1
|
Cui CX, Shen Y, He JR, Fu Y, Hong X, Wang S, Jiang J, Luo Y. Quantitative Insight into the Electric Field Effect on CO 2 Electrocatalysis via Machine Learning Spectroscopy. J Am Chem Soc 2024; 146:34551-34559. [PMID: 39648633 DOI: 10.1021/jacs.4c12174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
During chemical reactions, especially for electrocatalysis and electrosynthesis, the electric field is the most central driving force to regulate the reaction process. However, due to the difficulty of quantitatively measuring the electric field effects caused at the microscopic level, the regulation of electrocatalytic reactions by electric fields has not been well digitally understood yet. Herein, we took the infrared/Raman spectral signals of CO2 molecules as descriptors to quantitatively predict the effects of different electric fields on the catalytic properties. Taking the metal-doped graphitic C3N4 (g-C3N4) catalyst as an example, we theoretically investigated the adsorption mode and energy of CO2 molecules adsorbed on 27 distinct metal single-atom catalysts under different directions and intensities of electric field. Through a machine learning approach, a spectroscopy-property model between infrared/Raman spectral descriptors and adsorption energy/charge transfer was established, which quantified the facilitation of electric field effects on the CO2 catalytic conversion. Meanwhile, based on the attention mechanism, the catalytic insight of the relationship between spectra and adsorption modes was mined, and the inverse prediction of electric field strength from spectra was realized. This work opens a new quantitative pathway for monitoring and regulating electrocatalytic reactions using machine learning spectroscopy.
Collapse
Affiliation(s)
- Cheng-Xing Cui
- School of Chemistry and Chemical Engineering, Institute of Computational Chemistry, Henan Institute of Science and Technology, Xinxiang, Henan 453003, P. R. China
- Institute of Intelligent Innovation, Henan Academy of Sciences, Zhengzhou, Henan 451162, P. R. China
| | - Yixi Shen
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Jun-Ru He
- School of Chemistry and Chemical Engineering, Institute of Computational Chemistry, Henan Institute of Science and Technology, Xinxiang, Henan 453003, P. R. China
| | - Yao Fu
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, P. R. China
| | - Xin Hong
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, Zhejiang 310027, P. R. China
| | - Song Wang
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Jun Jiang
- Institute of Intelligent Innovation, Henan Academy of Sciences, Zhengzhou, Henan 451162, P. R. China
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, P. R. China
| | - Yi Luo
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, P. R. China
| |
Collapse
|
2
|
Belotti M, Hurtado C, Kelly S, MacGregor M, Darwish N, Ciampi S. Toward the Electrostatic Catalysis of Nucleophilic Substitutions: A Surface Chemistry Study of the Menshutkin Reaction. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:26633-26639. [PMID: 39630487 DOI: 10.1021/acs.langmuir.4c03635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
The catalysis of nonredox reactions by external electric fields is one of the most rapidly expanding areas of chemistry. The Menshutkin reaction, a classic example of bimolecular nucleophilic substitution (SN2), involves the conversion of a tertiary amine to a quaternary ammonium salt by coupling it with an alkyl halide. The reaction barrier of the Menshutkin reaction is theoretically predicted to be highly sensitive to the magnitude and direction of an external electric field experienced by the transition state. In this study, we investigate how near-surface electric fields can drive this prototypical nucleophilic substitution by examining the coupling of a diffusive redox-tagged tertiary amine with an electrode-tethered alkyl bromide under a variable external bias. Our findings reveal a competition between electrostatically assisted reactions, solvent effects, and electrochemically triggered side reactions involving radical intermediates. We estimate that only about 5% of the coupling events are attributable to the external field, while the majority of the reaction products originate from electrochemically generated radical intermediates.
Collapse
Affiliation(s)
- Mattia Belotti
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia
| | - Carlos Hurtado
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia
| | - Sophia Kelly
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia
| | - Melanie MacGregor
- Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Nadim Darwish
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia
| | - Simone Ciampi
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia
| |
Collapse
|
3
|
Cao Y, Wong HPH, Warwicker J, Hay S, de Visser SP. What is the Origin of the Regioselective C 3-Hydroxylation of L-Arg by the Nonheme Iron Enzyme Capreomycin C? Chemistry 2024; 30:e202402604. [PMID: 39190221 DOI: 10.1002/chem.202402604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 08/28/2024]
Abstract
The nonheme iron dioxygenase capreomycin C (CmnC) hydroxylates a free L-arginine amino acid regio- and stereospecifically at the C3-position as part of the capreomycin antibiotics biosynthesis. Little is known on its structure, catalytic cycle and substrate specificity and, therefore, a comprehensive computational study was performed. A large QM cluster model of CmnC was created of 297 atoms and the mechanisms for C3-H, C4-H and C5-H hydroxylation and C3-C4 desaturation were investigated. All low-energy pathways correspond to radical reaction mechanisms with an initial hydrogen atom abstraction followed by OH rebound to form alcohol product complexes. The work is compared to alternative L-Arg hydroxylating nonheme iron dioxygenases and the differences in active site polarity are compared. We show that a tight hydrogen bonding network in the substrate binding pocket positions the substrate in an ideal orientation for C3-H activation, whereby the polar groups in the substrate binding pocket induce an electric field effect that guides the selectivity.
Collapse
Affiliation(s)
- Yuanxin Cao
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Henrik P H Wong
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
- Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Jim Warwicker
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
- School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Sam Hay
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Sam P de Visser
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
- Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| |
Collapse
|
4
|
Eberhart ME, Wilson TR, Jones TE, Alexandrova AN. Electric fields imbue enzyme reactivity by aligning active site fragment orbitals. Proc Natl Acad Sci U S A 2024; 121:e2411976121. [PMID: 39453743 PMCID: PMC11536135 DOI: 10.1073/pnas.2411976121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/28/2024] [Indexed: 10/27/2024] Open
Abstract
It is broadly recognized that intramolecular electric fields, produced by the protein scaffold and acting on the active site, facilitate enzymatic catalysis. This field effect can be described by several theoretical models, each of which is intuitive to varying degrees. In this contribution, we show that a fundamental effect of electric fields is to generate electrostatic potentials that facilitate the energetic alignment of reactant frontier orbitals. We apply this model to demystify the impact of electric fields on high-valent iron-oxo heme proteins: catalases, peroxidases, and peroxygenases/monooxygenases. Specifically, we show that this model easily accounts for the observed field-induced changes to the spin distribution within peroxidase active sites and explains the transition between epoxidation and hydroxylation pathways seen in Cytochrome P450 active site models. Thus, for the intuitive interpretation of the chemical effect of the field, the strategy involves analyzing the response of the orbitals of active site fragments, and their energetic alignment. We note that the energy difference between fragment orbitals involved in charge redistribution acts as a measure for the chemical hardness/softness of the reactive complex. This measure, and its sensitivity to electric fields, offers a single parameter model from which to quantitatively assess the effects of electric fields on reactivity and selectivity. Thus, the model provides an additional perspective to describe electrostatic preorganization and offers ways for its manipulation.
Collapse
Affiliation(s)
- M. E. Eberhart
- Chemistry Department, Colorado School of Mines, Golden, CO80401
| | | | - T. E. Jones
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM87545
| | | |
Collapse
|
5
|
Ferrer S, Moliner V, Świderek K. Electrostatic Preorganization in Three Distinct Heterogeneous Proteasome β-Subunits. ACS Catal 2024; 14:15237-15249. [PMID: 39444531 PMCID: PMC11494509 DOI: 10.1021/acscatal.4c04964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/08/2024] [Accepted: 09/13/2024] [Indexed: 10/25/2024]
Abstract
The origin of the enzyme's powerful role in accelerating chemical reactions is one of the most critical and still widely discussed questions. It is already accepted that enzymes impose an electrostatic field onto their substrates by adopting complex three-dimensional structures; therefore, the preorganization of electric fields inside protein active sites has been proposed as a crucial contributor to catalytic mechanisms and rate constant enhancement. In this work, we focus on three catalytically active β-subunits of 20S proteasomes with low sequence identity (∼30%) whose active sites, although situated in an electrostatically miscellaneous environment, catalyze the same chemical reaction with similar catalytic efficiency. Our in silico experiments reproduce the experimentally observed equivalent reactivity of the three sites and show that obliteration of the electrostatic potential in all active sites would deprive the enzymes of their catalytic power by slowing down the chemical process by a factor of 1035. To regain enzymatic efficiency, besides catalytic Thr1 and Lys33 residues, the presence of aspartic acid in position 17 and an aqueous solvent is required, proving that the electrostatic potential generated by the remaining residues is insignificant for catalysis. Moreover, it was found that the gradual decay of atomic charges on Asp17 strongly correlates with the enzyme's catalytic rate deterioration as well as with a change in the charge distributions due to introduced mutations. The computational procedure used and described here may help identify key residues for catalysis in other biomolecular systems and consequently may contribute to the process of designing enzyme-like synthetic catalysts.
Collapse
Affiliation(s)
- Silvia Ferrer
- BioComp Group, Institute
of Advanced Materials (INAM), Universitat
Jaume I, Avenida de Vicent Sos Baynat, s/n, 12071 Castellón, Spain
| | - Vicent Moliner
- BioComp Group, Institute
of Advanced Materials (INAM), Universitat
Jaume I, Avenida de Vicent Sos Baynat, s/n, 12071 Castellón, Spain
| | - Katarzyna Świderek
- BioComp Group, Institute
of Advanced Materials (INAM), Universitat
Jaume I, Avenida de Vicent Sos Baynat, s/n, 12071 Castellón, Spain
| |
Collapse
|
6
|
Aziz M, Prindle CR, Lee W, Zhang B, Schaack C, Steigerwald ML, Zandkarimi F, Nuckolls C, Venkataraman L. Evaluating the Ability of External Electric Fields to Accelerate Reactions in Solution. J Phys Chem B 2024; 128:9553-9560. [PMID: 39317430 DOI: 10.1021/acs.jpcb.4c04864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
This study investigates the catalytic effects of external electric fields (EEFs) on two reactions in solution: the Menshutkin reaction and the Chapman rearrangement. Utilizing a scanning tunneling microscope-based break-junction (STM-BJ) setup and monitoring reaction rates through high-performance liquid chromatography connected to a UV detector (HPLC-UV) and ultraperformance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-q-ToF-MS), we observed no rate enhancement for either reaction under ambient conditions. Density functional theory (DFT) calculations indicate that electric field-induced changes in reactant orientation and the minimization of activation energy are crucial factors in determining the efficacy of EEF-driven catalysis. Our findings suggest that the current experimental setups and field strengths are insufficient to catalyze these reactions, underscoring the importance of these criteria in assessing the reaction candidates.
Collapse
Affiliation(s)
- Miriam Aziz
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Claudia R Prindle
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Woojung Lee
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Boyuan Zhang
- Department of Chemistry, Fairfield University, Fairfield, Connecticut 06824, United States
| | - Cedric Schaack
- Department of Chemistry, Wake Forest University, Winston-Salem, North Carolina 27109, United States
| | - Michael L Steigerwald
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Fereshteh Zandkarimi
- Department of Chemistry, Columbia University, New York, New York 10027, United States
- Mass Spectrometry Core Facility, Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Colin Nuckolls
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Latha Venkataraman
- Department of Chemistry, Columbia University, New York, New York 10027, United States
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027, United States
| |
Collapse
|
7
|
Maitra A, Lake WR, Mohamed A, Edington SC, Das P, Thompson BC, Hammes-Schiffer S, Johnson M, Dawlaty JM. Measuring the Electric Fields of Ions Captured in Crown Ethers. J Phys Chem Lett 2024; 15:7458-7465. [PMID: 39008844 DOI: 10.1021/acs.jpclett.4c01303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Controlling reactivity with electric fields is a persistent challenge in chemistry. One approach is to tether ions at well-defined locations near a reactive center. To quantify fields arising from ions, we report crown ethers that capture metal cations as field sources and a covalently bound vibrational Stark shift probe as a field sensor. We use experiments and computations in both the gas and liquid phases to quantify the vibrational frequencies of the probe and estimate the electric fields from the captured ions. Cations, in general, blue shift the probe frequency, with effective fields estimated to vary in the range of ∼0.2-3 V/nm in the liquid phase. Comparison of the gas and liquid phase data provides insight into the effects of mutual polarization of the molecule and solvent and screening of the ion's field. These findings reveal the roles of charge, local screening, and geometry in the design of tailored electric fields.
Collapse
Affiliation(s)
- Anwesha Maitra
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - William R Lake
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Ahmed Mohamed
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Sean C Edington
- Department of Molecular, Cellular, and Biomedical Sciences and Department of Chemistry, University of New Hampshire, Durham, New Hampshire 03824, United States
| | - Pratyusha Das
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Barry C Thompson
- Department of Chemistry and Loker Hydrocarbon Institute, University of Southern California, Los Angeles, California 90089, United States
| | - Sharon Hammes-Schiffer
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Mark Johnson
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Jahan M Dawlaty
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
8
|
Torre MF, Amadeo A, Cassone G, Tommasini M, Mráziková K, Saija F. Water Dimer under Electric Fields: An Ab Initio Investigation up to Quantum Accuracy. J Phys Chem A 2024; 128:5490-5499. [PMID: 38976361 DOI: 10.1021/acs.jpca.4c01553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
It is well-established that strong electric fields (EFs) can align water dipoles, partially order the H-bond network of liquid water, and induce water splitting and proton transfers. To illuminate the fundamental behavior of water under external EFs, we present the first benchmark, to the best of our knowledge, of DFT calculations of the water dimer exposed to intense EFs against coupled cluster calculations. The analyses of the vibrational Stark effect and electron density provide a consistent picture of the intermolecular charge transfer effects driven along the H-bond by the increasing applied field at all theory levels. However, our findings prove that at extreme field regimes (∼1-2 V/Å) DFT calculations significantly exaggerate by ∼10-30% the field-induced strengthening of the H-bond, both within the GGA, hybrid GGA, and hybrid meta-GGA approximations. Notably, a linear correlation emerges between the vibrational Stark effect on OH stretching and H-bond strengthening: a 1 kcal mol-1 increase corresponds to an 80 cm-1 red-shift in OH stretching frequency.
Collapse
Affiliation(s)
- Marco Francesco Torre
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98166 Messina, Italy
| | - Alessandro Amadeo
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, 98166 Messina, Italy
- Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, 06123 Perugia, Italy
| | - Giuseppe Cassone
- Institute for Chemical-Physical Processes, National Research Council of Italy (IPCF-CNR), 98158 Messina, Italy
| | - Matteo Tommasini
- Dipartimento di Chimica, Materiali e Ing. Chimica "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Klaudia Mráziková
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 3, 18223 Prague, Czechia
| | - Franz Saija
- Institute for Chemical-Physical Processes, National Research Council of Italy (IPCF-CNR), 98158 Messina, Italy
| |
Collapse
|
9
|
Shaik S. My Vision of Electric-Field-Aided Chemistry in 2050. ACS PHYSICAL CHEMISTRY AU 2024; 4:191-201. [PMID: 38800723 PMCID: PMC11117677 DOI: 10.1021/acsphyschemau.3c00064] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/06/2024] [Accepted: 01/09/2024] [Indexed: 05/29/2024]
Abstract
This manuscript outlines my outlook on the development of electric-field (EF)-mediated-chemistry and the vision of its state by 2050. I discuss applications of oriented-external electric-fields (OEEFs) on chemical reactions and proceed with relevant experimental verifications. Subsequently, the Perspective outlines other ways of generating EFs, e.g., by use of pH-switchable charges, ionic additives, water droplets, and so on. A special section summarizes conceptual principles for understanding and predicting OEEF effects, e.g., the "reaction-axis rule", the capability of OEEFs to act as tweezers that orient reactants and accelerate their reaction, etc. Finally, I discuss applications of OEEFs in continuous-flow setups, which may, in principle, scale-up to molar concentrations. The Perspective ends with the vision that by 2050, OEEF usage will change chemical education, if not also the art of making new molecules.
Collapse
Affiliation(s)
- Sason Shaik
- Institute of Chemistry, The
Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| |
Collapse
|
10
|
Bofill JM, Severi M, Quapp W, Ribas-Ariño J, de P R Moreira I, Albareda G. Optimal Oriented External Electric Fields to Trigger a Barrierless Oxaphosphetane Ring Opening Step of the Wittig Reaction. Chemistry 2024; 30:e202400173. [PMID: 38457260 DOI: 10.1002/chem.202400173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 03/10/2024]
Abstract
The Wittig reaction is one of the most important processes in organic chemistry for the asymmetric synthesis of olefinic compounds. In view of the increasingly acknowledged potentiality of the electric fields in promoting reactions, here we will consider the effect of the oriented external electric field (OEEF) on the second step of Wittig reaction (i. e. the ring opening oxaphosphetane) in a model system for non-stabilized ylides. In particular, we have determined the optimal direction and strength of the electric field that should be applied to annihilate the reaction barrier of the ring opening through the polarizable molecular electric dipole (PMED) model that we have recently developed. We conclude that the application of the optimal external electric field for the oxaphosphetane ring opening favours a Bestmann-like mechanism.
Collapse
Affiliation(s)
- Josep Maria Bofill
- Departament de Química Inorgànica i Orgànica, Secció de Química Orgànica, Universitat de Barcelona, C/Martí i Franquès 1, 08028, Barcelona, Spain
- Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, C/Martí i Franquès 1, 08028, Barcelona, Spain
| | - Marco Severi
- Department of Chemistry G. Ciamician, University of Bologna, Via F. Selmi 2, 40126, Bologna, Italy
| | - Wolfgang Quapp
- Mathematisches Institut, Universität Leipzig, PF 100920, D-04009, Leipzig, Germany
| | - Jordi Ribas-Ariño
- Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, C/Martí i Franquès 1, 08028, Barcelona, Spain
- Departament de Ciència de Materials i Química Física, Secció de Química Física, Universitat de Barcelona, C/Martí i Franquès 1, 08028, Barcelona, Spain
| | - Ibério de P R Moreira
- Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, C/Martí i Franquès 1, 08028, Barcelona, Spain
- Departament de Ciència de Materials i Química Física, Secció de Química Física, Universitat de Barcelona, C/Martí i Franquès 1, 08028, Barcelona, Spain
| | | |
Collapse
|
11
|
Cao Y, Hay S, de Visser SP. An Active Site Tyr Residue Guides the Regioselectivity of Lysine Hydroxylation by Nonheme Iron Lysine-4-hydroxylase Enzymes through Proton-Coupled Electron Transfer. J Am Chem Soc 2024; 146:11726-11739. [PMID: 38636166 PMCID: PMC11066847 DOI: 10.1021/jacs.3c14574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/05/2024] [Accepted: 04/05/2024] [Indexed: 04/20/2024]
Abstract
Lysine dioxygenase (KDO) is an important enzyme in human physiology involved in bioprocesses that trigger collagen cross-linking and blood pressure control. There are several KDOs in nature; however, little is known about the factors that govern the regio- and stereoselectivity of these enzymes. To understand how KDOs can selectively hydroxylate their substrate, we did a comprehensive computational study into the mechanisms and features of 4-lysine dioxygenase. In particular, we selected a snapshot from the MD simulation on KDO5 and created large QM cluster models (A, B, and C) containing 297, 312, and 407 atoms, respectively. The largest model predicts regioselectivity that matches experimental observation with rate-determining hydrogen atom abstraction from the C4-H position, followed by fast OH rebound to form 4-hydroxylysine products. The calculations show that in model C, the dipole moment is positioned along the C4-H bond of the substrate and, therefore, the electrostatic and electric field perturbations of the protein assist the enzyme in creating C4-H hydroxylation selectivity. Furthermore, an active site Tyr233 residue is identified that reacts through proton-coupled electron transfer akin to the axial Trp residue in cytochrome c peroxidase. Thus, upon formation of the iron(IV)-oxo species in the catalytic cycle, the Tyr233 phenol loses a proton to the nearby Asp179 residue, while at the same time, an electron is transferred to the iron to create an iron(III)-oxo active species. This charged tyrosyl residue directs the dipole moment along the C4-H bond of the substrate and guides the selectivity to the C4-hydroxylation of the substrate.
Collapse
Affiliation(s)
- Yuanxin Cao
- Manchester
Institute of Biotechnology, The University
of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Sam Hay
- Manchester
Institute of Biotechnology, The University
of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Sam P. de Visser
- Manchester
Institute of Biotechnology, The University
of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
- Department
of Chemical Engineering, The University
of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| |
Collapse
|
12
|
Ali HS, de Visser SP. QM/MM Study Into the Mechanism of Oxidative C=C Double Bond Cleavage by Lignostilbene-α,β-Dioxygenase. Chemistry 2024; 30:e202304172. [PMID: 38373118 DOI: 10.1002/chem.202304172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/29/2024] [Accepted: 02/19/2024] [Indexed: 02/21/2024]
Abstract
The enzymatic biosynthesis of fragrance molecules from lignin fragments is an important reaction in biotechnology for the sustainable production of fine chemicals. In this work we investigated the biosynthesis of vanillin from lignostilbene by a nonheme iron dioxygenase using QM/MM and tested several suggested proposals via either an epoxide or dioxetane intermediate. Binding of dioxygen to the active site of the protein results in the formation of an iron(II)-superoxo species with lignostilbene cation radical. The dioxygenase mechanism starts with electrophilic attack of the terminal oxygen atom of the superoxo group on the central C=C bond of lignostilbene, and the second-coordination sphere effects in the substrate binding pocket guide the reaction towards dioxetane formation. The computed mechanism is rationalized with thermochemical cycles and valence bond schemes that explain the electron transfer processes during the reaction mechanism. Particularly, the polarity of the protein and the local electric field and dipole moments enable a facile electron transfer and an exergonic dioxetane formation pathway.
Collapse
Affiliation(s)
- Hafiz Saqib Ali
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
- Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Sam P de Visser
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
- Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| |
Collapse
|
13
|
Hardy FG, Wong HPH, de Visser SP. Computational Study Into the Oxidative Ring-Closure Mechanism During the Biosynthesis of Deoxypodophyllotoxin. Chemistry 2024; 30:e202400019. [PMID: 38323740 DOI: 10.1002/chem.202400019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 02/08/2024]
Abstract
The nonheme iron dioxygenase deoxypodophyllotoxin synthase performs an oxidative ring-closure reaction as part of natural product synthesis in plants. How the enzyme enables the oxidative ring-closure reaction of (-)-yatein and avoids substrate hydroxylation remains unknown. To gain insight into the reaction mechanism and understand the details of the pathways leading to products and by-products we performed a comprehensive computational study. The work shows that substrate is bound tightly into the substrate binding pocket with the C7'-H bond closest to the iron(IV)-oxo species. The reaction proceeds through a radical mechanism starting with hydrogen atom abstraction from the C7'-H position followed by ring-closure and a final hydrogen transfer to form iron(II)-water and deoxypodophyllotoxin. Alternative mechanisms including substrate hydroxylation and an electron transfer pathway were explored but found to be higher in energy. The mechanism is guided by electrostatic perturbations of charged residues in the second-coordination sphere that prevent alternative pathways.
Collapse
Affiliation(s)
- Fintan G Hardy
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
- Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Henrik P H Wong
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
- Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Sam P de Visser
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
- Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| |
Collapse
|
14
|
Zhang L, Wang H, Qu X. Biosystem-Inspired Engineering of Nanozymes for Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2211147. [PMID: 36622946 DOI: 10.1002/adma.202211147] [Citation(s) in RCA: 64] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Nanozymes with intrinsic enzyme-mimicking activities have shown great potential to become surrogates of natural enzymes in many fields by virtue of their advantages of high catalytic stability, ease of functionalization, and low cost. However, due to the lack of predictable descriptors, most of the nanozymes reported in the past have been obtained mainly through trial-and-error strategies, and the catalytic efficacy, substrate specificity, as well as practical application effect under physiological conditions, are far inferior to that of natural enzymes. To optimize the catalytic efficacies and functions of nanozymes in biomedical settings, recent studies have introduced biosystem-inspired strategies into nanozyme design. In this review, recent advances in the engineering of biosystem-inspired nanozymes by leveraging the refined catalytic structure of natural enzymes, simulating the behavior changes of natural enzymes in the catalytic process, and mimicking the specific biological processes or living organisms, are introduced. Furthermore, the currently involved biomedical applications of biosystem-inspired nanozymes are summarized. More importantly, the current opportunities and challenges of the design and application of biosystem-inspired nanozymes are discussed. It is hoped that the studies of nanozymes based on bioinspired strategies will be beneficial for constructing the new generation of nanozymes and broadening their biomedical applications.
Collapse
Affiliation(s)
- Lu Zhang
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Huan Wang
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xiaogang Qu
- State Key Laboratory of Rare Earth Resource Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
15
|
Ali HS, de Visser SP. Catalytic divergencies in the mechanism of L-arginine hydroxylating nonheme iron enzymes. Front Chem 2024; 12:1365494. [PMID: 38406558 PMCID: PMC10884159 DOI: 10.3389/fchem.2024.1365494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 01/22/2024] [Indexed: 02/27/2024] Open
Abstract
Many enzymes in nature utilize a free arginine (L-Arg) amino acid to initiate the biosynthesis of natural products. Examples include nitric oxide synthases, which generate NO from L-Arg for blood pressure control, and various arginine hydroxylases involved in antibiotic biosynthesis. Among the groups of arginine hydroxylases, several enzymes utilize a nonheme iron(II) active site and let L-Arg react with dioxygen and α-ketoglutarate to perform either C3-hydroxylation, C4-hydroxylation, C5-hydroxylation, or C4-C5-desaturation. How these seemingly similar enzymes can react with high specificity and selectivity to form different products remains unknown. Over the past few years, our groups have investigated the mechanisms of L-Arg-activating nonheme iron dioxygenases, including the viomycin biosynthesis enzyme VioC, the naphthyridinomycin biosynthesis enzyme NapI, and the streptothricin biosynthesis enzyme OrfP, using computational approaches and applied molecular dynamics, quantum mechanics on cluster models, and quantum mechanics/molecular mechanics (QM/MM) approaches. These studies not only highlight the differences in substrate and oxidant binding and positioning but also emphasize on electronic and electrostatic differences in the substrate-binding pockets of the enzymes. In particular, due to charge differences in the active site structures, there are changes in the local electric field and electric dipole moment orientations that either strengthen or weaken specific substrate C-H bonds. The local field effects, therefore, influence and guide reaction selectivity and specificity and give the enzymes their unique reactivity patterns. Computational work using either QM/MM or density functional theory (DFT) on cluster models can provide valuable insights into catalytic reaction mechanisms and produce accurate and reliable data that can be used to engineer proteins and synthetic catalysts to perform novel reaction pathways.
Collapse
Affiliation(s)
- Hafiz Saqib Ali
- Chemistry Research Laboratory, Department of Chemistry and the INEOS Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, United Kingdom
| | - Sam P. de Visser
- Manchester Institute of Biotechnology and Department of Chemical Engineering, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
16
|
Siddiqui SA, Stuyver T, Shaik S, Dubey KD. Designed Local Electric Fields-Promising Tools for Enzyme Engineering. JACS AU 2023; 3:3259-3269. [PMID: 38155642 PMCID: PMC10752214 DOI: 10.1021/jacsau.3c00536] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 12/30/2023]
Abstract
Designing efficient catalysts is one of the ultimate goals of chemists. In this Perspective, we discuss how local electric fields (LEFs) can be exploited to improve the catalytic performance of supramolecular catalysts, such as enzymes. More specifically, this Perspective starts by laying out the fundamentals of how local electric fields affect chemical reactivity and review the computational tools available to study electric fields in various settings. Subsequently, the advances made so far in optimizing enzymatic electric fields through targeted mutations are discussed critically and concisely. The Perspective ends with an outlook on some anticipated evolutions of the field in the near future. Among others, we offer some pointers on how the recent data science/machine learning revolution, engulfing all science disciplines, could potentially provide robust and principled tools to facilitate rapid inference of electric field effects, as well as the translation between optimal electrostatic environments and corresponding chemical modifications.
Collapse
Affiliation(s)
- Shakir Ali Siddiqui
- Molecular Simulation Lab, Department of Chemistry,
School of Natural Sciences, Shiv Nadar Institution of Eminence,
Delhi NCR, India 201314
| | - Thijs Stuyver
- Ecole Nationale Supérieure de
Chimie de Paris, Université PSL, CNRS, Institute of Chemistry for Life and Health
Sciences, 75 005 Paris, France
| | - Sason Shaik
- Institute of Chemistry, Edmond J Safra Campus,
The Hebrew University of Jerusalem, Givat Ram, Jerusalem,
9190400, Israel
| | - Kshatresh Dutta Dubey
- Molecular Simulation Lab, Department of Chemistry,
School of Natural Sciences, Shiv Nadar Institution of Eminence,
Delhi NCR, India 201314
| |
Collapse
|
17
|
Yadav P, Kumar P. External electric field, a potential catalyst for C-N cross-coupling reaction. Phys Chem Chem Phys 2023. [PMID: 38047469 DOI: 10.1039/d3cp04723g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
The present work investigates the role of the external electric field (EEF) in boosting the C-N cross-coupling reaction between 2-chlorobenzoic acid and propylamine, by computing the reaction rates and energy barrier. The investigation suggests that the reaction can become barrierless by choosing an electric field in the appropriate direction, resulting in a quadrillionfold increase in the reaction rate in the presence of an EEF. We also found that the efficiency of the electric field depends on the dipole moment of the reactants, and hence, the results of the present work are general in nature and should be applicable to a variety of C-N cross-coupling reactions.
Collapse
Affiliation(s)
- Priyanka Yadav
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jaipur, 302017, India.
| | - Pradeep Kumar
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jaipur, 302017, India.
| |
Collapse
|
18
|
Yan L, Yuan B, Qian C, Zhou S. Methane Activation by [AlFeO 3 ] + : the Hidden Spin Selectivity. Chemphyschem 2023:e202300603. [PMID: 37814927 DOI: 10.1002/cphc.202300603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/11/2023]
Abstract
The performance of heteronuclear cluster [AlFeO3 ]+ in activating methane has been explored by a combination of high-level quantum chemical calculations with gas-phase experiments. At room temperature, [AlFeO3 ]+ is a mixture of 7 [AlFeO3 ]+ and 5 [AlFeO3 ]+ , in which two states lead to different reactivity and chemoselectivity for methane activation. While hydrogen extracted from methane is the only product channel for the 7 [AlFeO3 ]+ /CH4 couple, 5 [AlFeO3 ]+ is able to convert this substrate to formaldehyde. In addition, the introduction of an external electric field may regulate the reactivity and product selectivity. The interesting doping effect of Fe and the associated electronic origins are discussed, which may guide one on the design of Fe-involved catalyst for methane conversion.
Collapse
Affiliation(s)
- Linghui Yan
- College of Chemical and Biological Engineering, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, 310027, Hangzhou, P. R. China
- Institute of Zhejiang University - Quzhou, Zheda Rd. #99, 324000, Quzhou, P.R. China
| | - BoWei Yuan
- College of Chemical and Biological Engineering, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, 310027, Hangzhou, P. R. China
- Institute of Zhejiang University - Quzhou, Zheda Rd. #99, 324000, Quzhou, P.R. China
| | - Chao Qian
- College of Chemical and Biological Engineering, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, 310027, Hangzhou, P. R. China
- Institute of Zhejiang University - Quzhou, Zheda Rd. #99, 324000, Quzhou, P.R. China
| | - Shaodong Zhou
- College of Chemical and Biological Engineering, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, 310027, Hangzhou, P. R. China
- Institute of Zhejiang University - Quzhou, Zheda Rd. #99, 324000, Quzhou, P.R. China
| |
Collapse
|
19
|
Zhu C, Pham LN, Yuan X, Ouyang H, Coote ML, Zhang X. High Electric Fields on Water Microdroplets Catalyze Spontaneous and Fast Reactions in Halogen-Bond Complexes. J Am Chem Soc 2023; 145:21207-21212. [PMID: 37724917 DOI: 10.1021/jacs.3c08818] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
The use of external electric fields as green and efficient catalysts in synthetic chemistry has recently received significant attention for their ability to deliver remarkable control of reaction selectivity and acceleration of reaction rates. Technically, methods of generating high electric fields in the range of 1-10 V/nm are limited, as in-vacuo techniques have obvious scalability issues. The spontaneous high fields at various interfaces promise to solve this problem. In this study, we take advantage of the spontaneous high electric field at the air-water interface of sprayed water microdroplets in the reactions of several halogen bond systems: Nu:--X-X, where Nu: is pyridine or quinuclidine and X is bromine or iodine. The field facilitates ultrafast electron transfer from Nu:, yielding a Nu-X covalent bond and causing the X-X bond to cleave. This reaction occurs in microseconds in microdroplets but takes days to weeks in bulk solution. Density functional theory calculations predict that the reaction becomes barrier-free in the presence of oriented external electric fields, supporting the notion that the electric fields in the water droplets are responsible for the catalysis. We anticipate that microdroplet chemistry will be an avenue rich in opportunities in the reactions facilitated by high electric fields and provides an alternative way to tackle the scalability problem.
Collapse
Affiliation(s)
- Chenghui Zhu
- College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Centre, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Centre for New Organic Matter, Nankai University, Tianjin, 300071, China
- Beijing National Laboratory for Molecular Sciences, Beijing, 100190, China
| | - Le Nhan Pham
- Institute for Nanoscale Science & Technology, Flinders University, Adelaide, South Australia 5042, Australia
| | - Xu Yuan
- College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Centre, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Centre for New Organic Matter, Nankai University, Tianjin, 300071, China
- Beijing National Laboratory for Molecular Sciences, Beijing, 100190, China
| | - Haoran Ouyang
- College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Centre, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Centre for New Organic Matter, Nankai University, Tianjin, 300071, China
- Beijing National Laboratory for Molecular Sciences, Beijing, 100190, China
| | - Michelle L Coote
- Institute for Nanoscale Science & Technology, Flinders University, Adelaide, South Australia 5042, Australia
| | - Xinxing Zhang
- College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Centre, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Centre for New Organic Matter, Nankai University, Tianjin, 300071, China
- Beijing National Laboratory for Molecular Sciences, Beijing, 100190, China
| |
Collapse
|
20
|
Bofill JM, Severi M, Quapp W, Ribas-Ariño J, Moreira IDPR, Albareda G. An algorithm to find the optimal oriented external electrostatic field for annihilating a reaction barrier in a polarizable molecular system. J Chem Phys 2023; 159:114112. [PMID: 37724726 DOI: 10.1063/5.0167749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 08/23/2023] [Indexed: 09/21/2023] Open
Abstract
The use of oriented external electric fields (OEEFs) to promote and control chemical reactivity has motivated many theoretical and computational studies in the last decade to model the action of OEEFs on a molecular system and its effects on chemical processes. Given a reaction, a central goal in this research area is to predict the optimal OEEF (oOEEF) required to annihilate the reaction energy barrier with the smallest possible field strength. Here, we present a model rooted in catastrophe and optimum control theories that allows us to find the oOEEF for a given reaction valley in the potential energy surface (PES). In this model, the effective (or perturbed) PES of a polarizable molecular system is constructed by adding to the original, non-perturbed, PES a term accounting for the interaction of the OEEF with the intrinsic electric dipole and polarizability of the molecular system, so called the polarizable molecular electric dipole (PMED) model. We demonstrate that the oOEEF can be established by locating a point in the original PES with unique topological properties: the optimal barrier breakdown or bond-breaking point (oBBP). The essential feature of the oBBP structure is the fact that this point maintains its topological properties for all the applied OEEFs, also for the unperturbed PES, thus becoming much more relevant than the commonly used minima and transition state structures. The PMED model proposed here has been implemented in an open access package and is shown to successfully predict the oOEEF for two processes: an isomerization reaction of a cumulene derivative and the Huisgen cycloaddition reaction.
Collapse
Affiliation(s)
- Josep Maria Bofill
- Departament de Química Inorgànica i Orgànica, Secció de Química Orgànica, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
- Institut de Química Teòrica i Computacional, (IQTCUB), Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - Marco Severi
- Department of Chemistry G. Ciamician, University of Bologna, Via F. Selmi 2, 40126 Bologna, Italy
| | - Wolfgang Quapp
- Mathematisches Institut, Universität Leipzig, PF 100920, D-04009 Leipzig, Germany
| | - Jordi Ribas-Ariño
- Institut de Química Teòrica i Computacional, (IQTCUB), Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
- Departament de Ciència de Materials i Química Física, Secció de Química Física, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - Ibério de P R Moreira
- Institut de Química Teòrica i Computacional, (IQTCUB), Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
- Departament de Ciència de Materials i Química Física, Secció de Química Física, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - Guillermo Albareda
- Ideaded, Carrer de la Tecnologia, 35, 08840 Viladecans, Barcelona, Spain
| |
Collapse
|
21
|
Arepalli N, Mondal S, Chakraborty D, Chattaraj PK. Impact of Static-Oriented Electric Fields on the Kinetics of Some Representative Suzuki-Miyaura and Metal-Cluster Mediated Reactions. Molecules 2023; 28:6169. [PMID: 37630421 PMCID: PMC10459314 DOI: 10.3390/molecules28166169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/13/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
In order to examine the effect of oriented (static) electric fields (OEF) on the kinetics of some representative Suzuki-Miyaura and metal-cluster mediated reactions at ambient temperatures, density functional theory-based calculations are reported herein. Results indicate that, in general, OEF can facilitate the kinetics of the concerned reactions when applied along the suitable direction (parallel or anti-parallel with respect to the reaction axis). The reverse effect happens if the direction of the OEF is flipped. OEF (when applied along the 'right' direction) helps to polarize the transition states in the desired direction, thereby facilitating favorable bonding interactions. Given the growing need for finding appropriate catalysts among the scientific community, OEF can prove to be a vital route for the same.
Collapse
Affiliation(s)
- Navya Arepalli
- Department of Chemistry, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| | - Sukanta Mondal
- Department of Education, A. M. School of Educational Sciences, Assam University, Silchar 788011, Assam, India
| | - Debdutta Chakraborty
- Department of Chemistry, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| | - Pratim Kumar Chattaraj
- Department of Chemistry, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| |
Collapse
|
22
|
Carter S, Tao W, Majumder R, Sokolov AY, Zhang S. Two-State Hydrogen Atom Transfer Reactivity of Unsymmetric [Cu 2(O)(NO)] 2+ Complexes. J Am Chem Soc 2023; 145:17779-17785. [PMID: 37540110 DOI: 10.1021/jacs.3c04510] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
We report the temperature-dependent spin switching of dicopper oxo nitrosyl [Cu2(O)(NO)]2+ complexes and their influence on hydrogen atom transfer (HAT) reactivity. Electron paramagnetic resonance (EPR) and Evans method analysis suggest that [Cu2(O)(NO)]2+ complexes transition from the S = 1/2 to the S = 3/2 state around ca. 202 K. At low temperatures (198 K) where S = 3/2 dominates, a strong correlation between the rate of HAT (kHAT) and the population of the S = 1/2 state was identified (R2 = 0.988), suggesting that the HAT by [Cu2(O)(NO)]2+ complexes proceeds by the S = 1/2 isomer. Installation of functional groups that introduce an unsymmetric secondary coordination environment accelerates the HAT rates through perturbation of the spin equilibria. Given the often unsymmetric coordination sphere of bimetallic active sites in natural proteins, we anticipate that similar strategies could be employed by metalloenzymes to control HAT reactions.
Collapse
Affiliation(s)
- Samantha Carter
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Wenjie Tao
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Rajat Majumder
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Alexander Yu Sokolov
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Shiyu Zhang
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
23
|
Gérard E, Mokkawes T, Johannissen LO, Warwicker J, Spiess RR, Blanford CF, Hay S, Heyes DJ, de Visser SP. How Is Substrate Halogenation Triggered by the Vanadium Haloperoxidase from Curvularia inaequalis? ACS Catal 2023; 13:8247-8261. [PMID: 37342830 PMCID: PMC10278073 DOI: 10.1021/acscatal.3c00761] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/05/2023] [Indexed: 06/23/2023]
Abstract
Vanadium haloperoxidases (VHPOs) are unique enzymes in biology that catalyze a challenging halogen transfer reaction and convert a strong aromatic C-H bond into C-X (X = Cl, Br, I) with the use of a vanadium cofactor and H2O2. The VHPO catalytic cycle starts with the conversion of hydrogen peroxide and halide (X = Cl, Br, I) into hypohalide on the vanadate cofactor, and the hypohalide subsequently reacts with a substrate. However, it is unclear whether the hypohalide is released from the enzyme or otherwise trapped within the enzyme structure for the halogenation of organic substrates. A substrate-binding pocket has never been identified for the VHPO enzyme, which questions the role of the protein in the overall reaction mechanism. Probing its role in the halogenation of small molecules will enable further engineering of the enzyme and expand its substrate scope and selectivity further for use in biotechnological applications as an environmentally benign alternative to current organic chemistry synthesis. Using a combined experimental and computational approach, we elucidate the role of the vanadium haloperoxidase protein in substrate halogenation. Activity studies show that binding of the substrate to the enzyme is essential for the reaction of the hypohalide with substrate. Stopped-flow measurements demonstrate that the rate-determining step is not dependent on substrate binding but partially on hypohalide formation. Using a combination of molecular mechanics (MM) and molecular dynamics (MD) simulations, the substrate binding area in the protein is identified and even though the selected substrates (methylphenylindole and 2-phenylindole) have limited hydrogen-bonding abilities, they are found to bind relatively strongly and remain stable in a binding tunnel. A subsequent analysis of the MD snapshots characterizes two small tunnels leading from the vanadate active site to the surface that could fit small molecules such as hypohalide, halide, and hydrogen peroxide. Density functional theory studies using electric field effects show that a polarized environment in a specific direction can substantially lower barriers for halogen transfer. A further analysis of the protein structure indeed shows a large dipole orientation in the substrate-binding pocket that could enable halogen transfer through an applied local electric field. These findings highlight the importance of the enzyme in catalyzing substrate halogenation by providing an optimal environment to lower the energy barrier for this challenging aromatic halide insertion reaction.
Collapse
Affiliation(s)
- Emilie
F. Gérard
- Manchester
Institute of Biotechnology, The University
of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
- Department
of Chemical Engineering, The University
of Manchester, Oxford
Road, Manchester M13 9PL, United Kingdom
| | - Thirakorn Mokkawes
- Manchester
Institute of Biotechnology, The University
of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
- Department
of Chemical Engineering, The University
of Manchester, Oxford
Road, Manchester M13 9PL, United Kingdom
| | - Linus O. Johannissen
- Manchester
Institute of Biotechnology, The University
of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Jim Warwicker
- Manchester
Institute of Biotechnology, The University
of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
- School
of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester 13 9PL, United
Kingdom
| | - Reynard R. Spiess
- Manchester
Institute of Biotechnology, The University
of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Christopher F. Blanford
- Manchester
Institute of Biotechnology, The University
of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
- Department
of Materials, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Sam Hay
- Manchester
Institute of Biotechnology, The University
of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Derren J. Heyes
- Manchester
Institute of Biotechnology, The University
of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Sam P. de Visser
- Manchester
Institute of Biotechnology, The University
of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
- Department
of Chemical Engineering, The University
of Manchester, Oxford
Road, Manchester M13 9PL, United Kingdom
| |
Collapse
|
24
|
Conti Nibali V, Maiti S, Saija F, Heyden M, Cassone G. Electric-field induced entropic effects in liquid water. J Chem Phys 2023; 158:2889002. [PMID: 37154276 DOI: 10.1063/5.0139460] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/13/2023] [Indexed: 05/10/2023] Open
Abstract
Externally applied electric fields in liquid water can induce a plethora of effects with wide implications in electrochemistry and hydrogen-based technologies. Although some effort has been made to elucidate the thermodynamics associated with the application of electric fields in aqueous systems, to the best of our knowledge, field-induced effects on the total and local entropy of bulk water have never been presented so far. Here, we report on classical TIP4P/2005 and ab initio molecular dynamics simulations measuring entropic contributions carried by diverse field intensities in liquid water at room temperature. We find that strong fields are capable of aligning large fractions of molecular dipoles. Nevertheless, the order-maker action of the field leads to quite modest entropy reductions in classical simulations. Albeit more significant variations are recorded during first-principles simulations, the associated entropy modifications are small compared to the entropy change involved in the freezing phenomenon, even at intense fields slightly beneath the molecular dissociation threshold. This finding further corroborates the idea that electrofreezing (i.e., the electric-field-induced crystallization) cannot take place in bulk water at room temperature. In addition, here, we propose a molecular-dynamics-based analysis (3D-2PT) that spatially resolves the local entropy and the number density of bulk water under an electric field, which enables us to map their field-induced changes in the environment of reference H2O molecules. By returning detailed spatial maps of the local order, the proposed approach is capable of establishing a link between entropic and structural modifications with atomistic resolution.
Collapse
Affiliation(s)
- Valeria Conti Nibali
- Department of Mathematical and Computer Sciences, Physical Sciences and Earth Sciences, University of Messina, 98166 Messina, Italy
- Institute for Chemical-Physical Processes, National Research Council of Italy (IPCF-CNR), 98158 Messina, Italy
| | - Sthitadhi Maiti
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, USA
| | - Franz Saija
- Institute for Chemical-Physical Processes, National Research Council of Italy (IPCF-CNR), 98158 Messina, Italy
| | - Matthias Heyden
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, USA
| | - Giuseppe Cassone
- Institute for Chemical-Physical Processes, National Research Council of Italy (IPCF-CNR), 98158 Messina, Italy
| |
Collapse
|
25
|
Yan S, Ji X, Peng W, Wang B. Evaluating the Transition State Stabilization/Destabilization Effects of the Electric Fields from Scaffold Residues by a QM/MM Approach. J Phys Chem B 2023; 127:4245-4253. [PMID: 37155960 DOI: 10.1021/acs.jpcb.3c01054] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The protein scaffolds of enzymes not only provide structural support for the catalytic center but also exert preorganized electric fields for electrostatic catalysis. In recent years, uniform oriented external electric fields (OEEFs) have been widely applied to enzymatic reactions to mimic the electrostatic effects of the environment. However, the electric fields exerted by individual residues in proteins may be quite heterogeneous across the active site, with varying directions and strengths at different positions of the active site. Here, we propose a QM/MM-based approach to evaluate the effects of the electric fields exerted by individual residues in the protein scaffold. In particular, the heterogeneity of the residue electric fields and the effect of the native protein environment can be properly accounted for by this QM/MM approach. A case study of the O-O heterolysis reaction in the catalytic cycle of TyrH shows that (1) for scaffold residues that are relatively far from the active site, the heterogeneity of the residue electric field in the active site is not very significant and the electrostatic stabilization/destabilization due to each residue can be well approximated with the interaction energy between a uniform electric field and the QM region dipole; (2) for scaffold residues near the active site, the residue electric fields can be highly heterogeneous along the breaking O-O bond. In such a case, approximating the residue electric fields as uniform fields may misrepresent the overall electrostatic effect of the residue. The present QM/MM approach can be applied to evaluate the residues' electrostatic impact on enzymatic reactions, which also can be useful in computational optimization of electric fields to boost the enzyme catalysis.
Collapse
Affiliation(s)
- Shengheng Yan
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, P. R. China
| | - Xinwei Ji
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, P. R. China
| | - Wei Peng
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, P. R. China
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, P. R. China
| |
Collapse
|
26
|
Ren FD, Liu YZ, Wang XL, Qiu LL, Meng ZH, Cheng X, Li YX. Strong External Electric Fields Reduce Explosive Sensitivity: A Theoretical Investigation into the Reaction Selectivity in NH2NO2∙∙∙NH3. Molecules 2023; 28:molecules28062586. [PMID: 36985558 PMCID: PMC10058811 DOI: 10.3390/molecules28062586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/04/2023] [Accepted: 03/07/2023] [Indexed: 03/18/2023] Open
Abstract
Controlling the selectivity of a detonation initiation reaction of explosive is essential to reduce sensitivity, and it seems impossible to reduce it by strengthening the external electric field. To verify this, the effects of external electric fields on the initiation reactions in NH2NO2∙∙∙NH3, a model system of the nitroamine explosive with alkaline additive, were investigated at the MP2/6-311++G(2d,p) and CCSD(T)/6-311++G(2d,p) levels. The concerted effect in the intermolecular hydrogen exchange is characterized by an index of the imaginary vibrations. Due to the weakened concerted effects by the electric field along the −x-direction opposite to the “reaction axis”, the dominant reaction changes from the intermolecular hydrogen exchange to 1,3-intramolecular hydrogen transference with the increase in the field strengths. Furthermore, the stronger the field strengths, the higher the barrier heights become, indicating the lower sensitivities. Therefore, by increasing the field strength and adjusting the orientation between the field and “reaction axis”, not only can the reaction selectivity be controlled, but the sensitivity can also be reduced, in particular under a super-strong field. Thus, a traditional concept, in which the explosive is dangerous under the super-strong external electric field, is theoretically broken. Compared to the neutral medium, a low sensitivity of the explosive with alkaline can be achieved under the stronger field. Employing atoms in molecules, reduced density gradient, and surface electrostatic potentials, the origin of the reaction selectivity and sensitivity change is revealed. This work provides a new idea for the technical improvement regarding adding the external electric field into the explosive system.
Collapse
Affiliation(s)
- Fu-De Ren
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, China
- Correspondence: ; Tel.: +86-351-392-2117
| | - Ying-Zhe Liu
- State Key Laboratory of Fluorine and Nitrogen Chemicals, Xi’an Modern Chemistry Research Institute, Xi’an 710065, China
| | - Xiao-Lei Wang
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, China
| | - Li-Li Qiu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Zi-Hui Meng
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xiang Cheng
- School of Intelligent Engineering, Zhengzhou University of Aeronautics, Zhengzhou 450003, China
| | - Yong-Xiang Li
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, China
| |
Collapse
|
27
|
Datar A, Wright C, Matthews DA. Theoretical Investigation of the X-ray Stark Effect in Small Molecules. J Phys Chem A 2023; 127:1576-1587. [PMID: 36787229 DOI: 10.1021/acs.jpca.2c08311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
We have studied the Stark effect in the soft x-ray region for various small molecules by calculating the field-dependent x-ray absorption spectra. This effect is explained in terms of the response of molecular orbitals (core and valence), the molecular dipole moment, and the molecular geometry to the applied electric field. A number of consistent trends are observed linking the computed shifts in absorption energies and intensities with specific features of the molecular electronic structure. We find that both the virtual molecular orbitals (valence and/or Rydberg) as well as the core orbitals contribute to observed trends in a complementary fashion. This initial study highlights the potential impact of x-ray Stark spectroscopy as a tool to study electronic structure and environmental perturbations at a submolecular scale.
Collapse
Affiliation(s)
- Avdhoot Datar
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275, United States
| | - Catherine Wright
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275, United States
| | - Devin A Matthews
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275, United States
| |
Collapse
|
28
|
Kalita S, Bergman H, Dubey KD, Shaik S. How Can Static and Oscillating Electric Fields Serve in Decomposing Alzheimer's and Other Senile Plaques? J Am Chem Soc 2023; 145:3543-3553. [PMID: 36735972 PMCID: PMC9936589 DOI: 10.1021/jacs.2c12305] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Alzheimer's disease is one of the most common neurodegenerative conditions, which are ascribed to extracellular accumulation of β-amyloid peptides into plaques. This phenomenon seems to typify other related neurodegenerative diseases. The present study uses classical molecular-dynamics simulations to decipher the aggregation-disintegration behavior of β-amyloid peptide plaques in the presence of static and oscillating oriented external electric fields (OEEFs). A long-term disintegration of such plaques is highly desirable since this may improve the prospects of therapeutic treatments of Alzheimer's disease and of other neurodegenerative diseases typified by senile plaques. Our study illustrates the spontaneous aggregation of the β-amyloid, its prevention and breakdown when OEEF is applied, and the fate of the broken aggregate when the OEEF is removed. Notably, we demonstrate that the usage of an oscillating OEEF on β-amyloid aggregates appears to lead to an irreversible disintegration. Insight is provided into the root causes of the various modes of aggregation, as well as into the different fates of OEEF-induced disintegration in oscillating vs static fields. Finally, our simulation results are compared to the well-established TTFields and the Deep Brain Stimulation (DBS) therapies, which are currently used options for treatments of Alzheimer's disease and other related neurodegenerative diseases.
Collapse
Affiliation(s)
- Surajit Kalita
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| | - Hagai Bergman
- Department of Medical Neurobiology (Physiology), The Hebrew University of Jerusalem, Hadassah Medical Faculty, Jerusalem, Israel 91120
| | - Kshatresh Dutta Dubey
- Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence, Greater Noida, Uttar Pradesh 201314, India
| | - Sason Shaik
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| |
Collapse
|
29
|
Zhang B, Schaack C, Prindle CR, Vo EA, Aziz M, Steigerwald ML, Berkelbach TC, Nuckolls C, Venkataraman L. Electric fields drive bond homolysis. Chem Sci 2023; 14:1769-1774. [PMID: 36819847 PMCID: PMC9931054 DOI: 10.1039/d2sc06411a] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/15/2023] [Indexed: 01/17/2023] Open
Abstract
Electric fields have been used to control and direct chemical reactions in biochemistry and enzymatic catalysis, yet directly applying external electric fields to activate reactions in bulk solution and to characterize them ex situ remains a challenge. Here we utilize the scanning tunneling microscope-based break-junction technique to investigate the electric field driven homolytic cleavage of the radical initiator 4-(methylthio)benzoic peroxyanhydride at ambient temperatures in bulk solution, without the use of co-initiators or photochemical activators. Through time-dependent ex situ quantification by high performance liquid chromatography using a UV-vis detector, we find that the electric field catalyzes the reaction. Importantly, we demonstrate that the reaction rate in a field increases linearly with the solvent dielectric constant. Using density functional theory calculations, we show that the applied electric field decreases the dissociation energy of the O-O bond and stabilizes the product relative to the reactant due to their different dipole moments.
Collapse
Affiliation(s)
- Boyuan Zhang
- Department of Applied Physics and Applied Mathematics, Columbia University New York 10027 New York US
| | - Cedric Schaack
- Department of Chemistry, Columbia University New York 10027 New York USA
| | | | - Ethan A. Vo
- Department of Chemistry, Columbia UniversityNew York 10027New YorkUSA
| | - Miriam Aziz
- Department of Chemistry, Columbia University New York 10027 New York USA
| | | | - Timothy C. Berkelbach
- Department of Chemistry, Columbia UniversityNew York 10027New YorkUSA,Center for Computational Quantum Physics, Flatiron InstituteNew YorkNew York10010USA
| | - Colin Nuckolls
- Department of Chemistry, Columbia University New York 10027 New York USA
| | - Latha Venkataraman
- Department of Applied Physics and Applied Mathematics, Columbia University New York 10027 New York US .,Department of Chemistry, Columbia University New York 10027 New York USA
| |
Collapse
|
30
|
Kempfer-Robertson EM, Avdic I, Haase MN, Pike TD, Thompson LM. Protonation state control of electric field induced molecular switching mechanisms. Phys Chem Chem Phys 2023; 25:5251-5261. [PMID: 36723228 DOI: 10.1039/d2cp04494c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Scanning tunneling microscopy tip-induced deprotonation has been demonstrated experimentally and can be used as an additional control mechanism in electric-field induced molecular switching. The goal of the current work is to establish whether (de)protonation can be used to inhibit or enhance the electric field controlled thermal and photoisomerization processes. Dihydroxyazobenzene is used as a model system, where protonation/deprotonation of the free hydroxyl moiety changes the azo bond order, and so modifies the rate of electric field induced isomerization. Through the combined action of deprotonation and applied field, it was found that the cis-to-trans thermal isomerization barrier could be completely removed, changing the isomerization half-life from the order of several months. In addition, due to the presence of multiple isomerization mechanisms, electric fields could modify the isomerization kinetics by increasing the number of energetically viable isomerization pathways, rather than reducing the activation barrier of the lowest energy pathway. Excited state calculations indicated that the protonation state and electric field could be used together to control the presence of electronic degeneracies along the rotation pathway between S0/S1, and along all three pathways between S1/S2. This work provides insight into the mechanisms that enable the use of protonation state, light, and electric fields in concert to control molecular switches.
Collapse
Affiliation(s)
| | - Irma Avdic
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40208, USA.
| | - Meagan N Haase
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40208, USA.
| | - Thomas Dane Pike
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40208, USA.
| | - Lee M Thompson
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40208, USA.
| |
Collapse
|
31
|
Sen A, Rajaraman G. Does the Spin State and Oriented External Electric Field Boost the Efficiency of Fe(II) Pincer Catalyst toward CO 2 Hydrogenation Reaction? Inorg Chem 2023; 62:2342-2358. [PMID: 36689485 DOI: 10.1021/acs.inorgchem.2c04119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
In this study, we have explored the catalytic reactivities of four PNP-pincer supported Fe(II) complexes, namely, [(iPrPNMeP)FeH2(CO)] (1), [(iPrPNMeP)FeH(CO)(BH4)] (2), [(iPrPNHP)FeH2(CO)] (3), and [(iPrPNMeP)FeH(BH4)] (4) (iPrPNMeP = MeN{CH2CH2(PiPr2)}2 and iPrPNHP = HN{CH2CH2(PiPr2)}2) toward reductive CO2 hydrogenation for formate production. Our density functional theory and ab initio complete active space self-consistent field study have identified three fundamental steps in this catalytic transformation: (i) anchoring of the CO2 molecule in the vicinity of the metal using noncovalent interactions, (ii) catalyst regeneration via H2 cleavage, and (iii) formate rebound step leading to catalytic poisoning. The variations in the catalytic efficiency observed among these catalysts were attributed to either easing of steps (i) and (ii) or the hampering step (iii). This can be achieved in various chemical/non-chemical ways, for instance, (a) incorporation of strong-field ligands such as CO facilitating single-state reactivity and eliminating two-state reactivity that generally enhances the rate and (b) inclusion of Lewis acids such as LiOTf and strong bases found to either avoid catalytic poisoning or ease the H-H cleavages, to enhance the rate of reaction (c) evading mixing of excited open-shell singlet states to the ground closed-shell singlet state that hampers the catalytic regeneration. We have probed the role of oriented external electric fields (OEEFs) in the entire mechanistic profile for the best and worst catalyst, and our study suggests that imposing OEEFs opposite to the reaction axis (z-axis) fastens the catalytic regeneration step and, at the same time, hampers catalytic poisoning. The application of OEEFs is found to regulate the energetics of various spin states and can hamper two-state reactivity, therefore increasing the efficiency. Thus, this study provides insights into the CO2 hydrogenation mechanism where the role of bases/Lewis acid, ligand design, spin states, and electric field in a particular direction has been established and is, therefore, likely to pave the way forward for a new generation of catalysts.
Collapse
Affiliation(s)
- Asmita Sen
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai400076, India
| | - Gopalan Rajaraman
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai400076, India
| |
Collapse
|
32
|
A catastrophe theory-based model for optimal control of chemical reactions by means of oriented electric fields. Theor Chem Acc 2023. [DOI: 10.1007/s00214-023-02959-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
AbstractThe effect of oriented external electric fields (OEEF) on chemical reactivity has been studied theoretically and computationally in the last decades. A central goal in this research area is to predict the orientation and the smallest amplitude electric field that renders a barrierless chemical process with the smallest possible strength. Recently, a model to find the optimal electric field has been proposed and described (Bofill JM et al., J. Chem. Theory Comput. 18:935, 2022). We here proof that this model is based on catastrophe and optimum control theories. Based on both theories a technical treatment of the model is given and applied to a two-dimensional generic example that provides insight into its nature and capability. Finally, the model is applied to determine the optimal OEEF for the trans-to-cis isomerization of a [3]cumulene derivative.
Collapse
|
33
|
Yan Y, Zheng C, Song W, Wu J, Guo L, Gao C, Liu J, Chen X, Zhu M, Liu L. Efficient Production of Epoxy-Norbornane from Norbornene by an Engineered P450 Peroxygenase. Chembiochem 2023; 24:e202200529. [PMID: 36354378 DOI: 10.1002/cbic.202200529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/02/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022]
Abstract
Epoxy-norbornane (EPO-NBE) is a crucial building block for the synthesis of various biologically active heterocyclic systems. To develop an efficient protocol for producing EPO-NBE using norbornene (NBE) as a substrate, cytochrome P450 enzyme from Pseudomonas putida (CYP238A1) was examined and its crystal structure (PDB code: 7X53) was resolved. Molecular mechanism analysis showed a high energy barrier related to iron-alkoxy radical complex formation. Therefore, a protein engineering strategy was developed and an optimal CYP238A1NPV variant containing a local hydrophobic "fence" at the active site was obtained, which increased the H2 O2 -dependent epoxidation activity by 7.5-fold compared with that of CYP238A1WT . Among the "fence", Glu255 participates in an efficient proton transfer system. Whole-cell transformation using CYP238A1NPV achieved an EPO-NBE yield of 77.6 g ⋅ L-1 in a 30-L reactor with 66.3 % conversion. These results demonstrate the potential of this system for industrial production of EPO-NBE and provides a new biocatalytic platform for epoxidation chemistry.
Collapse
Affiliation(s)
- Yu Yan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Chenni Zheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Wei Song
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Jing Wu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Liang Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Cong Gao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Jia Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Xiulai Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China
| | - Meng Zhu
- Wuxi Acryl Technology Co., Ltd., Wuxi, 214122, P. R. China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, P. R. China
| |
Collapse
|
34
|
Hermano Sampaio Dias A, Yadav R, Mokkawes T, Kumar A, Skaf MS, Sastri CV, Kumar D, de Visser SP. Biotransformation of Bisphenol by Human Cytochrome P450 2C9 Enzymes: A Density Functional Theory Study. Inorg Chem 2023; 62:2244-2256. [PMID: 36651185 PMCID: PMC9923688 DOI: 10.1021/acs.inorgchem.2c03984] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Bisphenol A (BPA, 2,2-bis-(4-hydroxyphenyl)propane) is used as a precursor in the synthesis of polycarbonate and epoxy plastics; however, its availability in the environment is causing toxicity as an endocrine-disrupting chemical. Metabolism of BPA and their analogues (substitutes) is generally performed by liver cytochrome P450 enzymes and often leads to a mixture of products, and some of those are toxic. To understand the product distributions of P450 activation of BPA, we have performed a computational study into the mechanisms and reactivities using large model structures of a human P450 isozyme (P450 2C9) with BPA bound. Density functional theory (DFT) calculations on mechanisms of BPA activation by a P450 compound I model were investigated, leading to a number of possible products. The substrate-binding pocket is tight, and as a consequence, aliphatic hydroxylation is not feasible as the methyl substituents of BPA cannot reach compound I well due to constraints of the substrate-binding pocket. Instead, we find low-energy pathways that are initiated with phenol hydrogen atom abstraction followed by OH rebound to the phenolic ortho- or para-position. The barriers of para-rebound are well lower in energy than those for ortho-rebound, and consequently, our P450 2C9 model predicts dominant hydroxycumyl alcohol products. The reactions proceed through two-state reactivity on competing doublet and quartet spin state surfaces. The calculations show fast and efficient substrate activation on a doublet spin state surface with a rate-determining electrophilic addition step, while the quartet spin state surface has multiple high-energy barriers that can also lead to various side products including C4-aromatic hydroxylation. This work shows that product formation is more feasible on the low spin state, while the physicochemical properties of the substrate govern barrier heights of the rate-determining step of the reaction. Finally, the importance of the second-coordination sphere is highlighted that determines the product distributions and guides the bifurcation pathways.
Collapse
Affiliation(s)
- Artur Hermano Sampaio Dias
- Manchester
Institute of Biotechnology and Department of Chemical Engineering, The University of Manchester, 131 Princess Street, ManchesterM1 7DN, United Kingdom,Center
for Computing in Engineering & Sciences, University of Campinas, Rua Josué de Castro, s/n, Campinas13083-861, Brazil
| | - Rolly Yadav
- Department
of Chemistry, Indian Institute of Technology
Guwahati, Guwahati, Assam781039, India
| | - Thirakorn Mokkawes
- Manchester
Institute of Biotechnology and Department of Chemical Engineering, The University of Manchester, 131 Princess Street, ManchesterM1 7DN, United Kingdom
| | - Asheesh Kumar
- Department
of Physics, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh (U.P.)226025, India
| | - Munir S. Skaf
- Center
for Computing in Engineering & Sciences, University of Campinas, Rua Josué de Castro, s/n, Campinas13083-861, Brazil
| | - Chivukula V. Sastri
- Department
of Chemistry, Indian Institute of Technology
Guwahati, Guwahati, Assam781039, India,
| | - Devesh Kumar
- Department
of Physics, Siddharth University, Kapilvastu, Siddharthnagar272202, India,
| | - Sam P. de Visser
- Manchester
Institute of Biotechnology and Department of Chemical Engineering, The University of Manchester, 131 Princess Street, ManchesterM1 7DN, United Kingdom,
| |
Collapse
|
35
|
Effects and Influence of External Electric Fields on the Equilibrium Properties of Tautomeric Molecules. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020695. [PMID: 36677753 PMCID: PMC9865840 DOI: 10.3390/molecules28020695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/06/2023] [Indexed: 01/13/2023]
Abstract
In this review, we have attempted to briefly summarize the influence of an external electric field on an assembly of tautomeric molecules and to what experimentally observable effects this interaction can lead to. We have focused more extensively on the influence of an oriented external electric field (OEEF) on excited-state intramolecular proton transfer (ESIPT) from the studies available to date. The possibilities provided by OEEF for regulating several processes and studying physicochemical processes in tautomers have turned this direction into an attractive area of research due to its numerous applications.
Collapse
|
36
|
Hanaway D, Kennedy CR. Automated Variable Electric-Field DFT Application for Evaluation of Optimally Oriented Electric Fields on Chemical Reactivity. J Org Chem 2023; 88:106-115. [PMID: 36507909 PMCID: PMC9830642 DOI: 10.1021/acs.joc.2c01893] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recent theoretical work and experiments at molecular junctions have provided a strong conceptualization for the effects of oriented electric fields (OEFs) on organic reactions. Depending on the axis of application, OEFs can increase (or decrease) the reaction rate or distinguish between isomeric pathways. Despite the conceptual elegance of OEFs, which may be applied externally or induced locally, as tools for catalyzing organic reactions, implementation in synthetically relevant systems has been hampered by inefficiencies in evaluating reaction sensitivity to field effects. Herein, we describe the development of the Automated Variable Electric-Field DFT Application (A.V.E.D.A.) for streamlined evaluation of a reaction's susceptibility to OEFs. This open-source software was designed to be accessible for nonexpert users of computational and programming tools. Following initiation by a single command (and with no subsequent intervention) the Linux workflow manages a series of density functional theory calculations and mathematical manipulations to optimize local-minimum and transition-state structures in oriented electric fields of increasing magnitude. The resulting molecular and reaction dipole moments, field-perturbed geometries, and net effective activation energies are compiled for user interpretation. Ten representative pericyclic reactions that showcase the development and evaluation of A.V.E.D.A. are described.
Collapse
|
37
|
Yadav S, Kardam V, Tripathi A, T G S, Dubey KD. The Performance of Different Water Models on the Structure and Function of Cytochrome P450 Enzymes. J Chem Inf Model 2022; 62:6679-6690. [PMID: 36073971 DOI: 10.1021/acs.jcim.2c00505] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Modeling approaches and modern simulations to investigate the biomolecular structure and function rely on various methods. Since water molecules play a crucial role in all sorts of chemistry, the accurate modeling of water molecules is vital for such simulations. In cytochrome P450 (CYP450), in particular, water molecules play a key role in forming active oxidant that ultimately performs oxidation and metabolism. In the present study, we have highlighted the behavior of the three most widely used water models─TIP3P, SPC/E, and OPC─for three different CYP450 enzymes─CYP450BM3, CYP450OleT, and CYP450BSβ─during MD simulations and QM/MM calculations. We studied the various properties, such as RMSD, RMSF, H-bond, water occupancy, and hydrogen atom transfer (HAT), using QM/MM calculations and compared them for all three water models. Our study shows that the stabilities of the enzyme complexes are well maintained in all three water models. However, the OPC water model performs well for the polar active sites, that is, in CYP450OleT and CYP450BSβ, while the TIP3P water model is superior for the hydrophobic site, such as CYP450BM3.
Collapse
Affiliation(s)
- Shalini Yadav
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University Delhi-NCR, Gautam Buddha Nagar, U.P. 201314, India
| | - Vandana Kardam
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University Delhi-NCR, Gautam Buddha Nagar, U.P. 201314, India
| | - Ankita Tripathi
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University Delhi-NCR, Gautam Buddha Nagar, U.P. 201314, India
| | - Shruti T G
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University Delhi-NCR, Gautam Buddha Nagar, U.P. 201314, India
| | - Kshatresh Dutta Dubey
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University Delhi-NCR, Gautam Buddha Nagar, U.P. 201314, India
| |
Collapse
|
38
|
Wang Y, Wang J, Wei J, Wang C, Wang H, Yang X. Catalytic Mechanisms and Active Species of Benzene Hydroxylation Reaction System Based on Fe-Based Enzyme-Mimetic Structure. Catal Letters 2022. [DOI: 10.1007/s10562-022-04238-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
39
|
Ji Z, Boxer SG. β-Lactamases Evolve against Antibiotics by Acquiring Large Active-Site Electric Fields. J Am Chem Soc 2022; 144:22289-22294. [PMID: 36399691 PMCID: PMC10075085 DOI: 10.1021/jacs.2c10791] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A compound bound covalently to an enzyme active site can act either as a substrate if the covalent linkage is readily broken up by the enzyme or as an inhibitor if the bond dissociates slowly. We tracked the reactivity of such bonds associated with the rise of the resistance to penicillin G (PenG) in protein evolution from penicillin-binding proteins (PBPs) to TEM β-lactamases and with the development of avibactam (Avb) to overcome the resistance. We found that the ester linkage in PBP-PenG is resistant to hydrolysis mainly due to the small electric fields present in the protein active site. Conversely, the same linkage in the descendant TEM-PenG experiences large electric fields that stabilize the more charge-separated transition state and thus lower the free energy barrier to hydrolysis. Specifically, the electric fields were improved from -59 to -140 MV/cm in an ancient evolution dating back billions of years, contributing 5 orders of magnitude rate acceleration. This trend continues today in the nullification of newly developed antibiotic drugs. The fast linkage hydrolysis acquired from evolution is counteracted by the upgrade of PenG to Avb whose linkage escapes from the hydrolysis by returning to a low-field environment. Using the framework of electrostatic catalysis, the electric field, an observable from vibrational spectroscopy, provides a unifying physical metric to understand protein evolution and to guide the design of covalent drugs.
Collapse
Affiliation(s)
- Zhe Ji
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Steven G Boxer
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
40
|
Single-Molecule Chemical Reactions Unveiled in Molecular Junctions. Processes (Basel) 2022. [DOI: 10.3390/pr10122574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Abstract
Understanding chemical processes at the single-molecule scale represents the ultimate limit of analytical chemistry. Single-molecule detection techniques allow one to reveal the detailed dynamics and kinetics of a chemical reaction with unprecedented accuracy. It has also enabled the discoveries of new reaction pathways or intermediates/transition states that are inaccessible in conventional ensemble experiments, which is critical to elucidating their intrinsic mechanisms. Thanks to the rapid development of single-molecule junction (SMJ) techniques, detecting chemical reactions via monitoring the electrical current through single molecules has received an increasing amount of attention and has witnessed tremendous advances in recent years. Research efforts in this direction have opened a new route for probing chemical and physical processes with single-molecule precision. This review presents detailed advancements in probing single-molecule chemical reactions using SMJ techniques. We specifically highlight recent progress in investigating electric-field-driven reactions, reaction dynamics and kinetics, host–guest interactions, and redox reactions of different molecular systems. Finally, we discuss the potential of single-molecule detection using SMJs across various future applications.
Collapse
|
41
|
Yang YJ, Li SX, Chen DL, Long ZW. Geometric Structure, Electronic, and Spectral Properties of Metal-free Phthalocyanine under the External Electric Fields. ACS OMEGA 2022; 7:41266-41274. [PMID: 36406576 PMCID: PMC9670904 DOI: 10.1021/acsomega.2c04941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Here, the ground-state structures, electronic structures, polarizability, and spectral properties of metal-free phthalocyanine (H2Pc) under different external electric fields (EEFs) are investigated. The results show that EEF has an ultrastrong regulation effect on various aspects of H2Pc; the geometric structures, electronic properties, polarizability, and spectral properties are strongly sensitive to the EEF. In particular, an EEF of 0.025 a.u. is an important control point: an EEF of 0.025 a.u. will bend the benzene ring subunits to the positive and negative x directions of the planar molecule. Flipping the EEF from positive (0.025 a.u.) to negative (-0.025 a.u.) flips also the bending direction of benzene ring subunits. The H2Pc shows different dipole moments projecting an opposite direction along the x direction (-84 and 84 Debye for EEFs of -0.025 and 0.025 a.u., respectively) under negative and positive EEF, revealing a significant dipole moment transformation. Furthermore, when the EEF is removed, the molecule can be restored to the planar structure. The transformation of the H2Pc structure can be induced by the EEF, which has potential applications in the molecular devices such as molecular switches or molecular forceps. EEF lowers total energy and reduces highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) gap; especially, an EEF of 0.025 a.u. can reduce the HOMO-LUMO gap from 2.1 eV (in the absence of EEF) to 0.37 eV, and thus, it can enhance the molecular conductivity. The first hyperpolarizability of H2Pc is 0 in the absence of EEF; remarkably, an EEF of 0.025 a.u. can enhance the first hyperpolarizability up to 15,578 a.u. Therefore, H2Pc under the EEF could be introduced as a promising innovative nonlinear optical (NLO) nanomaterial such as NLO switches. The strong EEF (0.025 a.u.) causes a large number of new absorption peaks in IR and Raman spectra and causes the redshift of electronic absorption spectra. The changes of EEF can be used to regulate the structure transformation and properties of H2Pc, which can promote the application of H2Pc in nanometer fields such as molecular devices.
Collapse
Affiliation(s)
- Yue-Ju Yang
- School
of Physics and Electronic Science, Guizhou
Education University, Guiyang 550018, China
| | - Shi-Xiong Li
- School
of Physics and Electronic Science, Guizhou
Education University, Guiyang 550018, China
| | - De-Liang Chen
- School
of Physics and Electronic Science, Guizhou
Education University, Guiyang 550018, China
| | - Zheng-Wen Long
- College
of Physics, Guizhou University, Guiyang 550025, China
| |
Collapse
|
42
|
Peng W, Yan S, Zhang X, Liao L, Zhang J, Shaik S, Wang B. How Do Preorganized Electric Fields Function in Catalytic Cycles? The Case of the Enzyme Tyrosine Hydroxylase. J Am Chem Soc 2022; 144:20484-20494. [DOI: 10.1021/jacs.2c09263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Wei Peng
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, People Republic of China
| | - Shengheng Yan
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, People Republic of China
| | - Xuan Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, People Republic of China
| | - Langxing Liao
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, People Republic of China
| | - Jinyan Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, People Republic of China
| | - Sason Shaik
- Institute of Chemistry, The Hebrew University of Jerusalem, 9190407 Jerusalem, Israel
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, People Republic of China
| |
Collapse
|
43
|
Diao W, Yan S, Farrell JD, Wang B, Ye F, Wang Z. Preorganized Internal Electric Field Powers Catalysis in the Active Site of Uracil-DNA Glycosylase. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wenwen Diao
- Center for Advanced Materials Research, Beijing Normal University, Zhuhai 519087, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Shengheng Yan
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - James D. Farrell
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Fangfu Ye
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325001, China
| | - Zhanfeng Wang
- Center for Advanced Materials Research, Beijing Normal University, Zhuhai 519087, China
| |
Collapse
|
44
|
Soler J, Gergel S, Klaus C, Hammer SC, Garcia-Borràs M. Enzymatic Control over Reactive Intermediates Enables Direct Oxidation of Alkenes to Carbonyls by a P450 Iron-Oxo Species. J Am Chem Soc 2022; 144:15954-15968. [PMID: 35998887 PMCID: PMC9460782 DOI: 10.1021/jacs.2c02567] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
![]()
The aerobic oxidation of alkenes to carbonyls is an important
and
challenging transformation in synthesis. Recently, a new P450-based
enzyme (aMOx) has been evolved in the laboratory to directly oxidize
styrenes to their corresponding aldehydes with high activity and selectivity.
The enzyme utilizes a heme-based, high-valent iron-oxo species as
a catalytic oxidant that normally epoxidizes alkenes, similar to other
catalysts. How the evolved aMOx enzyme suppresses the commonly preferred
epoxidation and catalyzes direct carbonyl formation is currently not
well understood. Here, we combine computational modelling together
with mechanistic experiments to study the reaction mechanism and unravel
the molecular basis behind the selectivity achieved by aMOx. Our results
describe that although both pathways are energetically accessible
diverging from a common covalent radical intermediate, intrinsic dynamic effects determine the strong preference for epoxidation.
We discovered that aMOx overrides these intrinsic preferences by controlling
the accessible conformations of the covalent radical intermediate.
This disfavors epoxidation and facilitates the formation of a carbocation
intermediate that generates the aldehyde product through a fast 1,2-hydride
migration. Electrostatic preorganization of the enzyme active site
also contributes to the stabilization of the carbocation intermediate.
Computations predicted that the hydride migration is stereoselective
due to the enzymatic conformational control over the intermediate
species. These predictions were corroborated by experiments using
deuterated styrene substrates, which proved that the hydride migration
is cis- and enantioselective. Our results demonstrate
that directed evolution tailored a highly specific active site that
imposes strong steric control over key fleeting biocatalytic intermediates,
which is essential for accessing the carbonyl forming pathway and
preventing competing epoxidation.
Collapse
Affiliation(s)
- Jordi Soler
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Carrer Maria Aurèlia Capmany 69, Girona 17003, Catalonia, Spain
| | - Sebastian Gergel
- Chair of Organic Chemistry and Biocatalysis, Faculty of Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Cindy Klaus
- Chair of Organic Chemistry and Biocatalysis, Faculty of Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Stephan C Hammer
- Chair of Organic Chemistry and Biocatalysis, Faculty of Chemistry, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Marc Garcia-Borràs
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Carrer Maria Aurèlia Capmany 69, Girona 17003, Catalonia, Spain
| |
Collapse
|
45
|
Roemer M, Gillespie A, Jago D, Costa-Milan D, Alqahtani J, Hurtado-Gallego J, Sadeghi H, Lambert CJ, Spackman PR, Sobolev AN, Skelton BW, Grosjean A, Walkey M, Kampmann S, Vezzoli A, Simpson PV, Massi M, Planje I, Rubio-Bollinger G, Agraït N, Higgins SJ, Sangtarash S, Piggott MJ, Nichols RJ, Koutsantonis GA. 2,7- and 4,9-Dialkynyldihydropyrene Molecular Switches: Syntheses, Properties, and Charge Transport in Single-Molecule Junctions. J Am Chem Soc 2022; 144:12698-12714. [PMID: 35767015 DOI: 10.1021/jacs.2c02289] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This paper describes the syntheses of several functionalized dihydropyrene (DHP) molecular switches with different substitution patterns. Regioselective nucleophilic alkylation of a 5-substituted dimethyl isophthalate allowed the development of a workable synthetic protocol for the preparation of 2,7-alkyne-functionalized DHPs. Synthesis of DHPs with surface-anchoring groups in the 2,7- and 4,9-positions is described. The molecular structures of several intermediates and DHPs were elucidated by X-ray single-crystal diffraction. Molecular properties and switching capabilities of both types of DHPs were assessed by light irradiation experiments, spectroelectrochemistry, and cyclic voltammetry. Spectroelectrochemistry, in combination with density functional theory (DFT) calculations, shows reversible electrochemical switching from the DHP forms to the cyclophanediene (CPD) forms. Charge-transport behavior was assessed in single-molecule scanning tunneling microscope (STM) break junctions, combined with density functional theory-based quantum transport calculations. All DHPs with surface-contacting groups form stable molecular junctions. Experiments show that the molecular conductance depends on the substitution pattern of the DHP motif. The conductance was found to decrease with increasing applied bias.
Collapse
Affiliation(s)
- Max Roemer
- Chemistry, School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Angus Gillespie
- Chemistry, School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - David Jago
- Chemistry, School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - David Costa-Milan
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, United Kingdom
| | - Jehan Alqahtani
- Department of Physics, King Khalid University, Abha 62529, Saudi Arabia
- Department of Physics, Lancaster University, Lancaster LA1 4YB, United Kingdom
| | - Juan Hurtado-Gallego
- Condensed Matter Physics Center (IFIMAC) and Instituto Universitatio de Ciencia de Materiales "Nicolás Cabrera" (INC), Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - Hatef Sadeghi
- School of Engineering, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Colin J Lambert
- Department of Physics, Lancaster University, Lancaster LA1 4YB, United Kingdom
| | - Peter R Spackman
- Chemistry, School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Alexandre N Sobolev
- Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Crawley, WA 6009, Australia
| | - Brian W Skelton
- Chemistry, School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
- Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Crawley, WA 6009, Australia
| | - Arnaud Grosjean
- Chemistry, School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Mark Walkey
- Chemistry, School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Sven Kampmann
- Chemistry, School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Andrea Vezzoli
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, United Kingdom
| | - Peter V Simpson
- School of Molecular and Life Sciences, Curtin University, Perth, WA 6102, Australia
| | - Massimiliano Massi
- School of Molecular and Life Sciences, Curtin University, Perth, WA 6102, Australia
| | - Inco Planje
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, United Kingdom
| | - Gabino Rubio-Bollinger
- Condensed Matter Physics Center (IFIMAC) and Instituto Universitatio de Ciencia de Materiales "Nicolás Cabrera" (INC), Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - Nicolás Agraït
- Condensed Matter Physics Center (IFIMAC) and Instituto Universitatio de Ciencia de Materiales "Nicolás Cabrera" (INC), Universidad Autónoma de Madrid, E-28049 Madrid, Spain
- Instituto Madrileño de Estudios Avanzados en Nanociencia IMDEA-Nanociencia, E-28049 Madrid, Spain
| | - Simon J Higgins
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, United Kingdom
| | - Sara Sangtarash
- School of Engineering, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Matthew J Piggott
- Chemistry, School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Richard J Nichols
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, United Kingdom
| | - George A Koutsantonis
- Chemistry, School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| |
Collapse
|
46
|
Wu J, Long T, Wang H, Liang JX, Zhu C. Oriented External Electric Fields Regurating the Reaction Mechanism of CH 4 Oxidation Catalyzed by Fe(IV)-Oxo-Corrolazine: Insight from Density Functional Calculations. Front Chem 2022; 10:896944. [PMID: 35844657 PMCID: PMC9277104 DOI: 10.3389/fchem.2022.896944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/08/2022] [Indexed: 11/13/2022] Open
Abstract
Methane is the simplest alkane and can be used as an alternative energy source for oil and coal, but the greenhouse effect caused by its leakage into the air is not negligible, and its conversion into liquid methanol not only facilitates transportation, but also contributes to carbon neutrality. In order to find an efficient method for converting methane to methanol, CH4 oxidation catalyzed by Fe(IV)-Oxo-corrolazine (Fe(IV)-Oxo-Cz) and its reaction mechanism regulation by oriented external electric fields (OEEFs) are systematically studied by density functional calculations. The calculations show that Fe(IV)-Oxo-Cz can abstract one H atom from CH4 to form the intermediate with OH group connecting on the corrolazine ring, with the energy barrier of 25.44 kcal mol-1. And then the product methanol is formed through the following rebound reaction. Moreover, the energy barrier can be reduced to 20.72 kcal mol-1 through a two-state reaction pathway. Furthermore, the effect of OEEFs on the reaction is investigated. We found that OEEFs can effectively regulate the reaction by adjusting the stability of the reactant and the transition state through the interaction of electric field-molecular dipole moment. When the electric field is negative, the energy barrier of the reaction decreases with the increase of electric intensity. Moreover, the OEEF aligned along the intrinsic Fe‒O reaction axis can effectively regulate the ability of forming the OH on the corrolazine ring by adjusting the charges of O and H atoms. When the electric field intensity is -0.010 a.u., the OH can be directly rebounded to the CH3· before it is connecting on the corrolazine ring, thus forming the product directly from the transition state without passing through the intermediate with only an energy barrier of 17.34 kcal mol-1, which greatly improves the selectivity of the reaction.
Collapse
Affiliation(s)
| | | | | | - Jin-Xia Liang
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, China
| | - Chun Zhu
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, China
| |
Collapse
|
47
|
Pan Y, Wang X, Zhang W, Tang L, Mu Z, Liu C, Tian B, Fei M, Sun Y, Su H, Gao L, Wang P, Duan X, Ma J, Ding M. Boosting the performance of single-atom catalysts via external electric field polarization. Nat Commun 2022; 13:3063. [PMID: 35654804 PMCID: PMC9163078 DOI: 10.1038/s41467-022-30766-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 05/17/2022] [Indexed: 11/30/2022] Open
Abstract
Single-atom catalysts represent a unique catalytic system with high atomic utilization and tunable reaction pathway. Despite current successes in their optimization and tailoring through structural and synthetic innovations, there is a lack of dynamic modulation approach for the single-atom catalysis. Inspired by the electrostatic interaction within specific natural enzymes, here we show the performance of model single-atom catalysts anchored on two-dimensional atomic crystals can be systematically and efficiently tuned by oriented external electric fields. Superior electrocatalytic performance have been achieved in single-atom catalysts under electrostatic modulations. Theoretical investigations suggest a universal "onsite electrostatic polarization" mechanism, in which electrostatic fields significantly polarize charge distributions at the single-atom sites and alter the kinetics of the rate determining steps, leading to boosted reaction performances. Such field-induced on-site polarization offers a unique strategy for simulating the catalytic processes in natural enzyme systems with quantitative, precise and dynamic external electric fields.
Collapse
Affiliation(s)
- Yanghang Pan
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, Jiangsu, China
| | - Xinzhu Wang
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, Jiangsu, China
| | - Weiyang Zhang
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093, Nanjing, Jiangsu, China
| | - Lingyu Tang
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, Jiangsu, China
| | - Zhangyan Mu
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, Jiangsu, China
| | - Cheng Liu
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, Jiangsu, China
| | - Bailin Tian
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, Jiangsu, China
| | - Muchun Fei
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, Jiangsu, China
| | - Yamei Sun
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, Jiangsu, China
| | - Huanhuan Su
- National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093, Nanjing, Jiangsu, China
| | - Libo Gao
- National Laboratory of Solid State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093, Nanjing, Jiangsu, China
| | - Peng Wang
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093, Nanjing, Jiangsu, China
- Department of Physics, University of Warwick, Coventry, CV4 7AL, UK
| | - Xiangfeng Duan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA.
| | - Jing Ma
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, Jiangsu, China.
- Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, Jiangsu, China.
| | - Mengning Ding
- Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, Jiangsu, China.
| |
Collapse
|
48
|
Gatin AK, Grishin MV, Prostnev AS, Sarvady SY, Stepanov IG, Kharitonov VA, Shub BR. Interaction of Carbon Monoxide with a Nano-Structured Copper-Nickel Coating on Graphite in the Presence of an Electric Field. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B 2022. [DOI: 10.1134/s1990793122030046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
49
|
Töpfer K, Käser S, Meuwly M. Double proton transfer in hydrated formic acid dimer: Interplay of spatial symmetry and solvent-generated force on reactivity. Phys Chem Chem Phys 2022; 24:13869-13882. [PMID: 35620978 PMCID: PMC9176184 DOI: 10.1039/d2cp01583h] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The double proton transfer (DPT) reaction in the hydrated formic acid dimer (FAD) is investigated at molecular-level detail. For this, a global and reactive machine learned (ML) potential energy surface (PES) is developed to run extensive (more than 100 ns) mixed ML/MM molecular dynamics (MD) simulations in explicit molecular mechanics (MM) solvent at MP2-quality for the solute. Simulations with fixed – as in a conventional empirical force field – and conformationally fluctuating – as available from the ML-based PES – charge models for FAD show a significant impact on the competition between DPT and dissociation of FAD into two formic acid monomers. With increasing temperature the barrier height for DPT in solution changes by about 10% (∼1 kcal mol−1) between 300 K and 600 K. The rate for DPT is largest, ∼1 ns−1, at 350 K and decreases for higher temperatures due to destabilisation and increased probability for dissociation of FAD. The water solvent is found to promote the first proton transfer by exerting a favourable solvent-induced Coulomb force along the O–H⋯O hydrogen bond whereas the second proton transfer is significantly controlled by the O–O separation and other conformational degrees of freedom. Double proton transfer in hydrated FAD is found to involve a subtle interplay and balance between structural and electrostatic factors. Simulation of double proton transfer in formic acid dimer by reactive ML potential in explicit molecular mechanics water solvent.![]()
Collapse
Affiliation(s)
- Kai Töpfer
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland.
| | - Silvan Käser
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland.
| | - Markus Meuwly
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland.
| |
Collapse
|
50
|
Geoffroy-Neveux A, Labet V, Alikhani ME. Influence of an Oriented External Electric Field on the Mechanism of Double Proton Transfer between Pyrazole and Guanidine: from an Asynchronous Plateau Transition State to a Synchronous or Stepwise Mechanism. J Phys Chem A 2022; 126:3057-3071. [PMID: 35544749 DOI: 10.1021/acs.jpca.1c10553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The double proton transfer (DPT) reaction between pyrazole and guanidine, a concerted reaction but strongly asynchronous and presenting a "plateau transition region", has been theoretically reinvestigated in the presence of an external uniform electric field. First, we computed the reaction path by DFT and proposed a very detailed description of the constitutive electronic events, based on the ELF topology and the bond evolution theory. Then, we studied the effect of an oriented external electric field (OEEF) on the reaction mechanism, for an OEEF oriented along the proton transfer axis. We observe that in one direction, the DPT reaction can be transformed into a stepwise reaction, going through a stabilized single proton transferred intermediate. Contrarily, the two proton transfers occur simultaneously when the electric field is applied in the opposite direction. In the latter case, the order in which the two protons are transferred in the same elementary step can even be reversed if the OEEF is intense enough. Finally, it has been shown that the evolution of the double proton transfer reaction in the presence of an electric field could be quantitatively anticipated by analyzing the ELF value at the bifurcation point between V(A, H) proton donor and V(B) proton acceptor of the double hydrogen bonded complex in the entrance channel.
Collapse
Affiliation(s)
| | - Vanessa Labet
- MONARIS UMR 8233 CNRS, Sorbonne Université, 4 place Jussieu, 75252 Paris Cedex 05, France
| | - M Esmail Alikhani
- MONARIS UMR 8233 CNRS, Sorbonne Université, 4 place Jussieu, 75252 Paris Cedex 05, France
| |
Collapse
|