1
|
Corpas J, Gomez-Mendoza M, Arpa EM, de la Peña
O'Shea VA, Durbeej B, Carretero JC, Mauleón P, Arrayás R. Iterative Dual-Metal and Energy Transfer Catalysis Enables Stereodivergence in Alkyne Difunctionalization: Carboboration as Case Study. ACS Catal 2023; 13:14914-14927. [PMID: 38026817 PMCID: PMC10662505 DOI: 10.1021/acscatal.3c03570] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/04/2023] [Indexed: 12/01/2023]
Abstract
Stereochemically defined tetrasubstituted olefins are widespread structural elements of organic molecules and key intermediates in organic synthesis. However, flexible methods enabling stereodivergent access to E and Z isomers of fully substituted alkenes from a common precursor represent a significant challenge and are actively sought after in catalysis, especially those amenable to complex multifunctional molecules. Herein, we demonstrate that iterative dual-metal and energy transfer catalysis constitutes a unique platform for achieving stereodivergence in the difunctionalization of internal alkynes. The utility of this approach is showcased by the stereodivergent synthesis of both stereoisomers of tetrasubstituted β-boryl acrylates from internal alkynoates with excellent stereocontrol via sequential carboboration and photoisomerization. The reluctance of electron-deficient internal alkynes to undergo catalytic carboboration has been overcome through cooperative Cu/Pd-catalysis, whereas an Ir complex was identified as a versatile sensitizer that is able to photoisomerize the resulting sterically crowded alkenes. Mechanistic studies by means of quantum-chemical calculations, quenching experiments, and transient absorption spectroscopy have been applied to unveil the mechanism of both steps.
Collapse
Affiliation(s)
- Javier Corpas
- Department of Organic Chemistry, Faculty of Science;
Institute for Advanced Research in Chemical Sciences (IAdChem); and Centro de
Innovación en Química Avanzada (ORFEO−CINQA),
Universidad Autónoma de Madrid (UAM), Cantoblanco,
28049 Madrid, Spain
| | - Miguel Gomez-Mendoza
- Photoactivated Processes Unit, IMDEA
Energy Institute, Technological Park of Mostoles, Avda. Ramón de la
Sagra 3, 28935 Madrid, Spain
| | - Enrique M. Arpa
- Division of Theoretical Chemistry, IFM,
Linköping University, 581 83 Linköping,
Sweden
| | - Víctor A. de la Peña
O'Shea
- Photoactivated Processes Unit, IMDEA
Energy Institute, Technological Park of Mostoles, Avda. Ramón de la
Sagra 3, 28935 Madrid, Spain
| | - Bo Durbeej
- Division of Theoretical Chemistry, IFM,
Linköping University, 581 83 Linköping,
Sweden
| | - Juan C. Carretero
- Department of Organic Chemistry, Faculty of Science;
Institute for Advanced Research in Chemical Sciences (IAdChem); and Centro de
Innovación en Química Avanzada (ORFEO−CINQA),
Universidad Autónoma de Madrid (UAM), Cantoblanco,
28049 Madrid, Spain
| | - Pablo Mauleón
- Department of Organic Chemistry, Faculty of Science;
Institute for Advanced Research in Chemical Sciences (IAdChem); and Centro de
Innovación en Química Avanzada (ORFEO−CINQA),
Universidad Autónoma de Madrid (UAM), Cantoblanco,
28049 Madrid, Spain
| | - Ramón
Gómez Arrayás
- Department of Organic Chemistry, Faculty of Science;
Institute for Advanced Research in Chemical Sciences (IAdChem); and Centro de
Innovación en Química Avanzada (ORFEO−CINQA),
Universidad Autónoma de Madrid (UAM), Cantoblanco,
28049 Madrid, Spain
| |
Collapse
|
2
|
Krishnan SB, Clark RJ, Lin X, Dmitrenko O, Hilinski EF, Kuhn LR, Alabugin IV, Saltiel J. α-Methylstilbene Isomers: Relationship of Structure to Photophysics and Photochemistry. J Phys Chem A 2022; 126:8976-8987. [PMID: 36414392 DOI: 10.1021/acs.jpca.2c06319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Significant differences in the photochemical and photophysical behavior of trans-α-methylstilbene and trans-stilbene have been attributed to structural changes caused by the steric requirements of the methyl group. We present here the X-ray structures of cis- and trans-α-methylstilbene (c- and t-MeSt). This is the first X-ray structure of a cis-stilbene. Despite the pronounced departure from phenyl group coplanarity, the solid-state packing of t-MeSt resembles that of trans-stilbene in that both exhibit disorder with a bicycle pedal structural relationship, dynamic in t-St but static in t-MeSt. We compare the X-ray structures with calculated structures. We also compare our steady state and transient photochemical and spectroscopic results with predictions in a recent theoretical paper that anticipated some of our experiments. Deviations from planarity imposed by the methyl substitution account for the shorter lifetimes of the trans excited states. The rapid torsional relaxation of 1t-MeSt* to the twisted intermediate 1p*, ktp = 2.9 × 1012 s-1, observed using fs transient absorption spectroscopy, explains the sharp decrease in the fluorescence quantum yield of t-MeSt. We correct misconceptions that have appeared in the literature concerning the shape of the stilbene potential energy surface in S1. The nonplanarity due to methyl substitution leads to chirality issues that are relevant in biological molecules such as the protonated Schiff bases of retinal in the opsins.
Collapse
Affiliation(s)
- Sumesh B Krishnan
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Ronald J Clark
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Xinsong Lin
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Olga Dmitrenko
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Edwin F Hilinski
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Leah R Kuhn
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Igor V Alabugin
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Jack Saltiel
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| |
Collapse
|
3
|
Imato K, Sasaki A, Ishii A, Hino T, Kaneda N, Ohira K, Imae I, Ooyama Y. Sterically Hindered Stiff-Stilbene Photoswitch Offers Large Motions, 90% Two-Way Photoisomerization, and High Thermal Stability. J Org Chem 2022; 87:15762-15770. [PMID: 36378160 DOI: 10.1021/acs.joc.2c01566] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Molecular photoswitches have been widely used as molecular machines in various fields due to the small structures and simple motions generated in reversible isomerization. However, common photoswitches, as represented by azobenzene (AB), cannot combine both large motions and high thermal stability, which are critically important for some practical applications in addition to high photoisomerization yields. Here, we focus on a promising photoswitch, stiff stilbene (SS), and its derivative, sterically hindered SS (HSS). The detailed investigation of their performance with a comparison to AB demonstrated that HSS is an outstanding photoswitch offering larger motions than AB and SS, ca. 90% photoisomerization in both E-to-Z and Z-to-E directions, and significantly high thermal stability with a half-life of ca. 1000 years at room temperature. The superior performance of HSS promises its use in various applications, even where previous photoswitches have troubles and are unavailable.
Collapse
Affiliation(s)
- Keiichi Imato
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima 739-8527, Japan
| | - Ayane Sasaki
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima 739-8527, Japan
| | - Akira Ishii
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima 739-8527, Japan
| | - Taichi Hino
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima 739-8527, Japan
| | - Naoki Kaneda
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima 739-8527, Japan
| | - Kazuki Ohira
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima 739-8527, Japan
| | - Ichiro Imae
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima 739-8527, Japan
| | - Yousuke Ooyama
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima 739-8527, Japan
| |
Collapse
|
4
|
Chen ZJ, Lu HF, Chiu CW, Hou FM, Matsunaga Y, Chao I, Yang JS. A Molecular Rotor That Probes the Helical Inversion of Stiff-Stilbene. Org Lett 2020; 22:9158-9162. [PMID: 33052674 DOI: 10.1021/acs.orglett.0c02993] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Probing the inversion kinetics of a molecular helix is inherently a challenging task. We demonstrate herein that a fast-rotating pentiptycene component could function as an external NMR probe to afford the kinetic information on the inversion of a neighboring helical stiff-stilbene unit.
Collapse
Affiliation(s)
- Zi-Jian Chen
- Department of Chemistry, National Taiwan University, Taipei, Taiwan 10617
| | - Hsiu-Feng Lu
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan 11529
| | - Chun-Wei Chiu
- Department of Chemistry, National Taiwan University, Taipei, Taiwan 10617
| | - Fen-Miao Hou
- Department of Chemistry, National Taiwan University, Taipei, Taiwan 10617
| | - Yuki Matsunaga
- Department of Chemistry, National Taiwan University, Taipei, Taiwan 10617
| | - Ito Chao
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan 11529
| | - Jye-Shane Yang
- Department of Chemistry, National Taiwan University, Taipei, Taiwan 10617
| |
Collapse
|
5
|
Shintani R, Kishikawa S, Nakamura K, Tsuda T, Nozaki K. Synthesis of carbonyl-bridged dibenzofulvalenes and related compounds by rhodium-catalyzed stitching reaction. Chem Commun (Camb) 2019; 55:1072-1075. [DOI: 10.1039/c8cc09943j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Various carbonyl-bridged dibenzofulvalenes were synthesized by a sequence of rhodium-catalyzed stitching reaction and post-functionalization, and other bridged dibenzofulvalenes could also be synthesized using the present stitching reaction.
Collapse
Affiliation(s)
- Ryo Shintani
- Division of Chemistry
- Department of Materials Engineering Science
- Graduate School of Engineering Science
- Osaka University
- Toyonaka
| | - Shinnosuke Kishikawa
- Division of Chemistry
- Department of Materials Engineering Science
- Graduate School of Engineering Science
- Osaka University
- Toyonaka
| | - Kimihiro Nakamura
- Department of Chemistry and Biotechnology
- Graduate School of Engineering
- The University of Tokyo
- Tokyo 113-8656
- Japan
| | - Tomohiro Tsuda
- Division of Chemistry
- Department of Materials Engineering Science
- Graduate School of Engineering Science
- Osaka University
- Toyonaka
| | - Kyoko Nozaki
- Department of Chemistry and Biotechnology
- Graduate School of Engineering
- The University of Tokyo
- Tokyo 113-8656
- Japan
| |
Collapse
|
6
|
Zapata F, Marazzi M, Castaño O, Acuña AU, Frutos LM. Definition and determination of the triplet-triplet energy transfer reaction coordinate. J Chem Phys 2014; 140:034102. [DOI: 10.1063/1.4861560] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
7
|
Oelgemöller M, Frank R, Lemmen P, Lenoir D, Lex J, Inoue Y. Synthesis, structural characterization and photoisomerization of cyclic stilbenes. Tetrahedron 2012. [DOI: 10.1016/j.tet.2012.03.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
8
|
Frutos LM, Castaño O. A new algorithm for predicting triplet-triplet energy-transfer activated complex coordinate in terms of accurate potential-energy surfaces. J Chem Phys 2005; 123:104108. [PMID: 16178590 DOI: 10.1063/1.1993592] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The new algorithm presented here allows, for the first time, the determination of the optimal geometrical distortions that an acceptor molecule in the triplet-triplet energy-transfer process undergoes, as well as the dependence of the activation energy of the process on the triplet energy difference of donor and acceptor molecules. This algorithm makes use of the complete potential-energy surfaces (singlet and triplet states), and contrasts with the first-order approximation already published [L. M. Frutos, O. Castano, J. L. Andres, M. Merchan, and A. U. Acuna, J. Chem. Phys. 120, 1208 (2004)] in which an expansion of the potential-energy surfaces was used. This algorithm is gradient based and finds the best trajectory for the acceptor molecule, starting from S(0) ground-state equilibrium geometry, to achieve the maximum variation of the singlet-triplet energy gap with the minimum energy of activation on S(0). Therefore, the algorithm allows the determination of a "reaction path" for the triplet-triplet energy-transfer processes. Also, the algorithm could also serve eventually to find minimum-energy crossing (singlet-triplet) points on the potential-energy surface, which can play an important role in the intersystem crossing process for the acceptor molecules to recover their initial capacity as acceptors. Also addressed is the misleading use of minimum-energy paths in T(1) to describe the energy-transfer process by comparing these results with those obtained using the new algorithm. The implementation of the algorithm is illustrated with different potential-energy surface models and it is discussed in the frame of nonvertical behavior.
Collapse
|
9
|
Lalevee J, Allonas X, Fouassier JP. Triplet–triplet energy transfer reaction to cis-stilbene: a dual thermal bond activation mechanism. Chem Phys Lett 2005. [DOI: 10.1016/j.cplett.2004.11.110] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|