1
|
Xia Z, Kondhare D, Budow-Busse S, Leonard P, Seela F. 7-Deaza-2'-deoxyisoguanosine, a Noncanonical Nucleoside for Nucleic Acid Code Expansion and New DNA Constructs: Nucleobase Functionalization of Inverse Watson-Crick and Purine-Purine Base Pairs. Bioconjug Chem 2024; 35:1233-1250. [PMID: 39088564 DOI: 10.1021/acs.bioconjchem.4c00290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
7-Deaza-2'-deoxyisoguanosine forms stable inverse Watson-Crick base pairs with 5-methyl-2'-deoxyisocytidine and purine-purine base pairs with 2'-deoxyguanosine or 5-aza-7-deaza-2'-deoxyguanosine. Both base pairs expand the genetic coding system. The manuscript reports on the functionalization of these base pairs with halogen atoms and clickable side chains introduced at 7-position of the 7-deazapurine base. Oligonucleotides containing the functionalized base pairs were prepared by solid-phase synthesis. To this end, a series of phosphoramidites were synthesized and clickable side chains with short and long linkers were incorporated in oligonucleotides. Fluorescent pyrene conjugates were obtained by postmodification. Functionalization of DNA with a single inverse Watson-Crick base pair by halogens or clickable residues has only a minor impact on duplex stability. Pyrene click adducts increase (long linker) or decrease (short linker) the double helix stability. Stable hybrid duplexes were constructed containing three consecutive purine-purine pairs of 7-functionalized 7-deaza-2'-deoxyisoguanine with guanine or 5-aza-7-deazaguanine in the center and Watson-Crick pairs at both ends. The incorporation of a hybrid base pair tract of 7-deaza-2'-deoxyisoguanosine/5-aza-7-deaza-2'-deoxyguanosine pairs stabilizes the double helix strongly. Fluorescence intensity of pyrene short linker adducts increased when the 7-deazapurine base was positioned opposite to 5-methylisocytosine (inverse base pair) compared to purine-purine base pairs with guanine or 5-aza-7-deazaguanine in opposite positions. For long liker adducts, the situation is more complex. Circular dichroism (CD) spectra of purine DNA differ to those of Watson-Crick double helices and are indicative for the new DNA constructs. The impact of 7-deaza-2'-deoxyisoguanine base pair functionalization is studied for the first time and all experimental details are reported to prepare DNA functionalized at the 7-deazaisoguanine site. The influence of single and multiple incorporations on DNA structure and stability is shown. Clickable residues introduced at the 7-position of the 7-deazaisoguanine base provide handles for Huisgen-Sharpless-Meldal click cycloadditions without harming the stability of purine-pyrimidine and purine-purine base pairs. Other chemistries might be used for bioconjugation. Our investigation paves the way for the functionalization of a new DNA related recognition system expanding the common Watson-Crick regime.
Collapse
Affiliation(s)
- Zhenqiang Xia
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany
| | - Dasharath Kondhare
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany
| | - Simone Budow-Busse
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany
| | - Peter Leonard
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany
| | - Frank Seela
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany
- Laboratorium für Organische und Bioorganische Chemie, Institut für Chemie neuer Materialien, Universität Osnabrück, Barbarastrasse 7, 49069 Osnabrück, Germany
| |
Collapse
|
2
|
Xia Z, Kondhare D, Chandankar SS, Ingale SA, Leonard P, Seela F. Nucleobase-Functionalized 7-Deazaisoguanine and 7-Deazapurin-2,6-diamine Nucleosides: Halogenation, Cross-Coupling, and Cycloaddition. J Org Chem 2024; 89:1807-1822. [PMID: 38227281 DOI: 10.1021/acs.joc.3c02514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
The functionalization in position-7 of 7-deazaisoguanine and 7-deazapurin-2,6-diamine ribo- and 2'-deoxyribonucleosides by halogen atoms (chloro, bromo, iodo), and clickable alkynyl and vinyl side chains for copper-catalyzed and copper-free cycloadditions is described. Problems arising during the synthesis of the 7-iodinated isoguanine ribo- and 2'-deoxyribonucleosides were solved by the action of acetone. The impact of side chains and halogen atoms on the pKa values and hydrophobicity of nucleosides was investigated. Halogenated substituents increase the lipophilic character of nucleosides in the order Cl < Br < I and decrease the pK values of protonation. Photophysical properties (fluorescence, solvatochromism, and quantum yields) of azide-alkyne click adducts bearing pyrene as sensor groups were determined. Pyrene fluorescence was solvent-dependent and changed according to the linker lengths. Excimer emission was observed in dioxane for the long linker adduct. Bioorthogonal inverse-electron-demanding Diels-Alder cycloadditions (iEDDA) were conducted on the electron-rich vinyl groups of 7-deazaisoguanine and 7-deazapurin-2,6-diamine nucleosides as dienophiles and 3,6-dipyridyl-1,2,4,5-tetrazine as diene. The initially formed complex reaction mixture of isomers could be easily oxidized with iodine in tetrahydrofuran (THF)/pyridine leading to single aromatic tetrazine adducts within a short time and in excellent yields.
Collapse
Affiliation(s)
- Zhenqiang Xia
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany
| | - Dasharath Kondhare
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany
| | - Somnath Shivaji Chandankar
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany
| | - Sachin A Ingale
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany
| | - Peter Leonard
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany
| | - Frank Seela
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany
- Laboratorium für Organische und Bioorganische Chemie, Institut für Chemie neuer Materialien, Universität Osnabrück, Barbarastrasse 7, 49069 Osnabrück, Germany
| |
Collapse
|
3
|
Oh J, Shan Z, Hoshika S, Xu J, Chong J, Benner SA, Lyumkis D, Wang D. A unified Watson-Crick geometry drives transcription of six-letter expanded DNA alphabets by E. coli RNA polymerase. Nat Commun 2023; 14:8219. [PMID: 38086811 PMCID: PMC10716388 DOI: 10.1038/s41467-023-43735-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 11/17/2023] [Indexed: 12/18/2023] Open
Abstract
Artificially Expanded Genetic Information Systems (AEGIS) add independently replicable unnatural nucleotide pairs to the natural G:C and A:T/U pairs found in native DNA, joining the unnatural pairs through alternative modes of hydrogen bonding. Whether and how AEGIS pairs are recognized and processed by multi-subunit cellular RNA polymerases (RNAPs) remains unknown. Here, we show that E. coli RNAP selectively recognizes unnatural nucleobases in a six-letter expanded genetic system. High-resolution cryo-EM structures of three RNAP elongation complexes containing template-substrate UBPs reveal the shared principles behind the recognition of AEGIS and natural base pairs. In these structures, RNAPs are captured in an active state, poised to perform the chemistry step. At this point, the unnatural base pair adopts a Watson-Crick geometry, and the trigger loop is folded into an active conformation, indicating that the mechanistic principles underlying recognition and incorporation of natural base pairs also apply to AEGIS unnatural base pairs. These data validate the design philosophy of AEGIS unnatural basepairs. Further, we provide structural evidence supporting a long-standing hypothesis that pair mismatch during transcription occurs via tautomerization. Together, our work highlights the importance of Watson-Crick complementarity underlying the design principles of AEGIS base pair recognition.
Collapse
Affiliation(s)
- Juntaek Oh
- Division of Pharmaceutical Sciences, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Zelin Shan
- The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Shuichi Hoshika
- Foundation for Applied Molecular Evolution, 13709 Progress Blvd Box 7, Alachua, FL, 32615, USA
| | - Jun Xu
- Division of Pharmaceutical Sciences, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Jenny Chong
- Division of Pharmaceutical Sciences, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Steven A Benner
- Foundation for Applied Molecular Evolution, 13709 Progress Blvd Box 7, Alachua, FL, 32615, USA.
| | - Dmitry Lyumkis
- The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA.
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute 10550 N Torrey Pines Road, La Jolla, CA, 92037, USA.
- Graduate School of Biological Sciences, Section of Molecular Biology, University of California San Diego, La Jolla, CA, 92093, USA.
| | - Dong Wang
- Division of Pharmaceutical Sciences, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, 92093, USA.
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, 92093, USA.
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
4
|
Kondhare D, Leonard P, Seela F. The Base Pairs of Isoguanine and 8-Aza-7-deazaisoguanine with 5-Methylisocytosine as Targets for DNA Functionalization. Bioconjug Chem 2023; 34:422-432. [PMID: 36735859 DOI: 10.1021/acs.bioconjchem.2c00584] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The isoguanine-isocytosine base pair (isoG-isoC) represents an important expansion of the DNA coding system. The base pair is more stable than the canonical adenine-thymine or guanine-cytosine pairs. However, nothing is known on the functionalization of the noncanonical isoG-isoC pair at the isoguanine site. In this work, functionalization of the isoG-isoC and the isosteric base pair that contains 8-aza-7-deazaisoguanine in place of isoguanine is studied. Short ethynyl, more space demanding octadiynyl, and dendritic tripropargylamine residues attached to the isoG-isoC base pairs were introduced to oligonucleotides. 12-mer duplexes were formed by hybridization with single base pair modification. The use of the two modified nucleobases gave us the freedom to shift nucleobase substituents within the major groove of double helical DNA. Clickable side chains at position-7 stabilize the base pair, whereas 8-substituents reduce its stability strongly. The weak isoguanine-thymine or 8-aza-7-deazaisoguanine-thymine base pairs show a similar sensitivity to the position of nucleobase functionalization as base pair matches formed with 5-methylisocytosine. CD spectra of all modified duplexes display the typical shape of a B-DNA with only marginal changes. Fluorescent pyrene labeled DNA with long, short, and branched linkers was generated using click chemistry. Pyrene click adducts with long linkers are essential to maintain or to increase base pair stability. Labeled duplexes are more fluorescent than corresponding single strands. For the dendritic linker excimer emission was observed for single strands but only monomer emission in duplexes.
Collapse
Affiliation(s)
- Dasharath Kondhare
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany
| | - Peter Leonard
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany
| | - Frank Seela
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany.,Laboratorium für Organische und Bioorganische Chemie, Institut für Chemie neuer Materialien, Universität Osnabrück, Barbarastrasse 7, 49069 Osnabrück, Germany
| |
Collapse
|
5
|
Hoshika S, Shukla MS, Benner SA, Georgiadis MM. Visualizing "Alternative Isoinformational Engineered" DNA in A- and B-Forms at High Resolution. J Am Chem Soc 2022; 144:15603-15611. [PMID: 35969672 DOI: 10.1021/jacs.2c05255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A fundamental property of DNA built from four informational nucleotide units (GCAT) is its ability to adopt different helical forms within the context of the Watson-Crick pair. Well-characterized examples include A-, B-, and Z-DNA. For this study, we created an isoinformational biomimetic polymer, built (like standard DNA) from four informational "letters", but with the building blocks being artificial. This ALternative Isoinformational ENgineered (ALIEN) DNA was hypothesized to support two nucleobase pairs, the P:Z pair matching 2-amino-imidazo-[1,2a]-1,3,5-triazin-[8H]-4-one with 6-amino-3-5-nitro-1H-pyridin-2-one and the B:S pair matching 6-amino-4-hydroxy-5-1H-purin-2-one with 3-methyl-6-amino-pyrimidin-2-one. We report two structures of ALIEN DNA duplexes at 1.2 Å resolution and a third at 1.65 Å. All of these are built from a single self-complementary sequence (5'-CTSZZPBSBSZPPBAG) that includes 12 consecutive ALIEN nucleotides. We characterized the helical, nucleobase pair, and dinucleotide step parameters of ALIEN DNA in these structures. In addition to showing that ALIEN pairs retain basic Watson-Crick pairing geometry, two of the ALIEN DNA structures are characterized as A-form DNA and one as B-form DNA. We identified parameters that map differences effecting the transition between the two helical forms; these same parameters distinguish helical forms of isoinformational natural DNA. Collectively, our analyses suggest that ALIEN DNA retains essential structural features of natural DNA, not only its information density and Watson-Crick pairing but also its ability to adopt two canonical forms.
Collapse
Affiliation(s)
- Shuichi Hoshika
- Foundation for Molecular Evolution, 13709 Progress Boulevard, No. 7, Alachua, Florida 32615, United States
| | - Madhura S Shukla
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, 635 Barnhill Dr., Indianapolis, Indiana 46202, United States
| | - Steven A Benner
- Foundation for Molecular Evolution, 13709 Progress Boulevard, No. 7, Alachua, Florida 32615, United States
| | - Millie M Georgiadis
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, 635 Barnhill Dr., Indianapolis, Indiana 46202, United States
| |
Collapse
|
6
|
He X, Kuang S, Gao Q, Xie Y, Ming X. Bright fluorescent purine analogues as promising probes. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2021; 41:45-60. [PMID: 34806926 DOI: 10.1080/15257770.2021.2004418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/06/2021] [Accepted: 11/06/2021] [Indexed: 10/19/2022]
Abstract
Modified bright fluorescent nucleosides that respond to the microenvironment have great potential as probes. A series of novel 8-(phenylethynyl)phenylated 2-amino-2'-deoxyadenosine and 2'-deoxyisoguanosine derivatives have been synthesized by Sonogashira-type coupling reaction and Suzuki reaction. The maximum emission of the new compounds is in the visible region, with strong solvatochromicity and pH-dependent fluorescent properties. Furthermore, some of them exhibit bright fluorescence emissions in various solvents (ε × Φ = 4000-39,000 cm-1 M-1). These consequences indicate that purine analogues could respond to the microenvironment and serve as promising fluorescent probes.Supplemental data for this article is available online at https://doi.org/10.1080/15257770.2021.2004418 .
Collapse
Affiliation(s)
- Xin He
- School of Pharmacy, Chengdu Medical College, Chengdu, Sichuan, China
| | - Shuang Kuang
- School of Pharmacy, Chengdu Medical College, Chengdu, Sichuan, China
| | - Qian Gao
- School of Pharmacy, Chengdu Medical College, Chengdu, Sichuan, China
| | - YuXin Xie
- School of Pharmacy, Chengdu Medical College, Chengdu, Sichuan, China
| | - Xin Ming
- School of Pharmacy, Chengdu Medical College, Chengdu, Sichuan, China
- Study on the Structure-Specific Small Molecular Drug in Sichuan Province College Key Laboratory, Chengdu Medical College, Chengdu, Sichuan, China
| |
Collapse
|
7
|
Kondhare D, Leonard P, Seela F. Isoguanine (2-Hydroxyadenine) and 2-Aminoadenine Nucleosides with an 8-Aza-7-deazapurine Skeleton: Synthesis, Functionalization with Fluorescent and Clickable Side Chains, and Impact of 7-Substituents on Physical Properties. J Org Chem 2021; 86:14461-14475. [PMID: 34661407 DOI: 10.1021/acs.joc.1c01283] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
7-Functionalized 8-aza-7-deaza-2'-deoxyisoguanine and 8-aza-7-deaza-2-aminoadenine 2'-deoxyribonucleosides decorated with fluorescent pyrene or benzofuran sensor tags or clickable side chains with terminal triple bonds were synthesized. 8-Aza-7-deaza-7-iodo-2-amino-2'-deoxyadenosine was used as the central intermediate and was accessible by an improved two-step glycosylation/amination protocol. Functionalization of position-7 was performed either on 8-aza-7-deaza-7-iodo-2-amino-2'-deoxyadenosine followed by selective deamination of the 2-amino group or on 7-iodinated 8-aza-7-deaza-2'-deoxyisoguanosine. Sonogashira and Suzuki-Miyaura cross-coupling reactions were employed for this purpose. Octadiynyl side chains were selected as linkers for click reactions with azido pyrenes. KTaut values calculated from H2O/dioxane mixtures revealed that side chains have a significant influence on the tautomeric equilibrium. Photophysical properties (fluorescence, solvatochromism, and quantum yields) of the new 8-aza-7-deazapurine nucleosides with fluorescent side chains were determined. Remarkably, a strong excimer fluorescence in H2O was observed for pyrene dye conjugates of 8-aza-7-deazaisoguanine and 2-aminoadenine nucleosides with a long linker. In other solvents including methanol, excimer fluorescence was negligible. The 2-aminoadenine and isoguanine nucleosides with the 8-aza-7-deazapurine skeleton expand the class of nucleosides applicable to fluorescence detection with respect to diagnostic and therapeutic purposes.
Collapse
Affiliation(s)
- Dasharath Kondhare
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany
| | - Peter Leonard
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany
| | - Frank Seela
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany.,Laboratorium für Organische und Bioorganische Chemie, Institut für Chemie Neuer Materialien, Universität Osnabrück, Barbarastrasse 7, 49069 Osnabrück, Germany
| |
Collapse
|
8
|
Fang X, Li J, Zhong Q, Ming X. Synthesis and cytostatic activity of emissive 7-thiazolyl-7-deazapurine nucleosides. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Eberlein L, Beierlein FR, van Eikema Hommes NJR, Radadiya A, Heil J, Benner SA, Clark T, Kast SM, Richards NGJ. Tautomeric Equilibria of Nucleobases in the Hachimoji Expanded Genetic Alphabet. J Chem Theory Comput 2020; 16:2766-2777. [PMID: 32125859 DOI: 10.1021/acs.jctc.9b01079] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Evolution has yielded biopolymers that are constructed from exactly four building blocks and are able to support Darwinian evolution. Synthetic biology aims to extend this alphabet, and we recently showed that 8-letter (hachimoji) DNA can support rule-based information encoding. One source of replicative error in non-natural DNA-like systems, however, is the occurrence of alternative tautomeric forms, which pair differently. Unfortunately, little is known about how structural modifications impact free-energy differences between tautomers of the non-natural nucleobases used in the hachimoji expanded genetic alphabet. Determining experimental tautomer ratios is technically difficult, and so, strategies for improving hachimoji DNA replication efficiency will benefit from accurate computational predictions of equilibrium tautomeric ratios. We now report that high-level quantum-chemical calculations in aqueous solution by the embedded cluster reference interaction site model, benchmarked against free-energy molecular simulations for solvation thermodynamics, provide useful quantitative information on the tautomer ratios of both Watson-Crick and hachimoji nucleobases. In agreement with previous computational studies, all four Watson-Crick nucleobases adopt essentially only one tautomer in water. This is not the case, however, for non-natural nucleobases and their analogues. For example, although the enols of isoguanine and a series of related purines are not populated in water, these heterocycles possess N1-H and N3-H keto tautomers that are similar in energy, thereby adversely impacting accurate nucleobase pairing. These robust computational strategies offer a firm basis for improving experimental measurements of tautomeric ratios, which are currently limited to studying molecules that exist only as two tautomers in solution.
Collapse
Affiliation(s)
- Lukas Eberlein
- Physikalische Chemie III, Technische Universität Dortmund, Dortmund 44227, Germany
| | - Frank R Beierlein
- Computer-Chemistry-Centre and Interdisciplinary Centre for Molecular Materials, Department of Chemistry & Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Nico J R van Eikema Hommes
- Computer-Chemistry-Centre and Interdisciplinary Centre for Molecular Materials, Department of Chemistry & Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Ashish Radadiya
- School of Chemistry, Cardiff University, Cardiff CF10 3AT, U.K
| | - Jochen Heil
- Physikalische Chemie III, Technische Universität Dortmund, Dortmund 44227, Germany
| | - Steven A Benner
- Foundation for Applied Molecular Evolution, Alachua, Florida 32615, United States
| | - Timothy Clark
- Computer-Chemistry-Centre and Interdisciplinary Centre for Molecular Materials, Department of Chemistry & Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Stefan M Kast
- Physikalische Chemie III, Technische Universität Dortmund, Dortmund 44227, Germany
| | - Nigel G J Richards
- School of Chemistry, Cardiff University, Cardiff CF10 3AT, U.K.,Foundation for Applied Molecular Evolution, Alachua, Florida 32615, United States
| |
Collapse
|
10
|
Chawla M, Minenkov Y, Vu KB, Oliva R, Cavallo L. Structural and Energetic Impact of Non-natural 7-Deaza-8-azaguanine, 7-Deaza-8-azaisoguanine, and Their 7-Substituted Derivatives on Hydrogen-Bond Pairing with Cytosine and Isocytosine. Chembiochem 2019; 20:2262-2270. [PMID: 30983115 DOI: 10.1002/cbic.201900245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Indexed: 12/12/2022]
Abstract
The impact of 7-deaza-8-azaguanine (DAG) and 7-deaza-8-azaisoguanine (DAiG) modifications on the geometry and stability of the G:C Watson-Crick (cWW) base pair and the G:iC and iG:C reverse Watson-Crick (tWW) base pairs has been characterized theoretically. In addition, the effect on the same base pairs of seven C7-substituted DAG and DAiG derivatives, some of which have been previously experimentally characterized, has been investigated. Calculations indicate that all of these modifications have a negligible impact on the geometry of the above base pairs, and that modification of the heterocycle skeleton has a small impact on the base-pair interaction energies. Instead, base-pair interaction energies are dependent on the nature of the C7 substituent. For the 7-substituted DAG-C cWW systems, a linear correlation between the base-pair interaction energy and the Hammett constant of the 7-substituent is found, with higher interaction energies corresponding to more electron-withdrawing substituents. Therefore, the explored modifications are expected to be accommodated in both parallel and antiparallel nucleic acid duplexes without perturbing their geometry, while the strength of a base pair (and duplex) featuring a DAG modification can, in principle, be tuned by incorporating different substituents at the C7 position.
Collapse
Affiliation(s)
- Mohit Chawla
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, Kaust Catalysis Center, Thuwal, 23955-6900, Saudi Arabia
| | - Yury Minenkov
- Moscow Institute of Physics and Technology, Institutskiy Pereulok 9, Dolgoprudny, Moscow Region, 141700, Russia
| | - Khanh B Vu
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh Street, Ho Chi Minh City, Vietnam
| | - Romina Oliva
- Department of Sciences and Technologies, University Parthenope of Naples, Centro Direzionale Isola C4, 80143, Naples, Italy
| | - Luigi Cavallo
- King Abdullah University of Science and Technology (KAUST), Physical Sciences and Engineering Division, Kaust Catalysis Center, Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
11
|
Whitford CM, Dymek S, Kerkhoff D, März C, Schmidt O, Edich M, Droste J, Pucker B, Rückert C, Kalinowski J. Auxotrophy to Xeno-DNA: an exploration of combinatorial mechanisms for a high-fidelity biosafety system for synthetic biology applications. J Biol Eng 2018; 12:13. [PMID: 30123321 PMCID: PMC6090650 DOI: 10.1186/s13036-018-0105-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 06/25/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Biosafety is a key aspect in the international Genetically Engineered Machine (iGEM) competition, which offers student teams an amazing opportunity to pursue their own research projects in the field of Synthetic Biology. iGEM projects often involve the creation of genetically engineered bacterial strains. To minimize the risks associated with bacterial release, a variety of biosafety systems were constructed, either to prevent survival of bacteria outside the lab or to hinder horizontal or vertical gene transfer. MAIN BODY Physical containment methods such as bioreactors or microencapsulation are considered the first safety level. Additionally, various systems involving auxotrophies for both natural and synthetic compounds have been utilized by iGEM teams in recent years. Combinatorial systems comprising multiple auxotrophies have been shown to reduced escape frequencies below the detection limit. Furthermore, a number of natural toxin-antitoxin systems can be deployed to kill cells under certain conditions. Additionally, parts of naturally occurring toxin-antitoxin systems can be used for the construction of 'kill switches' controlled by synthetic regulatory modules, allowing control of cell survival. Kill switches prevent cell survival but do not completely degrade nucleic acids. To avoid horizontal gene transfer, multiple mechanisms to cleave nucleic acids can be employed, resulting in 'self-destruction' of cells. Changes in light or temperature conditions are powerful regulators of gene expression and could serve as triggers for kill switches or self-destruction systems. Xenobiology-based containment uses applications of Xeno-DNA, recoded codons and non-canonical amino acids to nullify the genetic information of constructed cells for wild type organisms. A 'minimal genome' approach brings the opportunity to reduce the genome of a cell to only genes necessary for survival under lab conditions. Such cells are unlikely to survive in the natural environment and are thus considered safe hosts. If suitable for the desired application, a shift to cell-free systems based on Xeno-DNA may represent the ultimate biosafety system. CONCLUSION Here we describe different containment approaches in synthetic biology, ranging from auxotrophies to minimal genomes, which can be combined to significantly improve reliability. Since the iGEM competition greatly increases the number of people involved in synthetic biology, we will focus especially on biosafety systems developed and applied in the context of the iGEM competition.
Collapse
Affiliation(s)
| | - Saskia Dymek
- Center for Biotechnology, Bielefeld University, 33615 Bielefeld, Germany
| | - Denise Kerkhoff
- Center for Biotechnology, Bielefeld University, 33615 Bielefeld, Germany
| | - Camilla März
- Center for Biotechnology, Bielefeld University, 33615 Bielefeld, Germany
| | - Olga Schmidt
- Center for Biotechnology, Bielefeld University, 33615 Bielefeld, Germany
| | - Maximilian Edich
- Center for Biotechnology, Bielefeld University, 33615 Bielefeld, Germany
| | - Julian Droste
- Center for Biotechnology, Bielefeld University, 33615 Bielefeld, Germany
- Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Boas Pucker
- Center for Biotechnology, Bielefeld University, 33615 Bielefeld, Germany
- Faculty of Biology, Bielefeld University, Bielefeld, Germany
- Present address: Evolution and Diversity, Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Christian Rückert
- Center for Biotechnology, Bielefeld University, 33615 Bielefeld, Germany
- Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Jörn Kalinowski
- Center for Biotechnology, Bielefeld University, 33615 Bielefeld, Germany
- Faculty of Biology, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
12
|
Karalkar NB, Benner SA. The challenge of synthetic biology. Synthetic Darwinism and the aperiodic crystal structure. Curr Opin Chem Biol 2018; 46:188-195. [PMID: 30098527 DOI: 10.1016/j.cbpa.2018.07.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 06/07/2018] [Accepted: 07/13/2018] [Indexed: 12/25/2022]
Abstract
'Grand Challenges' offer ways to discover flaws in existing theory without first needing to guess what those flaws are. Our grand challenge here is to reproduce the Darwinism of terran biology, but on molecular platforms different from standard DNA. Access to Darwinism distinguishes the living from the non-living state. However, theory suggests that any biopolymer able to support Darwinism must (a) be able to form Schrödinger's `aperiodic crystal', where different molecular components pack into a single crystal lattice, and (b) have a polyelectrolyte backbone. In 1953, the descriptive biology of Watson and Crick suggested DNA met Schrödinger's criertion, forming a linear crystal with geometrically similar building blocks supported on a polyelectrolye backbone. At the center of genetics were nucleobase pairs that fit into that crystal lattice by having both size complementarity and hydrogen bonding complementarity to enforce a constant geometry. This review covers experiments that show that by adhering to these two structural rules, the aperiodic crystal structure is maintained in DNA having 6 (or more) components. Further, this molecular system is shown to support Darwinism. Together with a deeper understanding of the role played in crystal formation by the poly-charged backbone and the intervening scaffolding, these results define how we might search for Darwinism, and therefore life, on Mars, Europa, Enceladus, and other watery lagoons in our Solar System.
Collapse
Affiliation(s)
- Nilesh B Karalkar
- Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Boulevard, Box 7, Alachua, FL 32615, United States
| | - Steven A Benner
- Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Boulevard, Box 7, Alachua, FL 32615, United States; Firebird Biomolecular Sciences LLC, 13709 Progress Boulevard, Box 17, Alachua, FL 32615, United States.
| |
Collapse
|
13
|
Zhao H, Jiang D, Schäfer AH, Seela F. 8-Aza-2'-deoxyisoguanosine Forms Fluorescent Hydrogels whereas 8-Aza-2'-deoxyguanosine Assembles into Nucleoside Nanotubes. Chempluschem 2017; 82:778-784. [PMID: 31961520 DOI: 10.1002/cplu.201700156] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 05/03/2017] [Indexed: 02/05/2023]
Abstract
Fluorescent hydrogels have attracted attention for applications in tissue engineering, drug delivery or as molecular machines. This study describes a nucleoside hydrogel formed by 8-aza-2'-deoxyisoguanosine (z8 isoGd ). The new hydrogel is the first guanosine gel that has intrinsic fluorescence. It has long-term stability and a higher thermal stability (Tgel =77 °C) than gels of 2'-deoxyisoguanosine (Tgel =67 °C) and 2'-deoxyguanosine (Tgel =50 °C). Furthermore, the minimum gel concentration is lower at 0.3 mg per 100 μL for z8 isoGd compared to 0.7 mg for 2'-deoxyisoguanosine. Scanning electron microscopy images show that the z8 isoGd gel forms dense bundles of fibers. The related nucleoside 8-aza-2'-deoxyguanosine does not form a hydrogel but forms nanotube-like structures in the solid state. The fluorescence of the z8 isoGd hydrogel responds to external stimuli such as the addition of alkali metal ions, pH change, heat, and UV irradiation. In binary mixtures with nucleoside shape mimics such as 7-deaza-2'-deoxyisoguanosine, the z8 isoGd hydrogel disintegrates.
Collapse
Affiliation(s)
- Hang Zhao
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149, Münster, Germany.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Dawei Jiang
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149, Münster, Germany.,Laboratorium für Organische und Bioorganische Chemie, Institut für Chemie neuer Materialien, Universität Osnabrück, Barbarastrasse 7, 49069, Osnabrück, Germany
| | - Andreas H Schäfer
- nanoAnalytics GmbH, Center for Nanotechnology, Heisenbergstrasse 11, 48149, Münster, Germany
| | - Frank Seela
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149, Münster, Germany.,Laboratorium für Organische und Bioorganische Chemie, Institut für Chemie neuer Materialien, Universität Osnabrück, Barbarastrasse 7, 49069, Osnabrück, Germany
| |
Collapse
|
14
|
Zhao H, Leonard P, Guo X, Yang H, Seela F. Silver-Mediated Base Pairs in DNA Incorporating Purines, 7-Deazapurines, and 8-Aza-7-deazapurines: Impact of Reduced Nucleobase Binding Sites and an Altered Glycosylation Position. Chemistry 2017; 23:5529-5540. [PMID: 28195414 DOI: 10.1002/chem.201605982] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Indexed: 02/05/2023]
Abstract
Formation of silver-mediated DNA was studied with oligonucleotides incorporating 8-aza-7-deazapurine, 7-deazapurine, and purine nucleosides. The investigation was performed on non-self-complementary duplexes with one or two modifications and self-complementary duplexes with an alternating dA-dT motif. Homo base pairs as well as base pair mismatches of dA analogues with dC and Watson-Crick pairs with dT were studied by stoichiometric silver ion titration and Tm measurements. N8 -Glycosylated 8-aza-7-deazaadenine forms silver-ion-mediated base pairs capturing two silver ions (low silver content) whereas regularly glycosylated 8-aza-7-deazapurine, 7-deazapurine (c7 Ad ), and dA do not form comparable structures. Stable silver-mediated "dA-dC" base pair mismatches were detected for all nucleosides. Two silver ions per base pair are bound by 8-aza-7-deazapurine whereas c7 Ad binds only one silver ion. The situation is different when the equivalents of silver ions were increased to the number of total base pairs. Surprisingly, in 12-mer duplexes as well as in related 25-mer duplexes every base pair consumed one silver ion.
Collapse
Affiliation(s)
- Hang Zhao
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstraße 11, 48149, Münster, Germany.,Laboratorium für Organische und Bioorganische Chemie, Institut für Chemie Neuer Materialien, Universität Osnabrück, Barbarastraße 7, 49069, Osnabrück, Germany.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, P.R. China
| | - Peter Leonard
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstraße 11, 48149, Münster, Germany.,Laboratorium für Organische und Bioorganische Chemie, Institut für Chemie Neuer Materialien, Universität Osnabrück, Barbarastraße 7, 49069, Osnabrück, Germany
| | - Xiurong Guo
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstraße 11, 48149, Münster, Germany.,Laboratorium für Organische und Bioorganische Chemie, Institut für Chemie Neuer Materialien, Universität Osnabrück, Barbarastraße 7, 49069, Osnabrück, Germany
| | - Haozhe Yang
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstraße 11, 48149, Münster, Germany.,Laboratorium für Organische und Bioorganische Chemie, Institut für Chemie Neuer Materialien, Universität Osnabrück, Barbarastraße 7, 49069, Osnabrück, Germany
| | - Frank Seela
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstraße 11, 48149, Münster, Germany.,Laboratorium für Organische und Bioorganische Chemie, Institut für Chemie Neuer Materialien, Universität Osnabrück, Barbarastraße 7, 49069, Osnabrück, Germany
| |
Collapse
|
15
|
Karalkar NB, Khare K, Molt R, Benner SA. Tautomeric equilibria of isoguanine and related purine analogs. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2017; 36:256-274. [PMID: 28332916 DOI: 10.1080/15257770.2016.1268694] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Nucleobase pairs in DNA match hydrogen-bond donor and acceptor groups on the nucleobases. However, these can adopt more than one tautomeric form, and can consequently pair with nucleobases other than their canonical complements, possibly a source of natural mutation. These issues are now being re-visited by synthetic biologists increasing the number of replicable pairs in DNA by exploiting unnatural hydrogen bonding patterns, where tautomerism can also create mutation. Here, we combine spectroscopic measurements on methylated analogs of isoguanine tautomers and tautomeric mixtures with statistical analyses to a set of isoguanine analogs, the complement of isocytosine, the 5th and 6th "letters" in DNA.
Collapse
Affiliation(s)
- Nilesh B Karalkar
- a Foundation for Applied Molecular Evolution (FfAME) , Alachua , FL , USA
| | - Kshitij Khare
- b Department of Statistics , University of Florida , Gainesville FL , USA
| | - Robert Molt
- c Department of Chemistry and Chemical Biology , Indiana University-Purdue University, Indianapolis , Indianapolis , IN , USA.,d ENSCO, Inc. , Melbourne , FL , USA
| | - Steven A Benner
- a Foundation for Applied Molecular Evolution (FfAME) , Alachua , FL , USA
| |
Collapse
|
16
|
Jana SK, Guo X, Mei H, Seela F. Robust silver-mediated imidazolo-dC base pairs in metal DNA: dinuclear silver bridges with exceptional stability in double helices with parallel and antiparallel strand orientation. Chem Commun (Camb) 2016; 51:17301-4. [PMID: 26463426 DOI: 10.1039/c5cc06734k] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new unprecedented metal-mediated base pair was designed that stabilizes reverse Watson-Crick DNA (parallel strand orientation, ps) as well as canonical Watson-Crick DNA (antiparallel strand orientation, aps). This base pair contains two imidazolo-dC units decorated with furan residues. Tm measurements and spectroscopic studies reveal that each silver-mediated furano-imidazolo-dC forms exceptionally stable duplexes with ps and aps chain orientation. This stability increase by a silver-mediated base pair is the highest reported so far for ps and aps DNA helices.
Collapse
Affiliation(s)
- Sunit Kumar Jana
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstraße 11, 48149 Münster, Germany
| | - Xiurong Guo
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstraße 11, 48149 Münster, Germany and Institute for Nanobiomedical Technology and Membrane Biology, Sichuan University, No. 1 Keyuan 4th Road, Gaopengdadao, Chengdu 610041, P. R. China
| | - Hui Mei
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstraße 11, 48149 Münster, Germany
| | - Frank Seela
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstraße 11, 48149 Münster, Germany and Laboratorium für Organische und Bioorganische Chemie, Institut für Chemie neuer Materialien, Universität Osnabrück, Barbarastraße 7, 49069 Osnabrück, Germany.
| |
Collapse
|
17
|
Karalkar NB, Leal NA, Kim MS, Bradley KM, Benner SA. Synthesis and Enzymology of 2'-Deoxy-7-deazaisoguanosine Triphosphate and Its Complement: A Second Generation Pair in an Artificially Expanded Genetic Information System. ACS Synth Biol 2016; 5:672-8. [PMID: 26914388 DOI: 10.1021/acssynbio.5b00276] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
As with natural nucleic acids, pairing between artificial nucleotides can be influenced by tautomerism, with different placements of protons on the heterocyclic nucleobase changing patterns of hydrogen bonding that determine replication fidelity. For example, the major tautomer of isoguanine presents a hydrogen bonding donor-donor-acceptor pattern complementary to the acceptor-acceptor-donor pattern of 5-methylisocytosine. However, in its minor tautomer, isoguanine presents a hydrogen bond donor-acceptor-donor pattern complementary to thymine. Calculations, crystallography, and physical organic experiments suggest that this tautomeric ambiguity might be "fixed" by replacing the N-7 nitrogen of isoguanine by a CH unit. To test this hypothesis, we prepared the triphosphate of 2'-deoxy-7-deazaiso-guanosine and used it in PCR to estimate an effective tautomeric ratio "seen" by Taq DNA polymerase. With 7-deazaisoguanine, fidelity-per-round was ∼92%. The analogous PCR with isoguanine gave a lower fidelity-per-round of ∼86%. These results confirm the hypothesis with polymerases, and deepen our understanding of the role of minor groove hydrogen bonding and proton tautomerism in both natural and expanded genetic "alphabets", major targets in synthetic biology.
Collapse
Affiliation(s)
- Nilesh B. Karalkar
- Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Boulevard, Box
7, Alachua, Florida 32615, United States
| | - Nicole A. Leal
- Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Boulevard, Box
7, Alachua, Florida 32615, United States
- Firebird Biomolecular Sciences LLC, 13709 Progress Boulevard, Box 17, Alachua, Florida 32615, United States
| | - Myong-Sang Kim
- Firebird Biomolecular Sciences LLC, 13709 Progress Boulevard, Box 17, Alachua, Florida 32615, United States
| | - Kevin M. Bradley
- Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Boulevard, Box
7, Alachua, Florida 32615, United States
| | - Steven A. Benner
- Foundation for Applied Molecular Evolution (FfAME), 13709 Progress Boulevard, Box
7, Alachua, Florida 32615, United States
- Firebird Biomolecular Sciences LLC, 13709 Progress Boulevard, Box 17, Alachua, Florida 32615, United States
| |
Collapse
|
18
|
Lee DK, Switzer C. Polymerase recognition of 2-thio-iso-guanine·5-methyl-4-pyrimidinone (iGs·P)--A new DD/AA base pair. Bioorg Med Chem Lett 2016; 26:1177-9. [PMID: 26821822 DOI: 10.1016/j.bmcl.2016.01.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 01/13/2016] [Accepted: 01/14/2016] [Indexed: 11/16/2022]
Abstract
Polymerase specificity is reported for a previously unknown base pair with a non-standard DD/AA hydrogen bonding pattern: 2-thio-iso-guanine·5-methyl-4-pyrimidinone. Our findings suggest that atomic substitution may provide a solution for low fidelity previously associated with enzymatic copying of iso-guanine.
Collapse
Affiliation(s)
- Dong-Kye Lee
- Department of Chemistry, University of California, Riverside, CA 92521, United States
| | - Christopher Switzer
- Department of Chemistry, University of California, Riverside, CA 92521, United States.
| |
Collapse
|
19
|
Chawla M, Credendino R, Oliva R, Cavallo L. Structural and Energetic Impact of Non-Natural 7-Deaza-8-Azaadenine and Its 7-Substituted Derivatives on H-Bonding Potential with Uracil in RNA Molecules. J Phys Chem B 2015; 119:12982-9. [PMID: 26389789 DOI: 10.1021/acs.jpcb.5b06861] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Non-natural (synthetic) nucleobases, including 7-ethynyl- and 7-triazolyl-8-aza-7-deazaadenine, have been introduced in RNA molecules for targeted applications, and have been characterized experimentally. However, no theoretical characterization of the impact of these modifications on the structure and energetics of the corresponding H-bonded base pair is available. To fill this gap, we performed quantum mechanics calculations, starting with the analysis of the impact of the 8-aza-7-deaza modification of the adenine skeleton, and we moved then to analyze the impact of the specific substituents on the modified 8-aza-7-deazaadenine. Our analysis indicates that, despite of these severe structural modifications, the H-bonding properties of the modified base pair gratifyingly replicate those of the unmodified base pair. Similar behavior is predicted when the same skeleton modifications are applied to guanine when paired to cytosine. To stress further the H-bonding pairing in the modified adenine-uracil base pair, we explored the impact of strong electron donor and electron withdrawing substituents on the C7 position. Also in this case we found minimal impact on the base pair geometry and energy, confirming the validity of this modification strategy to functionalize RNAs without perturbing its stability and biological functionality.
Collapse
Affiliation(s)
- Mohit Chawla
- Physical Sciences and Engineering Division, Kaust Catalysis Center, King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900, Saudi Arabia
| | - Raffaele Credendino
- Physical Sciences and Engineering Division, Kaust Catalysis Center, King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900, Saudi Arabia
| | - Romina Oliva
- Department of Sciences and Technologies, University Parthenope of Naples , Centro Direzionale Isola C4, I-80143, Naples, Italy
| | - Luigi Cavallo
- Physical Sciences and Engineering Division, Kaust Catalysis Center, King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
20
|
Yang H, Mei H, Seela F. Pyrrolo-dC Metal-Mediated Base Pairs in the Reverse Watson-Crick Double Helix: Enhanced Stability of Parallel DNA and Impact of 6-Pyridinyl Residues on Fluorescence and Silver-Ion Binding. Chemistry 2015; 21:10207-19. [PMID: 26096946 DOI: 10.1002/chem.201500582] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Indexed: 11/11/2022]
Abstract
Reverse Watson-Crick DNA with parallel-strand orientation (ps DNA) has been constructed. Pyrrolo-dC (PyrdC) nucleosides with phenyl and pyridinyl residues linked to the 6 position of the pyrrolo[2,3-d]pyrimidine base have been incorporated in 12- and 25-mer oligonucleotide duplexes and utilized as silver-ion binding sites. Thermal-stability studies on the parallel DNA strands demonstrated extremely strong silver-ion binding and strongly enhanced duplex stability. Stoichiometric UV and fluorescence titration experiments verified that a single (2py) PyrdC-(2py) PyrdC pair captures two silver ions in ps DNA. A structure for the PyrdC silver-ion base pair that aligns 7-deazapurine bases head-to-tail instead of head-to-head, as suggested for canonical DNA, is proposed. The silver DNA double helix represents the first example of a ps DNA structure built up of bidentate and tridentate reverse Watson-Crick base pairs stabilized by a dinuclear silver-mediated PyrdC pair.
Collapse
Affiliation(s)
- Haozhe Yang
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstraße 11, 48149 Münster (Germany), Fax: (+49) 251-53406857.,Laboratorium für Organische und Bioorganische Chemie, Institut für Chemie neuer Materialien, Universität Osnabrück, Barbarastraße 7, 49069 Osnabrück (Germany)
| | - Hui Mei
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstraße 11, 48149 Münster (Germany), Fax: (+49) 251-53406857.,Laboratorium für Organische und Bioorganische Chemie, Institut für Chemie neuer Materialien, Universität Osnabrück, Barbarastraße 7, 49069 Osnabrück (Germany)
| | - Frank Seela
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstraße 11, 48149 Münster (Germany), Fax: (+49) 251-53406857. .,Laboratorium für Organische und Bioorganische Chemie, Institut für Chemie neuer Materialien, Universität Osnabrück, Barbarastraße 7, 49069 Osnabrück (Germany).
| |
Collapse
|
21
|
Ingale SA, Leonard P, Tran QN, Seela F. Duplex DNA and DNA-RNA hybrids with parallel strand orientation: 2'-deoxy-2'-fluoroisocytidine, 2'-deoxy-2'-fluoroisoguanosine, and canonical nucleosides with 2'-fluoro substituents cause unexpected changes on the double helix stability. J Org Chem 2015; 80:3124-38. [PMID: 25742047 DOI: 10.1021/acs.joc.5b00040] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Oligonucleotides with parallel or antiparallel strand orientation incorporating 2'-fluorinated 2'-deoxyribonucleosides with canonical nucleobases or 2'-deoxy-2'-fluoroisocytidine ((F)iCd, 1c) and 2'-deoxy-2'-fluoroisoguanosine ((F)iGd, 3c) were synthesized. To this end, the nucleosides 1c and 3c as well as the phosphoramidite building blocks 19 and 23 were prepared and employed in solid-phase oligonucleotide synthesis. Unexpectedly, (F)iCd is not stable during oligonucleotide deprotection (55 °C, aq NH3) and was converted to a cyclonucleoside (14). Side product formation was circumvented when oligonucleotides were deprotected under mild conditions (aq ammonia-EtOH, rt). Oligonucleotides containing 2'-fluoro substituents ((F)iCd, (F)iGd and fluorinated canonical 2'-deoxyribonucleosides) stabilize double-stranded DNA, RNA, and DNA-RNA hybrids with antiparallel strand orientation. Unexpected strong stability changes are observed for oligonucleotide duplexes with parallel chains. While fluorinated oligonucleotides form moderately stable parallel stranded duplexes with complementary DNA, they do not form stable hybrids with RNA. Furthermore, oligoribonucleotide duplexes with parallel strand orientation are extremely unstable. It is anticipated that nucleic acids with parallel chains might be too rigid to accept sugar residues in the N-conformation as observed for ribonucleosides or 2'-deoxy-2'-fluororibonucleosides. These observations might explain why nature has evolved the principle of antiparallel chain orientation and has not used the parallel chain alignment.
Collapse
Affiliation(s)
- Sachin A Ingale
- †Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany
| | - Peter Leonard
- †Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany
| | - Quang Nhat Tran
- †Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany
| | - Frank Seela
- †Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany.,‡Laboratorium für Organische und Bioorganische Chemie, Institut für Chemie neuer Materialien, Universität Osnabrück, Barbarastrasse 7, 49069 Osnabrück, Germany
| |
Collapse
|
22
|
Bande O, Abu El Asrar R, Braddick D, Dumbre S, Pezo V, Schepers G, Pinheiro VB, Lescrinier E, Holliger P, Marlière P, Herdewijn P. Isoguanine and 5-methyl-isocytosine bases, in vitro and in vivo. Chemistry 2015; 21:5009-22. [PMID: 25684598 PMCID: PMC4531829 DOI: 10.1002/chem.201406392] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Indexed: 11/10/2022]
Abstract
The synthesis, base-pairing properties and in vitro and in vivo characteristics of 5-methyl-isocytosine (isoCMe) and isoguanine (isoG) nucleosides, incorporated in an HNA(h) (hexitol nucleic acid)–DNA(d) mosaic backbone, are described. The required h-isoG phosphoramidite was prepared by a selective deamination as a key step. As demonstrated by Tm measurements the hexitol sugar showed slightly better mismatch discrimination against dT. The d-isoG base mispairing follows the order T>G>C while the h-isoG base mispairing follows the order G>C>T. The h- and d-isoCMe bases mainly mispair with G. Enzymatic incorporation experiments show that the hexitol backbone has a variable effect on selectivity. In the enzymatic assays, isoG misincorporates mainly with T, and isoCMe misincorporates mainly with A. Further analysis in vivo confirmed the patterns of base-pair interpretation for the deoxyribose and hexitol isoCMe/isoG bases in a cellular context, through incorporation of the bases into plasmidic DNA. Results in vivo demonstrated that mispairing and misincorporation was dependent on the backbone scaffold of the base, which indicates rational advances towards orthogonality.
Collapse
Affiliation(s)
- Omprakash Bande
- Medicinal Chemistry, Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, 3000 Leuven (Belgium)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Poznański J, Poznańska A, Shugar D. A Protein Data Bank survey reveals shortening of intermolecular hydrogen bonds in ligand-protein complexes when a halogenated ligand is an H-bond donor. PLoS One 2014; 9:e99984. [PMID: 24933273 PMCID: PMC4059718 DOI: 10.1371/journal.pone.0099984] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Accepted: 05/21/2014] [Indexed: 01/13/2023] Open
Abstract
Halogen bonding in ligand-protein complexes is currently widely exploited, e.g. in drug design or supramolecular chemistry. But little attention has been directed to other effects that may result from replacement of a hydrogen by a strongly electronegative halogen. Analysis of almost 30000 hydrogen bonds between protein and ligand demonstrates that the length of a hydrogen bond depends on the type of donor-acceptor pair. Interestingly, lengths of hydrogen bonds between a protein and a halogenated ligand are visibly shorter than those estimated for the same family of proteins in complexes with non-halogenated ligands. Taking into account the effect of halogenation on hydrogen bonding is thus important when evaluating structural and/or energetic parameters of ligand-protein complexes. All these observations are consistent with the concept that halogenation increases the acidity of the proximal amino/imino/hydroxyl groups and thus makes them better, i.e. stronger, H-bond donors.
Collapse
Affiliation(s)
- Jarosław Poznański
- Biophysics Department, Institute of Biochemistry and Biophysics PAS, Warszawa, Poland
- * E-mail: (JP); (DS)
| | - Anna Poznańska
- Centre for Monitoring and Analyses of Population Health Status, National Institute of Public Health - National Institute of Hygiene, Warszawa, Poland
| | - David Shugar
- Institute of Biochemistry and Biophysics PAS, Warszawa, Poland
- * E-mail: (JP); (DS)
| |
Collapse
|
24
|
Pujari SS, Seela F. Parallel stranded DNA stabilized with internal sugar cross-links: synthesis and click ligation of oligonucleotides containing 2'-propargylated isoguanosine. J Org Chem 2013; 78:8545-61. [PMID: 23915305 DOI: 10.1021/jo4012706] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Internal sugar cross-links were introduced for the first time into oligonucleotides with parallel chain orientation by click ligation. For this, the 2'- or 3'-position of the isoguanosine ribose moiety was functionalized with clickable propargyl residues, and the synthesis of propargylated cytosine building blocks was significantly improved. Phosphoramidites were prepared and employed in solid-phase synthesis. A series of oligo-2'-deoxyribonucleotides with parallel (ps) and antiparallel (aps) strand orientation were constructed containing isoguanine-cytosine, isoguanine-isocytosine, and adenine-thymine base pairs. Complementary oligonucleotides with propargylated sugar residues were ligated in a stepwise manner with a chelating bis-azide under copper catalysis. Cross-links were introduced within a base pair or in positions separated by two base pairs. From T(m) stability studies it is evident that cross-linking stabilizes DNA with parallel strand orientation strongly (ΔT(m) from +16 to +18.5 °C) with a similar increase as for aps DNA.
Collapse
Affiliation(s)
- Suresh S Pujari
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstraße 11, 48149 Münster, Germany
| | | |
Collapse
|
25
|
Liang F, Liu YZ, Zhang P. Universal base analogues and their applications in DNA sequencing technology. RSC Adv 2013. [DOI: 10.1039/c3ra41492b] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
26
|
Mei H, Budow S, Seela F. Construction and assembly of chimeric DNA: oligonucleotide hybrid molecules composed of parallel or antiparallel duplexes and tetrameric i-motifs. Biomacromolecules 2012; 13:4196-204. [PMID: 23121010 DOI: 10.1021/bm301471d] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Chimeric DNA containing parallel (ps) and antiparallel (aps) duplex elements as well as poly-dC tracts were designed and synthesized. Oligonucleotide duplexes with ps chain orientation containing reverse Watson-Crick dA-dT base pairs and short d(C)2 tails are stabilized under slightly acidic conditions by hemiprotonated dCH+-dC base pairs ("clamp" effect). Corresponding molecules with aps orientation containing Watson-Crick dA-dT base pairs do not show this phenomenon. Chimeric DNA with ps duplex elements and long d(C)5 tails at one or at both ends assemble to tetrameric i-motif structures. Molecules with two terminal d(C)5 tails form multimeric assemblies which have the potential to form nanoscopic scaffolds. A preorganization of the ps duplex chains stabilizes the i-motif assemblies up to almost neutral conditions as evidenced by thermal melting and gel electrophoresis. Although, ps DNA is generally less stable than aps DNA, the aps duplexes contribute less to the stability of the i-motif than ps DNA.
Collapse
Affiliation(s)
- Hui Mei
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstraße 11, 48149 Münster, Germany
| | | | | |
Collapse
|
27
|
Parker AJ, Stewart J, Donald KJ, Parish CA. Halogen bonding in DNA base pairs. J Am Chem Soc 2012; 134:5165-72. [PMID: 22364257 DOI: 10.1021/ja2105027] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Halogen bonding (R-X···Y) is a qualitative analogue of hydrogen bonding that may prove useful in the rational design of artificial proteins and nucleotides. We explore halogen-bonded DNA base pairs containing modified guanine, cytosine, adenine and thymine nucleosides. The structures and stabilities of the halogenated systems are compared to the normal hydrogen bonded base pairs. In most cases, energetically stable, coplanar structures are identified. In the most favorable cases, halogenated base pair stabilities are within 2 kcal mol(-1) of the hydrogen bonded analogues. Among the halogens X = Cl, Br, and I, bromine is best suited for inclusion in these biological systems because it possesses the best combination of polarizability and steric suitability. We find that the most stable structures result from a single substitution of a hydrogen bond for a halogen bond in dA:dT and dG:dC base pairs, which allows 1 or 2 hydrogen bonds, respectively, to complement the halogen bond.
Collapse
Affiliation(s)
- Anna J Parker
- Department of Chemistry, Gottwald Center for the Sciences, University of Richmond, Richmond, Virginia 23173, United States
| | | | | | | |
Collapse
|
28
|
Lee JH, Lim HS. Solid-phase synthesis of tetrasubstituted pyrrolo[2,3-d]pyrimidines. Org Biomol Chem 2012; 10:4229-35. [DOI: 10.1039/c2ob06899k] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
29
|
Ming X, Ding P, Leonard P, Budow S, Seela F. Parallel-stranded DNA: Enhancing duplex stability by the ‘G-clamp’ and a pyrrolo-dC derivative. Org Biomol Chem 2012; 10:1861-9. [DOI: 10.1039/c2ob06606h] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
30
|
Qing G, Xiong H, Seela F, Sun T. Spatially controlled DNA nanopatterns by "click" chemistry using oligonucleotides with different anchoring sites. J Am Chem Soc 2011; 132:15228-32. [PMID: 20936845 DOI: 10.1021/ja105246b] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
DNA patterning on surfaces has broad applications in biotechnology, nanotechnology, and other fields of life science. The common patterns make use of the highly selective base pairing which might not be stable enough for further manipulations. Furthermore, the fabrication of well-defined DNA nanostructures on solid surfaces usually lacks chemical linkages to the surface. Here we report a template-free strategy based on "click" chemistry to fabricate spatially controlled DNA nanopatterns immobilized on surfaces. The self-assembly process utilizes DNA with different anchoring sites. The position of anchoring is of crucial importance for the self-assembly process of DNA and greatly influences the assembly of particular DNA nanopatterns. It is shown that the anchoring site in a central position generates tunable nanonetworks with high regularity, compared to DNAs containing anchoring sites at terminal and other positions. The prepared patterns may find applications in DNA capturing and formation of pores and channels and can serve as templates for the patterning using other molecules.
Collapse
Affiliation(s)
- Guangyan Qing
- State Key Laboratory of Advanced Technology for Materials Synthesis and Composite, Wuhan University of Technology, Wuhan 430070, China
| | | | | | | |
Collapse
|
31
|
Jiang D, Seela F. Oligonucleotide duplexes and multistrand assemblies with 8-aza-2'-deoxyisoguanosine: a fluorescent isoG(d) shape mimic expanding the genetic alphabet and forming ionophores. J Am Chem Soc 2010; 132:4016-24. [PMID: 20192268 DOI: 10.1021/ja910020n] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
8-Aza-2'-deoxyisoguanosine (4) is the first fluorescent shape mimic of 2'-deoxyisoguanosine (1a); its fluorescence is stronger in alkaline medium than under neutral conditions. Nucleoside 4, which was synthesized from 8-aza-2'-deoxyguanosine via a 4,6-diamino intermediate after selective deamination, was incorporated in oligodeoxyribonucleotides using phosphoramidite 11. Duplexes with 4 x m(5)iC(d) (5-methyl-2'-deoxyisocytidine) base pairs are more stable than those incorporating dG-dC pairs, thereby expanding the genetic alphabet by a fluorescent orthogonal base pair. As demonstrated by T(m) measurements, the base pair stability decreases in the order m(5)iC(d) x 4 >> dG x 4 > dT x 4 > or = dC x 4 >> dA x 4. A better base pairing selectivity of 4 against the canonical nucleosides dT, dC, dA, and dG is observed than for the degenerated base pairing of 1a. The base pair stability changes can be monitored by nucleobase anion fluorescence sensing. The fluorescence change correlates to the DNA base pair stability. Oligonucleotide 5'-d(T(4)4(4)T(4)) (22), containing short runs of nucleoside 4, forms stable multistranded assemblies (ionophores) with K(+) in the central cavity. They are quite stable at elevated temperature but are destroyed at high pH value.
Collapse
Affiliation(s)
- Dawei Jiang
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany
| | | |
Collapse
|
32
|
Chiba J, Inouye M. Exotic DNAs Made of Nonnatural Bases and Natural Phosphodiester Bonds. Chem Biodivers 2010; 7:259-82. [DOI: 10.1002/cbdv.200900282] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
33
|
Ciliberti N, Durini E, Manfredini S, Vertuani S. 7-deazainosine derivatives: synthesis and characterization of 7- and 7,8-substituted pyrrolo [2,3-d]pyrimidine ribonucleosides. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2008; 27:525-33. [PMID: 18569790 DOI: 10.1080/15257770802089009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The synthesis of model 7 deazapurine derivatives related to tubercidin and toyocamycin has been performed. Tubercidin derivatives were obtained by simple conversion of the amino group of the heterocyclic moiety of the starting 7-deazadenosine compounds, into a hydroxyl group. Preparation of toyocamycin derivatives was accomplished by treatment of the silylated 6-bromo-5-cyanopyrrolo[2,3-d]pyrimidin-4-one with 1-O-acetyl-2,3,5-tri-O-benzoyl-beta-d-ribofuranose. The glycosylation reaction afforded a mixture of 8-bromo 7-cyano 2',3',5' tri-O-benzoyl 7-deazainosine and 6-bromo-5-cyano-3-(2',3',5'-tri-O-benzoyl-beta-d-ribofuranosyl)pyrrolo[2,3-d]-pyrimidin-4-one isomers: The structures were assigned on the basis of NMR spectroscopy studies. Next deprotection treatment gave the novel 7-deazainosine ribonucleosides.
Collapse
Affiliation(s)
- Nunzia Ciliberti
- Department of Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| | | | | | | |
Collapse
|
34
|
Seela F, Ming X. Oligonucleotides Containing 7-Deaza-2′-deoxyinosine as Universal Nucleoside: Synthesis of 7-Halogenated and 7-Alkynylated Derivatives, Ambiguous Base Pairing, and Dye Functionalization by the Alkyne-Azide ‘Click’ Reaction. Helv Chim Acta 2008. [DOI: 10.1002/hlca.200890131] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
35
|
Seela F, Xu K. 7‐Halogenated 7‐Deazapurine 2′‐Deoxyribonucleosides Related to 2′‐Deoxyadenosine, 2′‐Deoxyxanthosine, and 2′‐Deoxyisoguanosine: Syntheses and Properties. Helv Chim Acta 2008. [DOI: 10.1002/hlca.200890117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
36
|
Seela F, Peng X, Xu K. Mismatch discrimination of base-modified nucleic acids and their constituents: non-Watson-Crick base pairing induced by tautomerization. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2008; 26:1569-72. [PMID: 18066828 DOI: 10.1080/15257770701547164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The effect of tautomerism on the mismatch discrimination was studied on 7-deazapurine and 8-aza-7-deazapurine analogues of isoguanosine. 7-Halogenated 7-deaza-2'-deoxyisoguanosines show better base pair discrimination than 2'-deoxyisoguanosine due to the more favored keto tautomer formation. 8-Aza-7-deazaisoguanosine and its 7-halogeno derivatives also show higher keto tautomer population than that of isoguanosine, but the 7-halogens do not bias the tautomeric equilibrium significantly as it is observed for the 7-deaza-2'-deoxyisoguanosine derivatives.
Collapse
Affiliation(s)
- Frank Seela
- Laboratorium für Organische und Bioorganische Chemie, Universität Osnabrück, Barbarastrasse 7, 49069 Osnabrück, Germany.
| | | | | |
Collapse
|
37
|
Seela F, Sirivolu VR, Chittepu P. Modification of DNA with octadiynyl side chains: synthesis, base pairing, and formation of fluorescent coumarin dye conjugates of four nucleobases by the alkyne--azide "click" reaction. Bioconjug Chem 2007; 19:211-24. [PMID: 18020404 DOI: 10.1021/bc700300f] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Oligonucleotides incorporating 5-(octa-1,7-diynyl)-2'-deoxycytidine 1a, 5-(octa-1,7-diynyl)-2'-deoxyuridine 2a and 7-deaza-7-(octa-1,7-diynyl)-2'-deoxyguanosine 3a, 7-deaza-7-(octa-1,7-diynyl)-2'-deoxyadenosine 4a were prepared. For this, the phosphoramidites 7, 10, and 13 were synthesized and employed in solid-phase oligonucleotide synthesis. The octa-1,7-diynyl nucleosides 1a- 4a were obtained from their corresponding iodo derivatives using the palladium-assisted Sonogashira cross-coupling reaction. The Tm values demonstrated that DNA duplexes containing octa-1,7-diynyl nucleosides show a positive influence on the DNA duplex stability when they are introduced at the 5-position of pyrimidines or at the 7-position of 7-deazapurines. The terminal alkyne residue of oligonucleotides were selectively conjugated to the azide residue of the nonfluorescent 3-azido-7-hydroxycoumarin ( 38) using the protocol of copper(I)-catalyzed [3 + 2] Huisgen--Sharpless--Meldal cycloaddition "click chemistry" resulting in the formation of strongly fluorescent 1,2,3-triazole conjugates. The fluorescence properties of oligonucleotides with covalently linked coumarin--nucleobase assemblies were investigated. Among the four modified bases, the 7-deazapurines show stronger fluorescence quenching than that of pyrimidines.
Collapse
Affiliation(s)
- Frank Seela
- Laboratory for Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany.
| | | | | |
Collapse
|
38
|
7-Functionalized 7-deazapurine β-d and β-l-ribonucleosides related to tubercidin and 7-deazainosine: glycosylation of pyrrolo[2,3-d]pyrimidines with 1-O-acetyl-2,3,5-tri-O-benzoyl-β-d or β-l-ribofuranose. Tetrahedron 2007. [DOI: 10.1016/j.tet.2007.06.107] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
39
|
Seela F, Xu K. Pyrazolo[3,4-d]pyrimidine ribonucleosides related to 2-aminoadenosine and isoguanosine: synthesis, deamination and tautomerism. Org Biomol Chem 2007; 5:3034-45. [PMID: 17728871 DOI: 10.1039/b708736e] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The syntheses and properties of 8-aza-7-deazapurine (pyrazolo[3,4-d]pyrimidine) ribonucleosides related to 2-aminoadenosine and isoguanosine are described. Glycosylation of 8-aza-7-deazapurine-2,6-diamine 5 with 1-O-acetyl-2,3,5-tri-O-benzoyl-beta-D-ribofuranose (12) in the presence of BF(3) x Et(2)O as a catalyst gave the N(8) isomer 14 (73%) with a trace amount of the N(9) isomer 13a (4.8%). Under the same reaction conditions, the 7-halogenated 8-aza-7-deazapurine-2,6-diamines 6-8 afforded the thermodynamically more stable N(9) nucleosides 13b-d as the only products (53-70%). Thus, a halogen in position 7 shifts the glycosylation from N(8) to N(9). The 8-aza-7-deazapurine-4,6-diamine ribonucleosides 1a-d were converted to the isoguanosine derivatives 3a-d by diazotization of the 2-amino group. Although compounds 1a,b do not contain a nitrogen at position 7 (the enzyme binding site), they were deaminated by adenosine deaminase; however, their deamination occurred with a much slower velocity than that of the related purines. The pK(a) values indicate that the 7-non-functionalized nucleosides 1a (pK(a) 5.8) and 15 (pK(a) 6.4) are possibly protonated in neutral conditions when incorporated into RNA. The nucleosides 3a-d exist predominantly in the keto (lactam) form with K(TAUT) (keto/enol) values of 400-1200 compared to 10(3)-10(4) for pyrrolo[2,3-d]pyrimidine isoguanosine derivatives 4a-c and 10 for isoguanosine itself, which will reduce RNA mispairing with U.
Collapse
Affiliation(s)
- Frank Seela
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 48149 Münster, Germany.
| | | |
Collapse
|
40
|
Peng X, Li H, Seela F. pH-Dependent mismatch discrimination of oligonucleotide duplexes containing 2'-deoxytubercidin and 2- or 7-substituted derivatives: protonated base pairs formed between 7-deazapurines and cytosine. Nucleic Acids Res 2006; 34:5987-6000. [PMID: 17071713 PMCID: PMC1694028 DOI: 10.1093/nar/gkl719] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Oligonucleotides incorporating 2′-deoxytubercidin (1a), its 2-amino derivative 2a and related 2-, or 7-substituted analogs (1d, 2b–d, 3 and 4) are synthesized. For this purpose, a series of novel phosphoramidites are prepared and employed in solid-phase synthesis. Hybridization experiments performed with 12mer duplexes indicate that 7-halogenated nucleosides enhance the duplex stability both in antiparallel and parallel DNA, whereas 2-fluorinated 7-deaza-2′-deoxyadenosine residues destabilize the duplex structure. The 7-deazaadenine nucleosides 1a, 1d and their 2-amino derivatives 2a–d form stable base pairs with dT but also with dC and dG. The mispairing with dC is pH-dependent. Ambiguous base pairing is observed at pH 7 or under acid conditions, whereas base discrimination occurs in alkaline medium (pH 8.0). This results from protonated base pairs formed between 1a or 2a and dC under neutral or acid condition, which are destroyed in alkaline medium. It is underlined by the increased basicity of the pyrrolo[2,3-d]pyrimidine nucleosides over that of the parent purine compounds (pKa values: 1a = 5.30; 2a = 5.71; dA = 3.50).
Collapse
Affiliation(s)
- Xiaohua Peng
- Laboratorium für Organische und Bioorganische Chemie, Institut für Chemie, Universität OsnabrückBarbarastrasse 7, D-49069 Osnabrück, Germany
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology (CeNTech)Heisenbergstrasse 11, D-48149 Münster, Germany
| | - Hong Li
- Laboratorium für Organische und Bioorganische Chemie, Institut für Chemie, Universität OsnabrückBarbarastrasse 7, D-49069 Osnabrück, Germany
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology (CeNTech)Heisenbergstrasse 11, D-48149 Münster, Germany
| | - Frank Seela
- Laboratorium für Organische und Bioorganische Chemie, Institut für Chemie, Universität OsnabrückBarbarastrasse 7, D-49069 Osnabrück, Germany
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology (CeNTech)Heisenbergstrasse 11, D-48149 Münster, Germany
- To whom correspondence should be addressed. Tel: +49 541 969 2791; Fax:+49 541 969 2370;
| |
Collapse
|
41
|
Seela F, Shaikh KI. pH-Independent triplex formation: hairpin DNA containing isoguanine or 9-deaza-9-propynylguanine in place of protonated cytosine. Org Biomol Chem 2006; 4:3993-4004. [PMID: 17047881 DOI: 10.1039/b610930f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Triplex-forming oligonucleotides (TFOs) containing 2'-deoxyisoguanosine (2), 7-bromo-7-deaza-2'-deoxyisoguanosine (2) as well as the propynylated 9-deazaguanine N7-(2'-deoxyribonucleoside) were prepared. For this the phosphoramidites 9a, b of the nucleoside 1 and, the phosphoramidites 19, 20 of compound 3b were synthesized. They were employed in solid-phase oligonucleotide synthesis to yield the protected 31-mer oligonucleotides. The deblocking of the allyl-protected oligonucleotides containing 1 was carried out by Pd(0)[PPh3]4-PPh3 followed by 25% aq. NH3. Formation of the 31-mer single-stranded intramolecular triplexes was studied by UV-melting curve analysis. In the single-stranded 31-mer oligonucleotides the protonated dC in the dCH(+)-dG-dC base triad was replaced by 2'-deoxyisoguanosine (1), 7-bromo-7-deaza-2'-deoxyisoguanosine (2) and, 9-deaza-9-propynylguanine N7-(2'-deoxyribonucleoside) (3b). The replacement of protonated dC by compounds 1 and 3b resulted in intramolecular triplexes which are formed pH-independently and are stable under neutral conditions. These triplexes contain "purine" nucleosides in the third pyrimidine rich strand of the oligonucleotide hairpin.
Collapse
Affiliation(s)
- Frank Seela
- Laboratorium für Organische und Bioorganische Chemie, Institut für Chemie, Universität Osnabrück, Barbarastrasse 7, 49069, Osnabrück, Germany.
| | | |
Collapse
|
42
|
Seela F, Peng X. 7-Functionalized 7-deazapurine ribonucleosides related to 2-aminoadenosine, guanosine, and xanthosine: glycosylation of pyrrolo[2,3-d]pyrimidines with 1-O-acetyl-2,3,5-tri-O-benzoyl-D-ribofuranose. J Org Chem 2006; 71:81-90. [PMID: 16388621 DOI: 10.1021/jo0516640] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
[reaction: see text] The Silyl-Hilbert-Johnson reaction as well as the nucleobase-anion glycosylation of a series of 7-deazapurines has been investigated, and the 7-functionalized 7-deazapurine ribonucleosides were prepared. Glycosylation of the 7-halogenated 6-chloro-2-pivaloylamino-7-deazapurines 9b-d with 1-O-acetyl-2,3,5-tri-O-benzoyl-D-ribofuranose (5) gave the beta-D-nucleosides 11b-d (73-75% yield), which were transformed to a number of novel 7-halogenated 7-deazapurine ribonucleosides (2b-d, 3b-d, and 4b-d) related to guanosine, 2-aminoadenosine, and xanthosine. 7-Alkynyl derivatives (2e-i, 3e-h, or 4g) have been prepared from the corresponding 7-iodonucleosides 2d, 3d, or 4d employing the palladium-catalyzed Sonogashira cross-coupling reaction. The 7-halogenated 2-amino-7-deazapurine ribonucleosides with a reactive 6-chloro substituent (18b-d) were synthesized in an alternative way using nucleobase-anion glycosylation performed on the 7-halogenated 2-amino-6-chloro-7-deazapurines 13b-d with 5-O-[(1,1-dimethylethyl)dimethylsilyl]-2,3-O-(1-methylethylidene)-alpha-D-ribofuranosyl chloride (17). Compounds 18b-d have been converted to the nucleosides 19b-d carrying reactive substituents in the pyrimidine moiety. Conformational analysis of selected nucleosides on the basis of proton coupling constants and using the program PSEUROT showed that these ribonucleosides exist in a preferred S conformation in solution.
Collapse
Affiliation(s)
- Frank Seela
- Laboratorium für Organische und Bioorganische Chemie, Institut für Chemie, Universität Osnabrück, Barbarastr. 7, D-49069 Osnabrück, Germany.
| | | |
Collapse
|
43
|
Li H, Peng X, Leonard P, Seela F. Binding of actinomycin C1 (D) and actinomin to base-modified oligonucleotide duplexes with parallel chain orientation. Bioorg Med Chem 2006; 14:4089-100. [PMID: 16500105 DOI: 10.1016/j.bmc.2006.02.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2005] [Revised: 02/01/2006] [Accepted: 02/03/2006] [Indexed: 11/29/2022]
Abstract
The binding of actinomycin D (C1, 1) and its analog actinomin (2) was studied on base-modified oligonucleotide duplexes with parallel chain orientation (ps) and with anti-parallel chains (aps) for comparison. Actinomycin D binds not only to aps duplexes containing guanine-cytosine base pairs but also to those incorporating modified bases such as 7-deazaguanine or its 6-deoxo derivative. For this, novel phosphoramidites were prepared. The new building block of 7-deaza-2'-deoxyguanosine is significantly more stable than the one currently used and allows normal oxidation conditions during solid-phase oligonucleotide synthesis. Actinomycin binds weakly to ps duplexes containing guanine-isocytosine base pairs but not to ps-DNA incorporating pairs of isoguanine-cytosine residues. On the contrary, the actinomycin D analog actinomin, which contains positively charged side chains instead of the chiral peptide rings, is strongly bound to both ps- and aps-DNA. Guanines, isoguanine, as well as other 7-deaza derivatives are accepted as nucleobases. Apparently, the pentapeptide lacton rings of actinomycin do not fit nicely into the groove of ps-DNA thereby reducing the binding strength of the antibiotic while the groove size of ps-DNA does not affect actinomin binding notably.
Collapse
Affiliation(s)
- Hong Li
- Laboratorium für Organische und Bioorganische Chemie, Institut für Chemie, Universität Osnabrück, Barbarastrasse 7, 49069 Osnabrück, Germany
| | | | | | | |
Collapse
|