1
|
Chen H, Hu X, Yin D. Benzotriazole ultraviolet stabilizers in the environment: A review of occurrence, partitioning and transformation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176362. [PMID: 39306142 DOI: 10.1016/j.scitotenv.2024.176362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/26/2024] [Accepted: 09/16/2024] [Indexed: 09/26/2024]
Abstract
Benzotriazole ultraviolet stabilizers (BUVSs) are widely used as industrial additives to protect products from photoaging and are present in a variety of environmental matrices and organisms. It raised significant concerns that BUVSs are emerging pollutants with persistence, bioaccumulation and toxicity, of which 2-(3, 5-di-tert-amyl-2-hydroxyphenyl) benzotriazole (UV-328) has been recently listed in Annex A of the Stockholm Convention Persistent Organic Pollutants (POPs) list. A comprehensive understanding of the occurrence, partitioning and transformation of BUVSs in the environment is the basis for their environmental exposure and risk studies. However, the occurrence, partitioning and transformation of BUVSs are scarcely reviewed. In this paper, the environmental occurrence of BUVSs in various matrices, including water-suspended particulate matter and sediment, soil and dust, sludge, as well as biota, were summarized. Solid matrices and organisms are predominant reservoirs for BUVSs rather than waters, but there is a lack of systematical summary on the sorption/partitioning studies of BUVSs in abiotic phases and organisms. This paper analyzed and reviewed the possible sorption/partitioning processes and mechanisms. It was found that the partitioning is dependent on the hydrophobicity of BUVSs, environmental conditions and the organic carbon contents, and the bioaccumulation is also biota-species dependent. To further assess the potential risks of BUVSs, more progress has been made in the study of transformation of BUVSs. Focusing on the most important transformation processes in the environment, involving photodegradation, chemical degradation, biodegradation and metabolism in biota, the probable transformation pathways and mechanisms of BUVSs were summarized. It was emphasized that the hydrophobicity and toxicity of metabolites should not be overlooked. Finally, the future research direction was prospected from contaminant remediation and health risk perspectives. This paper provides fundamental knowledge of the environmental behavior of BUVSs, and will facilitate the research of environmental exposure and risk assessment of BUVSs.
Collapse
Affiliation(s)
- Huifan Chen
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Xialin Hu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Daqiang Yin
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
2
|
Li G, Liu Y, Lei D, Li J, Dou X. Amination and Protonation Facilitated Novel Isoxazole Derivative for Highly Efficient Electron and Hole Separation. J Phys Chem A 2024. [PMID: 38656182 DOI: 10.1021/acs.jpca.4c01324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
It is of great importance to understand the intrinsic relationship between phototautomerization and photoelectric properties for the exploration of novel organic materials. Here, in order to chemically control the protonation process, the aminated isoxazole derivative (2,2'-(isoxazolo[5,4-d]isoxazole-3,6-diyl)dibenzenaminium, DP-DA-DPIxz) with -N═ as the proton acceptor was designed to achieve the twisted intramolecular charge transfer (TICT) state which was triggered by an excited-state intramolecular proton transfer (ESIPT) process. This kind of protonation enhanced the intramolecular hydrogen bonding, conjugative effect, and steric hindrance effects, ensuring a barrierless spontaneous TICT process. Through the intramolecular proton transfer, the configuration torsion and conjugation dissociation of the DP-DA-DPIxz molecule was favored, which led to efficient charge separation and remarkable variations in light-emitting properties. We hope the present investigation will provide a new approach to design novel optoelectronic organic materials and shine light on the understanding of the charge transfer and separation process in molecular science.
Collapse
Affiliation(s)
- Gaosheng Li
- School of Physics Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046, China
| | - Yali Liu
- Xinjiang Key Laboratory of Trace Chemical Substances Sensing, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Da Lei
- Xinjiang Key Laboratory of Trace Chemical Substances Sensing, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Jiguang Li
- Xinjiang Key Laboratory of Trace Chemical Substances Sensing, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Xincun Dou
- School of Physics Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046, China
- Xinjiang Key Laboratory of Trace Chemical Substances Sensing, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
MENGEŞ N. Heterocyclic molecules with ESIPT emission: synthetic approaches, molecular diversities, and application strategies. Turk J Chem 2023; 47:888-909. [PMID: 38173742 PMCID: PMC10760871 DOI: 10.55730/1300-0527.3585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 10/31/2023] [Accepted: 09/30/2023] [Indexed: 01/05/2024] Open
Abstract
Excited-state intramolecular proton transfer (ESIPT) is one of the most essential emission processes in most circumstances because of its dual emission band in most cases and its high Stokes shifts. These distinguishing properties make ESIPT-based probes more suitable for a variety of applications, including analyte sensors, solid-state sensing mechanisms, optical technologies, and biomarkers for endogenous or exogenous compounds in various settings. As a result, researchers around the world are working on ESIPT emissions and developing different scaffolds for various applications or industry demands. This field of study is rapidly expanding and there is a need for an up-to-date review of synthesis methodologies and applications. This paper provides the highlights of ESIPT-based heterocyclic scaffolds, synthesis strategies, and application scenarios in the literature from 2017 to 2023.
Collapse
Affiliation(s)
- Nurettin MENGEŞ
- Science and Technology Research and Application Center (BİTAM), Necmettin Erbakan University, Konya,
Turkiye
- Department of Biomedical Engineering, Faculty of Engineering, Necmettin Erbakan University, Konya,
Turkiye
| |
Collapse
|
4
|
Iline-Vul T, Kanovsky N, Yom-Tov D, Nadav-Tsubery M, Margel S. Design of silane-based UV-absorbing thin coatings on polyethylene films. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
5
|
Cheng W, Liu W, Wang P, Zhou M, Cui L, Wang Q, Yu Y. Multifunctional coating of cotton fabric via the assembly of amino-quinone networks with polyamine biomacromolecules and dopamine quinone. Int J Biol Macromol 2022; 213:96-109. [PMID: 35636528 DOI: 10.1016/j.ijbiomac.2022.05.165] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/14/2022] [Accepted: 05/24/2022] [Indexed: 12/11/2022]
Abstract
Functional textiles with antibacterial properties and UV protection are essential for human health. However, the process of functional modification of textiles is usually done with the help of chemical cross-linking agents to improve the bonding fastness of functional finishing agents on textiles. The use of chemical cross-linking agents is not eco-friendly enough and is prone to chemical waste. In this study, some highly reactive polyamine biomolecules were combined with dopamine quinone, a super adhesive bionic material, to spontaneously construct amino-quinone networks (AQNs) coatings on the surface of cotton fabrics without the addition of chemical crosslinkers. The amino/quinone compounds (A/Q) self-crosslinking reaction is achieved by Michael addition and Schiff base reaction between the quinone group in dopamine quinone and the amino group in chitosan (CTS), chitooligosaccharide (COS) or ԑ-polylysine (ԑ-PL). The combination of polyamines and dopamine quinone during the cotton finishing process imparts antibacterial and UV protection to cotton fabric. The results showed that the AQNs coating modified fabrics had superb UV protection and antibacterial rates of over 96% against both E. coli and S. aureus. In addition, the AQNs coating modified fabrics had good resistance to washing and mechanical abrasion. This study proposes that self-assembled amino-quinone network multifunctional coatings of dopamine quinone and polyamine biomolecules are of guiding significance for the development of environmentally friendly bio-based materials.
Collapse
Affiliation(s)
- Wei Cheng
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenjing Liu
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Ping Wang
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Man Zhou
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Li Cui
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qiang Wang
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yuanyuan Yu
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
6
|
Zhang Y, Ma M, Shang C, Cao Y, Sun C. Theoretical Study on the Atom-Substituted Quinazoline Derivatives with Faint Emission as Potential Sunscreens. ACS OMEGA 2022; 7:14848-14855. [PMID: 35557698 PMCID: PMC9088953 DOI: 10.1021/acsomega.2c00316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 04/12/2022] [Indexed: 06/15/2023]
Abstract
Two novel compounds (HQS and HQSe) with excited-state intramolecular proton transfer (ESIPT) properties were designed based on the compound 2-(2-hydroxy-3-ethoxyphenyl)-3H-quinazolin-4-one (HQ). The parameters related to the ESIPT properties and electronic spectra of HQ and its derivatives were calculated using density functional theory and time-dependent density functional theory methods. The obtained geometric configurations, infrared vibrational spectra, and reduced density gradient scatter plots have shown that the intramolecular hydrogen bond O1···H1-N1 has been weakened upon photoexcitation. Moreover, from the scanned potential energy curves, it can be found that the ESIPT processes of the three compounds have no energy barriers. It is noteworthy that HQS and HQSe can strongly absorb light in the UVA region (∼340 nm) and exhibit weak fluorescence emission in the visible light region, which comes from the keto configuration. The special optical properties of HQS and HQSe can promote their application as potential sunscreen agents.
Collapse
|
7
|
Qi Z, Zhang S, Liu B, Li M, Mei D. Performance research of PVA (Polyvinyl alcohol) based on HKUST-1 as additive. CHEM LETT 2022. [DOI: 10.1246/cl.220111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Ziyi Qi
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Shuhua Zhang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Binyan Liu
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Ming Li
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Dajiang Mei
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| |
Collapse
|
8
|
Stoerkler T, Pariat T, Laurent AD, Jacquemin D, Ulrich G, Massue J. Excited-State Intramolecular Proton Transfer Dyes with Dual-State Emission Properties: Concept, Examples and Applications. Molecules 2022; 27:molecules27082443. [PMID: 35458640 PMCID: PMC9024454 DOI: 10.3390/molecules27082443] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/08/2022] [Accepted: 04/08/2022] [Indexed: 11/30/2022] Open
Abstract
Dual-state emissive (DSE) fluorophores are organic dyes displaying fluorescence emission both in dilute and concentrated solution and in the solid-state, as amorphous, single crystal, polycrystalline samples or thin films. This comes in contrast to the vast majority of organic fluorescent dyes which typically show intense fluorescence in solution but are quenched in concentrated media and in the solid-state owing to π-stacking interactions; a well-known phenomenon called aggregation-caused quenching (ACQ). On the contrary, molecular rotors with a significant number of free rotations have been engineered to show quenched emission in solution but strong fluorescence in the aggregated-state thanks to restriction of the intramolecular motions. This is the concept of aggregation-induced emission (AIE). DSE fluorophores have been far less explored despite the fact that they are at the crossroad of ACQ and AIE phenomena and allow targeting applications both in solution (bio-conjugation, sensing, imaging) and solid-state (organic electronics, data encryption, lasing, luminescent displays). Excited-State Intramolecular Proton Transfer (ESIPT) fluorescence is particularly suitable to engineer DSE dyes. Indeed, ESIPT fluorescence, which relies on a phototautomerism between normal and tautomeric species, is characterized by a strong emission in the solid-state along with a large Stokes’ shift, an enhanced photostability and a strong sensitivity to the close environment, a feature prone to be used in bio-sensing. A drawback that needs to be overcome is their weak emission intensity in solution, owing to detrimental molecular motions in the excited-state. Several strategies have been proposed in that regard. In the past few years, a growing number of examples of DSE-ESIPT dyes have indeed emerged in the literature, enriching the database of such attractive dyes. This review aims at a brief but concise overview on the exploitation of ESIPT luminescence for the optimization of DSE dyes properties. In that perspective, a synergistic approach between organic synthesis, fluorescence spectroscopy and ab initio calculations has proven to be an efficient tool for the construction and optimization of DSE-ESIPT fluorophores.
Collapse
Affiliation(s)
- Timothée Stoerkler
- Institut de Chimie et Procédés pour l’Energie, l’Environnement et la Santé (ICPEES), Equipe Chimie Organique pour la Biologie, les Matériaux et l’Optique (COMBO), UMR CNRS 7515, Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), Université de Strasbourg, 25 Rue Becquerel, CEDEX 02, 67087 Strasbourg, France; (T.S.); (T.P.); (G.U.)
| | - Thibault Pariat
- Institut de Chimie et Procédés pour l’Energie, l’Environnement et la Santé (ICPEES), Equipe Chimie Organique pour la Biologie, les Matériaux et l’Optique (COMBO), UMR CNRS 7515, Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), Université de Strasbourg, 25 Rue Becquerel, CEDEX 02, 67087 Strasbourg, France; (T.S.); (T.P.); (G.U.)
| | - Adèle D. Laurent
- Chimie et Interdisciplinarités: Synthèse, Analyse et Modélisation (CEISAM), UMR CNRS 6230, Nantes University, 44322 Nantes, France;
| | - Denis Jacquemin
- Chimie et Interdisciplinarités: Synthèse, Analyse et Modélisation (CEISAM), UMR CNRS 6230, Nantes University, 44322 Nantes, France;
- Correspondence: (D.J.); (J.M.)
| | - Gilles Ulrich
- Institut de Chimie et Procédés pour l’Energie, l’Environnement et la Santé (ICPEES), Equipe Chimie Organique pour la Biologie, les Matériaux et l’Optique (COMBO), UMR CNRS 7515, Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), Université de Strasbourg, 25 Rue Becquerel, CEDEX 02, 67087 Strasbourg, France; (T.S.); (T.P.); (G.U.)
| | - Julien Massue
- Institut de Chimie et Procédés pour l’Energie, l’Environnement et la Santé (ICPEES), Equipe Chimie Organique pour la Biologie, les Matériaux et l’Optique (COMBO), UMR CNRS 7515, Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), Université de Strasbourg, 25 Rue Becquerel, CEDEX 02, 67087 Strasbourg, France; (T.S.); (T.P.); (G.U.)
- Correspondence: (D.J.); (J.M.)
| |
Collapse
|
9
|
Qiao RM, Zhao CP, Liu JL, Zhang ML, He WQ. Synthesis of Novel Ultraviolet Absorbers and Preparation and Field Application of Anti-Ultraviolet Aging PBAT/UVA Films. Polymers (Basel) 2022; 14:polym14071434. [PMID: 35406307 PMCID: PMC9003559 DOI: 10.3390/polym14071434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 02/05/2023] Open
Abstract
Poly-(butylene adipate-co-terephthalate) (PBAT) has become one of the most prevalent biodegradable plastic film materials owing to its good degradability, mechanical properties, and processability. However, the degradation time of this material was too fast and the functional period was short, which limited its application. Herein, three new tropolone-based UV absorbers (UVA-1C, UVA-4C and UVA-6C) were rationally designed and blended into PBAT. The PBAT/UVA films that formed were used against UV aging and prolonged the functional period of PBAT film. The three new absorbers were synthesized by bridging two tropolones using three different organic chains with different flexibility. Among them, the UVA-6C showed the strongest UV absorbance at around 238 nm and 320 nm. Consequently, the PBAT/UVA-6C film showed an extended validity period of 240 h in the Xenon lamp aging machine and a prolonged functional period of 8 d during the field application test when compared to pure PBAT. More importantly, a 7.8% increase in the maize yield was obtained under PBAT/UVA-6C film relative to pure PBAT film. Obviously, the novel prepared UVA-6C compound is a good candidate for UV absorption in PBAT, which makes PBAT/UVA-6C film more advantageous over pure PBAT in practical applications as biodegradable agricultural film.
Collapse
|
10
|
Mondal A, Ahmmed E, Ball B, Chattopadhyay P. Rational Design of a New AIE‐Coupled ESIPT‐Based Multi‐chromic State Depended Organo‐luminophore With
Turn‐on
Emissive Response to Zn(II) in Aqueous and Solid‐state**. ChemistrySelect 2022. [DOI: 10.1002/slct.202103857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Asit Mondal
- Department of Chemistry The University of Burdwan, Golapbag Burdwan 713104 India
| | - Ejaj Ahmmed
- Department of Chemistry The University of Burdwan, Golapbag Burdwan 713104 India
| | - Biswajit Ball
- Department of Chemistry Visva-Bharati University Santiniketan 731235 India
| | | |
Collapse
|
11
|
The effect of ring aromaticity on ESIPT behavior and photophysical properties of 2-(2′-hydroxyphenyl)- 4-chloromethylthiazole derivatives: A TD-DFT study. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116517] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Aswathy LB, Deepthi A, Jayasree EG. An insight into the dual fluorescence of 3,6-dihydroxybenzene-1,2,4,5-tetracarboxylic acid tetraethyl ester - An experimental and theoretical study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 252:119496. [PMID: 33530030 DOI: 10.1016/j.saa.2021.119496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/01/2021] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
The Excited State Intramolecular Proton Transfer (ESIPT) phenomenon involving photo-induced keto-enol tautomerization is known to cause significant variations in the excited state structures and photophysical properties of certain molecules. Here, the dual emission exhibited by 3,6-dihydroxybenzene-1,2,4,5-tetracarboxylic acid tetraethyl ester has been studied both experimentally and theoretically and it is concluded that the second emission is due to ESIPT in polar protic solvents, while it is due to dianion formation in solvents like DMSO and DMF.
Collapse
Affiliation(s)
- L B Aswathy
- Department of Chemistry, University of Kerala, Kariavattom Campus, Thiruvananthapuram 695581, Kerala, India
| | - Ani Deepthi
- Department of Chemistry, University of Kerala, Kariavattom Campus, Thiruvananthapuram 695581, Kerala, India.
| | - E G Jayasree
- Department of Chemistry, University of Kerala, Kariavattom Campus, Thiruvananthapuram 695581, Kerala, India.
| |
Collapse
|
13
|
Shang C, Wang G, Liu K, Jiang Q, Liu F, Chou PT, Fang Y. Perylene Bisimide and Naphthyl-Based Molecular Dyads: Hydrogen Bonds Driving Co-planarization and Anomalous Temperature-Response Fluorescence. Angew Chem Int Ed Engl 2020; 59:8579-8585. [PMID: 32080956 DOI: 10.1002/anie.201914070] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/30/2020] [Indexed: 12/22/2022]
Abstract
The origin of the positive temperature effect in fluorescence emission of a newly designed perylene bisimide (PBI) derivative with two naphthyl units containing ortho-methoxy group (NM) at its bay positions (PBI-2NM) was elucidated. A key point is the finding of a weak hydrogen bond (<5.0 kcal mol-1 ) between the methoxy group of the NM unit and a nearby hydrogen atom of the PBI core. It is the bonding that drives co-planarization of the different aromatic units, resulting in delocalization of the π-electrons of the compound as synthesized, inducing fluorescence quenching via intramolecular charge transfer (ICT). With increasing temperature, the co-planar structure could be distorted in part, resulting in a decreased degree of ICT, and hence leading to enhanced fluorescence emission. The unique positive temperature effect in emission induced by H-bond-driven co-planarization may pave a new avenue in designing functional molecular systems complementary to conventional methods.
Collapse
Affiliation(s)
- Congdi Shang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| | - Gang Wang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| | - Ke Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| | - Qingwei Jiang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| | - Fengyi Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| | - Pi-Tai Chou
- Department of Chemistry, National (Taiwan) University, Taipei, 10617, Taiwan R.O.C
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| |
Collapse
|
14
|
Shang C, Wang G, Liu K, Jiang Q, Liu F, Chou P, Fang Y. Perylene Bisimide and Naphthyl‐Based Molecular Dyads: Hydrogen Bonds Driving Co‐planarization and Anomalous Temperature‐Response Fluorescence. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914070] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Congdi Shang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 P. R. China
| | - Gang Wang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 P. R. China
| | - Ke Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 P. R. China
| | - Qingwei Jiang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 P. R. China
| | - Fengyi Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 P. R. China
| | - Pi‐Tai Chou
- Department of Chemistry National (Taiwan) University Taipei 10617 Taiwan R.O.C
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710062 P. R. China
| |
Collapse
|
15
|
Sartyoungkul S, Ehara M, Sakurai H. Time-Dependent Density Functional Theory Investigation of Excited State Intramolecular Proton Transfer in Tris(2-hydroxyphenyl)triazasumanene. J Phys Chem A 2020; 124:1227-1234. [PMID: 31977215 DOI: 10.1021/acs.jpca.9b10340] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Previously, our group reported dual-emission spectra for tris(2-hydroxyphenyl)triazasumanene (OHPhTAS), comprising three OH···N-type intramolecular hydrogen bonds from three phenolic rings connected to the nitrogen-doped buckybowl skeleton, corresponding to the excited state intramolecular proton transfer (ESIPT) in the solid state. However, the dual emission is not observed in a nonpolar solution. In this study, the mechanism and multiplicity of potentially photoinduced dynamic ESIPT were investigated both in ground (S0) and in excited states (S1) by time-dependent density functional theory calculations. Different pathways, concerted and stepwise (single, double, or triple) PT processes, are considered. The calculated vertical emission energies (S1 → S0 states) and adiabatic total energies at S0 and S1 states of OHPhTAS and its tautomers revealed that a single PT, trienol (EEE) → monoketo (KEE), is the main contribution in OHPhTAS with an ultrasmall PT energy barrier. The nonradiative decay of OHPhTAS was analyzed by the potential energy curve (PEC) at the S1 state along EEE* to KEE*. The results indicated that nonradiative decay was prohibited in the solid state but significantly stabilized in nonpolar solutions. The nonradiative routes in the solution state were confirmed by the minimum energy crossing point of the T1/S0 pathway, wherein the dihedral angle φ between the phenolic ring and pyridine moiety on the buckybowl structure relaxed to 123°.
Collapse
Affiliation(s)
- Sitanan Sartyoungkul
- Division of Applied Chemistry, Graduate School of Engineering , Osaka University , 2-1 Yamadaoka , Suita , Osaka 565-0871 , Japan
| | - Masahiro Ehara
- Research Center for Computational Science and Institute for Molecular Science , 38 Nishigo-naka , Myodaiji, Okazaki 444-8585 , Japan
| | - Hidehiro Sakurai
- Division of Applied Chemistry, Graduate School of Engineering , Osaka University , 2-1 Yamadaoka , Suita , Osaka 565-0871 , Japan
| |
Collapse
|
16
|
Mishra VR, Ghanavatkar CW, Sekar N. Towards NIR‐Active Hydroxybenzazole (HBX)‐Based ESIPT Motifs: A Recent Research Trend. ChemistrySelect 2020. [DOI: 10.1002/slct.201904558] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Virendra R. Mishra
- Department of Dyestuff Technology Institute of Chemical Technology (ICT), Matunga, Mumbai India
| | | | - Nagaiyan Sekar
- Department of Dyestuff Technology Institute of Chemical Technology (ICT), Matunga, Mumbai India
| |
Collapse
|
17
|
Chen J, Liang T, Zhao H, Lin C, Chen L, Zhang M. Silver-mediated three-component cycloaddition reaction for direct synthesis of 1-N-vinyl-substituted 1,2,3-triazoles. Org Biomol Chem 2019; 17:4843-4849. [PMID: 31033976 DOI: 10.1039/c9ob00686a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Herein, we report direct synthesis of 1-N-vinyl-1,2,3-triazoles via silver-mediated three-component cycloaddition reaction of phenylacetylenes, trimethylsilylazide, and 1,3-dicarbonyl compounds. The synthetic protocol proceeds with operational simplicity, good substrate and functional group compatibility, and easily available feedstocks, and without the need for pre-installation of vinylazide precursors, and offers a practical method for the efficient elaboration of triazole derivatives.
Collapse
Affiliation(s)
- Jinpeng Chen
- School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Rd, Guangzhou 510640, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
18
|
Chow CH, Sze-Yin Leung K. Transformations of organic micropollutants undergoing permanganate/bisulfite treatment: Kinetics, pathways and toxicity. CHEMOSPHERE 2019; 237:124524. [PMID: 31549647 DOI: 10.1016/j.chemosphere.2019.124524] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 07/28/2019] [Accepted: 08/04/2019] [Indexed: 06/10/2023]
Abstract
Permanganate/bisulfite (PM/BS) is a relatively new advanced oxidation process that can degrade organic micropollutants at extraordinary high rates. In this study, the degradability of PM/BS process towards different representative types of compounds was studied by investigating the kinetics, reaction site specificity and transformation chemistry. Acesulfame (ACE) and carbamazepine (CBZ) were two typical compounds containing olefinic moieties. Sucralose (SUC) was selected as a reference compound, and it is without aromatic and olefinic moieties. The kinetics results indicated that ACE and CBZ were effectively degraded while SUC was not. Preferred reaction sites of Mn3+ species was elucidated by identification of the ACE-transformation products (TPs) and CBZ-TPs with UHPLC-QTOF-MS. Seventeen ACE-TPs including two new compounds and eleven CBZ-TPs produced during the PM/BS process were identified and characterized. Transformation pathways revealed that cleavage of olefinic double bonds was the main reaction mechanism. Chemical structures containing electron-donating groups preferentially reacted with electrophilic Mn3+ species during the process. In addition, transformation products of ACE and CBZ during PM/BS process did not induce higher toxicity. This study provides a preliminary interpretation on the selectivity of PM/BS process according to the micropollutants' chemical structures, which hope to shed light on the future development of PM/BS treatment.
Collapse
Affiliation(s)
- Chi-Hang Chow
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region
| | - Kelvin Sze-Yin Leung
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region; HKBU Institute of Research and Continuing Education, Shenzhen Virtual University Park, Shenzhen, China.
| |
Collapse
|
19
|
Chen X, Wang J, Chen J, Zhou C, Cui F, Sun G. Photodegradation of 2-(2-hydroxy-5-methylphenyl)benzotriazole (UV-P) in coastal seawaters: Important role of DOM. J Environ Sci (China) 2019; 85:129-137. [PMID: 31471019 DOI: 10.1016/j.jes.2019.05.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 05/14/2019] [Indexed: 06/10/2023]
Abstract
Benzotriazole UV stabilizers (BT-UVs) have attracted concerns due to their ubiquitous occurrence in the aquatic environment, and their bioaccumulative and toxic properties. However, little is known about their aquatic environmental degradation behavior. In this study, photodegradation of a representative of BT-UVs, 2-(2-hydroxy-5-methylphenyl)benzotriazole (UV-P), was investigated under simulated sunlight irradiation. Results show that UV-P photodegrades slower under neutral conditions (neutral form) than under acidic or alkaline conditions (cationic and anionic forms). Indirect photodegradation is a dominant elimination pathway of UV-P in coastal seawaters. Dissolved organic matter (DOM) from seawaters accelerate the photodegradation rates mainly through excited triplet DOM (3DOM⁎), and the roles of singlet oxygen and hydroxyl radical are negligible in the matrixes. DOM from seawaters impacted by mariculture exhibits higher steady-state concentration of 3DOM⁎ ([3DOM⁎]) relative to those from pristine seawaters, leading to higher photosensitizing effects on the photodegradation. Halide ions inhibit the DOM-sensitized photodegradation of UV-P by decreasing [3DOM⁎]. Photodegradation half-lives of UV-P are estimated to range from 24.38 to 49.66 hr in field water bodies of the Yellow River estuary. These results are of importance for assessing environmental fate and risk UV-P in coastal water bodies.
Collapse
Affiliation(s)
- Xi Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jieqiong Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Chengzhi Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Feifei Cui
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Guoxin Sun
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
20
|
Malcomson T, Azizi A, Momen R, Xu T, Kirk SR, Paterson MJ, Jenkins S. Stress Tensor Eigenvector Following with Next-Generation Quantum Theory of Atoms in Molecules: Excited State Photochemical Reaction Path from Benzene to Benzvalene. J Phys Chem A 2019; 123:8254-8264. [PMID: 31487180 DOI: 10.1021/acs.jpca.9b07519] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this investigation, we considered both the scalar and 3-D vector-based measures of bonding using next generation quantum theory of atoms in molecules (QTAIM), constructed from the preferred direction of electronic charge density accumulation, to better understand the photochemical reaction associated with of the formation of benzvalene from benzene. The formation of benzvalene from benzene resulted in two additional C-C bonds forming compared with the benzene. The creation of the additional C-C bonds was explained in terms of an increasing the favorability of the reaction process by maximizing the bonding density. The topological instability of the benzvalene structure was determined using the scalar and vector-based measures to explain the short chemical half-life of benzvalene in terms of the competition between the formation of unstable new C-C bonding that also destabilizes nearest neighbor C-C bonds. The explosive character of benzvalene is indicated by the unusual tendency of the C-C bonds to rupture as easily as weak bonding. The topological instability of the short strong C-C bonds was explained by the existence of measures from conventional and next generation QTAIM that previously have only been observed in weak interactions; such measures included twisted 3-D bonding descriptors.
Collapse
Affiliation(s)
- Thomas Malcomson
- Institute of Chemical Sciences, School of Engineering and Physical Sciences , Heriot-Watt University , Edinburgh , EH14 4AS , U.K
| | - Alireza Azizi
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research and Key Laboratory of Resource National and Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, College of Chemistry and Chemical Engineering , Hunan Normal University , Changsha , Hunan 410081 , China
| | - Roya Momen
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research and Key Laboratory of Resource National and Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, College of Chemistry and Chemical Engineering , Hunan Normal University , Changsha , Hunan 410081 , China
| | - Tianlv Xu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research and Key Laboratory of Resource National and Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, College of Chemistry and Chemical Engineering , Hunan Normal University , Changsha , Hunan 410081 , China
| | - Steven R Kirk
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research and Key Laboratory of Resource National and Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, College of Chemistry and Chemical Engineering , Hunan Normal University , Changsha , Hunan 410081 , China
| | - Martin J Paterson
- Institute of Chemical Sciences, School of Engineering and Physical Sciences , Heriot-Watt University , Edinburgh , EH14 4AS , U.K
| | - Samantha Jenkins
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research and Key Laboratory of Resource National and Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, College of Chemistry and Chemical Engineering , Hunan Normal University , Changsha , Hunan 410081 , China
| |
Collapse
|
21
|
Hu G, Sun Y, Xie Y, Wu S, Zhang X, Zhuang J, Hu C, Lei B, Liu Y. Synthesis of Silicon Quantum Dots with Highly Efficient Full-Band UV Absorption and Their Applications in Antiyellowing and Resistance of Photodegradation. ACS APPLIED MATERIALS & INTERFACES 2019; 11:6634-6643. [PMID: 30652473 DOI: 10.1021/acsami.8b20138] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
UV absorbers are very effective in the fields of antiyellowing, resistance of photocatalytic degradation, and sunscreen cosmetics. However, commercialized UV absorbers have the drawbacks of toxicity, low absorption efficiency, transparency, etc. Here, we report for the first time silicon quantum dots as full-band UV absorbers. The NH-refunctionalized silicon quantum dots with high-performance UV absorption were successfully synthesized under the synergistic effect of sodium citrate and ethanediamine, and the (NH, OH)-functionalized silicon quantum dots (SiQDs) with full-band UV absorption can be achieved by reregulating -NH2 and -OH groups on the surface. The as-prepared (NH, OH)-functionalized SiQDs exhibited good stability and underwent treatment of varying pH and temperature. Furthermore, experimental results demonstrated that compared to commercial water-soluble organic UV absorbers, the (NH, OH)-functionalized SiQDs showed better antiyellowing performance for polyurethane and resistance of photocatalytic degradation for rhodamine B, and presented huge application potential in sunscreen cosmetics. Finally, the UV absorption mechanism of SiQDs was explained to be mainly related to Γ → Γ direct band gap transition, which absorb UV light and release it as thermal radiation.
Collapse
Affiliation(s)
- Guangqi Hu
- Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy , South China Agricultural University , Guangzhou 510642 , China
| | - Yuqiong Sun
- Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy , South China Agricultural University , Guangzhou 510642 , China
| | - Yixuan Xie
- Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy , South China Agricultural University , Guangzhou 510642 , China
| | - Shuangshuang Wu
- Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy , South China Agricultural University , Guangzhou 510642 , China
| | - Xuejie Zhang
- Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy , South China Agricultural University , Guangzhou 510642 , China
| | - Jianle Zhuang
- Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy , South China Agricultural University , Guangzhou 510642 , China
| | - Chaofan Hu
- Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy , South China Agricultural University , Guangzhou 510642 , China
| | - Bingfu Lei
- Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy , South China Agricultural University , Guangzhou 510642 , China
| | - Yingliang Liu
- Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy , South China Agricultural University , Guangzhou 510642 , China
| |
Collapse
|
22
|
Cinar ME, Lal M, Deiseroth HJ, Schlirf J, Schmittel M. Detection and follow-up reactions of distonic β
, β
-dimesityl enol radical cations containing nitrogen heterocyclic bases. J PHYS ORG CHEM 2018. [DOI: 10.1002/poc.3865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- M. Emin Cinar
- Department Chemie-Biologie; Universität Siegen; Siegen Germany
| | - Mukul Lal
- Department Chemie-Biologie; Universität Siegen; Siegen Germany
| | | | - Jens Schlirf
- Department Chemie-Biologie; Universität Siegen; Siegen Germany
| | | |
Collapse
|
23
|
Tuna D, Spörkel L, Barbatti M, Thiel W. Nonadiabatic dynamics simulations of photoexcited urocanic acid. Chem Phys 2018. [DOI: 10.1016/j.chemphys.2018.09.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
24
|
Choi E, Lee CH, Jun B, Nam EB, Jeong H, Lee SU. Efficiency Tuning of UVA/UVB Absorbance through Control over the Intramolecular Hydrogen Bonding of Triazine Derivatives. B KOREAN CHEM SOC 2018. [DOI: 10.1002/bkcs.11487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Eunyoung Choi
- Department of Bionano Technology; Hanyang University; Ansan 15588 South Korea
| | - Chi Ho Lee
- Department of Bionano Technology; Hanyang University; Ansan 15588 South Korea
| | - Byeongsun Jun
- Department of Bionano Technology; Hanyang University; Ansan 15588 South Korea
| | - Eun Bi Nam
- Department of Bionano Technology; Hanyang University; Ansan 15588 South Korea
| | - Hoejoong Jeong
- Department of Bionano Technology; Hanyang University; Ansan 15588 South Korea
| | - Sang Uck Lee
- Department of Bionano Technology; Hanyang University; Ansan 15588 South Korea
- Department of Chemical and Molecular Engineering; Hanyang University; Ansan 15588 South Korea
| |
Collapse
|
25
|
Sedgwick AC, Wu L, Han HH, Bull SD, He XP, James TD, Sessler JL, Tang BZ, Tian H, Yoon J. Excited-state intramolecular proton-transfer (ESIPT) based fluorescence sensors and imaging agents. Chem Soc Rev 2018; 47:8842-8880. [DOI: 10.1039/c8cs00185e] [Citation(s) in RCA: 690] [Impact Index Per Article: 98.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We review recent advances in the design and application of excited-state intramolecular proton-transfer (ESIPT) based fluorescent probes. These sensors and imaging agents (probes) are important in biology, physiology, pharmacology, and environmental science.
Collapse
Affiliation(s)
- Adam C. Sedgwick
- Department of Chemistry
- University of Bath
- Bath
- UK
- Department of Chemistry
| | - Luling Wu
- Department of Chemistry
- University of Bath
- Bath
- UK
| | - Hai-Hao Han
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering
- Feringa Nobel Prize Scientist Joint Research Center
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
| | | | - Xiao-Peng He
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering
- Feringa Nobel Prize Scientist Joint Research Center
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
| | - Tony D. James
- Department of Chemistry
- University of Bath
- Bath
- UK
- Department of Materials and Life Sciences
| | | | - Ben Zhong Tang
- Department of Chemistry
- The Hong Kong University of Science & Technology (HKUST)
- Clear Water Bay
- Kowloon
- China
| | - He Tian
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering
- Feringa Nobel Prize Scientist Joint Research Center
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
| | - Juyoung Yoon
- Department of Chemistry and Nano Science
- Ewha Womans University
- Seoul 120-750
- Korea
| |
Collapse
|
26
|
Golec B, Nawara K, Gorski A, Thummel RP, Herbich J, Waluk J. Combined effect of hydrogen bonding interactions and freezing of rotameric equilibrium on the enhancement of photostability. Phys Chem Chem Phys 2018; 20:13306-13315. [DOI: 10.1039/c8cp00726h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Rigid structure and hydrogen-bonding interactions provide a higher photostability of organic chromophores.
Collapse
Affiliation(s)
- Barbara Golec
- Institute of Physical Chemistry
- Polish Academy of Sciences
- 01-224 Warsaw
- Poland
| | - Krzysztof Nawara
- Faculty of Mathematics and Natural Sciences
- College of Science
- Cardinal Stefan Wyszyński University
- 01-815 Warsaw
- Poland
| | - Alexandr Gorski
- Institute of Physical Chemistry
- Polish Academy of Sciences
- 01-224 Warsaw
- Poland
| | | | - Jerzy Herbich
- Institute of Physical Chemistry
- Polish Academy of Sciences
- 01-224 Warsaw
- Poland
| | - Jacek Waluk
- Institute of Physical Chemistry
- Polish Academy of Sciences
- 01-224 Warsaw
- Poland
- Faculty of Mathematics and Natural Sciences
| |
Collapse
|
27
|
Photosensitized enzyme deactivation and protein oxidation by axial-substituted phosphorus(V) tetraphenylporphyrins. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 175:125-131. [DOI: 10.1016/j.jphotobiol.2017.08.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 08/17/2017] [Accepted: 08/26/2017] [Indexed: 12/20/2022]
|
28
|
Pijeau S, Foster D, Hohenstein EG. Excited-State Dynamics of a Benzotriazole Photostabilizer: 2-(2′-Hydroxy-5′-methylphenyl)benzotriazole. J Phys Chem A 2017; 121:6377-6387. [DOI: 10.1021/acs.jpca.7b04504] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Shiela Pijeau
- Department
of Chemistry and Biochemistry, The City College of New York, New York, New York 10031, United States
| | - Donneille Foster
- Department
of Chemistry and Biochemistry, The City College of New York, New York, New York 10031, United States
| | - Edward G. Hohenstein
- Department
of Chemistry and Biochemistry, The City College of New York, New York, New York 10031, United States
- Ph.D.
Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
| |
Collapse
|
29
|
Gelebart AH, Vantomme G, Meijer EW, Broer DJ. Mastering the Photothermal Effect in Liquid Crystal Networks: A General Approach for Self-Sustained Mechanical Oscillators. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1606712. [PMID: 28225174 DOI: 10.1002/adma.201606712] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 01/16/2017] [Indexed: 06/06/2023]
Abstract
Chemical networks and molecular switches dominate the area of research geared toward macroscopic motion of materials. A counter-intuitive approach to create self-sustained oscillation by light irradiation of ordinary photostabilizers in splay-aligned liquid-crystalline networks made from commercial mesogens is developed. Photostabilizers or any molecules that are able to quickly dissipate the absorbed light through heat, by vibrational and/or rotational modes, can reach self-oscillating macroscopic motion where self-shadowing plays a critical role. The mechanical self-oscillation is linked to temperature oscillations and the asymmetric response over the film thickness. Only a localized responsive zone, acting as hinge, activates the oscillation of a beam-shaped device. The outcome of this research is extended from UV to near-IR actuation, making bulk applications to convert sunlight into mechanical work within reach.
Collapse
Affiliation(s)
- Anne Helene Gelebart
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600, MB, Eindhoven, The Netherlands
| | - Ghislaine Vantomme
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600, MB, Eindhoven, The Netherlands
| | - E W Meijer
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600, MB, Eindhoven, The Netherlands
| | - Dirk J Broer
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600, MB, Eindhoven, The Netherlands
| |
Collapse
|
30
|
Warde U, Nagaiyan S. Comprehensive study on excited state intramolecular proton transfer in 2-(benzo[d]thiazol-2-yl)-3-methoxynaphthalen-1-ol and 2-(benzo[d]thiazol-2-yl)naphthalene-1,3-diol: Effect of solvent, aggregation, viscosity and TDDFT study. J Photochem Photobiol A Chem 2017. [DOI: 10.1016/j.jphotochem.2016.12.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
31
|
Chen YL, Shih CY, Lin HS, Huang FY. A Highly Efficient UV-C Absorber Based on Theoretical and Experimental Studies. J CHIN CHEM SOC-TAIP 2017. [DOI: 10.1002/jccs.201600723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ya-Lun Chen
- Department of Chemistry; National Cheng Kung University; Tainan 701 Taiwan
| | - Chien-Yi Shih
- Department of Chemistry; National Cheng Kung University; Tainan 701 Taiwan
| | - Hung-Sung Lin
- Department of Chemistry; National Cheng Kung University; Tainan 701 Taiwan
| | - Fu-Yung Huang
- Department of Chemistry; National Cheng Kung University; Tainan 701 Taiwan
| |
Collapse
|
32
|
Li CX, Guo WW, Xie BB, Cui G. Photodynamics of oxybenzone sunscreen: Nonadiabatic dynamics simulations. J Chem Phys 2017; 145:074308. [PMID: 27544106 DOI: 10.1063/1.4961261] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Herein we have used combined static electronic structure calculations and "on-the-fly" global-switching trajectory surface-hopping dynamics simulations to explore the photochemical mechanism of oxybenzone sunscreen. We have first employed the multi-configurational CASSCF method to optimize minima, conical intersections, and minimum-energy reaction paths related to excited-state intramolecular proton transfer (ESIPT) and excited-state decays in the (1)ππ(∗), (1)nπ(∗), and S0 states (energies are refined at the higher MS-CASPT2 level). According to the mapped potential energy profiles, we have identified two ultrafast excited-state deactivation pathways for the initially populated (1)ππ(∗) system. The first is the diabatic ESIPT process along the (1)ππ(∗) potential energy profile. The generated (1)ππ(∗) keto species then decays to the S0 state via the keto (1)ππ(∗)/gs conical intersection. The second is internal conversion to the dark (1)nπ(∗) state near the (1)ππ(∗) /(1)nπ(∗) crossing point in the course of the diabatic (1)ππ(∗) ESIPT process. Our following dynamics simulations have shown that the ESIPT and (1)ππ(∗) → S0 internal conversion times are 104 and 286 fs, respectively. Finally, our present work demonstrates that in addition to the ESIPT process and the (1)ππ(∗) → S0 internal conversion in the keto region, the (1)ππ(∗) → (1)nπ(∗) internal conversion in the enol region plays as well an important role for the excited-state relaxation dynamics of oxybenzone.
Collapse
Affiliation(s)
- Chun-Xiang Li
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Wei-Wei Guo
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Bin-Bin Xie
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
33
|
Cohen S, Kolitz-Domb M, Haham H, Gelber C, Margel S. Engineering of UV-absorbing polypropylene films containing poly(2-(2′-hydroxy-5′-methacryloxyethylphenyl)-2H-benzotriazole) nanoparticles. POLYM ADVAN TECHNOL 2017. [DOI: 10.1002/pat.3994] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Sarit Cohen
- Institute of Nanotechnology and Advanced Materials, Department of Chemistry; Bar-Ilan University; Ramat-Gan 52900 Israel
| | - Michal Kolitz-Domb
- Institute of Nanotechnology and Advanced Materials, Department of Chemistry; Bar-Ilan University; Ramat-Gan 52900 Israel
| | - Hai Haham
- Institute of Nanotechnology and Advanced Materials, Department of Chemistry; Bar-Ilan University; Ramat-Gan 52900 Israel
| | - Chen Gelber
- Institute of Nanotechnology and Advanced Materials, Department of Chemistry; Bar-Ilan University; Ramat-Gan 52900 Israel
| | - Shlomo Margel
- Institute of Nanotechnology and Advanced Materials, Department of Chemistry; Bar-Ilan University; Ramat-Gan 52900 Israel
| |
Collapse
|
34
|
Cohen S, Haham H, Pellach M, Margel S. Design of UV-Absorbing Polypropylene Films with Polymeric Benzotriaziole Based Nano- and Microparticle Coatings. ACS APPLIED MATERIALS & INTERFACES 2017; 9:868-875. [PMID: 28005334 DOI: 10.1021/acsami.6b12821] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
UV-absorbing nanoparticles (NPs) and microparticles (MPs) were prepared by emulsion and dispersion copolymerization of the vinylic monomer 2-(2'-hydroxy-5'-methacryloxyethylphenyl)-2H-benzotriazole (Norbloc (NB)) with the crosslinking monomer divinylbenzene. The effect of the initiator concentration on the size and size distribution of the polyNB (PNB) particles was elucidated. Thin coatings of the formed PNB NPs or MPs of 19 ± 2 and 200 ± 25 nm dry diameter, respectively, onto polypropylene (PP) films were then prepared and characterized. Increasing the concentration or thickness of the PNB NP or MP thin coatings on the PP films decreased their UV transmittance, up to complete UV blocking with just 2 μm of a 4% NP coating. Migration of the UV-absorbing agents from the coated PP films was not observed during three years of storage at room temperature, offering a unique solution to current problems of migration of UV-absorbing additives. The thin coatings obtained by the PNB NPs were superior to those of the PNB MPs, in that no UV transmittance or loss of optical properties of the PP films were observed for the NP coatings, while the coatings produced by the PNB MPs resulted in damaged optical properties, particularly increasing the haze, and achieved incomplete UV blocking.
Collapse
Affiliation(s)
- Sarit Cohen
- Bar-Ilan Institute of Nanotechnology and Advanced Materials, Department of Chemistry, Bar-Ilan University , Ramat Gan 52900, Israel
| | - Hai Haham
- Bar-Ilan Institute of Nanotechnology and Advanced Materials, Department of Chemistry, Bar-Ilan University , Ramat Gan 52900, Israel
| | - Michal Pellach
- Bar-Ilan Institute of Nanotechnology and Advanced Materials, Department of Chemistry, Bar-Ilan University , Ramat Gan 52900, Israel
| | - Shlomo Margel
- Bar-Ilan Institute of Nanotechnology and Advanced Materials, Department of Chemistry, Bar-Ilan University , Ramat Gan 52900, Israel
| |
Collapse
|
35
|
Padalkar VS, Seki S. Excited-state intramolecular proton-transfer (ESIPT)-inspired solid state emitters. Chem Soc Rev 2016; 45:169-202. [PMID: 26506465 DOI: 10.1039/c5cs00543d] [Citation(s) in RCA: 599] [Impact Index Per Article: 66.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Solid state emitters based on excited state intramolecular proton transfer (ESIPT) have been attracting considerable interest since the past few years in the field of optoelectronic devices because of their desirable unique photophysical properties. The photophysical properties of the solid state ESIPT fluorophores determine their possible applicability in functional materials. Less fluorescence quantum efficiencies and short fluorescence lifetime in the solid state are the shortcomings of the existing ESIPT solid state emitters. Designing of ESIPT chromophores with high fluorescence quantum efficiencies and a long fluorescence lifetime in the solid state is a challenging issue because of the unclear mechanism of the solid state emitters in the excited state. Reported design strategies, detailed photophysical properties, and their applications will help in assisting researchers to overcome existing challenges in designing novel solid state ESIPT fluorophores for promising applications. This review highlights recently developed solid state ESIPT emitters with focus on molecular design strategies and their photophysical properties, reported in the last five years.
Collapse
Affiliation(s)
- Vikas S Padalkar
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan.
| | - Shu Seki
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan.
| |
Collapse
|
36
|
Chen W, Wang Z, Cui Z, Pan D, Millington K. Improving the photostability of silk using a covalently-bound UV absorber. Polym Degrad Stab 2015. [DOI: 10.1016/j.polymdegradstab.2015.09.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
37
|
Monti F, Venturini A, Nenov A, Tancini F, Finke AD, Diederich F, Armaroli N. Anilino-Substituted Multicyanobuta-1,3-diene Electron Acceptors: TICT Molecules with Accessible Conical Intersections. J Phys Chem A 2015; 119:10677-83. [DOI: 10.1021/acs.jpca.5b09291] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Filippo Monti
- Istituto
per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129 Bologna, Italy
- Dipartimento
di Chimica “G. Ciamician”, Università di Bologna, Via F. Selmi 2, 40126 Bologna, Italy
| | - Alessandro Venturini
- Istituto
per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129 Bologna, Italy
| | - Artur Nenov
- Dipartimento
di Chimica “G. Ciamician”, Università di Bologna, Via F. Selmi 2, 40126 Bologna, Italy
| | - Francesca Tancini
- Laboratorium
für Organische Chemie, ETH Zürich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| | - Aaron D. Finke
- Laboratorium
für Organische Chemie, ETH Zürich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| | - François Diederich
- Laboratorium
für Organische Chemie, ETH Zürich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| | - Nicola Armaroli
- Istituto
per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129 Bologna, Italy
| |
Collapse
|
38
|
Cai ZJ, Lu XM, Zi Y, Yang C, Shen LJ, Li J, Wang SY, Ji SJ. I2/TBPB mediated oxidative reaction of N-tosylhydrazones with anilines: practical construction of 1,4-disubstituted 1,2,3-triazoles under metal-free and azide-free conditions. Org Lett 2014; 16:5108-11. [PMID: 25250817 DOI: 10.1021/ol502431b] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
An efficient I2 (20 mol %)/TBPB mediated oxidative formal [4 + 1] cycloaddition of N-tosylhydrazones with anilines via C-N/N-N bond formation and S-N cleavage has been developed. This protocol represents a simple, general, and efficient approach for the construction of 1,2,3-triazoles under metal-free and azide-free conditions by utilizing a catalytic amount of I2.
Collapse
Affiliation(s)
- Zhong-Jian Cai
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou 215123, China
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Sakurai T, Igarashi T. Photoinduced Electron Transfer-Initiated Cyclization Reactions and Asymmetric Transformations of (Z)-α-Dehydroamino Acid Derivatives. HETEROCYCLES 2014. [DOI: 10.3987/rev-13-787] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
40
|
Ray D, Pramanik A, Guchhait N. Lactim–lactam tautomerism through four member hydrogen bonded network in isoindole fused imidazole system: A combined spectroscopic and theoretical approach to photophysical properties. J Photochem Photobiol A Chem 2014. [DOI: 10.1016/j.jphotochem.2013.10.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
41
|
Santa María D, Claramunt RM, Bobosik V, Torralba MC, Torres MR, Alkorta I, Elguero J. Synthesis and structural study of 2-arylbenzotriazoles related to Tinuvins. Tetrahedron 2013. [DOI: 10.1016/j.tet.2013.01.096] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
42
|
Brenlla A, Veiga M, Pérez Lustres JL, Ríos Rodríguez MC, Rodríguez-Prieto F, Mosquera M. Photoinduced Proton and Charge Transfer in 2-(2′-Hydroxyphenyl)imidazo[4,5-b]pyridine. J Phys Chem B 2013; 117:884-96. [DOI: 10.1021/jp311709c] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Alfonso Brenlla
- Departamento
de Química Física and Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CIQUS), Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - Manoel Veiga
- Departamento
de Química Física and Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CIQUS), Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - J. Luis Pérez Lustres
- Departamento
de Química Física and Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CIQUS), Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - M. Carmen Ríos Rodríguez
- Departamento
de Química Física and Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CIQUS), Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - Flor Rodríguez-Prieto
- Departamento
de Química Física and Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CIQUS), Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - Manuel Mosquera
- Departamento
de Química Física and Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CIQUS), Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| |
Collapse
|
43
|
Shigemitsu Y, Mutai T, Houjou H, Araki K. Excited-State Intramolecular Proton Transfer (ESIPT) Emission of Hydroxyphenylimidazopyridine: Computational Study on Enhanced and Polymorph-Dependent Luminescence in the Solid State. J Phys Chem A 2012. [DOI: 10.1021/jp308473j] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yasuhiro Shigemitsu
- Industrial Technology Center of Nagasaki, 2-1303-8 Ikeda, Omura, Nagasaki
856-0026, Japan
- Graduate
School of Engineering, Nagasaki University, 1-14, Bunkyo-machi, Nagasaki 852-8521,
Japan
| | - Toshiki Mutai
- Institute
of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo
153-8505, Japan
| | - Hirohiko Houjou
- Institute
of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo
153-8505, Japan
| | - Koji Araki
- Institute
of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo
153-8505, Japan
| |
Collapse
|
44
|
Roberts GM, Williams CA, Young JD, Ullrich S, Paterson MJ, Stavros VG. Unraveling Ultrafast Dynamics in Photoexcited Aniline. J Am Chem Soc 2012; 134:12578-89. [DOI: 10.1021/ja3029729] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Gareth M. Roberts
- Department of Chemistry, University of Warwick, Library Road, Coventry, CV4
7AL, United Kingdom
| | - Craig A. Williams
- Department of Chemistry, University of Warwick, Library Road, Coventry, CV4
7AL, United Kingdom
| | - Jamie D. Young
- Department of Chemistry, University of Warwick, Library Road, Coventry, CV4
7AL, United Kingdom
| | - Susanne Ullrich
- Department
of Physics and Astronomy, University of Georgia, Athens, Georgia 30602, United
States
| | - Martin J. Paterson
- Institute of Chemical
Sciences, Heriot-Watt University, Edinburgh,
EH14 4AS, United
Kingdom
| | - Vasilios G. Stavros
- Department of Chemistry, University of Warwick, Library Road, Coventry, CV4
7AL, United Kingdom
| |
Collapse
|
45
|
Paul BK, Guchhait N. Evidence for excited-state intramolecular proton transfer in 4-chlorosalicylic acid from combined experimental and computational studies: Quantum chemical treatment of the intramolecular hydrogen bonding interaction. Chem Phys 2012. [DOI: 10.1016/j.chemphys.2012.05.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
46
|
Gao F, Ye X, Li H, Zhong X, Wang Q. Evidence for Two-Photon Absorption-Induced ESIPT of Chromophores Containing Hydroxyl and Imino Groups. Chemphyschem 2012; 13:1313-24. [DOI: 10.1002/cphc.201100885] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2011] [Indexed: 11/09/2022]
|
47
|
Chipem FAS, Mishra A, Krishnamoorthy G. The role of hydrogen bonding in excited state intramolecular charge transfer. Phys Chem Chem Phys 2012; 14:8775-90. [DOI: 10.1039/c2cp23879a] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
48
|
Li Q, Migani A, Blancafort L. Irreversible phototautomerization of o-phthalaldehyde through electronic relocation. Phys Chem Chem Phys 2012; 14:6561-8. [DOI: 10.1039/c2cp40359e] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
49
|
Bergen A, Bohne C, Fuentealba D, Ihmels H, Pace TCS, Waidelich M, Yihwa C, Willem Bats J. Studies of the solvatochromic emission properties of N-aroylurea derivatives I: Influence of the substitution pattern. Photochem Photobiol Sci 2012; 11:752-67. [DOI: 10.1039/c2pp05386a] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
50
|
Paul BK, Ray D, Guchhait N. Spectral deciphering of the interaction between an intramolecular hydrogen bonded ESIPT drug, 3,5-dichlorosalicylic acid, and a model transport protein. Phys Chem Chem Phys 2012; 14:8892-902. [DOI: 10.1039/c2cp23496c] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|