1
|
Zhao X, Li D, Zhu J, Fan Y, Xu J, Huang X, Nie Z, Chen D. Stably Grafting Polymer Brushes on Both Active and Inert Surfaces Using Tadpole-Like Single-Chain Particles with an Interactive "Head". ACS Macro Lett 2024; 13:882-888. [PMID: 38953383 DOI: 10.1021/acsmacrolett.4c00341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
We report a "grafting to" method for stably grafting high-molecular-weight polymer brushes on both active and inert surfaces using tadpole-like single-chain particles (TSCPs) with an interactive "head" as grafting units. The TSCPs can be efficiently synthesized through intrachain cross-linking one block of a diblock copolymer; the "head" is the intrachain cross-linked single-chain particle, and the "tail" is a linear polymer chain that has a contour length up to micrometers. When grafted to a surface, the "head", integrating numerous interacting groups, can synergize multiple weak interactions with the surface, thereby enabling stable grafting of the "tail" on both active and traditionally challenging inert surfaces. Because the structural parameters and composition of the "heads" and "tails" can be separately adjusted over a wide range, the interactivity of the "heads" with the surface and properties of the brushes can be controlled orthogonally, accomplishing surface brushes that cannot be achieved by existing methods.
Collapse
Affiliation(s)
- Xiaoya Zhao
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, 2005 Songhu Road, Shanghai, 200438, People's Republic of China
| | - Dahua Li
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, 2005 Songhu Road, Shanghai, 200438, People's Republic of China
| | - Jie Zhu
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, 2005 Songhu Road, Shanghai, 200438, People's Republic of China
| | - Yanbin Fan
- The Dow Chemical Company, 936 Zhangheng Road, Shanghai, 201203, People's Republic of China
| | - Jiayin Xu
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, 2005 Songhu Road, Shanghai, 200438, People's Republic of China
| | - Xiayun Huang
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, 2005 Songhu Road, Shanghai, 200438, People's Republic of China
| | - Zhihong Nie
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, 2005 Songhu Road, Shanghai, 200438, People's Republic of China
| | - Daoyong Chen
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, 2005 Songhu Road, Shanghai, 200438, People's Republic of China
| |
Collapse
|
2
|
Wolski K, Smenda J, Grobelny A, Dąbczyński P, Marzec M, Cernescu A, Wytrwal M, Bernasik A, Rysz J, Zapotoczny S. Surface engineering of mixed conjugated/polyelectrolyte brushes - Tailoring interface structure and electrical properties. J Colloid Interface Sci 2023; 634:209-220. [PMID: 36535159 DOI: 10.1016/j.jcis.2022.11.155] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022]
Abstract
HYPOTHESIS Mixed polymer brushes (MPBs) could be synthesized by surface dilution of homopolymer brushes and subsequent grafting of other type of chains in the formed voids. Nanophase separation and dynamics of surface-grafted chains could be tailored by modification of their molecular architecture. Mixed polyelectrolyte and conjugated chains contribute synergistically to tailor properties of the coating. EXPERIMENTS A new synthetic strategy that allowed spatially controlled grafting of poly(sodium 4-styrenesulfonate) chains (PSSNa) in close neighborhood of poly(3-methylthienyl methacrylate) (PMTM) brushes (precursors of the conjugated chains) using surface-initiated polymerizations was developed. The final mixed conjugated/polyelectrolyte brushes were prepared by template polymerization of pendant thiophene groups in PMTM chains. Surface dynamics and nanophase separation of MPBs were studied by nanoscale resolution IR imaging, SIMS profiling and AFM mapping in selective solvents. FINDINGS Unconjugated MPBs were shown to undergo vertical, and horizontal nanophase separation, while the size and shape of the nanodomains were dependent on molar ratio of the mixed chains and their relative lengths. Generation of the conjugated chains led to diminishing of nanophase separation thanks to stronger mutual interactions of conjugated PMTM and PSSNa (macromolecular mixing). The obtained systems demonstrated tunable interfacial structure and resistance switching phenomenon desired in construction of smart surfaces or memristive devices.
Collapse
Affiliation(s)
- Karol Wolski
- Jagiellonian University, Faculty of Chemistry, Gronostajowa 2, 30-387 Krakow, Poland.
| | - Joanna Smenda
- Jagiellonian University, Faculty of Chemistry, Gronostajowa 2, 30-387 Krakow, Poland
| | - Anna Grobelny
- Jagiellonian University, Faculty of Chemistry, Gronostajowa 2, 30-387 Krakow, Poland
| | - Paweł Dąbczyński
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Krakow, Poland
| | - Mateusz Marzec
- Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, Mickiewicza 30, 30-059 Krakow, Poland
| | | | - Magdalena Wytrwal
- Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, Mickiewicza 30, 30-059 Krakow, Poland
| | - Andrzej Bernasik
- Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, Mickiewicza 30, 30-059 Krakow, Poland
| | - Jakub Rysz
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Krakow, Poland
| | - Szczepan Zapotoczny
- Jagiellonian University, Faculty of Chemistry, Gronostajowa 2, 30-387 Krakow, Poland; Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, Mickiewicza 30, 30-059 Krakow, Poland.
| |
Collapse
|
3
|
Shi X, Bian T, Liu L, Zhao H. Surface Coassembly of Binary Mixed Polymer Brushes and Linear Block Copolymer Chains. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:14217-14226. [PMID: 36342322 DOI: 10.1021/acs.langmuir.2c02230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Binary mixed polymer brushes (BMPBs) are two different homopolymer chains that are covalently anchored to the solid surfaces at high grafting densities. One feature of the BMPBs is the unique ability to make surface phase separation under external stimuli. In this research, we demonstrate that different surface nanostructures can be fabricated by surface coassembly of BMPBs and free block copolymer (BCP) chains. Polystyrene/poly(2-(dimethylamino)ethyl methacrylate) (PS/PDMAEMA) BMPBs on silica particles (PS-PDMAEMA-SiO2) are synthesized by a two-step "grafting to" approach. PDMAEMA-b-PS block copolymer (BCP) chains and PS-PDMAEMA-SiO2 make surface self-assembly and a variety of surface nanostructures are formed in methanol. The grafting densities of PS and PDMAEMA brushes, solvent, and the BCP structures all exert significant influences on the surface morphology. With an increase in PDMAEMA grafting density, the surface structures change from perforated layers, to rods, and to spherical surface micelles (s-micelles). The PS grafting density also exerts an effect on the formation of the surface nanostructures. At low PS grafting density, sparsely distributed s-micelles are produced, and at high density, densely distributed s-micelles are observed. Based on transmission electron microscopy and scanning electron microscopy results, a surface phase diagram is constructed, which provides a guide to the surface morphology control.
Collapse
Affiliation(s)
- Xiaoyu Shi
- College of Chemistry and Key Laboratory of Functional Polymer Materials of the Ministry of Education, Nankai University, Tianjin 300071, China
| | - Tianshun Bian
- College of Chemistry and Key Laboratory of Functional Polymer Materials of the Ministry of Education, Nankai University, Tianjin 300071, China
| | - Li Liu
- College of Chemistry and Key Laboratory of Functional Polymer Materials of the Ministry of Education, Nankai University, Tianjin 300071, China
| | - Hanying Zhao
- College of Chemistry and Key Laboratory of Functional Polymer Materials of the Ministry of Education, Nankai University, Tianjin 300071, China
| |
Collapse
|
4
|
Wang C, Zhao H. Polymer brush-based nanostructures: from surface self-assembly to surface co-assembly. SOFT MATTER 2022; 18:5138-5152. [PMID: 35781482 DOI: 10.1039/d2sm00458e] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Surface structures play an important role in the practical applications of materials. The synthesis of polymer brushes on a solid surface has emerged as an effective tool for tuning surface properties. The fabrication of polymer brush-based surface nanostructures has greatly facilitated the development of materials with unique surface properties. In this review article, synthetic methods used in the synthesis of polymer brushes, and self-assembly approaches applied in the fabrication of surface nanostructures including self-assembly of polymer brushes, co-assembly of polymer brushes and "free" block copolymer chains, and polymerization induced surface self-assembly, are reviewed. It is demonstrated that polymer brush-based surface nanostructures, including spherical surface micelles, wormlike surface structures, layered structures and surface vesicles, can be fabricated. Meanwhile, the challenges in the synthesis and applications of the surface nanostructures are discussed. This review is expected to be helpful for understanding the principles, methods and applications of polymer brush-based surface nanostructures.
Collapse
Affiliation(s)
- Chen Wang
- College of Chemistry and Key Laboratory of Functional Polymer Materials of the Ministry of Education. Nankai University, Weijing Road #94, Tianjin 300071, China.
| | - Hanying Zhao
- College of Chemistry and Key Laboratory of Functional Polymer Materials of the Ministry of Education. Nankai University, Weijing Road #94, Tianjin 300071, China.
| |
Collapse
|
5
|
Li M, Pester CW. Mixed Polymer Brushes for "Smart" Surfaces. Polymers (Basel) 2020; 12:E1553. [PMID: 32668820 PMCID: PMC7408536 DOI: 10.3390/polym12071553] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 12/26/2022] Open
Abstract
Mixed polymer brushes (MPBs) are composed of two or more disparate polymers covalently tethered to a substrate. The resulting phase segregated morphologies have been extensively studied as responsive "smart" materials, as they can be reversible tuned and switched by external stimuli. Both computational and experimental work has attempted to establish an understanding of the resulting nanostructures that vary as a function of many factors. This contribution highlights state-of-the-art MPBs studies, covering synthetic approaches, phase behavior, responsiveness to external stimuli as well as novel applications of MPBs. Current limitations are recognized and possible directions for future studies are identified.
Collapse
Affiliation(s)
- Mingxiao Li
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA;
| | - Christian W. Pester
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA;
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
6
|
Liu Y, Hou W, Zhao H. Synthesis of Y-Shaped Polymer Brushes on Silica Particles and Hierarchical Surface Structures Fabricated by the Coassembly Approach. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00397] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yingze Liu
- College of Chemistry and Key Laboratory of Functional Polymer Materials of the Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| | - Wangmeng Hou
- College of Chemistry and Key Laboratory of Functional Polymer Materials of the Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| | - Hanying Zhao
- College of Chemistry and Key Laboratory of Functional Polymer Materials of the Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| |
Collapse
|
7
|
Zhang S, Liu W, Dong Y, Wei T, Wu Z, Chen H. Design, Synthesis, and Application of a Difunctional Y-Shaped Surface-Tethered Photoinitiator. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:3470-3478. [PMID: 30727730 DOI: 10.1021/acs.langmuir.8b04323] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Mixed homopolymer brushes have unique interfacial properties that can be exploited for both fundamental studies and applications in technology. Herein, the synthesis of a new catechol-based biomimetic Y-shaped binary photoinitiator (Y-photoinitiator) and its applications for surface modification with polymer brushes through both "grafting to" and "grafting from" strategies are reported. The "leg" of the Y consists of a catechol group as surface anchoring moiety. The arms are photoinitiator moieties that can be "addressed" independent of each other by radiation of different wavelengths. Using ultraviolet and visible light successively, each arm of the Y-photoinitiator was activated, thereby allowing the synthesis of Y-shaped block copolymer brushes with dissimilar polymer chains. The suitability of the Y-photoinitiator for surface modification was first investigated using N-vinylpyrrolidone and styrene as the model monomers for successive UV-photoiniferter-mediated polymerization and visible-light-induced polymerization, respectively. Switching of the wetting properties of the Y-shaped block copolymer brush poly( N-vinylpyrrolidone)- block-poly(styrene) (PVP- b-PS)-grafted surfaces by contact with different solvents was also investigated. To further exploit this novel Y-photoinitiator for the preparation of functional interfaces, Y-shaped block copolymer brushes poly(1-(2-methacryloyloxyhexyl)-3-methylimidazolium bromide)- block-poly( N-vinylpyrrolidone- co-glycidyl methacrylate) (PIL(Br)- b-P(NVP- co-GMA)) were also prepared and subsequently functionalized with the cell-adhesive arginine-glycine-aspartic acid (RGD) peptides by reaction with the glycidyl groups (PILPNG-RGD). The PILPNG-RGD grafted surfaces showed excellent cell-adhesive, bacteriostatic, and bactericidal properties. Thus, it can be concluded that further exploitation of this novel Y-photoinitiator for graft polymerization should allow the preparation of a wide range of functional interfaces with tailored properties.
Collapse
Affiliation(s)
- Shuxiang Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , P. R. China
| | - Wenying Liu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , P. R. China
| | - Yishi Dong
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , P. R. China
| | - Ting Wei
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , P. R. China
| | - Zhaoqiang Wu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , P. R. China
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , P. R. China
| |
Collapse
|
8
|
Xie Y, Chen S, Qian Y, Zhao W, Zhao C. Photo-responsive membrane surface: Switching from bactericidal to bacteria-resistant property. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018. [DOI: 10.1016/j.msec.2017.11.036] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
9
|
Gungor E, Armani AM. Photocleavage of Covalently Immobilized Amphiphilic Block Copolymer: From Bilayer to Monolayer. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b01609] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Eda Gungor
- Mork Family
Department of
Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
| | - Andrea M. Armani
- Mork Family
Department of
Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
10
|
Modification of Silica Nanoparticles with Miktoarm Polymer Brushes via ATRP. J Inorg Organomet Polym Mater 2016. [DOI: 10.1007/s10904-016-0427-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
Huang J, He T, He X, Xu J, Zuo B, Wang X. Fabrication of V-shaped brushes consisting of two highly incompatible arms of PEG and fluorinated PMMA and their protein-resistance performance. ACTA ACUST UNITED AC 2016. [DOI: 10.1002/pola.28138] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jin Huang
- Department of Chemistry; Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Education Ministry, Zhejiang Sci-Tech University; Hangzhou 310018 China
| | - Tingting He
- Department of Chemistry; Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Education Ministry, Zhejiang Sci-Tech University; Hangzhou 310018 China
| | - Xumiao He
- Department of Chemistry; Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Education Ministry, Zhejiang Sci-Tech University; Hangzhou 310018 China
| | - Jianquan Xu
- Department of Chemistry; Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Education Ministry, Zhejiang Sci-Tech University; Hangzhou 310018 China
| | - Biao Zuo
- Department of Chemistry; Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Education Ministry, Zhejiang Sci-Tech University; Hangzhou 310018 China
| | - Xinping Wang
- Department of Chemistry; Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Education Ministry, Zhejiang Sci-Tech University; Hangzhou 310018 China
| |
Collapse
|
12
|
Sun L, Hong L, Wang C. Facile Fabrication of Water Dispersible Latex Particles with Homogeneous or Chain-Segregated Surface from RAFT Polymerization Using a Mixture of Two Macromolecular Chain Transfer Agents. Macromol Rapid Commun 2016; 37:691-9. [DOI: 10.1002/marc.201600003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Revised: 02/11/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Li Sun
- Department of Polymer Materials Science and Engineering; South China University of Technology; Guangzhou 510640 China
| | - Liangzhi Hong
- Department of Polymer Materials Science and Engineering; South China University of Technology; Guangzhou 510640 China
| | - Chaoyang Wang
- Research Institute of Materials Science; South China University of Technology; Guangzhou 510640 China
| |
Collapse
|
13
|
Abstract
This review summarizes recent developments in the field of surfaces functionalized with branched polymers, including the fabrication methods, morphologies, properties and applications.
Collapse
Affiliation(s)
- Wei Sun
- Laboratory of Polymer Chemistry
- Department of Polymer Materials
- College of Materials Science and Engineering
- Shanghai University
- Shanghai 200444
| |
Collapse
|
14
|
Hu C, Tian F, Zheng Y, Tan CSY, West KR, Scherman OA. Cucurbit[8]uril directed stimuli-responsive supramolecular polymer brushes for dynamic surface engineering. Chem Sci 2015; 6:5303-5310. [PMID: 28717504 PMCID: PMC5504464 DOI: 10.1039/c5sc01496d] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 06/22/2015] [Indexed: 11/25/2022] Open
Abstract
In situ modification of surfaces with thin layers of polymers is of growing interest as adjustment of surface properties can be made on demand. We present herein a supramolecular 'grafting to' polymer brush via the recognition of surface-bound cucurbit[8]uril (CB[8]) rotaxanes towards end-functionalised polyethylene glycol (PEG). This dynamic supramolecular method represents advantages over traditional approaches, which employ covalent bond formation in the 'grafting to' process. Brush properties can be easily modified post-preparation by exchanging the polymers with small molecules in a controlled, reversible manner. Including both redox- and light-responsive guests in a single rotaxane entity, the CB[8]-mediated preparation of the polymer brush offers unique opportunities to switch the brush composition efficiently. While the PEG brushes are well hydrated in a good solvent (water) and stretch away from the surface, they collapse in a poor solvent (toluene), leading to the formation of a dense layer on the surface. This collapsed conformation protects the heteroternary complexes of CB[8]-rotaxane from dissociation and maintains the attachment of polymers on the surface.
Collapse
Affiliation(s)
- Chi Hu
- Melville Laboratory for Polymer Synthesis , Department of Chemistry , University of Cambridge , Cambridge , CB2 1EW , UK . ; ; Tel: +44 (0)1223 331508
| | - Feng Tian
- Melville Laboratory for Polymer Synthesis , Department of Chemistry , University of Cambridge , Cambridge , CB2 1EW , UK . ; ; Tel: +44 (0)1223 331508
| | - Yu Zheng
- Melville Laboratory for Polymer Synthesis , Department of Chemistry , University of Cambridge , Cambridge , CB2 1EW , UK . ; ; Tel: +44 (0)1223 331508
| | - Cindy Soo Yun Tan
- Melville Laboratory for Polymer Synthesis , Department of Chemistry , University of Cambridge , Cambridge , CB2 1EW , UK . ; ; Tel: +44 (0)1223 331508
| | - Kevin R West
- BP Oil UK Ltd , Whitchurch Hill , Pangbourne, Reading , Berkshire RG8 7QR , UK
| | - Oren A Scherman
- Melville Laboratory for Polymer Synthesis , Department of Chemistry , University of Cambridge , Cambridge , CB2 1EW , UK . ; ; Tel: +44 (0)1223 331508
| |
Collapse
|
15
|
Xu W, Ledin PA, Shevchenko VV, Tsukruk VV. Architecture, Assembly, and Emerging Applications of Branched Functional Polyelectrolytes and Poly(ionic liquid)s. ACS APPLIED MATERIALS & INTERFACES 2015; 7:12570-12596. [PMID: 26010902 DOI: 10.1021/acsami.5b01833] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Branched polyelectrolytes with cylindrical brush, dendritic, hyperbranched, grafted, and star architectures bearing ionizable functional groups possess complex and unique assembly behavior in solution at surfaces and interfaces as compared to their linear counterparts. This review summarizes the recent developments in the introduction of various architectures and understanding of the assembly behavior of branched polyelectrolytes with a focus on functional polyelectrolytes and poly(ionic liquid)s with responsive properties. The branched polyelectrolytes and poly(ionic liquid)s interact electrostatically with small molecules, linear polyelectrolytes, or other branched polyelectrolytes to form assemblies of hybrid nanoparticles, multilayer thin films, responsive microcapsules, and ion-conductive membranes. The branched structures lead to unconventional assemblies and complex hierarchical structures with responsive properties as summarized in this review. Finally, we discuss prospectives for emerging applications of branched polyelectrolytes and poly(ionic liquid)s for energy harvesting and storage, controlled delivery, chemical microreactors, adaptive surfaces, and ion-exchange membranes.
Collapse
Affiliation(s)
- Weinan Xu
- †School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Petr A Ledin
- †School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Valery V Shevchenko
- ‡Institute of Macromolecular Chemistry, National Academy of Sciences of Ukraine, Kharkovskoe shosse 48, Kiev 02160, Ukraine
| | - Vladimir V Tsukruk
- †School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
16
|
Fu Z, Li T, He X, Liu J, Xu W, Wu Y. Cyclopalladated ferrocenylimine functionalized polymer brushes film and its mechanism investigation of heterogeneous catalysis. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.molcata.2014.08.038] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
17
|
Geryak R, Tsukruk VV. Reconfigurable and actuating structures from soft materials. SOFT MATTER 2014; 10:1246-63. [PMID: 24651547 DOI: 10.1039/c3sm51768c] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The recent interest in reconfigurable soft materials may lead to the next paradigm in the development of adaptive and actuating materials and structures. Actuating soft materials eventually can be precisely designed to show stimuli-sensing, multi-length scale actuation, tunable transport, programmed shape control and multifunctional orthogonal responses. Herein, we discuss the various advances in the emerging field of reconfigurable soft materials with a focus on the various parameters that can be modulated to control a complex system behavior. In particular, we detail approaches that use either long-range fields (i.e. electrical, magnetic) or changes in local thermodynamic parameters (e.g., solvent quality) in order to elicit a precise dimensional and controlled response. The theoretical underpinnings and practical considerations for different approaches are briefly presented alongside several illustrative examples from the recent studies. In the end, we summarize recent accomplishments, critical issues to consider, and give perspectives on the developments of this exciting research field.
Collapse
Affiliation(s)
- Ren Geryak
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
| | | |
Collapse
|
18
|
Sun W, Zhou S, You B, Wu L. Polymer Brush-Functionalized Surfaces with Reversible, Precisely Controllable Two-Way Responsive Wettability. Macromolecules 2013. [DOI: 10.1021/ma401416k] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Wei Sun
- Department of Materials Science
and State Key Laboratory of Molecular Engineering of Polymers, Advanced
Coatings Research Center of MEC, Fudan University, Shanghai 200433, China
| | - Shouxue Zhou
- Department of Materials Science
and State Key Laboratory of Molecular Engineering of Polymers, Advanced
Coatings Research Center of MEC, Fudan University, Shanghai 200433, China
| | - Bo You
- Department of Materials Science
and State Key Laboratory of Molecular Engineering of Polymers, Advanced
Coatings Research Center of MEC, Fudan University, Shanghai 200433, China
| | - Limin Wu
- Department of Materials Science
and State Key Laboratory of Molecular Engineering of Polymers, Advanced
Coatings Research Center of MEC, Fudan University, Shanghai 200433, China
| |
Collapse
|
19
|
Gao HM, Liu H, Lu ZY, Sun ZY, An LJ. The structures of thin layer formed by microphase separation of grafted Y-shaped block copolymers in solutions. J Chem Phys 2013; 138:224905. [DOI: 10.1063/1.4809988] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
20
|
Kodiyath R, Choi I, Patterson B, Tsitsilianis C, Tsukruk VV. Interfacial behavior of pH responsive ampholytic heteroarm star block terpolymers. POLYMER 2013. [DOI: 10.1016/j.polymer.2012.12.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
21
|
Binder K, Butt HJ, Floudas G, Frey H, Hsu HP, Landfester K, Kolb U, Kühnle A, Maskos M, Müllen K, Paul W, Schmidt M, Spiess HW, Virnau P. Structure Formation of Polymeric Building Blocks: Complex Polymer Architectures. FROM SINGLE MOLECULES TO NANOSCOPICALLY STRUCTURED MATERIALS 2013. [DOI: 10.1007/12_2013_230] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
22
|
|
23
|
Tonhauser C, Golriz AA, Moers C, Klein R, Butt HJ, Frey H. Stimuli-responsive y-shaped polymer brushes based on junction-point-reactive block copolymers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2012; 24:5559-5563. [PMID: 22899420 DOI: 10.1002/adma.201202105] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 07/05/2012] [Indexed: 06/01/2023]
Affiliation(s)
- Christoph Tonhauser
- Institute of Organic Chemistry, Organic and Macromolecular Chemistry, Johannes Gutenberg-University-JGU, Duesbergweg 10-14, 55099 Mainz, Germany
| | | | | | | | | | | |
Collapse
|
24
|
Wang ZL, Xu JT, Du BY, Fan ZQ. Preparation and characterization of V-shaped PS-b-PEO brushes anchored on planar gold substrate through the trithiocarbonate junction group. J Colloid Interface Sci 2012; 384:29-37. [DOI: 10.1016/j.jcis.2012.06.067] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 06/15/2012] [Accepted: 06/18/2012] [Indexed: 11/29/2022]
|
25
|
Anderson KD, Weber RB, McConney ME, Jiang H, Bunning TJ, Tsukruk VV. Responsive plasma polymerized ultrathin nanocomposite films. POLYMER 2012. [DOI: 10.1016/j.polymer.2012.08.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
26
|
Cao L, Man T, Zhuang J, Kruk M. Poly(N-isopropylacrylamide) and poly(2-(dimethylamino)ethyl methacrylate) grafted on an ordered mesoporous silica surface using atom transfer radical polymerization with activators regenerated by electron transfer. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c2jm15251g] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
27
|
|
28
|
Estillore NC, Advincula RC. Stimuli-responsive binary mixed polymer brushes and free-standing films by LbL-SIP. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:5997-6008. [PMID: 21513321 DOI: 10.1021/la200089x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
We report a facile approach to preparing binary mixed polymer brushes and free-standing films by combining the layer-by-layer and surface-initiated polymerization (LbL-SIP) techniques. Specifically, the grafting of mixed polymer brushes of poly(n-isopropylacrylamide) and polystyrene (pNIPAM-pSt) onto LbL-macroinitiator-modified planar substrates is described. Atom transfer radical polymerization (ATRP) and free radical polymerization (FRP) techniques were employed for the syntheses of pNIPAM and pSt, respectively, yielding pNIPAM-pSt mixed polymer brushes. The composition of the two polymers was controlled by varying the number of macroinitiator layers deposited on the substrate (i.e., LbL layers = 4, 8, 12, 16, and 20); consequently, mixed brushes of different thicknesses and composition ratios were obtained. Moreover, the switching behavior of the LbL-mixed brush films as a function of solvent and temperature was demonstrated and evaluated by water contact angle and atomic force microscopy (AFM) experiments. It was found that both the solvent and temperature stimuli responses were a function of the mixed brush composition and thickness ratio where the dominant component played a larger role in the response behavior. Furthermore, the ability to obtain free-standing films was exploited. The LbL technique provided the macroinitiator density variation necessary for the preparation of stable free-standing mixed brush films. Specifically, the free-standing films exhibited the rigidity to withstand changes in the solvent and temperature environment and at the same time were flexible enough to respond accordingly to external stimuli.
Collapse
Affiliation(s)
- Nicel C Estillore
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| | | |
Collapse
|
29
|
Zdyrko B, Luzinov I. Polymer Brushes by the “Grafting to” Method. Macromol Rapid Commun 2011; 32:859-69. [DOI: 10.1002/marc.201100162] [Citation(s) in RCA: 225] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Indexed: 11/08/2022]
|
30
|
Wang Y, Yang G, Tang P, Qiu F, Yang Y, Zhu L. Mixed homopolymer brushes grafted onto a nanosphere. J Chem Phys 2011; 134:134903. [DOI: 10.1063/1.3575180] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
31
|
Ye P, Dong H, Zhong M, Matyjaszewski K. Synthesis of Binary Polymer Brushes via Two-Step Reverse Atom Transfer Radical Polymerization. Macromolecules 2011. [DOI: 10.1021/ma1028533] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Penglin Ye
- Center for Macromolecular Engineering, Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Hongchen Dong
- Center for Macromolecular Engineering, Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Mingjiang Zhong
- Center for Macromolecular Engineering, Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Krzysztof Matyjaszewski
- Center for Macromolecular Engineering, Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
32
|
Sui X, Zapotoczny S, Benetti EM, Memesa M, Hempenius MA, Vancso GJ. Grafting mixed responsive brushes of poly(N-isopropylacrylamide) and poly(methacrylic acid) from gold by selective initiation. Polym Chem 2011. [DOI: 10.1039/c0py00393j] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
Orski SV, Fries KH, Sontag SK, Locklin J. Fabrication of nanostructures using polymer brushes. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c1jm11039j] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
34
|
Anderson KD, Marczewski K, Singamaneni S, Slocik JM, Jakubiak R, Naik RR, Bunning TJ, Tsukruk VV. Plasma amino acid coatings for a conformal growth of titania nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2010; 2:2269-2281. [PMID: 20735097 DOI: 10.1021/am1003365] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
We report on the conformal synthesis of ultrathin films from the amino acid histidine on flat silicon substrates and 3D periodic polymer structures via plasma enhanced chemical vapor deposition. We demonstrate the efficient utilization of this functional amino acid nanocoating for the formation of individual titania nanoparticles with dimensions from 2 to 15 nm depending upon reduction conditions. The titania nanoparticles were grown directly on histidine-functionalized planar and 3D polymer substrates by a wet-chemistry method that showed uniform surface coverage that reached approximately 75%. This approach demonstrates the potential for modifying the optical properties of periodic porous polymeric structures via direct conformal growth of titania nanoparticles.
Collapse
Affiliation(s)
- Kyle D Anderson
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
McConney ME, Singamaneni S, Tsukruk VV. Probing Soft Matter with the Atomic Force Microscopies: Imaging and Force Spectroscopy. POLYM REV 2010. [DOI: 10.1080/15583724.2010.493255] [Citation(s) in RCA: 172] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
36
|
Wang L, Peng B, Su Z. Tunable wettability and rewritable wettability gradient from superhydrophilicity to superhydrophobicity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:12203-12208. [PMID: 20415506 DOI: 10.1021/la101064c] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
A simple method for the fabrication of tunable surfaces with wettability that can be manipulated rapidly and reversibly from superhydrophilicity to superhydrophobicity is reported. A polyelectrolyte multilayer (PEM) was deposited on a rough substrate, and via ion exchange of the counterion in the PEM, the water contact angle of the surface was switched between <5 degrees and 164 degrees. By controlling the ion-exchange kinetics, on the same surface, completely erasable, rewritable gradient wettability from superhydrophilicity to superhydrophobicity was conveniently achieved.
Collapse
Affiliation(s)
- Liming Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | | | | |
Collapse
|
37
|
Singamaneni S, McConney ME, Tsukruk VV. Swelling-induced folding in confined nanoscale responsive polymer gels. ACS NANO 2010; 4:2327-2337. [PMID: 20232813 DOI: 10.1021/nn901886y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Mechanical instabilities such as buckling, wrinkling, creasing, and folding are commonplace in both natural and synthetic systems over a wide range of length scales. In this study, we focus on the spontaneous folding behavior of the highly swellable confined nanoscale (thickness below 100 nm) gel films resulting in the formation of a network of regularly folded structures spontaneously emerging in the course of their swelling and drying. We suggest that regular self-folding is originated from periodic instabilities (wrinkles) caused by swelling-initiated stresses under confined conditions. Furthermore, folded gel structures can be organized into regular serpentine-like manner by imposing various boundary conditions on microimprinted surfaces. We suggest that this demonstration of uniform gel to mechanically mediate morphogenesis has far-reaching implications in the creation of complex, large-area, 3D gel nanostructures.
Collapse
Affiliation(s)
- Srikanth Singamaneni
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | | | | |
Collapse
|
38
|
Wang J, Müller M. Memory effects of diblock copolymer brushes and mixed brushes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:1291-1303. [PMID: 19807084 DOI: 10.1021/la902438e] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Memory effects of microphase segregation in diblock copolymer brushes and binary mixed homopolymer brushes exposed to solvents of different quality and selectivity are studied using Single-Chain-in-Mean-Field (SCMF) simulations. We gauge these memory effects by a fluctuation memory measure, reflecting the correlation between the quenched fluctuations of grafting points and the microphase-separated morphology, and a domain memory measure, quantifying the correlation between surface morphologies during cyclic exposure to different solvents. The fluctuation and domain memory measures are closely correlated, and both of them have their root in the broken translational symmetry of the distribution of grafting points. They become stronger upon increasing the fluctuations of the grafting points. The effects of solvent quality and selectivity, grafting density, and composition of brushes on the memory measures are discussed.
Collapse
Affiliation(s)
- Jiafang Wang
- Institut für Theoretische Physik, Georg-August Universität, D-37077 Göttingen, Germany
| | | |
Collapse
|
39
|
Park JW, Kim H, Han M. Polymeric self-assembled monolayers derived from surface-active copolymers: a modular approach to functionalized surfaces. Chem Soc Rev 2010; 39:2935-47. [DOI: 10.1039/b918135k] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
40
|
Zhao B, Zhu L. Mixed Polymer Brush-Grafted Particles: A New Class of Environmentally Responsive Nanostructured Materials. Macromolecules 2009. [DOI: 10.1021/ma902042x] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Bin Zhao
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996
| | - Lei Zhu
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106
| |
Collapse
|
41
|
Wang J, Müller M. Microphase Separation of Mixed Polymer Brushes: Dependence of the Morphology on Grafting Density, Composition, Chain-Length Asymmetry, Solvent Quality, and Selectivity. J Phys Chem B 2009; 113:11384-402. [DOI: 10.1021/jp903161j] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jiafang Wang
- Institut für Theoretische Physik, Georg-August Universität, D-37077 Göttingen, Germany, and State key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Marcus Müller
- Institut für Theoretische Physik, Georg-August Universität, D-37077 Göttingen, Germany, and State key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| |
Collapse
|
42
|
Voltammetric sensor for barbituric acid based on a sol–gel derivated molecularly imprinted polymer brush grafted to graphite electrode. Int J Pharm 2009; 371:47-55. [DOI: 10.1016/j.ijpharm.2008.12.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Revised: 12/11/2008] [Accepted: 12/11/2008] [Indexed: 11/22/2022]
|
43
|
Yin Y, Jiang R, Li B, Jin Q, Ding D, Shi AC. Self-assembly of grafted Y-shaped ABC triblock copolymers in solutions. J Chem Phys 2009; 129:154903. [PMID: 19045225 DOI: 10.1063/1.2992079] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Self-assembled morphologies of grafted Y-shaped ABC triblock copolymers are investigated using a simulated annealing method. The block copolymers are composed of two incompatible arms (A and B) and a short stem (C), with the C-stems grafted onto a flat surface. A rich array of novel morphologies is discovered. The formation of these morphologies is controlled by polymer grafting density, the incompatibility between the A-B-blocks, as well as the quality and selectivity of the solvents. In particular, it is observed that solvent selectivity drives lateral and/or perpendicular microphase separation. A phase diagram for systems with low grafting density is constructed. It is predicted that multiple morphological transitions, such as these from mixed or core-shell micelles to internally segregated micelles, to hamburger-like micelles, to segmented wormlike micelles, to connected micelles, and to split micelles, can be induced by varying either the incompatibility between the two arms or the quality of the solvents. These results are consistent with previous experiments and theories.
Collapse
Affiliation(s)
- Yuhua Yin
- College of Physics, Key Laboratory of Functional Polymer Materials, Ministry of Education, Nankai University, Tianjin, 300071, China
| | | | | | | | | | | |
Collapse
|
44
|
Climent E, Casasús R, Marcos MD, Martínez-Máñez R, Sancenón F, Soto J. Colorimetric sensing of pyrophosphate in aqueous media using bis-functionalised silica surfaces. Dalton Trans 2009:4806-14. [DOI: 10.1039/b902099c] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
45
|
McConnell MD, Yang S, Composto RJ. Covalent Nanoparticle Assembly onto Random Copolymer Films. Macromolecules 2008. [DOI: 10.1021/ma8023156] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Marla D. McConnell
- Department of Materials Science and Engineering and Laboratory for Research on the Structure of Matter, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Shu Yang
- Department of Materials Science and Engineering and Laboratory for Research on the Structure of Matter, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Russell J. Composto
- Department of Materials Science and Engineering and Laboratory for Research on the Structure of Matter, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
46
|
Liu Y, Meng S, Mu L, Jin G, Zhong W, Kong J. Novel renewable immunosensors based on temperature-sensitive PNIPAAm bioconjugates. Biosens Bioelectron 2008; 24:710-5. [DOI: 10.1016/j.bios.2008.06.041] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Revised: 05/16/2008] [Accepted: 06/23/2008] [Indexed: 10/21/2022]
|
47
|
Abstract
The development of surfaces that have switchable properties, also known as smart surfaces, have been actively pursued in the past few years. The recent surge of interest in these switchable systems stems from the widespread number of applications to many areas in science and technology ranging from environmental cleanup to data storage, micro- and nanofluidic devices. Moreover, the ability to modulate biomolecule activity, protein immobilisation, and cell adhesion at the liquid-solid interface is important in a variety of biological and medical applications, including biofouling, chromatography, cell culture, regenerative medicine and tissue engineering. Different materials have been exploited to induce such changes in surface biological properties that are mostly based on self-assembled monolayers or polymer films. This critical review focuses on the recent progress in the preparation of these switchable surfaces, and highlights their applications in biological environments. The review is organized according to the external stimuli used to manipulate the properties of the substrate-chemical/biochemical, thermal, electric and optical stimuli. Current and future challenges in the field of smart biological surfaces are addressed (189 references).
Collapse
Affiliation(s)
- Paula M Mendes
- Department of Chemical Engineering, University of Birmingham, Birmingham, UK.
| |
Collapse
|
48
|
Zhu L, Zhao B. Transmission Electron Microscopy Study of Solvent-Induced Phase Morphologies of Environmentally Responsive Mixed Homopolymer Brushes on Silica Particles. J Phys Chem B 2008; 112:11529-36. [DOI: 10.1021/jp8048026] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lei Zhu
- Polymer Program, Institute of Materials Science and Department of Chemical, Materials and Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06269 and Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996
| | - Bin Zhao
- Polymer Program, Institute of Materials Science and Department of Chemical, Materials and Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06269 and Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996
| |
Collapse
|
49
|
|
50
|
Li CS, Wu WC, Sheng YJ, Chen WC. Effects of chain architectures on the surface structures of conjugated rod-coil block copolymer brushes. J Chem Phys 2008; 128:154908. [DOI: 10.1063/1.2904866] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|