles.
Collapse
Affiliation(s)
- Kevin Schofield
- Department of Chemistry and Biochemistry, College of Science, The University of Arizona, Tucson, Arizona 85721, United States
| | - Christopher Foley
- Department of Chemistry and Biochemistry, College of Science, The University of Arizona, Tucson, Arizona 85721, United States
| | - Christopher Hulme
- Department of Chemistry and Biochemistry, College of Science, The University of Arizona, Tucson, Arizona 85721, United States.,Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
29
|
Markad SB, Mane BB, Waghmode SB. Asymmetric total synthesis of dihydroisocoumarins: 6-methoxymellein, kigelin and fusarentin 6, 7 dimethyl ether by employing proline catalysed asymmetric α-aminoxylation. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
30
|
Abstract
L-proline is directly loaded on the multi-wall carbon nanotubes (MWCNTs) with exceptionally high loading content of 67 wt.%. The obtained L-proline/MWCNTs catalyst is on par with the catalytic activity of free L-proline, even after 7 rounds of recycling and reusing. The excellent activity of L-proline/MWCNTs in typical Aldol reaction, Mannich reaction, Michael reaction, α-oxyamination reaction, and Knoevenagel condensation shows a broad applicability of the composite catalyst in different reactions and solvent systems. We believe that the unusual loading mode may open a window for designing heterogenized organo-catalysts.
Collapse
|
31
|
Metrano AJ, Chinn AJ, Shugrue CR, Stone EA, Kim B, Miller SJ. Asymmetric Catalysis Mediated by Synthetic Peptides, Version 2.0: Expansion of Scope and Mechanisms. Chem Rev 2020; 120:11479-11615. [PMID: 32969640 PMCID: PMC8006536 DOI: 10.1021/acs.chemrev.0c00523] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Low molecular weight synthetic peptides have been demonstrated to be effective catalysts for an increasingly wide array of asymmetric transformations. In many cases, these peptide-based catalysts have enabled novel multifunctional substrate activation modes and unprecedented selectivity manifolds. These features, along with their ease of preparation, modular and tunable structures, and often biomimetic attributes make peptides well-suited as chiral catalysts and of broad interest. Many examples of peptide-catalyzed asymmetric reactions have appeared in the literature since the last survey of this broad field in Chemical Reviews (Chem. Rev. 2007, 107, 5759-5812). The overarching goal of this new Review is to provide a comprehensive account of the numerous advances in the field. As a corollary to this goal, we survey the many different types of catalytic reactions, ranging from acylation to C-C bond formation, in which peptides have been successfully employed. In so doing, we devote significant discussion to the structural and mechanistic aspects of these reactions that are perhaps specific to peptide-based catalysts and their interactions with substrates and/or reagents.
Collapse
Affiliation(s)
- Anthony J. Metrano
- AstraZeneca Oncology R&D, 35 Gatehouse Dr., Waltham, MA 02451, United States
| | - Alex J. Chinn
- Department of Chemistry, Princeton University, Princeton, NJ 08544, United States
| | - Christopher R. Shugrue
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Elizabeth A. Stone
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, CT 06520, United States
| | - Byoungmoo Kim
- Department of Chemistry, Clemson University, Clemson, SC 29634, United States
| | - Scott J. Miller
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, CT 06520, United States
| |
Collapse
|
32
|
Mukherjee S, Biswas B. Organo‐Cascade Catalysis: Application of Merged Iminium‐Enamine Activation Technique and Related Cascade Reactivities. ChemistrySelect 2020. [DOI: 10.1002/slct.202003070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Shirshendu Mukherjee
- Department of Chemistry Hooghly Mohsin Govt. College Hooghly 712101, West Bengal India
| | - Bhaskar Biswas
- Department of Chemistry University of North Bengal Siliguri Darjeeling 734013, West Bengal India
| |
Collapse
|
33
|
|
34
|
Sietmann J, Wahl JM. Enantioselective Desymmetrization of Cyclobutanones: A Speedway to Molecular Complexity. Angew Chem Int Ed Engl 2020; 59:6964-6974. [PMID: 31550067 PMCID: PMC7984208 DOI: 10.1002/anie.201910767] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Indexed: 12/16/2022]
Abstract
Cyclobutanones hold a privileged role in enantioselective desymmetrization because their inherent ring strain allows for a variety of unusual reactions to occur. Current strategies include α-functionalization, rearrangement, and C-C bond activation to directly convert cyclobutanones into a wide range of enantiomerically enriched compounds, including many biologically significant scaffolds. This Minireview provides an overview of state-of-the-art methods that generate complexity from prochiral cyclobutanones in a single operation.
Collapse
Affiliation(s)
- Jan Sietmann
- Westfälische Wilhelms-Universität MünsterInstitute of Organic ChemistryCorrensstrasse 4048149MünsterGermany
| | - Johannes M. Wahl
- Westfälische Wilhelms-Universität MünsterInstitute of Organic ChemistryCorrensstrasse 4048149MünsterGermany
| |
Collapse
|
35
|
Sietmann J, Wiest JM. Enantioselektive Desymmetrisierung von Cyclobutanonen: Eine Schnellstraße zu molekularer Komplexität. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201910767] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jan Sietmann
- Westfälische Wilhelms-Universität MünsterOrganisch-Chemisches Institut Corrensstraße 40 48149 Münster Deutschland
| | - Johannes M. Wiest
- Westfälische Wilhelms-Universität MünsterOrganisch-Chemisches Institut Corrensstraße 40 48149 Münster Deutschland
| |
Collapse
|
36
|
Lu H, Lv J, Zhou C, Kato T, Liu Y, Maruoka K. Practical Synthesis of High‐Performance Amino Tf‐Amide Organocatalysts for Asymmetric Aldol Reactions. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.201900730] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hanbin Lu
- School of Chemical Engineering and Light IndustryGuangdong University of Technology Guangzhou 510006 China
| | - Jiamin Lv
- School of Chemical Engineering and Light IndustryGuangdong University of Technology Guangzhou 510006 China
| | - Canhua Zhou
- School of Chemical Engineering and Light IndustryGuangdong University of Technology Guangzhou 510006 China
| | - Terumasa Kato
- School of Chemical Engineering and Light IndustryGuangdong University of Technology Guangzhou 510006 China
| | - Yan Liu
- School of Chemical Engineering and Light IndustryGuangdong University of Technology Guangzhou 510006 China
| | - Keiji Maruoka
- School of Chemical Engineering and Light IndustryGuangdong University of Technology Guangzhou 510006 China
- Graduate School of Pharmaceutical SciencesKyoto University Sakyo, Kyoto 606-8501 Japan
| |
Collapse
|
37
|
SmI2-promoted cross coupling reaction of N-2-bromoethylphthalimide and carbonyl compounds: Synthesis of α-aryl-α′-hydroxy ketones. Tetrahedron 2020. [DOI: 10.1016/j.tet.2019.130839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
38
|
Maguire OR, Taylor B, Higgins EM, Rees M, Cobb SL, Simpkins NS, Hayes CJ, O'Donoghue AC. Unusually high α-proton acidity of prolyl residues in cyclic peptides. Chem Sci 2020; 11:7722-7729. [PMID: 34094148 PMCID: PMC8159430 DOI: 10.1039/d0sc02508a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The acidity of the α-proton in peptides has an essential role in numerous biochemical reactions and underpins their stereochemical integrity, which is critical to their biological function. We report a detailed kinetic and computational study of the acidity of the α-proton in two cyclic peptide systems: diketopiperazine (DKP) and triketopiperazine (TKP). The kinetic acidity (protofugality) of the α-protons were determined though hydrogen deuterium exchange studies in aqueous solutions. The acidities of the α-proton in prolyl residues were increased by 3–89 fold relative to other amino acid residues (prolyl > glycyl ≫ alanyl > tyrosyl). Experimental and computational evidence for the stereoelectronic origins of this enhanced prolyl reactivity is presented. TKPs were 106-fold more reactive than their DKP analogues towards deprotonation, which we attribute to the advanced development of aromaticity in the earlier transition state for proton transfer in these cases. A Brønsted linear free energy analysis of the reaction data was conducted to provide estimates of α-proton pKas. Kinetic and computational studies reveal that prolyl residues in cyclic peptides are substantially more acidic than other residues due to a stereoelectronic effect.![]()
Collapse
Affiliation(s)
| | - Bethany Taylor
- Department of Chemistry
- Durham University
- Durham DH1 3LE
- UK
| | | | - Matthew Rees
- School of Chemistry
- University of Birmingham
- Birmingham
- UK
| | - Steven L. Cobb
- Department of Chemistry
- Durham University
- Durham DH1 3LE
- UK
| | | | | | | |
Collapse
|
39
|
Chowhan LR, Singh V, Raj Lakshmi S. Stereoselective Synthesis of Hagen's Gland Lactones by Employing Vinylogous Mukaiyama Type Reaction. ChemistrySelect 2019. [DOI: 10.1002/slct.201902744] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- L. Raju Chowhan
- Centre for Applied ChemistryCentral University of Gujarat Sector 30 Gandhinagar- 382030 India
| | - Vipin Singh
- Centre for Applied ChemistryCentral University of Gujarat Sector 30 Gandhinagar- 382030 India
| | - Shanta Raj Lakshmi
- Centre for Applied ChemistryCentral University of Gujarat Sector 30 Gandhinagar- 382030 India
| |
Collapse
|
40
|
Li CT, Liu H, Yao Y, Lu CD. Rearrangement of N- tert-Butanesulfinyl Enamines for Synthesis of Enantioenriched α-Hydroxy Ketone Derivatives. Org Lett 2019; 21:8383-8388. [PMID: 31592671 DOI: 10.1021/acs.orglett.9b03159] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Treating chiral N-tert-butanesulfinyl ketimines with potassium hexamethyldisilazide (or potassium tert-butoxide) and methyl triflate gives N-methylated N-tert-butanesulfinyl enamine intermediates that undergo stereoselective [2,3]-rearrangement to afford α-sulfenyloxy ketones with excellent enantiopurities. This cascade of enamination-N-methylation-rearrangement was even used to generate acyclic tertiary α-hydroxy ketones bearing two α-substituents showing negligible differences in bulkiness, such as methyl and ethyl groups.
Collapse
Affiliation(s)
- Chun-Tian Li
- Xinjiang Technical Institute of Physics & Chemistry , Chinese Academy of Sciences , Urumqi 830011 , China
| | - Hui Liu
- Xinjiang Technical Institute of Physics & Chemistry , Chinese Academy of Sciences , Urumqi 830011 , China
| | - Yun Yao
- School of Chemical Science and Technology , Yunnan University , Kunming 650091 , China
| | - Chong-Dao Lu
- School of Chemical Science and Technology , Yunnan University , Kunming 650091 , China
| |
Collapse
|
41
|
Takeshima A, Kano T, Maruoka K. Synthesis of Phenylcyclopropane-Based Secondary Amine Catalysts and Their Applications in Enamine Catalysis. Org Lett 2019; 21:8071-8074. [PMID: 31513419 DOI: 10.1021/acs.orglett.9b03070] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A novel chiral motif based on a phenylcyclopropane scaffold has been designed, and a facile synthetic route to the key intermediate for the synthesis of phenylcyclopropane-based chiral secondary amines has been developed. Newly synthesized chiral amines function as effective catalysts for several asymmetric reactions through enamine intermediates.
Collapse
Affiliation(s)
- Aika Takeshima
- Department of Chemistry, Graduate School of Science , Kyoto University , Sakyo, Kyoto 606-8502 , Japan
| | - Taichi Kano
- Department of Chemistry, Graduate School of Science , Kyoto University , Sakyo, Kyoto 606-8502 , Japan
| | - Keiji Maruoka
- Department of Chemistry, Graduate School of Science , Kyoto University , Sakyo, Kyoto 606-8502 , Japan.,Department of Organocatalytic Chemistry, Graduate School of Pharmaceutical Sciences , Kyoto University , Sakyo, Kyoto 606-8501 , Japan.,School of Chemical Engineering and Light Industry , Guangdong University of Technology , Guangzhou 510006 , China
| |
Collapse
|
42
|
Walaszek DJ, Jawiczuk M, Durka J, Drapała O, Gryko D. α-Photooxygenation of chiral aldehydes with singlet oxygen. Beilstein J Org Chem 2019; 15:2076-2084. [PMID: 31501676 PMCID: PMC6720656 DOI: 10.3762/bjoc.15.205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 08/10/2019] [Indexed: 01/06/2023] Open
Abstract
Organocatalytic α-oxygenation of chiral aldehydes with photochemically generated singlet oxygen allows synthesizing chiral 3-substituted 1,2-diols. Stereochemical results indicate that the reaction in the presence of diarylprolinol silyl ethers is highly diastereoselective and that the configuration of a newly created stereocenter at the α-position depends predominantly on the catalyst structure. The absolute configuration of chiral 1,2-diols has been unambiguously established based on electronic circular dichroism (ECD) and TD-DFT methods.
Collapse
Affiliation(s)
- Dominika J Walaszek
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Magdalena Jawiczuk
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.,Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| | - Jakub Durka
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.,Department of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Olga Drapała
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.,Department of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Dorota Gryko
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
43
|
Ma PJ, Tang F, Yao Y, Lu CD. Addition-Rearrangement of Ketenes with Lithium N- tert-Butanesulfinamides: Enantioselective Synthesis of α,α-Disubstituted α-Hydroxycarboxylic Acid Derivatives. Org Lett 2019; 21:4671-4675. [PMID: 31150260 DOI: 10.1021/acs.orglett.9b01555] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Addition of the lithium salts of chiral N-substituted tert-butanesulfinamides to ketenes and subsequent silylation initiates stereoselective [2,3]-rearrangement, which affords enantioenriched α,α-disubstituted α-sulfenyloxy carboxamides through a reaction that faithfully transfers the absolute stereochemistry of the lithiated sulfinylamides to the α-carbon of the amide products. This addition-rearrangement can be performed together with ketene formation from acyl chloride in a single flask, providing a new and practical synthetic route to α-hydroxycarboxylic acid derivatives.
Collapse
Affiliation(s)
- Peng-Ju Ma
- Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences , Urumqi 830011 , China
| | - Fan Tang
- Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences , Urumqi 830011 , China
| | - Yun Yao
- School of Chemical Science and Technology , Yunnan University , Kunming 650091 , China
| | - Chong-Dao Lu
- School of Chemical Science and Technology , Yunnan University , Kunming 650091 , China.,Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences , Urumqi 830011 , China
| |
Collapse
|
44
|
Aguesseau-Kondrotas J, Simon M, Legrand B, Bantigniès JL, Kang YK, Dumitrescu D, Van der Lee A, Campagne JM, de Figueiredo RM, Maillard LT. Prospect of Thiazole-based γ-Peptide Foldamers in Enamine Catalysis: Exploration of the Nitro-Michael Addition. Chemistry 2019; 25:7396-7401. [PMID: 30946485 DOI: 10.1002/chem.201901221] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Indexed: 12/18/2022]
Abstract
As three-dimensional folding is prerequisite to biopolymer activity, complex functions may also be achieved through foldamer science. Because of the diversity of sizes, shapes and folding available with synthetic monomers, foldamer frameworks enable a numerous opportunities for designing new generations of catalysts. We herein demonstrate that heterocyclic γ-peptide scaffolds represent a versatile platform for enamine catalysis. One central feature was to determine how the catalytic activity and the transfer of chiral information might be under the control of the conformational behaviours of the oligomer.
Collapse
Affiliation(s)
- Julie Aguesseau-Kondrotas
- Institut des Biomolécules Max Mousseron, UMR CNRS-UM-ENSCM 5247, UFR des Sciences Pharmaceutiques et Biologiques, 15 Avenue Charles Flahault, 34093, Montpellier Cedex 5, France
| | - Matthieu Simon
- Institut des Biomolécules Max Mousseron, UMR CNRS-UM-ENSCM 5247, UFR des Sciences Pharmaceutiques et Biologiques, 15 Avenue Charles Flahault, 34093, Montpellier Cedex 5, France
| | - Baptiste Legrand
- Institut des Biomolécules Max Mousseron, UMR CNRS-UM-ENSCM 5247, UFR des Sciences Pharmaceutiques et Biologiques, 15 Avenue Charles Flahault, 34093, Montpellier Cedex 5, France
| | | | - Young Kee Kang
- Department of Chemistry, Chungbuk National University, Cheongju, Chungbuk, 28644, Korea
| | - Dan Dumitrescu
- XRD2 beamline, Elettra-Sincrotrone Trieste S.C.p.A., 34149, Basovizza, Trieste, Italy
| | - Arie Van der Lee
- Institut Européen des Membranes, UMR CNRS-UM-ENSCM 5635, Montpellier, France
| | - Jean-Marc Campagne
- Institut Charles Gerhardt Montpellier (ICGM), UMR 5253, UMR CNRS-UM-ENSCM, Montpellier, France
| | | | - Ludovic T Maillard
- Institut des Biomolécules Max Mousseron, UMR CNRS-UM-ENSCM 5247, UFR des Sciences Pharmaceutiques et Biologiques, 15 Avenue Charles Flahault, 34093, Montpellier Cedex 5, France
| |
Collapse
|
45
|
Yeung CT, Chan WTK, Lo WS, Law GL, Wong WT. Synthesis of a Conformationally Stable Atropisomeric Pair of Biphenyl Scaffold Containing Additional Stereogenic Centers. Molecules 2019; 24:molecules24030643. [PMID: 30759758 PMCID: PMC6385101 DOI: 10.3390/molecules24030643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/06/2019] [Accepted: 02/08/2019] [Indexed: 11/16/2022] Open
Abstract
The synthesis of a new CF₃-containing stereogenic atropisomeric pair of ortho-disubstituted biphenyl scaffold is presented. The atropisomers are surprisingly conformationally stable for isolation. X-ray structures show that their stability comes from an intramolecular hydrogen bond formation from their two hydroxyl groups and renders the spatial arrangement of their peripheral CF₃ and CH₃ groups very different. The synthesized stereogenic scaffold proved to be effective in catalyzing the asymmetric N-nitroso aldol reaction of enamine and nitrosobenzene. Compared to similar scaffolds without CF₃ groups, one of our atropisomer exhibits an increase in enantioselectivity in this reaction.
Collapse
Affiliation(s)
- Chi-Tung Yeung
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, PR China.
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong.
| | - Wesley Ting Kwok Chan
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong.
| | - Wai-Sum Lo
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, PR China.
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong.
| | - Ga-Lai Law
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, PR China.
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong.
| | - Wing-Tak Wong
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, PR China.
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong.
| |
Collapse
|
46
|
Markad SB, Bhosale VA, Bokale SR, Waghmode SB. Stereoselective Approach towards the Synthesis of 3
R
, 5
S
Gingerdiol and 3
S
, 5
S
Gingerdiol. ChemistrySelect 2019. [DOI: 10.1002/slct.201803154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Sachin B. Markad
- Department of ChemistrySavitribai Phule Pune University (Formerly University of Pune) Ganeshkhind, Pune 411007 India
| | - Viraj A. Bhosale
- Department of ChemistrySavitribai Phule Pune University (Formerly University of Pune) Ganeshkhind, Pune 411007 India
| | - Suvarna R. Bokale
- Department of ChemistrySavitribai Phule Pune University (Formerly University of Pune) Ganeshkhind, Pune 411007 India
| | - Suresh B. Waghmode
- Department of ChemistrySavitribai Phule Pune University (Formerly University of Pune) Ganeshkhind, Pune 411007 India
| |
Collapse
|
47
|
Xiong D, Wang L, Jie L, Yang Z, Li L, Cui X. Rhodium‐Catalyzed Mild C7‐Amination of Indolines with Nitrosobenzenes. ChemistrySelect 2018. [DOI: 10.1002/slct.201803692] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Dan Xiong
- Research Centre of Molecular Medicine Ministry of Education, Key Laboratory of Fujian Molecular Medicine Key Laboratory of Xiamen Marine and Gene Drugs School of Biomedical Sciences Huaqiao University, Xiamen 361021, P. R. China
| | - Lianhui Wang
- Research Centre of Molecular Medicine Ministry of Education, Key Laboratory of Fujian Molecular Medicine Key Laboratory of Xiamen Marine and Gene Drugs School of Biomedical Sciences Huaqiao University, Xiamen 361021, P. R. China
| | - Lianghua Jie
- Research Centre of Molecular Medicine Ministry of Education, Key Laboratory of Fujian Molecular Medicine Key Laboratory of Xiamen Marine and Gene Drugs School of Biomedical Sciences Huaqiao University, Xiamen 361021, P. R. China
| | - Zi Yang
- Research Centre of Molecular Medicine Ministry of Education, Key Laboratory of Fujian Molecular Medicine Key Laboratory of Xiamen Marine and Gene Drugs School of Biomedical Sciences Huaqiao University, Xiamen 361021, P. R. China
| | - Lulin Li
- Research Centre of Molecular Medicine Ministry of Education, Key Laboratory of Fujian Molecular Medicine Key Laboratory of Xiamen Marine and Gene Drugs School of Biomedical Sciences Huaqiao University, Xiamen 361021, P. R. China
| | - Xiuling Cui
- Research Centre of Molecular Medicine Ministry of Education, Key Laboratory of Fujian Molecular Medicine Key Laboratory of Xiamen Marine and Gene Drugs School of Biomedical Sciences Huaqiao University, Xiamen 361021, P. R. China
| |
Collapse
|
48
|
Friedrich RM, Sreenilayam G, Hackbarth J, Friestad GK. Unified Strategy for 1,5,9- and 1,5,7-Triols via Configuration-Encoded 1,5-Polyol Synthesis: Enantioselective Preparation of γ-Sulfonyl-α-silyloxyaldehydes and Iterative Julia-Kocienski Coupling. J Org Chem 2018; 83:13636-13649. [PMID: 30365891 DOI: 10.1021/acs.joc.8b02033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Diverse classes of natural products contain chiral 1,5-polyols, within which may be stereochemical triads of 1,5,9- and 1,5,7-triols. Biological activities associated with compounds containing these motifs warrant targeted synthetic strategies to access all stereoisomers of a 1,5-polyol family from cheap and easily accessible reagents while avoiding the need to determine configurations at each alcohol stereocenter. Here, we address these problems via design and implementation of an iterative configuration-encoded strategy to access 1,5-polyols with unambiguous stereocontrol; the coupling event exploits Julia-Kocienski reactions of enantiopure α-silyloxy-γ-sulfononitriles. These building blocks, bearing sulfone at one terminus and α-silyloxyaldehyde (in latent form) at the other, were prepared via asymmetric catalysis. An efficient scalable route to these building blocks was developed, leading to enantiopure samples in multigram quantities. Preliminary studies of acetals as the latent aldehyde functionality in the α-silyloxyaldehyde showed that Julia-Kocienski coupling of these building blocks was effective, but iterative application was thwarted during acetal hydrolysis, leading to use of nitrile to perform the latent aldehyde function. A variety of 1,5-polyols, including a 1,5,9,13-tetraol and a differentially protected 1,5,9-triol, were prepared, validating the approach. The accompanying paper describes the application of this configuration-encoded 1,5-polyol synthesis to 1,5,9- and 1,5,7-triols found in tetrafibricin.
Collapse
Affiliation(s)
- Ryan M Friedrich
- Department of Chemistry , University of Iowa , Iowa City , Iowa 52242 , United States
| | | | - Jacob Hackbarth
- Department of Chemistry , University of Iowa , Iowa City , Iowa 52242 , United States
| | - Gregory K Friestad
- Department of Chemistry , University of Iowa , Iowa City , Iowa 52242 , United States
| |
Collapse
|
49
|
Häggman NO, Zank B, Jun H, Kaldre D, Gleason JL. Diazepane Carboxylates as Organocatalysts in the Diels-Alder Reaction of α-Substituted Enals. European J Org Chem 2018. [DOI: 10.1002/ejoc.201801009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Nicklas O. Häggman
- Department of Chemistry; McGill University; 801 Sherbrooke W. H3A 0B8 Montreal QC Canada
| | - Benjamin Zank
- Department of Chemistry; McGill University; 801 Sherbrooke W. H3A 0B8 Montreal QC Canada
| | - HyunJune Jun
- Department of Chemistry; McGill University; 801 Sherbrooke W. H3A 0B8 Montreal QC Canada
| | - Dainis Kaldre
- Department of Chemistry; McGill University; 801 Sherbrooke W. H3A 0B8 Montreal QC Canada
| | - James L. Gleason
- Department of Chemistry; McGill University; 801 Sherbrooke W. H3A 0B8 Montreal QC Canada
| |
Collapse
|
50
|
Rodríguez‐Escrich C, Pericàs MA. Catalytic Enantioselective Flow Processes with Solid‐Supported Chiral Catalysts. CHEM REC 2018; 19:1872-1890. [DOI: 10.1002/tcr.201800097] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/02/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Carles Rodríguez‐Escrich
- Institute of Chemical Research of Catalonia (ICIQ)The Barcelona Institute of Science and Technology (BIST) Avinguda Països Catalans 16 43007 Tarragona Spain
| | - Miquel A. Pericàs
- Institute of Chemical Research of Catalonia (ICIQ)The Barcelona Institute of Science and Technology (BIST) Avinguda Països Catalans 16 43007 Tarragona Spain
- Departament de Química OrgànicaUniversitat de Barcelona 08080 Barcelona Spain
| |
Collapse
|