1
|
Tyagarajan S, Andrews CL, Beshore DC, Buevich AV, Curran PJ, Dandliker P, Greshock TJ, Hoar J, Kim A, Karnachi P, Knemeyer I, Kozlowski J, Liu J, Maletic M, Myers R, Rada V, Sha D, Sauvagnat B, Vachal P, Wolkenberg S, Yu W, Yu Y, Krska SW. Rapid Affinity and Microsomal Stability Ranking of Crude Mixture Libraries of Histone Deacetylase Inhibitors. ACS Med Chem Lett 2024; 15:1787-1794. [PMID: 39411537 PMCID: PMC11472384 DOI: 10.1021/acsmedchemlett.4c00345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 10/19/2024] Open
Abstract
The science of drug discovery involves multiparameter optimization of molecular structures through iterative design-make-test cycles. For medicinal chemistry library synthesis, traditional workflows involve the isolation of each individual compound, gravimetric quantitation, and preparation of a standard concentration solution for biological assays. In this work, we explore ways to expedite this process by testing unpurified library mixtures using a combination of mass spectrometry-based assays for affinity selection and microsomal metabolic stability. Utilizing this approach, microgram quantities of crude library mixtures can be used to identify high affinity, metabolically stable library members for isolation and full characterization. This streamlined approach was demonstrated for the synthesis and evaluation of two libraries of histone deacetylase inhibitors and was shown to generate decision-making data in line with traditional workflows. The advantages of this paradigm include greatly reduced cycle time, reduced material requirements, and concentration of resources on the most promising compounds.
Collapse
Affiliation(s)
- Sriram Tyagarajan
- Discovery
Chemistry, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Christine L. Andrews
- Quantitative
Biosciences, Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - Douglas C. Beshore
- Discovery
Chemistry, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Alexei V. Buevich
- Analytical
Research & Development, Merck &
Co., Inc., Rahway, New Jersey 07065, United States
| | - Patrick J. Curran
- Quantitative
Biosciences, Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - Peter Dandliker
- Quantitative
Biosciences, Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - Thomas J. Greshock
- Discovery
Chemistry, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Jason Hoar
- Pharmacokinetics,
Pharmacodynamics and Drug Metabolism, Merck
& Co., Inc., Rahway, New Jersey 07065, United States
| | - Alex Kim
- Discovery
Chemistry, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Prabha Karnachi
- Modeling
and Informatics, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Ian Knemeyer
- Pharmacokinetics,
Pharmacodynamics and Drug Metabolism, Merck
& Co., Inc., Boston, Massachusetts 02115, United States
| | - Joseph Kozlowski
- Discovery
Chemistry, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Jian Liu
- Discovery
Chemistry, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Milana Maletic
- Discovery
Chemistry, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Robert Myers
- Department
of Pharmacology, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Vanessa Rada
- Discovery
Chemistry, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Deyou Sha
- Discovery
Chemistry, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Berengere Sauvagnat
- Quantitative
Biosciences, Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - Petr Vachal
- Discovery
Chemistry, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Scott Wolkenberg
- Discovery
Chemistry, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Wensheng Yu
- Discovery
Chemistry, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Younong Yu
- Discovery
Chemistry, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Shane W. Krska
- Discovery
Chemistry, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| |
Collapse
|
2
|
Gurard-Levin ZA, McMillan B, Whittington DA, Doyon B, Scholle MD, Ermolieff J, Bandi M, Liu MS, Amor A, Mallender WD. A duplexed high-throughput mass spectrometry assay for bifunctional POLB polymerase and lyase activity. SLAS Technol 2024; 29:100173. [PMID: 39094983 DOI: 10.1016/j.slast.2024.100173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024]
Abstract
Polymerase β (POLB), with dual functionality as a lyase and polymerase, plays a critical role in the base excision repair (BER) pathway to maintain genomic stability. POLB knockout and rescue studies in BRCA1/2-mutant cancer cell lines revealed that inhibition of lyase and polymerase activity is required for the synthetic lethal interaction observed with PARP inhibitors, highlighting POLB as a valuable therapeutic target. Traditional biochemical assays to screen for enzyme inhibitors focus on a single substrate to product relationship and limit the comprehensive analysis of enzymes such as POLB that utilize multiple substrates or catalyze a multi-step reaction. This report describes the first high-throughput mass spectrometry-based screen to measure the two distinct biochemical activities of POLB in a single assay using a duplexed self-assembled monolayer desorption ionization (SAMDI) mass spectrometry methodology. A multiplexed assay for POLB dual enzymatic activities was developed optimizing for kinetically balanced conditions and a collection of 200,000 diverse small molecules was screened in the duplexed format. Small molecule modulators identified in the screen were confirmed in a traditional fluorescence-based polymerase strand-displacement assay and an orthogonal label-free binding assay using SAMDI affinity selection mass spectrometry (ASMS). This work demonstrates the flexibility of high-throughput mass spectrometry approaches in drug discovery and highlights a novel application of SAMDI technology that opens new avenues for multiplexed high-throughput screening.
Collapse
Affiliation(s)
| | - Brian McMillan
- Tango Therapeutics Inc. 901 Brookline Avenue, Suite 901, Boston, MA, 02215, USA; Jnana Therapeutics. One Design Center Place, Suite 19-400, Boston, MA, 02210, USA
| | | | - Brian Doyon
- Tango Therapeutics Inc. 901 Brookline Avenue, Suite 901, Boston, MA, 02215, USA
| | | | - Jacques Ermolieff
- Tango Therapeutics Inc. 901 Brookline Avenue, Suite 901, Boston, MA, 02215, USA; DICE Therapeutics/Lilly, 400 E Jamie CT, Third Floor, South San Francisco, CA, 94080, USA
| | - Madhavi Bandi
- Tango Therapeutics Inc. 901 Brookline Avenue, Suite 901, Boston, MA, 02215, USA
| | - Mu-Sen Liu
- Tango Therapeutics Inc. 901 Brookline Avenue, Suite 901, Boston, MA, 02215, USA
| | - Alvaro Amor
- Tango Therapeutics Inc. 901 Brookline Avenue, Suite 901, Boston, MA, 02215, USA
| | - William D Mallender
- Tango Therapeutics Inc. 901 Brookline Avenue, Suite 901, Boston, MA, 02215, USA
| |
Collapse
|
3
|
Zhao Y, Liu M, Qin T, Peng Y, Lin G, Che C, Zhu Z. Optimizing the affinity selection mass spectrometry workflow for efficient identification and ranking of potent USP1 inhibitors. SLAS Technol 2024; 29:100174. [PMID: 39094982 DOI: 10.1016/j.slast.2024.100174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024]
Abstract
An optimized Affinity Selection-Mass Spectrometry (AS-MS) workflow has been developed for the efficient identification of potent USP1 inhibitors. USP1 was immobilized on agarose beads, ensuring low small molecule retention, efficient protein capture, and protein stability. The binding affinity of 49 compounds to USP1 was evaluated using the optimized AS-MS method, calculating binding index (BI) values for each compound. Biochemical inhibition assays validated the AS-MS results, revealing a potential correlation between higher BI values and lower IC50 values. This optimized workflow enables rapid identification of high-quality USP1 inhibitor hits, facilitating structure-activity relationship studies and accelerating the discovery of potential cancer therapeutics.
Collapse
Affiliation(s)
- Yi Zhao
- BayRay Innovation Center, Shenzhen Bay Laboratory, Shenzhen, 518132, China.
| | - Meixian Liu
- BayRay Innovation Center, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Tian Qin
- BayRay Innovation Center, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Yongqiang Peng
- BayRay Innovation Center, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Guang Lin
- BayRay Innovation Center, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Chao Che
- BayRay Innovation Center, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Zhendong Zhu
- BayRay Innovation Center, Shenzhen Bay Laboratory, Shenzhen, 518132, China.
| |
Collapse
|
4
|
Zhang P, Ye X, Wang JCK, Baddock HT, Jensvold Z, Foe IT, Loas A, Eaton DL, Hao Q, Nile AH, Pentelute BL. Reversibly Reactive Affinity Selection-Mass Spectrometry Enables Identification of Covalent Peptide Binders. J Am Chem Soc 2024; 146:15627-15639. [PMID: 38771982 DOI: 10.1021/jacs.4c05571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Covalent peptide binders have found applications as activity-based probes and as irreversible therapeutic inhibitors. Currently, there is no rapid, label-free, and tunable affinity selection platform to enrich covalent reactive peptide binders from synthetic libraries. We address this challenge by developing a reversibly reactive affinity selection platform termed ReAct-ASMS enabled by tandem high-resolution mass spectrometry (MS/MS) to identify covalent peptide binders to native protein targets. It uses mixed disulfide-containing peptides to build reversible peptide-protein conjugates that can enrich for covalent variants, which can be sequenced by MS/MS after reduction. Using this platform, we identified covalent peptide binders against two oncoproteins, human papillomavirus 16 early protein 6 (HPV16 E6) and peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 protein (Pin1). The resulting peptide binders efficiently and selectively cross-link Cys58 of E6 at 37 °C and Cys113 of Pin1 at room temperature, respectively. ReAct-ASMS enables the identification of highly selective covalent peptide binders for diverse molecular targets, introducing an applicable platform to assist preclinical therapeutic development pipelines.
Collapse
Affiliation(s)
- Peiyuan Zhang
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Xiyun Ye
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - John C K Wang
- Calico Life Sciences LLC, 1170 Veterans Boulevard, South San Francisco, California 94080, United States
| | - Hannah T Baddock
- Calico Life Sciences LLC, 1170 Veterans Boulevard, South San Francisco, California 94080, United States
| | - Zena Jensvold
- Calico Life Sciences LLC, 1170 Veterans Boulevard, South San Francisco, California 94080, United States
| | - Ian T Foe
- Calico Life Sciences LLC, 1170 Veterans Boulevard, South San Francisco, California 94080, United States
| | - Andrei Loas
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Dan L Eaton
- Calico Life Sciences LLC, 1170 Veterans Boulevard, South San Francisco, California 94080, United States
| | - Qi Hao
- Calico Life Sciences LLC, 1170 Veterans Boulevard, South San Francisco, California 94080, United States
| | - Aaron H Nile
- Calico Life Sciences LLC, 1170 Veterans Boulevard, South San Francisco, California 94080, United States
| | - Bradley L Pentelute
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, Massachusetts 02142, United States
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
5
|
Gu Y, Liu M, Ma L, Quinn RJ. Identification of Ligands for Ion Channels: TRPM2. Chembiochem 2024; 25:e202300790. [PMID: 38242853 DOI: 10.1002/cbic.202300790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/09/2024] [Accepted: 01/17/2024] [Indexed: 01/21/2024]
Abstract
Transient receptor potential melastatin 2 (TRPM2) is a calcium-permeable, nonselective cation channel with a widespread distribution throughout the body. It is involved in many pathological and physiological processes, making it a potential therapeutic target for various diseases, including Alzheimer's disease, Parkinson's disease, and cancers. New analytical techniques are beneficial for gaining a deeper understanding of its involvement in disease pathogenesis and for advancing the drug discovery for TRPM2-related diseases. In this work, we present the application of collision-induced affinity selection mass spectrometry (CIAS-MS) for the direct identification of ligands binding to TRPM2. CIAS-MS circumvents the need for high mass detection typically associated with mass spectrometry of large membrane proteins. Instead, it focuses on the detection of small molecules dissociated from the ligand-protein-detergent complexes. This affinity selection approach consolidates all affinity selection steps within the mass spectrometer, resulting in a streamlined process. We showed the direct identification of a known TRPM2 ligand dissociated from the protein-ligand complex. We demonstrated that CIAS-MS can identify binding ligands from complex mixtures of compounds and screened a compound library against TRPM2. We investigated the impact of voltage increments and ligand concentrations on the dissociation behavior of the binding ligand, revealing a dose-dependent relationship.
Collapse
Affiliation(s)
- Yushu Gu
- Griffith Institute for Drug Discovery, Griffith University, 46 Don Young Rd, Brisbane, Queensland, 4111, Australia
| | - Miaomiao Liu
- Griffith Institute for Drug Discovery, Griffith University, 46 Don Young Rd, Brisbane, Queensland, 4111, Australia
| | - Linlin Ma
- Griffith Institute for Drug Discovery, Griffith University, 46 Don Young Rd, Brisbane, Queensland, 4111, Australia
- School of Environment and Science, Griffith University, N34 1.29, Nathan Campus, Brisbane, Queensland, 4111, Australia
| | - Ronald J Quinn
- Griffith Institute for Drug Discovery, Griffith University, 46 Don Young Rd, Brisbane, Queensland, 4111, Australia
| |
Collapse
|
6
|
Mata JM, van der Nol E, Pomplun SJ. Advances in Ultrahigh Throughput Hit Discovery with Tandem Mass Spectrometry Encoded Libraries. J Am Chem Soc 2023; 145:19129-19139. [PMID: 37556835 PMCID: PMC10472510 DOI: 10.1021/jacs.3c04899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Indexed: 08/11/2023]
Abstract
Discovering new bioactive molecules is crucial for drug development. Finding a hit compound for a new drug target usually requires screening of millions of molecules. Affinity selection based technologies have revolutionized early hit discovery by enabling the rapid screening of libraries with millions or billions of compounds in short timeframes. In this Perspective, we describe recent technology breakthroughs that enable the screening of ultralarge synthetic peptidomimetic libraries with a barcode-free tandem mass spectrometry decoding strategy. A combination of combinatorial synthesis, affinity selection, automated de novo peptide sequencing algorithms, and advances in mass spectrometry instrumentation now enables hit discovery from synthetic libraries with over 100 million members. We provide a perspective on this powerful technology and showcase success stories featuring the discovery of high affinity binders for a number of drug targets including proteins, nucleic acids, and specific cell types. Further, we show the usage of the technology to discover synthetic peptidomimetics with specific functions and reactivity. We predict that affinity selection coupled with tandem mass spectrometry and automated de novo decoding will rapidly evolve further and become a broadly used drug discovery technology.
Collapse
|
7
|
Garrigou M, Sauvagnat B, Duggal R, Boo N, Gopal P, Johnston JM, Partridge A, Sawyer T, Biswas K, Boyer N. Accelerated Identification of Cell Active KRAS Inhibitory Macrocyclic Peptides using Mixture Libraries and Automated Ligand Identification System (ALIS) Technology. J Med Chem 2022; 65:8961-8974. [PMID: 35707970 PMCID: PMC9289880 DOI: 10.1021/acs.jmedchem.2c00154] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
Macrocyclic
peptides can disrupt previously intractable protein–protein
interactions (PPIs) relevant to oncology targets such as KRAS. Early
hits often lack cellular activity and require meticulous improvement
of affinity, permeability, and metabolic stability to become viable
leads. We have validated the use of the Automated Ligand Identification
System (ALIS) to screen oncogenic KRASG12D (GDP) against
mass-encoded mini-libraries of macrocyclic peptides and accelerate
our structure–activity relationship (SAR) exploration. These
mixture libraries were generated by premixing various unnatural amino
acids without the need for the laborious purification of individual
peptides. The affinity ranking of the peptide sequences provided SAR-rich
data sets that led to the selection of novel potency-enhancing substitutions
in our subsequent designs. Additional stability and permeability optimization
resulted in the identification of peptide 7 that inhibited
pERK activity in a pancreatic cancer cell line. More broadly, this
methodology offers an efficient alternative to accelerate the fastidious
hit-to-lead optimization of PPI peptide inhibitors.
Collapse
Affiliation(s)
| | | | - Ruchia Duggal
- Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - Nicole Boo
- MSD International, Singapore 138665, Singapore
| | - Pooja Gopal
- MSD International, Singapore 138665, Singapore
| | | | | | - Tomi Sawyer
- Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - Kaustav Biswas
- Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - Nicolas Boyer
- Merck & Co., Inc., Boston, Massachusetts 02115, United States
| |
Collapse
|
8
|
Cai B, Krusemark CJ. Multiplexed Small‐Molecule‐Ligand Binding Assays by Affinity Labeling and DNA Sequence Analysis**. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Bo Cai
- Department of Medicinal Chemistry and Molecular Pharmacology Purdue Center for Cancer Research Purdue University West Lafayette IN 47907 USA
| | - Casey J. Krusemark
- Department of Medicinal Chemistry and Molecular Pharmacology Purdue Center for Cancer Research Purdue University West Lafayette IN 47907 USA
| |
Collapse
|
9
|
Cai B, Krusemark CJ. Multiplexed Small-Molecule-Ligand Binding Assays by Affinity Labeling and DNA Sequence Analysis. Angew Chem Int Ed Engl 2022; 61:e202113515. [PMID: 34758183 PMCID: PMC8748404 DOI: 10.1002/anie.202113515] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/04/2021] [Indexed: 01/19/2023]
Abstract
Small-molecule binding assays to target proteins are a core component of drug discovery and development. While a number of assay formats are available, significant drawbacks still remain in cost, sensitivity, and throughput. To improve assays by capitalizing on the power of DNA sequence analysis, we have developed an assay method that combines DNA encoding with split-and-pool sample handling. The approach involves affinity labeling of DNA-linked ligands to a protein target. Critically, the labeling event assesses ligand binding and enables subsequent pooling of several samples. Application of a purifying selection on the pool for protein-labeled DNAs allows detection of ligand binding by quantification of DNA barcodes. We demonstrate the approach in both ligand displacement and direct binding formats and demonstrate its utility in determination of relative ligand affinity, profiling ligand specificity, and high-throughput small-molecule screening.
Collapse
Affiliation(s)
- Bo Cai
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA
| | - Casey J Krusemark
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
10
|
Shi EX. High-Throughput Binder Confirmation Using Affinity Selection Mass Spectrometry. Methods Mol Biol 2022; 2541:215-223. [PMID: 36083560 DOI: 10.1007/978-1-0716-2545-3_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Affinity selection mass spectrometry (AS-MS) was recently applied to a new high-throughput binder confirmation (HTBC) platform. The HTBC-AS-MS platform can assess target engagement for hundreds of chemical series per target and is used at GSK to prioritize synthesis decisions for follow-up organic synthesis of DNA-encoded library technology (ELT) hits.
Collapse
Affiliation(s)
- Eric X Shi
- Encoded Library Technologies/NCE Molecular Discovery, R&D Medicinal Science and Technology, GlaxoSmithKline, Cambridge, MA, USA.
| |
Collapse
|
11
|
Xia B, Franklin GJ, Lu X, Bedard KL, Grady LC, Summerfield JD, Shi EX, King BW, Lind KE, Chiu C, Watts E, Bodmer V, Bai X, Marcaurelle LA. DNA-Encoded Library Hit Confirmation: Bridging the Gap Between On-DNA and Off-DNA Chemistry. ACS Med Chem Lett 2021; 12:1166-1172. [PMID: 34267887 PMCID: PMC8274064 DOI: 10.1021/acsmedchemlett.1c00156] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/20/2021] [Indexed: 11/29/2022] Open
Abstract
DNA-encoded library (DEL) technology is a powerful platform for hit identification in academia and the pharmaceutical industry. When conducting off-DNA resynthesis hit confirmation after affinity selection, PCR/sequencing, and data analysis, one typically assumes a "one-to-one" relationship between the DNA tag and the chemical structure of the attached small-molecule it encodes. Because library synthesis often yields a mixture, this approximation increases the risk of overlooking positive discoveries and valuable information. To address this issue, we apply a library synthesis "recipe" strategy for on-DNA resynthesis using a cleavable linker, followed by direct affinity selection mass spectrometry (AS-MS) evaluation and identification of binder(s) from the released small-molecule mixture. We validate and showcase this approach employing the receptor-interacting-protein kinase 2 (RIP2) DEL campaign. We also designed and developed two cleavable linkers to enable this method, a photocleavable linker (nitrophenyl-based) and acid-labile linker (tetrahydropyranyl ether). The strategy provides an effective means of hit identification and rapid determination of key active component(s) of the mixture.
Collapse
Affiliation(s)
- Bing Xia
- Encoded
Library Technologies/NCE Molecular Discovery, R&D Medicinal Science
and Technology, GlaxoSmithKline, 200 Cambridge Park Drive, Cambridge, Massachusetts 02140, United States
| | - G. Joseph Franklin
- Encoded
Library Technologies/NCE Molecular Discovery, R&D Medicinal Science
and Technology, GlaxoSmithKline, 200 Cambridge Park Drive, Cambridge, Massachusetts 02140, United States
| | - Xiaojie Lu
- Encoded
Library Technologies/NCE Molecular Discovery, R&D Medicinal Science
and Technology, GlaxoSmithKline, 200 Cambridge Park Drive, Cambridge, Massachusetts 02140, United States
| | - Katie L. Bedard
- Encoded
Library Technologies/NCE Molecular Discovery, R&D Medicinal Science
and Technology, GlaxoSmithKline, 200 Cambridge Park Drive, Cambridge, Massachusetts 02140, United States
| | - LaShadric C. Grady
- Encoded
Library Technologies/NCE Molecular Discovery, R&D Medicinal Science
and Technology, GlaxoSmithKline, 200 Cambridge Park Drive, Cambridge, Massachusetts 02140, United States
| | - Jennifer D. Summerfield
- Encoded
Library Technologies/NCE Molecular Discovery, R&D Medicinal Science
and Technology, GlaxoSmithKline, 200 Cambridge Park Drive, Cambridge, Massachusetts 02140, United States
| | - Eric X. Shi
- Encoded
Library Technologies/NCE Molecular Discovery, R&D Medicinal Science
and Technology, GlaxoSmithKline, 200 Cambridge Park Drive, Cambridge, Massachusetts 02140, United States
| | - Bryan W. King
- Encoded
Library Technologies/NCE Molecular Discovery, R&D Medicinal Science
and Technology, GlaxoSmithKline, Collegeville, Pennsylvania 19426, United States
| | - Kenneth E. Lind
- Encoded
Library Technologies/NCE Molecular Discovery, R&D Medicinal Science
and Technology, GlaxoSmithKline, 200 Cambridge Park Drive, Cambridge, Massachusetts 02140, United States
| | - Cynthia Chiu
- Encoded
Library Technologies/NCE Molecular Discovery, R&D Medicinal Science
and Technology, GlaxoSmithKline, 200 Cambridge Park Drive, Cambridge, Massachusetts 02140, United States
| | - Eleanor Watts
- Encoded
Library Technologies/NCE Molecular Discovery, R&D Medicinal Science
and Technology, GlaxoSmithKline, 200 Cambridge Park Drive, Cambridge, Massachusetts 02140, United States
| | - Vera Bodmer
- Encoded
Library Technologies/NCE Molecular Discovery, R&D Medicinal Science
and Technology, GlaxoSmithKline, 200 Cambridge Park Drive, Cambridge, Massachusetts 02140, United States
| | - Xiaopeng Bai
- Encoded
Library Technologies/NCE Molecular Discovery, R&D Medicinal Science
and Technology, GlaxoSmithKline, 200 Cambridge Park Drive, Cambridge, Massachusetts 02140, United States
| | - Lisa A. Marcaurelle
- Encoded
Library Technologies/NCE Molecular Discovery, R&D Medicinal Science
and Technology, GlaxoSmithKline, 200 Cambridge Park Drive, Cambridge, Massachusetts 02140, United States
| |
Collapse
|
12
|
Muchiri RN, van Breemen RB. Affinity selection-mass spectrometry for the discovery of pharmacologically active compounds from combinatorial libraries and natural products. JOURNAL OF MASS SPECTROMETRY : JMS 2021; 56:e4647. [PMID: 32955158 DOI: 10.1002/jms.4647] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/15/2020] [Accepted: 08/11/2020] [Indexed: 05/12/2023]
Abstract
Invented to address the high-throughput screening (HTS) demands of combinatorial chemistry, affinity selection-mass spectrometry (AS-MS) utilizes binding interactions between ligands and receptors to isolate pharmacologically active compounds from mixtures of small molecules and then relies on the selectivity, sensitivity, and speed of mass spectrometry to identify them. No radiolabels, fluorophores, or chromophores are required. Although many variations of AS-MS have been devised, three approaches have emerged as the most flexible, productive, and popular, and they differ primarily in how ligand-receptor complexes are separated from nonbinding compounds in the mixture. These are pulsed ultrafiltration (PUF) AS-MS, size exclusion chromatography (SEC) AS-MS, and magnetic microbead affinity selection screening (MagMASS). PUF and SEC AS-MS are solution-phase screening approaches, and MagMASS uses receptors immobilized on magnetic microbeads. Because pools of compounds are screened using AS-MS, each containing hundreds to thousands of potential ligands, hundreds of thousands of compounds can be screened per day. AS-MS is also compatible with complex mixtures of chemically diverse natural products in extracts of botanicals and fungi and microbial cultures, which often contain fluorophores and chromophores that can interfere with convention HTS. Unlike conventional HTS, AS-MS may be used to discover ligands binding to allosteric as well as orthosteric receptor sites, and AS-MS has been useful for discovering ligands to targets that are not easily incorporated into conventional HTS such as membrane-bound receptors.
Collapse
Affiliation(s)
- Ruth N Muchiri
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon, 97331, USA
| | - Richard B van Breemen
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon, 97331, USA
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon, 97331, USA
| |
Collapse
|
13
|
Gabriel J, Höfner G, Wanner KT. Combination of MS Binding Assays and affinity selection mass spectrometry for screening of structurally homogenous libraries as exemplified for a focused oxime library addressing the neuronal GABA transporter 1. Eur J Med Chem 2020; 206:112598. [PMID: 32896797 DOI: 10.1016/j.ejmech.2020.112598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/09/2020] [Accepted: 06/16/2020] [Indexed: 11/30/2022]
Abstract
This study presents an efficient screening approach based on combination of mass spectrometry (MS) based binding assays (MS Binding Assays) and affinity selection mass spectrometry (ASMS) customized for screening of structurally homogeneous libraries sharing a common mass spectrometric fragmentation pattern. After reaction of a nipecotic acid derivative possessing a hydroxylamine functionality with aldehydes, the resulting oxime library was screened accordingly toward the GABA transporter subtype 1 (GAT1), a drug target for several neurological disorders. After assessing sublibraries' activities for inhibition of reporter ligand binding, hits in active ones were directly identified. This could be achieved by recording mass transitions for the reporter ligand as well as those predicted for the library components in a single LC-MS/MS run with a triple quadrupole mass spectrometer in the multiple reaction monitoring mode. Identification of hits with a predefined affinity could be reliably accomplished by calculation of IC50-values from specific binding concentrations of library constituents and reporter ligand. Application of this strategy revealed six hits, from which two of them were resynthesized for further biological evaluation. Thereby, the best one displayed a pKi of 7.38 in MS Binding Assays and a pIC50 of 6.82 in [3H]GABA uptake assays for GAT1.
Collapse
Affiliation(s)
- Jürgen Gabriel
- Faculty of Chemistry and Pharmacy, Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Georg Höfner
- Faculty of Chemistry and Pharmacy, Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Klaus T Wanner
- Faculty of Chemistry and Pharmacy, Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
14
|
Blay V, Otero-Muras I, Annis DA. Solving the Competitive Binding Equilibria between Many Ligands: Application to High-Throughput Screening and Affinity Optimization. Anal Chem 2020; 92:12630-12638. [PMID: 32812419 DOI: 10.1021/acs.analchem.0c02715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Modern small-molecule drug discovery relies on the selective targeting of biological macromolecules by low-molecular weight compounds. Therefore, the binding affinities of candidate drugs to their targets are key for pharmacological activity and clinical use. For drug discovery methods where multiple drug candidates can simultaneously bind to the same target, a competition is established, and the resulting equilibrium depends on the dissociation constants and concentration of all the species present. Such coupling between all equilibrium-governing parameters complicates analysis and development of improved mixture-based, high-throughput drug discovery techniques. In this work, we present an iterative computational algorithm to solve coupled equilibria between an arbitrary number of ligands and a biomolecular target that is efficient and robust. The algorithm does not require the estimation of initial values to rapidly converge to the solution of interest. We explored binding equilibria under ligand/receptor conditions used in mixture-based library screening by affinity selection-mass spectrometry (AS-MS). Our studies support a facile method for affinity-ranking hits. The ranking method involves varying the receptor-to-ligand concentration ratio in a pool of candidate ligands in two sequential AS-MS analyses. The ranking is based on the relative change in bound ligand concentration. The method proposed does not require a known reference ligand and produces a ranking that is insensitive to variations in the concentration of individual compounds, thereby enabling the use of unpurified compounds generated by mixture-based combinatorial synthesis techniques.
Collapse
Affiliation(s)
- Vincent Blay
- Division of Biomaterials and Bioengineering, University of California San Francisco, San Francisco, California 94143, United States
| | - Irene Otero-Muras
- BioProcess Engineering Group, IIM-CSIC, Spanish National Research Council, Vigo 36208, Spain
| | - David Allen Annis
- Aileron Therapeutics, Inc., 490 Arsenal Way, Watertown, Massachusetts 02472, United States
| |
Collapse
|
15
|
Blay V, Tolani B, Ho SP, Arkin MR. High-Throughput Screening: today's biochemical and cell-based approaches. Drug Discov Today 2020; 25:1807-1821. [PMID: 32801051 DOI: 10.1016/j.drudis.2020.07.024] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 07/01/2020] [Accepted: 07/30/2020] [Indexed: 12/13/2022]
Abstract
High-throughput screening (HTS) provides starting chemical matter in the adventure of developing a new drug. In this review, we survey several HTS methods used today for hit identification, organized in two main flavors: biochemical and cell-based assays. Biochemical assays discussed include fluorescence polarization and anisotropy, FRET, TR-FRET, and fluorescence lifetime analysis. Binding-based methods are also surveyed, including NMR, SPR, mass spectrometry, and DSF. On the other hand, cell-based assays discussed include viability, reporter gene, second messenger, and high-throughput microscopy assays. We devote some emphasis to high-content screening, which is becoming very popular. An advisable stage after hit discovery using phenotypic screens is target deconvolution, and we provide an overview of current chemical proteomics, in silico, and chemical genetics tools. Emphasis is made on recent CRISPR/dCas-based screens. Lastly, we illustrate some of the considerations that inform the choice of HTS methods and point to some areas with potential interest for future research.
Collapse
Affiliation(s)
- Vincent Blay
- Division of Biomaterials and Bioengineering, School of Dentistry, University of California San Francisco, San Francisco, CA 94143, USA; Department of Urology, School of Medicine, University of California San Francisco, San Francisco, CA 94143, USA.
| | - Bhairavi Tolani
- Thoracic Oncology Program, Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Sunita P Ho
- Division of Biomaterials and Bioengineering, School of Dentistry, University of California San Francisco, San Francisco, CA 94143, USA; Department of Urology, School of Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - Michelle R Arkin
- Department of Pharmaceutical Chemistry and the Small Molecule Discovery Center, University of California, San Francisco, CA, USA.
| |
Collapse
|
16
|
Rizvi NF, Nickbarg EB. RNA-ALIS: Methodology for screening soluble RNAs as small molecule targets using ALIS affinity-selection mass spectrometry. Methods 2019; 167:28-38. [PMID: 31059829 DOI: 10.1016/j.ymeth.2019.04.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 04/10/2019] [Accepted: 04/30/2019] [Indexed: 12/20/2022] Open
Abstract
Recent advances resulting from the completion of the human genome have shown that RNA has the promise to be a target for small molecule drugs, and therefore represents a previously unexploited class of targets for novel human therapeutics. We recently reported the adaptation of an affinity selection mass spectrometry screening technique, termed ALIS (Automatic Ligand Identification System), to screen and characterize a variety of RNA species from both prokaryotic and eukaryotic sources. We demonstrated that the ALIS technique, which had previously been used for protein targets, was also compatible for screening, ranking and characterizing small molecule ligands for RNA targets. We present here a detailed description of the use of ALIS for screening and characterizing ligands for RNA and discuss issues of validating and testing RNA for use in the ALIS system. We have also further elaborated on issues of RNA stability and testing in the ALIS system and demonstrate that the affinity-selection screening system has the potential to be a general solution for label-free screening and characterization of small molecule drug candidates for RNA targets.
Collapse
|
17
|
In-solution enrichment identifies peptide inhibitors of protein-protein interactions. Nat Chem Biol 2019; 15:410-418. [PMID: 30886434 DOI: 10.1038/s41589-019-0245-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 02/13/2019] [Indexed: 12/14/2022]
Abstract
The use of competitive inhibitors to disrupt protein-protein interactions (PPIs) holds great promise for the treatment of disease. However, the discovery of high-affinity inhibitors can be a challenge. Here we report a platform for improving the affinity of peptide-based PPI inhibitors using non-canonical amino acids. The platform utilizes size exclusion-based enrichment from pools of synthetic peptides (1.5-4 kDa) and liquid chromatography-tandem mass spectrometry-based peptide sequencing to identify high-affinity binders to protein targets, without the need for 'reporter' or 'encoding' tags. Using this approach-which is inherently selective for high-affinity binders-we realized gains in affinity of up to ~100- or ~30-fold for binders to the oncogenic ubiquitin ligase MDM2 or HIV capsid protein C-terminal domain, which inhibit MDM2-p53 interaction or HIV capsid protein C-terminal domain dimerization, respectively. Subsequent macrocyclization of select MDM2 inhibitors rendered them cell permeable and cytotoxic toward cancer cells, demonstrating the utility of the identified compounds as functional PPI inhibitors.
Collapse
|
18
|
Abstract
The advent of transition-metal catalysis (and likewise, bio-catalysis, photoredox-catalysis and organo-catalysis, etc.) promises to greatly increase access to diverse chemical matter in medicinal chemistry, but new catalytic reactions often fail to deliver product in applied synthesis.
Collapse
Affiliation(s)
- Spencer D. Dreher
- Chemistry Capabilities Accelerating Therapeutics
- Merck & Co., Inc
- Kenilworth
- USA
| |
Collapse
|
19
|
Comess KM, McLoughlin SM, Oyer JA, Richardson PL, Stöckmann H, Vasudevan A, Warder SE. Emerging Approaches for the Identification of Protein Targets of Small Molecules - A Practitioners’ Perspective. J Med Chem 2018; 61:8504-8535. [DOI: 10.1021/acs.jmedchem.7b01921] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Kenneth M. Comess
- AbbVie Inc., 1 Waukegan Road, North Chicago, Illinois 60064-1802, United States
| | - Shaun M. McLoughlin
- AbbVie Inc., 1 Waukegan Road, North Chicago, Illinois 60064-1802, United States
| | - Jon A. Oyer
- AbbVie Inc., 1 Waukegan Road, North Chicago, Illinois 60064-1802, United States
| | - Paul L. Richardson
- AbbVie Inc., 1 Waukegan Road, North Chicago, Illinois 60064-1802, United States
| | - Henning Stöckmann
- AbbVie Inc., 1 Waukegan Road, North Chicago, Illinois 60064-1802, United States
| | - Anil Vasudevan
- AbbVie Inc., 1 Waukegan Road, North Chicago, Illinois 60064-1802, United States
| | - Scott E. Warder
- AbbVie Inc., 1 Waukegan Road, North Chicago, Illinois 60064-1802, United States
| |
Collapse
|
20
|
|
21
|
Rizvi NF, Howe JA, Nahvi A, Klein DJ, Fischmann TO, Kim HY, McCoy MA, Walker SS, Hruza A, Richards MP, Chamberlin C, Saradjian P, Butko MT, Mercado G, Burchard J, Strickland C, Dandliker PJ, Smith GF, Nickbarg EB. Discovery of Selective RNA-Binding Small Molecules by Affinity-Selection Mass Spectrometry. ACS Chem Biol 2018; 13:820-831. [PMID: 29412640 DOI: 10.1021/acschembio.7b01013] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recent advances in understanding the relevance of noncoding RNA (ncRNA) to disease have increased interest in drugging ncRNA with small molecules. The recent discovery of ribocil, a structurally distinct synthetic mimic of the natural ligand of the flavin mononucleotide (FMN) riboswitch, has revealed the potential chemical diversity of small molecules that target ncRNA. Affinity-selection mass spectrometry (AS-MS) is theoretically applicable to high-throughput screening (HTS) of small molecules binding to ncRNA. Here, we report the first application of the Automated Ligand Detection System (ALIS), an indirect AS-MS technique, for the selective detection of small molecule-ncRNA interactions, high-throughput screening against large unbiased small-molecule libraries, and identification and characterization of novel compounds (structurally distinct from both FMN and ribocil) that target the FMN riboswitch. Crystal structures reveal that different compounds induce various conformations of the FMN riboswitch, leading to different activity profiles. Our findings validate the ALIS platform for HTS screening for RNA-binding small molecules and further demonstrate that ncRNA can be broadly targeted by chemically diverse yet selective small molecules as therapeutics.
Collapse
Affiliation(s)
- Noreen F. Rizvi
- Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - John A. Howe
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Ali Nahvi
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Daniel J. Klein
- Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | | | - Hai-Young Kim
- Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - Mark A. McCoy
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Scott S. Walker
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Alan Hruza
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | | | - Chad Chamberlin
- Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - Peter Saradjian
- Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | | | - Gabriel Mercado
- Biodesy, Inc., South San Francisco, California 94080, United States
| | - Julja Burchard
- Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | | | | | - Graham F. Smith
- Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | | |
Collapse
|
22
|
Musetti C, Bean MF, Quinque GT, Kwiatkowski C, Szewczuk LM, Baldoni J, Zajac MA. High-Throughput Assessment of Structural Continuity in Biologics. Anal Chem 2018; 90:2970-2975. [PMID: 29369625 PMCID: PMC6349355 DOI: 10.1021/acs.analchem.8b00180] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We demonstrate a high-throughput chemoprinting platform that confirms the consistency in the higher-order structure of protein biologics and is sensitive enough to detect single-point mutations. This method addresses the quality and consistency of the tertiary and quaternary structure of biologic drug products, which is arguably the most important, yet rarely examined, parameter. The method described uses specific small-molecule ligands as molecular probes to assess protein structure. Each library of probe molecules provides a "fingerprint" when taken holistically. After proof-of-concept experiments involving enzymes and antibodies, we were able to detect minor conformational perturbations between four 48 kDa protein mutants that only differ by one amino acid residue.
Collapse
Affiliation(s)
- Caterina Musetti
- Platform Technology and Science, GlaxoSmithKline , 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Mark F Bean
- Platform Technology and Science, GlaxoSmithKline , 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Geoffrey T Quinque
- Platform Technology and Science, GlaxoSmithKline , 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Christopher Kwiatkowski
- Platform Technology and Science, GlaxoSmithKline , 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Lawrence M Szewczuk
- Platform Technology and Science, GlaxoSmithKline , 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - John Baldoni
- Platform Technology and Science, GlaxoSmithKline , 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Matthew A Zajac
- Platform Technology and Science, GlaxoSmithKline , 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| |
Collapse
|
23
|
Brown DG, Brown GA, Centrella P, Certel K, Cooke RM, Cuozzo JW, Dekker N, Dumelin CE, Ferguson A, Fiez-Vandal C, Geschwindner S, Guié MA, Habeshian S, Keefe AD, Schlenker O, Sigel EA, Snijder A, Soutter HT, Sundström L, Troast DM, Wiggin G, Zhang J, Zhang Y, Clark MA. Agonists and Antagonists of Protease-Activated Receptor 2 Discovered within a DNA-Encoded Chemical Library Using Mutational Stabilization of the Target. SLAS DISCOVERY 2018; 23:429-436. [DOI: 10.1177/2472555217749847] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The discovery of ligands via affinity-mediated selection of DNA-encoded chemical libraries is driven by the quality and concentration of the protein target. G-protein-coupled receptors (GPCRs) and other membrane-bound targets can be difficult to isolate in their functional state and at high concentrations, and therefore have been challenging for affinity-mediated selection. Here, we report a successful selection campaign against protease-activated receptor 2 (PAR2). Using a thermo-stabilized mutant of PAR2, we conducted affinity selection using our >100-billion-compound DNA-encoded library. We observed a number of putative ligands enriched upon selection, and subsequent cellular profiling revealed these ligands to comprise both agonists and antagonists. The agonist series shared structural similarity with known agonists. The antagonists were shown to bind in a novel allosteric binding site on the PAR2 protein. This report serves to demonstrate that cell-free affinity selection against GPCRs can be achieved with mutant stabilized protein targets.
Collapse
Affiliation(s)
- Dean G. Brown
- Discovery Sciences, Innovative Medicines and Early Development Biotech Unit, AstraZeneca R&D, Waltham, MA, USA
| | - Giles A. Brown
- Heptares Therapeutics Ltd., Welwyn Garden City, Hertfordshire, UK
| | | | - Kaan Certel
- X-Chem Pharmaceuticals, Waltham, MA, USA
- Novartis Institute for BioMedical Research, Cambridge, MA, USA
| | - Robert M. Cooke
- Heptares Therapeutics Ltd., Welwyn Garden City, Hertfordshire, UK
| | | | - Niek Dekker
- Discovery Sciences, Innovative Medicines and Early Development Biotech Unit, AstraZeneca R&D, Mölndal, Sweden
| | - Christoph E. Dumelin
- X-Chem Pharmaceuticals, Waltham, MA, USA
- Novartis Institute for BioMedical Research, Basel, Switzerland
| | - Andrew Ferguson
- Discovery Sciences, Innovative Medicines and Early Development Biotech Unit, AstraZeneca R&D, Waltham, MA, USA
- X-Chem, Inc., Waltham, MA, USA
| | | | - Stefan Geschwindner
- Discovery Sciences, Innovative Medicines and Early Development Biotech Unit, AstraZeneca R&D, Mölndal, Sweden
| | | | - Sevan Habeshian
- X-Chem Pharmaceuticals, Waltham, MA, USA
- École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | - Oliver Schlenker
- Heptares Therapeutics Ltd., Welwyn Garden City, Hertfordshire, UK
| | | | - Arjan Snijder
- Discovery Sciences, Innovative Medicines and Early Development Biotech Unit, AstraZeneca R&D, Mölndal, Sweden
| | | | - Linda Sundström
- Discovery Sciences, Innovative Medicines and Early Development Biotech Unit, AstraZeneca R&D, Mölndal, Sweden
| | - Dawn M. Troast
- X-Chem Pharmaceuticals, Waltham, MA, USA
- Morphic Therapeutic, Waltham, MA
| | - Giselle Wiggin
- Heptares Therapeutics Ltd., Welwyn Garden City, Hertfordshire, UK
| | - Jing Zhang
- Discovery Sciences, Innovative Medicines and Early Development Biotech Unit, AstraZeneca R&D, Waltham, MA, USA
- Entasis Therapeutics, Waltham, MA
| | - Ying Zhang
- X-Chem Pharmaceuticals, Waltham, MA, USA
| | | |
Collapse
|
24
|
Chen X, Stout S, Mueller U, Boykow G, Visconti R, Siliphaivanh P, Spencer K, Presland J, Kavana M, Basso AD, McLaren DG, Myers RW. Label-Free, LC-MS-Based Assays to Quantitate Small-Molecule Antagonist Binding to the Mammalian BLT1 Receptor. SLAS DISCOVERY 2017; 22:1131-1141. [PMID: 28763622 DOI: 10.1177/2472555217719748] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We have developed and validated label-free, liquid chromatography-mass spectrometry (LC-MS)-based equilibrium direct and competition binding assays to quantitate small-molecule antagonist binding to recombinant human and mouse BLT1 receptors expressed in HEK 293 cell membranes. Procedurally, these binding assays involve (1) equilibration of the BLT1 receptor and probe ligand, with or without a competitor; (2) vacuum filtration through cationic glass fiber filters to separate receptor-bound from free probe ligand; and (3) LC-MS analysis in selected reaction monitoring mode for bound probe ligand quantitation. Two novel, optimized probe ligands, compounds 1 and 2, were identified by screening 20 unlabeled BLT1 antagonists for direct binding. Saturation direct binding studies confirmed the high affinity, and dissociation studies established the rapid binding kinetics of probe ligands 1 and 2. Competition binding assays were established using both probe ligands, and the affinities of structurally diverse BLT1 antagonists were measured. Both binding assay formats can be executed with high specificity and sensitivity and moderate throughput (96-well plate format) using these approaches. This highly versatile, label-free method for studying ligand binding to membrane-associated receptors should find broad application as an alternative to traditional methods using labeled ligands.
Collapse
Affiliation(s)
- Xun Chen
- Discovery, Preclinical and Early Development, Merck & Co., Kenilworth, NJ, USA
| | - Steven Stout
- Discovery, Preclinical and Early Development, Merck & Co., Kenilworth, NJ, USA
| | - Uwe Mueller
- Discovery, Preclinical and Early Development, Merck & Co., Kenilworth, NJ, USA
| | - George Boykow
- Discovery, Preclinical and Early Development, Merck & Co., Kenilworth, NJ, USA
| | - Richard Visconti
- Discovery, Preclinical and Early Development, Merck & Co., Kenilworth, NJ, USA
| | - Phieng Siliphaivanh
- Discovery, Preclinical and Early Development, Merck & Co., Kenilworth, NJ, USA
| | - Kerrie Spencer
- Discovery, Preclinical and Early Development, Merck & Co., Kenilworth, NJ, USA
| | - Jeremy Presland
- Discovery, Preclinical and Early Development, Merck & Co., Kenilworth, NJ, USA
| | - Michael Kavana
- Discovery, Preclinical and Early Development, Merck & Co., Kenilworth, NJ, USA
| | - Andrea D Basso
- Discovery, Preclinical and Early Development, Merck & Co., Kenilworth, NJ, USA
| | - David G McLaren
- Discovery, Preclinical and Early Development, Merck & Co., Kenilworth, NJ, USA
| | - Robert W Myers
- Discovery, Preclinical and Early Development, Merck & Co., Kenilworth, NJ, USA
| |
Collapse
|
25
|
Walker SS, Degen D, Nickbarg E, Carr D, Soriano A, Mandal M, Painter RE, Sheth P, Xiao L, Sher X, Murgolo N, Su J, Olsen DB, Ebright RH, Young K. Affinity Selection-Mass Spectrometry Identifies a Novel Antibacterial RNA Polymerase Inhibitor. ACS Chem Biol 2017; 12:1346-1352. [PMID: 28323406 DOI: 10.1021/acschembio.6b01133] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The growing prevalence of drug resistant bacteria is a significant global threat to human health. The antibacterial drug rifampin, which functions by inhibiting bacterial RNA polymerase (RNAP), is an important part of the antibacterial armamentarium. Here, in order to identify novel inhibitors of bacterial RNAP, we used affinity-selection mass spectrometry to screen a chemical library for compounds that bind to Escherichia coli RNAP. We identified a novel small molecule, MRL-436, that binds to RNAP, inhibits RNAP, and exhibits antibacterial activity. MRL-436 binds to RNAP through a binding site that differs from the rifampin binding site, inhibits rifampin-resistant RNAP derivatives, and exhibits antibacterial activity against rifampin-resistant strains. Isolation of mutants resistant to the antibacterial activity of MRL-436 yields a missense mutation in codon 622 of the rpoC gene encoding the RNAP β' subunit or a null mutation in the rpoZ gene encoding the RNAP ω subunit, confirming that RNAP is the functional cellular target for the antibacterial activity of MRL-436, and indicating that RNAP β' subunit residue 622 and the RNAP ω subunit are required for the antibacterial activity of MRL-436. Similarity between the resistance determinant for MRL-436 and the resistance determinant for the cellular alarmone ppGpp suggests a possible similarity in binding site and/or induced conformational state for MRL-436 and ppGpp.
Collapse
Affiliation(s)
- Scott S. Walker
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - David Degen
- Department
of Chemistry and Waksman Institute, Rutgers University, Piscataway, New Jersey 08854, United States
| | | | - Donna Carr
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Aileen Soriano
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Mihir Mandal
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | | | - Payal Sheth
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Li Xiao
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Xinwei Sher
- Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | | | - Jing Su
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - David B. Olsen
- Merck & Co., Inc., Upper Gwynedd, Pennsylvania 19454, United States
| | - Richard H. Ebright
- Department
of Chemistry and Waksman Institute, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Katherine Young
- Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| |
Collapse
|
26
|
Rossato M, Miralles G, M'Kadmi C, Maingot M, Amblard M, Mouillac B, Gagne D, Martinez J, Subra G, Enjalbal C, Cantel S. Quantitative MALDI-MS Binding Assays: An Alternative to Radiolabeling. ChemMedChem 2016; 11:2582-2587. [PMID: 27922213 DOI: 10.1002/cmdc.201600447] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 10/27/2016] [Indexed: 12/20/2022]
Abstract
Radiolabeling of ligands is still the gold standard in the study of high-affinity receptor-ligand interactions. In an effort toward safer and simpler alternatives to the use of radioisotopes, we developed a quantitative and highly sensitive matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) method that relies on the use of chemically tagged ligands designed to be specifically detectable when present as traces in complex biological mixtures such as cellular lysates. This innovative technology allows easy, sensitive detection and accurate quantification of analytes at the sub-nanomolar level. After statistical validation, we were able to perform pharmacological evaluations of G protein-coupled receptor (V1A-R)-ligand interactions. Both saturation and competitive binding assays were successfully processed.
Collapse
Affiliation(s)
- Maxime Rossato
- Institut des Biomolécules Max Mousseron (IBMM), UMR5247 CNRS, ENSCM, Université de Montpellier, Place E. Bataillon, 34095, Montpellier Cedex 5, France
| | - Guillaume Miralles
- Institut des Biomolécules Max Mousseron (IBMM), UMR5247 CNRS, ENSCM, Université de Montpellier, Place E. Bataillon, 34095, Montpellier Cedex 5, France
| | - Céline M'Kadmi
- Institut des Biomolécules Max Mousseron (IBMM), UMR5247 CNRS, ENSCM, Université de Montpellier, Place E. Bataillon, 34095, Montpellier Cedex 5, France
| | - Mathieu Maingot
- Institut des Biomolécules Max Mousseron (IBMM), UMR5247 CNRS, ENSCM, Université de Montpellier, Place E. Bataillon, 34095, Montpellier Cedex 5, France
| | - Muriel Amblard
- Institut des Biomolécules Max Mousseron (IBMM), UMR5247 CNRS, ENSCM, Université de Montpellier, Place E. Bataillon, 34095, Montpellier Cedex 5, France
| | - Bernard Mouillac
- Institut de Génomique Fonctionnelle (IGF), 141 Rue de la Cardonille, 34090, Montpellier, France
| | - Didier Gagne
- Institut des Biomolécules Max Mousseron (IBMM), UMR5247 CNRS, ENSCM, Université de Montpellier, Place E. Bataillon, 34095, Montpellier Cedex 5, France
| | - Jean Martinez
- Institut des Biomolécules Max Mousseron (IBMM), UMR5247 CNRS, ENSCM, Université de Montpellier, Place E. Bataillon, 34095, Montpellier Cedex 5, France
| | - Gilles Subra
- Institut des Biomolécules Max Mousseron (IBMM), UMR5247 CNRS, ENSCM, Université de Montpellier, Place E. Bataillon, 34095, Montpellier Cedex 5, France
| | - Christine Enjalbal
- Institut des Biomolécules Max Mousseron (IBMM), UMR5247 CNRS, ENSCM, Université de Montpellier, Place E. Bataillon, 34095, Montpellier Cedex 5, France
| | - Sonia Cantel
- Institut des Biomolécules Max Mousseron (IBMM), UMR5247 CNRS, ENSCM, Université de Montpellier, Place E. Bataillon, 34095, Montpellier Cedex 5, France
| |
Collapse
|
27
|
Imaduwage KP, Go EP, Zhu Z, Desaire H. HAMS: High-Affinity Mass Spectrometry Screening. A High-Throughput Screening Method for Identifying the Tightest-Binding Lead Compounds for Target Proteins with No False Positive Identifications. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:1870-1877. [PMID: 27600575 PMCID: PMC5501305 DOI: 10.1007/s13361-016-1472-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 07/21/2016] [Accepted: 07/23/2016] [Indexed: 06/06/2023]
Abstract
A major challenge in drug discovery is the identification of high affinity lead compounds that bind a particular target protein; these leads are typically identified by high throughput screens. Mass spectrometry has become a detection method of choice in drug screening assays because the target and the ligand need not be modified. Label-free assays are advantageous because they can be developed more rapidly than assays requiring labels, and they eliminate the risk of the label interfering with the binding event. However, in commonly used MS-based screening methods, detection of false positives is a major challenge. Here, we describe a detection strategy designed to eliminate false positives. In this approach, the protein and the ligands are incubated together, and the non-binders are separated for detection. Hits (protein binders) are not detectable by MS after incubation with the protein, but readily identifiable by MS when the target protein is not present in the incubation media. The assay was demonstrated using three different proteins and hundreds of non-inhibitors; no false positive hits were identified in any experiment. The assay can be tuned to select for ligands of a particular binding affinity by varying the quantity of protein used and the immobilization method. As examples, the method selectively detected inhibitors that have Ki values of 0.2 μM, 50 pM, and 700 pM. These findings demonstrate that the approach described here compares favorably with traditional MS-based screening methods. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Kasun P Imaduwage
- The Ralph N. Adams Institute for Bioanalytical Chemistry and Department of Chemistry, University of Kansas, 2030 Becker Drive, Lawrence, KS, 66047, USA
| | - Eden P Go
- The Ralph N. Adams Institute for Bioanalytical Chemistry and Department of Chemistry, University of Kansas, 2030 Becker Drive, Lawrence, KS, 66047, USA
| | - Zhikai Zhu
- The Ralph N. Adams Institute for Bioanalytical Chemistry and Department of Chemistry, University of Kansas, 2030 Becker Drive, Lawrence, KS, 66047, USA
| | - Heather Desaire
- The Ralph N. Adams Institute for Bioanalytical Chemistry and Department of Chemistry, University of Kansas, 2030 Becker Drive, Lawrence, KS, 66047, USA.
| |
Collapse
|
28
|
Zaretsky S, Rai V, Gish G, Forbes MW, Kofler M, Yu JCY, Tan J, Hickey JL, Pawson T, Yudin AK. Twisted amide electrophiles enable cyclic peptide sequencing. Org Biomol Chem 2016; 13:7384-8. [PMID: 26077966 DOI: 10.1039/c5ob01050k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
There is an ever-increasing interest in synthetic methods that not only enable peptide macrocyclization, but also facilitate downstream application of the synthesized molecules. We have found that aziridine amides are stereoelectronically attenuated in a macrocyclic environment such that non-specific interactions with biological nucleophiles are reduced or even shut down. The electrophilic reactivity, revealed at high pH, enables peptide sequencing by mass spectrometry, which will further broaden the utility of aziridine amide-containing libraries of macrocycles.
Collapse
Affiliation(s)
- Serge Zaretsky
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George St., Toronto, ON M5S 3H6, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Kutilek VD, Andrews CL, Richards MP, Xu Z, Sun T, Chen Y, Hashke A, Smotrov N, Fernandez R, Nickbarg EB, Chamberlin C, Sauvagnat B, Curran PJ, Boinay R, Saradjian P, Allen SJ, Byrne N, Elsen NL, Ford RE, Hall DL, Kornienko M, Rickert KW, Sharma S, Shipman JM, Lumb KJ, Coleman K, Dandliker PJ, Kariv I, Beutel B. Integration of Affinity Selection-Mass Spectrometry and Functional Cell-Based Assays to Rapidly Triage Druggable Target Space within the NF-κB Pathway. ACTA ACUST UNITED AC 2016; 21:608-19. [PMID: 26969322 DOI: 10.1177/1087057116637353] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 02/15/2016] [Indexed: 11/15/2022]
Abstract
The primary objective of early drug discovery is to associate druggable target space with a desired phenotype. The inability to efficiently associate these often leads to failure early in the drug discovery process. In this proof-of-concept study, the most tractable starting points for drug discovery within the NF-κB pathway model system were identified by integrating affinity selection-mass spectrometry (AS-MS) with functional cellular assays. The AS-MS platform Automated Ligand Identification System (ALIS) was used to rapidly screen 15 NF-κB proteins in parallel against large-compound libraries. ALIS identified 382 target-selective compounds binding to 14 of the 15 proteins. Without any chemical optimization, 22 of the 382 target-selective compounds exhibited a cellular phenotype consistent with the respective target associated in ALIS. Further studies on structurally related compounds distinguished two chemical series that exhibited a preliminary structure-activity relationship and confirmed target-driven cellular activity to NF-κB1/p105 and TRAF5, respectively. These two series represent new drug discovery opportunities for chemical optimization. The results described herein demonstrate the power of combining ALIS with cell functional assays in a high-throughput, target-based approach to determine the most tractable drug discovery opportunities within a pathway.
Collapse
Affiliation(s)
- Victoria D Kutilek
- Department of Pharmacology, Screening and Protein Sciences, Merck & Co, Kenilworth, NJ, USA
| | - Christine L Andrews
- Department of Pharmacology, Screening and Protein Sciences, Merck & Co, Kenilworth, NJ, USA
| | - Matthew P Richards
- Department of Pharmacology, Screening and Protein Sciences, Merck & Co, Kenilworth, NJ, USA
| | - Zangwei Xu
- Department of Pharmacology, Screening and Protein Sciences, Merck & Co, Kenilworth, NJ, USA
| | - Tianxiao Sun
- Department of Pharmacology, Screening and Protein Sciences, Merck & Co, Kenilworth, NJ, USA
| | - Yiping Chen
- Department of Pharmacology, Screening and Protein Sciences, Merck & Co, Kenilworth, NJ, USA
| | - Andrew Hashke
- Department of Pharmacology, Screening and Protein Sciences, Merck & Co, Kenilworth, NJ, USA
| | - Nadya Smotrov
- Department of Pharmacology, Screening and Protein Sciences, Merck & Co, Kenilworth, NJ, USA
| | - Rafael Fernandez
- Department of Pharmacology, Screening and Protein Sciences, Merck & Co, Kenilworth, NJ, USA
| | - Elliott B Nickbarg
- Department of Pharmacology, Screening and Protein Sciences, Merck & Co, Kenilworth, NJ, USA
| | - Chad Chamberlin
- Department of Pharmacology, Screening and Protein Sciences, Merck & Co, Kenilworth, NJ, USA
| | - Berengere Sauvagnat
- Department of Pharmacology, Screening and Protein Sciences, Merck & Co, Kenilworth, NJ, USA
| | - Patrick J Curran
- Department of Pharmacology, Screening and Protein Sciences, Merck & Co, Kenilworth, NJ, USA
| | - Ryan Boinay
- Department of Pharmacology, Screening and Protein Sciences, Merck & Co, Kenilworth, NJ, USA
| | - Peter Saradjian
- Department of Pharmacology, Screening and Protein Sciences, Merck & Co, Kenilworth, NJ, USA
| | - Samantha J Allen
- Department of Pharmacology, Screening and Protein Sciences, Merck & Co, Kenilworth, NJ, USA
| | - Noel Byrne
- Department of Pharmacology, Screening and Protein Sciences, Merck & Co, Kenilworth, NJ, USA
| | - Nathaniel L Elsen
- Department of Pharmacology, Screening and Protein Sciences, Merck & Co, Kenilworth, NJ, USA Current address: AbbVie, North Chicago, IL USA
| | - Rachael E Ford
- Department of Pharmacology, Screening and Protein Sciences, Merck & Co, Kenilworth, NJ, USA
| | - Dawn L Hall
- Department of Pharmacology, Screening and Protein Sciences, Merck & Co, Kenilworth, NJ, USA
| | - Maria Kornienko
- Department of Pharmacology, Screening and Protein Sciences, Merck & Co, Kenilworth, NJ, USA
| | - Keith W Rickert
- Department of Pharmacology, Screening and Protein Sciences, Merck & Co, Kenilworth, NJ, USA Current address: Medimmune, Gaithersburg, MD, USA
| | - Sujata Sharma
- Department of Pharmacology, Screening and Protein Sciences, Merck & Co, Kenilworth, NJ, USA
| | - Jennifer M Shipman
- Department of Pharmacology, Screening and Protein Sciences, Merck & Co, Kenilworth, NJ, USA
| | - Kevin J Lumb
- Department of Pharmacology, Screening and Protein Sciences, Merck & Co, Kenilworth, NJ, USA
| | - Kevin Coleman
- Department of Pharmacology, Screening and Protein Sciences, Merck & Co, Kenilworth, NJ, USA Current address: Arvinas, New Haven, CT, USA
| | - Peter J Dandliker
- Department of Pharmacology, Screening and Protein Sciences, Merck & Co, Kenilworth, NJ, USA
| | - Ilona Kariv
- Department of Pharmacology, Screening and Protein Sciences, Merck & Co, Kenilworth, NJ, USA
| | - Bruce Beutel
- Department of Pharmacology, Screening and Protein Sciences, Merck & Co, Kenilworth, NJ, USA
| |
Collapse
|
30
|
Zhang T, Liu Y, Yang X, Martin GE, Yao H, Shang J, Bugianesi RM, Ellsworth KP, Sonatore LM, Nizner P, Sherer EC, Hill SE, Knemeyer IW, Geissler WM, Dandliker PJ, Helmy R, Wood HB. Definitive Metabolite Identification Coupled with Automated Ligand Identification System (ALIS) Technology: A Novel Approach to Uncover Structure-Activity Relationships and Guide Drug Design in a Factor IXa Inhibitor Program. J Med Chem 2016; 59:1818-29. [PMID: 26871940 DOI: 10.1021/acs.jmedchem.5b01293] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A potent and selective Factor IXa (FIXa) inhibitor was subjected to a series of liver microsomal incubations, which generated a number of metabolites. Using automated ligand identification system-affinity selection (ALIS-AS) methodology, metabolites in the incubation mixture were prioritized by their binding affinities to the FIXa protein. Microgram quantities of the metabolites of interest were then isolated through microisolation analytical capabilities, and structurally characterized using MicroCryoProbe heteronuclear 2D NMR techniques. The isolated metabolites recovered from the NMR experiments were then submitted directly to an in vitro FIXa enzymatic assay. The order of the metabolites' binding affinity to the Factor IXa protein from the ALIS assay was completely consistent with the enzymatic assay results. This work showcases an innovative and efficient approach to uncover structure-activity relationships (SARs) and guide drug design via microisolation-structural characterization and ALIS capabilities.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Medicinal Chemistry, ‡Department of Process and Analytical Chemistry, and ¶Department of Chemistry Modeling and Informatics, Merck Research Laboratories, Merck & Co., Inc. , PO Box 2000, Rahway, New Jersey 07065, United States.,Department of Pharmacology and ⊥Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck Research Laboratories, Merck & Co., Inc. , 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States.,Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, and §Department of Pharmacology, Merck Research Laboratories, Merck & Co., Inc. , 2000 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Yong Liu
- Department of Medicinal Chemistry, ‡Department of Process and Analytical Chemistry, and ¶Department of Chemistry Modeling and Informatics, Merck Research Laboratories, Merck & Co., Inc. , PO Box 2000, Rahway, New Jersey 07065, United States.,Department of Pharmacology and ⊥Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck Research Laboratories, Merck & Co., Inc. , 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States.,Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, and §Department of Pharmacology, Merck Research Laboratories, Merck & Co., Inc. , 2000 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Xianshu Yang
- Department of Medicinal Chemistry, ‡Department of Process and Analytical Chemistry, and ¶Department of Chemistry Modeling and Informatics, Merck Research Laboratories, Merck & Co., Inc. , PO Box 2000, Rahway, New Jersey 07065, United States.,Department of Pharmacology and ⊥Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck Research Laboratories, Merck & Co., Inc. , 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States.,Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, and §Department of Pharmacology, Merck Research Laboratories, Merck & Co., Inc. , 2000 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Gary E Martin
- Department of Medicinal Chemistry, ‡Department of Process and Analytical Chemistry, and ¶Department of Chemistry Modeling and Informatics, Merck Research Laboratories, Merck & Co., Inc. , PO Box 2000, Rahway, New Jersey 07065, United States.,Department of Pharmacology and ⊥Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck Research Laboratories, Merck & Co., Inc. , 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States.,Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, and §Department of Pharmacology, Merck Research Laboratories, Merck & Co., Inc. , 2000 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Huifang Yao
- Department of Medicinal Chemistry, ‡Department of Process and Analytical Chemistry, and ¶Department of Chemistry Modeling and Informatics, Merck Research Laboratories, Merck & Co., Inc. , PO Box 2000, Rahway, New Jersey 07065, United States.,Department of Pharmacology and ⊥Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck Research Laboratories, Merck & Co., Inc. , 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States.,Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, and §Department of Pharmacology, Merck Research Laboratories, Merck & Co., Inc. , 2000 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Jackie Shang
- Department of Medicinal Chemistry, ‡Department of Process and Analytical Chemistry, and ¶Department of Chemistry Modeling and Informatics, Merck Research Laboratories, Merck & Co., Inc. , PO Box 2000, Rahway, New Jersey 07065, United States.,Department of Pharmacology and ⊥Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck Research Laboratories, Merck & Co., Inc. , 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States.,Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, and §Department of Pharmacology, Merck Research Laboratories, Merck & Co., Inc. , 2000 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Randal M Bugianesi
- Department of Medicinal Chemistry, ‡Department of Process and Analytical Chemistry, and ¶Department of Chemistry Modeling and Informatics, Merck Research Laboratories, Merck & Co., Inc. , PO Box 2000, Rahway, New Jersey 07065, United States.,Department of Pharmacology and ⊥Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck Research Laboratories, Merck & Co., Inc. , 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States.,Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, and §Department of Pharmacology, Merck Research Laboratories, Merck & Co., Inc. , 2000 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Kenneth P Ellsworth
- Department of Medicinal Chemistry, ‡Department of Process and Analytical Chemistry, and ¶Department of Chemistry Modeling and Informatics, Merck Research Laboratories, Merck & Co., Inc. , PO Box 2000, Rahway, New Jersey 07065, United States.,Department of Pharmacology and ⊥Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck Research Laboratories, Merck & Co., Inc. , 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States.,Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, and §Department of Pharmacology, Merck Research Laboratories, Merck & Co., Inc. , 2000 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Lisa M Sonatore
- Department of Medicinal Chemistry, ‡Department of Process and Analytical Chemistry, and ¶Department of Chemistry Modeling and Informatics, Merck Research Laboratories, Merck & Co., Inc. , PO Box 2000, Rahway, New Jersey 07065, United States.,Department of Pharmacology and ⊥Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck Research Laboratories, Merck & Co., Inc. , 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States.,Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, and §Department of Pharmacology, Merck Research Laboratories, Merck & Co., Inc. , 2000 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Peter Nizner
- Department of Medicinal Chemistry, ‡Department of Process and Analytical Chemistry, and ¶Department of Chemistry Modeling and Informatics, Merck Research Laboratories, Merck & Co., Inc. , PO Box 2000, Rahway, New Jersey 07065, United States.,Department of Pharmacology and ⊥Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck Research Laboratories, Merck & Co., Inc. , 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States.,Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, and §Department of Pharmacology, Merck Research Laboratories, Merck & Co., Inc. , 2000 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Edward C Sherer
- Department of Medicinal Chemistry, ‡Department of Process and Analytical Chemistry, and ¶Department of Chemistry Modeling and Informatics, Merck Research Laboratories, Merck & Co., Inc. , PO Box 2000, Rahway, New Jersey 07065, United States.,Department of Pharmacology and ⊥Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck Research Laboratories, Merck & Co., Inc. , 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States.,Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, and §Department of Pharmacology, Merck Research Laboratories, Merck & Co., Inc. , 2000 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Susan E Hill
- Department of Medicinal Chemistry, ‡Department of Process and Analytical Chemistry, and ¶Department of Chemistry Modeling and Informatics, Merck Research Laboratories, Merck & Co., Inc. , PO Box 2000, Rahway, New Jersey 07065, United States.,Department of Pharmacology and ⊥Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck Research Laboratories, Merck & Co., Inc. , 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States.,Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, and §Department of Pharmacology, Merck Research Laboratories, Merck & Co., Inc. , 2000 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Ian W Knemeyer
- Department of Medicinal Chemistry, ‡Department of Process and Analytical Chemistry, and ¶Department of Chemistry Modeling and Informatics, Merck Research Laboratories, Merck & Co., Inc. , PO Box 2000, Rahway, New Jersey 07065, United States.,Department of Pharmacology and ⊥Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck Research Laboratories, Merck & Co., Inc. , 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States.,Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, and §Department of Pharmacology, Merck Research Laboratories, Merck & Co., Inc. , 2000 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Wayne M Geissler
- Department of Medicinal Chemistry, ‡Department of Process and Analytical Chemistry, and ¶Department of Chemistry Modeling and Informatics, Merck Research Laboratories, Merck & Co., Inc. , PO Box 2000, Rahway, New Jersey 07065, United States.,Department of Pharmacology and ⊥Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck Research Laboratories, Merck & Co., Inc. , 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States.,Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, and §Department of Pharmacology, Merck Research Laboratories, Merck & Co., Inc. , 2000 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Peter J Dandliker
- Department of Medicinal Chemistry, ‡Department of Process and Analytical Chemistry, and ¶Department of Chemistry Modeling and Informatics, Merck Research Laboratories, Merck & Co., Inc. , PO Box 2000, Rahway, New Jersey 07065, United States.,Department of Pharmacology and ⊥Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck Research Laboratories, Merck & Co., Inc. , 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States.,Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, and §Department of Pharmacology, Merck Research Laboratories, Merck & Co., Inc. , 2000 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Roy Helmy
- Department of Medicinal Chemistry, ‡Department of Process and Analytical Chemistry, and ¶Department of Chemistry Modeling and Informatics, Merck Research Laboratories, Merck & Co., Inc. , PO Box 2000, Rahway, New Jersey 07065, United States.,Department of Pharmacology and ⊥Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck Research Laboratories, Merck & Co., Inc. , 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States.,Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, and §Department of Pharmacology, Merck Research Laboratories, Merck & Co., Inc. , 2000 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Harold B Wood
- Department of Medicinal Chemistry, ‡Department of Process and Analytical Chemistry, and ¶Department of Chemistry Modeling and Informatics, Merck Research Laboratories, Merck & Co., Inc. , PO Box 2000, Rahway, New Jersey 07065, United States.,Department of Pharmacology and ⊥Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck Research Laboratories, Merck & Co., Inc. , 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States.,Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, and §Department of Pharmacology, Merck Research Laboratories, Merck & Co., Inc. , 2000 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| |
Collapse
|
31
|
Qin S, Ren Y, Fu X, Shen J, Chen X, Wang Q, Bi X, Liu W, Li L, Liang G, Yang C, Shui W. Multiple ligand detection and affinity measurement by ultrafiltration and mass spectrometry analysis applied to fragment mixture screening. Anal Chim Acta 2015; 886:98-106. [PMID: 26320641 DOI: 10.1016/j.aca.2015.06.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 05/20/2015] [Accepted: 06/04/2015] [Indexed: 12/11/2022]
Abstract
Binding affinity of a small molecule drug candidate to a therapeutically relevant biomolecular target is regarded the first determinant of the candidate's efficacy. Although the ultrafiltration-LC/MS (UF-LC/MS) assay enables efficient ligand discovery for a specific target from a mixed pool of compounds, most previous analysis allowed for relative affinity ranking of different ligands. Moreover, the reliability of affinity measurement for multiple ligands with UF-LC/MS has hardly been strictly evaluated. In this study, we examined the accuracy of K(d) determination through UF-LC/MS by comparison with classical ITC measurement. A single-point K(d) calculation method was found to be suitable for affinity measurement of multiple ligands bound to the same target when binding competition is minimized. A second workflow based on analysis of the unbound fraction of compounds was then developed, which simplified sample preparation as well as warranted reliable ligand discovery. The new workflow implemented in a fragment mixture screen afforded rapid and sensitive detection of low-affinity ligands selectively bound to the RNA polymerase NS5B of hepatitis C virus. More importantly, ligand identification and affinity measurement for mixture-based fragment screens by UF-LC/MS were in good accordance with single ligand evaluation by conventional SPR analysis. This new approach is expected to become a valuable addition to the arsenal of high-throughput screening techniques for fragment-based drug discovery.
Collapse
Affiliation(s)
- Shanshan Qin
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; High-throughput Molecular Drug Discovery Center, Tianjin Joint Academy of Biotechnology and Medicine, Tianjin 300457, China
| | - Yiran Ren
- High-throughput Molecular Drug Discovery Center, Tianjin Joint Academy of Biotechnology and Medicine, Tianjin 300457, China
| | - Xu Fu
- High-throughput Molecular Drug Discovery Center, Tianjin Joint Academy of Biotechnology and Medicine, Tianjin 300457, China
| | - Jie Shen
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Xin Chen
- High-throughput Molecular Drug Discovery Center, Tianjin Joint Academy of Biotechnology and Medicine, Tianjin 300457, China
| | - Quan Wang
- High-throughput Molecular Drug Discovery Center, Tianjin Joint Academy of Biotechnology and Medicine, Tianjin 300457, China
| | - Xin Bi
- Institute of Elemento-organic Chemistry, Nankai University, Tianjin 300071, China
| | - Wenjing Liu
- High-throughput Molecular Drug Discovery Center, Tianjin Joint Academy of Biotechnology and Medicine, Tianjin 300457, China
| | - Lixin Li
- High-throughput Molecular Drug Discovery Center, Tianjin Joint Academy of Biotechnology and Medicine, Tianjin 300457, China
| | - Guangxin Liang
- Institute of Elemento-organic Chemistry, Nankai University, Tianjin 300071, China
| | - Cheng Yang
- High-throughput Molecular Drug Discovery Center, Tianjin Joint Academy of Biotechnology and Medicine, Tianjin 300457, China
| | - Wenqing Shui
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
| |
Collapse
|
32
|
Deng Y, Shipps GW, Cooper A, English JM, Annis DA, Carr D, Nan Y, Wang T, Zhu HY, Chuang CC, Dayananth P, Hruza AW, Xiao L, Jin W, Kirschmeier P, Windsor WT, Samatar AA. Discovery of novel, dual mechanism ERK inhibitors by affinity selection screening of an inactive kinase. J Med Chem 2014; 57:8817-26. [PMID: 25313996 DOI: 10.1021/jm500847m] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
An affinity-based mass spectrometry screening technology was used to identify novel binders to both nonphosphorylated and phosphorylated ERK2. Screening of inactive ERK2 identified a pyrrolidine analogue 1 that bound to both nonphosphorylated and phosphorylated ERK2 and inhibited ERK2 kinase activity. Chemical optimization identified compound 4 as a novel, potent, and highly selective ERK1,2 inhibitor which not only demonstrated inhibition of phosphorylation of ERK substrate p90RSK but also demonstrated inhibition of ERK1,2 phosphorylation on the activation loop. X-ray cocrystallography revealed that upon binding of compound 4 to ERK2, Tyr34 undergoes a rotation (flip) along with a shift in the poly-Gly rich loop to create a new binding pocket into which 4 can bind. This new binding mode represents a novel mechanism by which high affinity ATP-competitive compounds may achieve excellent kinase selectivity.
Collapse
Affiliation(s)
- Yongqi Deng
- Merck Research Laboratories , 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
O’Connell TN, Ramsay J, Rieth SF, Shapiro MJ, Stroh JG. Solution-Based Indirect Affinity Selection Mass Spectrometry—A General Tool For High-Throughput Screening Of Pharmaceutical Compound Libraries. Anal Chem 2014; 86:7413-20. [DOI: 10.1021/ac500938y] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Thomas N. O’Connell
- Center of Chemistry Innovation and Excellence and ‡Research Informatics, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Jason Ramsay
- Center of Chemistry Innovation and Excellence and ‡Research Informatics, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Steven F. Rieth
- Center of Chemistry Innovation and Excellence and ‡Research Informatics, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Michael J. Shapiro
- Center of Chemistry Innovation and Excellence and ‡Research Informatics, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Justin G. Stroh
- Center of Chemistry Innovation and Excellence and ‡Research Informatics, Pfizer, Inc., Groton, Connecticut 06340, United States
| |
Collapse
|
34
|
Affinity selection-based two-dimensional chromatography coupled with high-performance liquid chromatography-mass spectrometry for discovering xanthine oxidase inhibitors from Radix Salviae Miltiorrhizae. Anal Bioanal Chem 2014; 406:4987-95. [DOI: 10.1007/s00216-014-7902-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 05/12/2014] [Accepted: 05/14/2014] [Indexed: 01/03/2023]
|
35
|
Ng E, Schriemer DC. Emerging challenges in ligand discovery: new opportunities for chromatographic assay. Expert Rev Proteomics 2014; 2:891-900. [PMID: 16307518 DOI: 10.1586/14789450.2.6.891] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Ligand discovery initiatives are facing interesting challenges as ever-increasing numbers of proteins are entering screening programs. As an answer to steady pressure to improve performance in drug discovery, ligand discovery can expect to play an expanded role in generating small molecules as probes to help uncover the function of novel proteins. Chromatographic assay formats can offer new entry points into standard interaction characterization (binding and rate constants) as well as powerful, scaleable methods for compound screening. This review presents recent advancements in chromatographic assay technology, with a particular focus on frontal affinity chromatography as a platform technology for interaction analysis.
Collapse
Affiliation(s)
- Ella Ng
- University of Calgary, SAMS Centre for Proteomics, Department of Biochemistry & Molecular Biology, Health Sciences Center, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada.
| | | |
Collapse
|
36
|
Shi X(E, Wales TE, Elkin C, Kawahata N, Engen JR, Annis DA. Hydrogen exchange-mass spectrometry measures stapled peptide conformational dynamics and predicts pharmacokinetic properties. Anal Chem 2013; 85:11185-8. [PMID: 24215480 PMCID: PMC3883098 DOI: 10.1021/ac403173p] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Peptide drugs have traditionally suffered from poor pharmacokinetic properties due to their conformational flexibility and the interaction of proteases with backbone amide bonds. "Stapled Peptides" are cyclized using an all-hydrocarbon cross-linking strategy to reinforce their α-helical conformation, yielding improved protease resistance and drug-like properties. Here we demonstrate that hydrogen exchange-mass spectrometry (HX-MS) effectively probes the conformational dynamics of Stapled Peptides derived from the survivin-borealin protein-protein interface and predicts their susceptibility to proteolytic degradation. In Stapled Peptides, amide exchange was reduced by over five orders-of-magnitude versus the native peptide sequence depending on staple placement. Furthermore, deuteration kinetics correlated directly with rates of proteolysis to reveal the optimal staple placement for improved drug properties.
Collapse
Affiliation(s)
| | - Thomas E. Wales
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, 02115
| | - Carl Elkin
- Aileron Therapeutics, Inc., Cambridge, MA 02139
| | | | - John R. Engen
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, 02115
| | | |
Collapse
|
37
|
Niu S, Rabuck JN, Ruotolo BT. Ion mobility-mass spectrometry of intact protein–ligand complexes for pharmaceutical drug discovery and development. Curr Opin Chem Biol 2013; 17:809-17. [DOI: 10.1016/j.cbpa.2013.06.019] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 06/17/2013] [Accepted: 06/18/2013] [Indexed: 11/30/2022]
|
38
|
Singh P. Molecular Descriptors in Modelling the Tumour Necrosis Factor-α Converting Enzyme Inhibition Activity of Novel Tartrate-Based Analogues. Indian J Pharm Sci 2013; 75:36-44. [PMID: 23901159 PMCID: PMC3719148 DOI: 10.4103/0250-474x.113539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 01/11/2013] [Accepted: 01/15/2013] [Indexed: 12/31/2022] Open
Abstract
The tumour necrosis factor-α converting enzyme inhibition activity of a series comprising of novel tartrate-based analogues has been quantitatively analysed in terms of molecular descriptors. The statistically validated quantitative structure-activity relationship models provided rationales to explain the inhibition activity of these congeners. The descriptors identified through combinatorial protocol in multiple linear regression analysis have highlighted the role of Moran autocorrelation of lag 7, weighted by atomic van der Waals volume, presence of both prime and nonprime amide carbonyl oxygen in the tartrate moiety and occurrence of five membered ring bearing substituents at varying sites. A few potential novel tartrate-based analogues have been suggested for further investigation.
Collapse
Affiliation(s)
- P Singh
- Department of Chemistry, S. K. Government Post Graduate College, Sikar-332 001, India
| |
Collapse
|
39
|
Rabuck JN, Hyung SJ, Ko KS, Fox CC, Soellner MB, Ruotolo BT. Activation state-selective kinase inhibitor assay based on ion mobility-mass spectrometry. Anal Chem 2013; 85:6995-7002. [PMID: 23845095 DOI: 10.1021/ac4012655] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The discovery of activation state dependent kinase inhibitors, which bind specifically to the inactive conformation of the protein, is considered to be a promising pathway to improved cancer treatments. Identifying such inhibitors is challenging, however, because they can have Kd values similar to molecules known to inhibit kinase function by interacting with the active form. Further, while inhibitor induced changes within the kinase tertiary structure are significant, few technologies are able to correctly assign inhibitor binding modes in a high-throughput fashion based exclusively on protein-inhibitor complex formation and changes in local protein structure. We have developed a new assay, using ion mobility-mass spectrometry, capable of both rapidly detecting inhibitor binding and classifying the resultant kinase binding modes. Here, we demonstrate the ability of our approach to classify a broad set of kinase inhibitors, using micrograms of protein, without the need for protein modification or tagging.
Collapse
Affiliation(s)
- Jessica N Rabuck
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | | | | | | | | | | |
Collapse
|
40
|
Ghosh R, Pan S, Wang L, Lu S. A pulsed tangential-flow ultrafiltration technique for studying protein-drug binding. J Pharm Sci 2013; 102:2679-88. [PMID: 23765403 DOI: 10.1002/jps.23639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 05/17/2013] [Accepted: 05/21/2013] [Indexed: 11/07/2022]
Abstract
We describe a pulsed tangential-flow ultrafiltration technique for rapid analysis of protein-drug binding. A protein-drug pulse was injected into a tangential-flow membrane device and made to flow parallel to the surface of a protein-retaining ultrafiltration membrane. The protein and protein-drug complexes were flushed out of the device in the retentate stream, whereas the free drug present in the permeate stream was quantified using on-line UV detector. The height of the permeate drug peak and its area under the curve were both found to be proportional to the free drug concentration in the injected sample. The fraction of bound drug was determined by comparison with peak obtained with protein-free drug sample. The characteristics of the permeate drug peak such as residence time, peak width, and peak height depended on both feed and permeate flow rates. The proposed technique in addition to being fast was "self-priming" in nature because the injected samples were flushed out of the module along with the retentate and permeate. This feature makes this technique particularly suitable for automated sample analysis. The technique was validated using three-model protein-drug combinations: bovine serum albumin (BSA)-antipyrine, BSA-tryptophan, and BSA-aspirin.
Collapse
Affiliation(s)
- Raja Ghosh
- Department of Chemical Engineering, McMaster University, Hamilton, Ontario L8S 4L7, Canada.
| | | | | | | |
Collapse
|
41
|
Duong-Thi MD, Bergström M, Fex T, Svensson S, Ohlson S, Isaksson R. Weak Affinity Chromatography for Evaluation of Stereoisomers in Early Drug Discovery. ACTA ACUST UNITED AC 2013; 18:748-55. [DOI: 10.1177/1087057113480391] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In early drug discovery (e.g., in fragment screening), recognition of stereoisomeric structures is valuable and guides medicinal chemists to focus only on useful configurations. In this work, we concurrently screened mixtures of stereoisomers and estimated their affinities to a protein target (thrombin) using weak affinity chromatography–mass spectrometry (WAC-MS). Affinity determinations by WAC showed that minor changes in stereoisomeric configuration could have a major impact on affinity. The ability of WAC-MS to provide instant information about stereoselectivity and binding affinities directly from analyte mixtures is a great advantage in fragment library screening and drug lead development.
Collapse
Affiliation(s)
| | - Maria Bergström
- School of Natural Sciences, Linnaeus University, Kalmar, Sweden
| | - Tomas Fex
- Astra & Zeneca AB, R&D, Mölndal, Sweden
| | | | - Sten Ohlson
- School of Natural Sciences, Linnaeus University, Kalmar, Sweden
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Roland Isaksson
- School of Natural Sciences, Linnaeus University, Kalmar, Sweden
| |
Collapse
|
42
|
Vacca A, Francesconi O, Roelens S. BC(50): a generalized, unifying affinity descriptor. CHEM REC 2012; 12:544-66. [PMID: 23001996 DOI: 10.1002/tcr.201200014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Indexed: 11/10/2022]
Abstract
Assessing binding affinities is an unavoidable step that we come across any time interactions between binding species are investigated. A quantitative evaluation of binding affinities relies on the determination of binding constants but, whilst the binding constant fully defines the affinity of a reagent for a ligand when only one complex species is formed, the same is not true when the interacting partners form more than one complex of different stoichiometry, because all complexes contribute to the overall binding affinity. Unfortunately, this situation is the rule rather than the exception in chemical systems, but a generally accepted solution for this issue has not yet been settled. In this Personal Account, we describe the evolution, from the initial idea to a fully developed stage, of a binding descriptor that has been developed with the aim of filling this gap, thereby providing scientists in all fields of chemistry with a unifying tool for the assessment of binding affinities based on the knowledge of the binding constants in systems that involve any number of complex species.
Collapse
Affiliation(s)
- Alberto Vacca
- Dipartimento di Chimica, Università di Firenze, Polo Scientifico e Tecnologico, I-50019 Sesto Fiorentino, Firenze, Italy
| | | | | |
Collapse
|
43
|
Huang X, Cheng CC, Fischmann TO, Duca JS, Yang X, Richards M, Shipps GW. Discovery of a Novel Series of CHK1 Kinase Inhibitors with a Distinctive Hinge Binding Mode. ACS Med Chem Lett 2012; 3:123-8. [PMID: 24900442 DOI: 10.1021/ml200249h] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 01/06/2012] [Indexed: 02/07/2023] Open
Abstract
A novel series of CHK1 inhibitors with a distinctive hinge binding mode, exemplified by 2-aryl-N-(2-(piperazin-1-yl)phenyl)thiazole-4-carboxamide, was discovered through high-throughput screening using the affinity selection-mass spectrometry (AS-MS)-based Automated Ligand Identification System (ALIS) platform. Structure-based ligand design and optimization led to significant improvements in potency to the single digit nanomolar range and hundred-fold selectivity against CDK2.
Collapse
Affiliation(s)
- Xiaohua Huang
- Merck Research Laboratories, 320 Bent Street, Cambridge, Massachusetts
02141, United States
| | - Cliff C. Cheng
- Merck Research Laboratories, 320 Bent Street, Cambridge, Massachusetts
02141, United States
| | - Thierry O. Fischmann
- Merck Research Laboratories, 320 Bent Street, Cambridge, Massachusetts
02141, United States
| | - José S. Duca
- Merck Research Laboratories, 320 Bent Street, Cambridge, Massachusetts
02141, United States
| | - Xianshu Yang
- Merck Research Laboratories, 320 Bent Street, Cambridge, Massachusetts
02141, United States
| | - Matthew Richards
- Merck Research Laboratories, 320 Bent Street, Cambridge, Massachusetts
02141, United States
| | - Gerald W. Shipps
- Merck Research Laboratories, 320 Bent Street, Cambridge, Massachusetts
02141, United States
| |
Collapse
|
44
|
Pacholarz KJ, Garlish RA, Taylor RJ, Barran PE. Mass spectrometry based tools to investigate protein–ligand interactions for drug discovery. Chem Soc Rev 2012; 41:4335-55. [DOI: 10.1039/c2cs35035a] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
45
|
Kemp MM, Weïwer M, Koehler AN. Unbiased binding assays for discovering small-molecule probes and drugs. Bioorg Med Chem 2011; 20:1979-89. [PMID: 22230199 DOI: 10.1016/j.bmc.2011.11.071] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 11/22/2011] [Accepted: 11/30/2011] [Indexed: 11/28/2022]
Abstract
2011 marks the 10-year anniversary of milestone manuscripts describing drafts of the human genome sequence. Over the past decade, a number of new proteins have been linked to disease-many of which fall into classes that have been historically considered challenging from the perspective of drug discovery. Several of these newly associated proteins lack structural information or strong annotation with regard to function, making development of conventional in vitro functional assays difficult. A recent resurgence in the popularity of simple small molecule binding assays has led to new approaches that do not require knowledge of protein structure or function in advance. Here we briefly review selected methods for executing binding assays that have been used successfully to discover small-molecule probes or drug candidates.
Collapse
Affiliation(s)
- Melissa M Kemp
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | | | | |
Collapse
|
46
|
Boeri Erba E, Barylyuk K, Yang Y, Zenobi R. Quantifying Protein–Protein Interactions Within Noncovalent Complexes Using Electrospray Ionization Mass Spectrometry. Anal Chem 2011; 83:9251-9. [DOI: 10.1021/ac201576e] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Elisabetta Boeri Erba
- Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Konstantin Barylyuk
- Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Yang Yang
- Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Renato Zenobi
- Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland
| |
Collapse
|
47
|
Vilenchik LZ, Sheth PR, Chuang CC, Le HV. Affinity characterization-mass spectrometry methodology for quantitative analyses of small molecule protein binding in solution. Anal Biochem 2011; 418:10-8. [PMID: 21726521 DOI: 10.1016/j.ab.2011.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Revised: 06/03/2011] [Accepted: 06/06/2011] [Indexed: 10/18/2022]
Abstract
Affinity characterization by mass spectrometry (AC-MS) is a novel LC-MS methodology for quantitative determination of small molecule ligand binding to macromolecules. Its most distinguishing feature is the direct determination of all three concentration terms of the equilibrium binding equation, i.e., (M), (L), and (ML), which denote the macromolecule, ligand, and the corresponding complex, respectively. Although it is possible to obtain the dissociation constant from a single mixing experiment, saturation analyses are still valuable for assessing the overall binding phenomenon based on an established formalism. In addition to providing the prerequisite dissociation constant and binding stoichiometry, the technique also provides valuable information about the actual solubility of both macromolecule and ligand upon dilution and mixing in binding buffers. The dissociation constants and binding mode for interactions of DNA primase and thymidylate synthetase (TS) with high and low affinity small molecule ligands were obtained using the AC-MS method. The data were consistent with the expected affinity of TS for these ligands based on dissociation constants determined by alternative thermal-denaturation techniques: TdF or TdCD, and also consistent enzyme inhibition constants reported in the literature. The validity of AC-MS was likewise extended to a larger set of soluble protein-ligand systems. It was established as a valuable resource for counter screen and structure-activity relationship studies in drug discovery, especially when other classical techniques could only provide ambiguous results.
Collapse
Affiliation(s)
- Lev Z Vilenchik
- Protein Science, Merck Research Laboratories, Cambridge, MA 02141, USA
| | | | | | | |
Collapse
|
48
|
Silvian LF, Friedman JE, Strauch K, Cachero TG, Day ES, Qian F, Cunningham B, Fung A, Sun L, Shipps GW, Su L, Zheng Z, Kumaravel G, Whitty A. Small molecule inhibition of the TNF family cytokine CD40 ligand through a subunit fracture mechanism. ACS Chem Biol 2011; 6:636-47. [PMID: 21417339 PMCID: PMC3415792 DOI: 10.1021/cb2000346] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BIO8898 is one of several synthetic organic molecules that have recently been reported to inhibit receptor binding and function of the constitutively trimeric tumor necrosis factor (TNF) family cytokine CD40 ligand (CD40L, aka CD154). Small molecule inhibitors of protein-protein interfaces are relatively rare, and their discovery is often very challenging. Therefore, to understand how BIO8898 achieves this feat, we characterized its mechanism of action using biochemical assays and X-ray crystallography. BIO8898 inhibited soluble CD40L binding to CD40-Ig with a potency of IC(50) = 25 μM and inhibited CD40L-dependent apoptosis in a cellular assay. A co-crystal structure of BIO8898 with CD40L revealed that one inhibitor molecule binds per protein trimer. Surprisingly, the compound binds not at the surface of the protein but by intercalating deeply between two subunits of the homotrimeric cytokine, disrupting a constitutive protein-protein interface and breaking the protein's 3-fold symmetry. The compound forms several hydrogen bonds with the protein, within an otherwise hydrophobic binding pocket. In addition to the translational splitting of the trimer, binding of BIO8898 was accompanied by additional local and longer-range conformational perturbations of the protein, both in the core and in a surface loop. Binding of BIO8898 is reversible, and the resulting complex is stable and does not lead to detectable dissociation of the protein trimer. Our results suggest that a set of core aromatic residues that are conserved across a subset of TNF family cytokines might represent a generic hot-spot for the induced-fit binding of trimer-disrupting small molecules.
Collapse
Affiliation(s)
- Laura F. Silvian
- Department of Drug Discovery, Biogen Idec, 12 Cambridge Center, Cambridge, Massachusetts 02142.
,To whom correspondence should be addressed: ,
| | - Jessica E. Friedman
- Department of Drug Discovery, Biogen Idec, 12 Cambridge Center, Cambridge, Massachusetts 02142.
| | - Kathy Strauch
- Department of Drug Discovery, Biogen Idec, 12 Cambridge Center, Cambridge, Massachusetts 02142.
| | - Teresa G. Cachero
- Department of Drug Discovery, Biogen Idec, 12 Cambridge Center, Cambridge, Massachusetts 02142.
| | - Eric S. Day
- Department of Drug Discovery, Biogen Idec, 12 Cambridge Center, Cambridge, Massachusetts 02142.
| | - Fang Qian
- Department of Drug Discovery, Biogen Idec, 12 Cambridge Center, Cambridge, Massachusetts 02142.
| | - Brian Cunningham
- Sunesis Pharmaceuticals, Incorporated, 341 Oyster Point Boulevard, South San Francisco, CA 94080.
| | - Amy Fung
- Sunesis Pharmaceuticals, Incorporated, 341 Oyster Point Boulevard, South San Francisco, CA 94080.
| | - Lihong Sun
- Department of Drug Discovery, Biogen Idec, 12 Cambridge Center, Cambridge, Massachusetts 02142.
| | - Gerald W. Shipps
- Neogenesis Pharmaceuticals Inc., 840 Memorial Dr., Cambridge, MA 02139
| | - Lihe Su
- Department of Drug Discovery, Biogen Idec, 12 Cambridge Center, Cambridge, Massachusetts 02142.
| | - Zhongli Zheng
- Department of Drug Discovery, Biogen Idec, 12 Cambridge Center, Cambridge, Massachusetts 02142.
| | | | - Adrian Whitty
- Boston University, Department of Chemistry, Metcalf Center for Science and Engineering, 590 Commonwealth Ave, Boston, MA 02215.
,To whom correspondence should be addressed: ,
| |
Collapse
|
49
|
Yang X, Xie Y, Pu J, Zhao H, Liao J, Yuan Y, Zhu S, Long G, Zhang C, Yuan H, Chen Y, Liao F. Estimation of affinities of ligands in mixtures via magnetic recovery of target-ligand complexes and chromatographic analyses: chemometrics and an experimental model. BMC Biotechnol 2011; 11:44. [PMID: 21545719 PMCID: PMC3096923 DOI: 10.1186/1472-6750-11-44] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Accepted: 05/05/2011] [Indexed: 11/22/2022] Open
Abstract
Abstract Conclusions This new method is robust and effective for each mixture possessing a limited number of candidate ligands whose molar quantities have moderate differences, and its integration with PCS has promise to routinely practice the mixture-based library strategy.
Collapse
Affiliation(s)
- Xiaolan Yang
- Unit for Analytical Probes and Protein Biotechnology, Key Laboratory of Medical Laboratory Diagnostics of Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Xiao L, Nickbarg E, Wang W, Thomas A, Ziebell M, Prosise WW, Lesburg CA, Taremi SS, Gerlach VL, Le HV, Cheng KC. Evaluation of in vitro PXR-based assays and in silico modeling approaches for understanding the binding of a structurally diverse set of drugs to PXR. Biochem Pharmacol 2011; 81:669-79. [DOI: 10.1016/j.bcp.2010.12.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 11/30/2010] [Accepted: 12/02/2010] [Indexed: 02/04/2023]
|