1
|
Osawa T, Akino T, Obika S. Synthesis, Duplex-Forming Ability, and Enzymatic Stability of Oligonucleotides Modified with Amide-Linked Dinucleotides Containing a 3',4'-Tetrahydropyran-Bridged Nucleic Acid. J Org Chem 2024; 89:269-280. [PMID: 38064209 DOI: 10.1021/acs.joc.3c02019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Replacement of a phosphodiester linkage with an amide linkage can improve the binding affinity of oligonucleotides to complementary RNA and their stability toward nucleases. In addition, restricting the conformation of the sugar moiety and the phosphate backbone in oligonucleotides effectively improves duplex stability. In this study, we designed amide-linked dinucleotides containing a 3',4'-tetrahydropyran-bridged nucleic acid (3',4'-tpBNA) with a constrained sugar conformation as well as a torsion angle ε. Phosphoramidites of the designed dinucleotides were synthesized and incorporated into oligonucleotides. Conformational analysis of the synthesized dinucleotides showed that the sugar conformation of the S-isomer of the amide-linked dinucleotide containing 3',4'-tpBNA was N-type, which has the same conformation as that of the RNA duplex, while that of another R-isomer was S-type. Tm analysis indicated that the oligonucleotides containing the synthesized S-isomer showed RNA-selective hybridizing ability, although their duplex-forming ability was slightly inferior to that of natural oligonucleotides. Interestingly, the stability of the oligonucleotides toward endonucleases was significantly improved by modification with the two types of amide-linked dinucleotides developed in this study.
Collapse
Affiliation(s)
- Takashi Osawa
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Taiki Akino
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Satoshi Obika
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Yamadaoka 1-3, Suita, Osaka 565-0871, Japan
| |
Collapse
|
2
|
Kotikam V, Rozners E. Amide-Modified RNA: Using Protein Backbone to Modulate Function of Short Interfering RNAs. Acc Chem Res 2020; 53:1782-1790. [PMID: 32658452 DOI: 10.1021/acs.accounts.0c00249] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
RNA-based technologies to control gene expression, such as RNA interference (RNAi) and CRISPR-Cas9, have become powerful tools in molecular biology and genomics. The exciting potential that RNAi and CRISPR-Cas9 may also become new therapeutic approaches has reinvigorated interest in chemically modifying RNA to improve its properties for in vivo applications. Chemical modifications can improve enzymatic stability, in vivo delivery, cellular uptake, and sequence specificity as well as minimize off-target activity of short interfering RNAs (siRNAs) and CRISPR associated RNAs. While numerous good solutions for improving stability toward enzymatic degradation have emerged, optimization of the latter functional properties remains challenging. In this Account, we discuss synthesis, structure, and biological activity of novel nonionic analogues of RNA that have the phosphodiester backbone replaced by amide linkages (AM1). Our long-term goal is to use the amide backbone to improve the stability and specificity of siRNAs and other functional RNAs. Our work in this area was motivated by early discoveries that nonionic backbone modifications, including AM1, did not disturb the overall structure or thermal stability of RNA duplexes. We hypothesized that the reduced negative charge and hydrophobic nature of the AM1 backbone modification might be useful in optimizing functional applications through enhanced cellular uptake, and might suppress unwanted off-target effects of siRNAs. NMR and X-ray crystallography studies showed that AM1 was an excellent mimic of phosphodiester linkages in RNA. The local conformational changes caused by the amide linkages were easily accommodated by small adjustments in RNA's conformation. Further, the amide carbonyl group assumed an orientation that is similar to one of the nonbridging P-O bonds, which may enable amide/phosphate mimicry by conserving hydrogen bonding interactions. The crystal structure of a short amide-modified DNA-RNA hybrid in complex with RNase H indicated that the amide N-H could also act as an H-bond donor to stabilize RNA-protein interactions, which is an interaction mode not available to phosphate groups. Functional assays established that amides were well tolerated at internal positions in both strands of siRNAs. Surprisingly, amide modifications in the middle of the guide strand and at the 5'-end of the passenger strand increased RNAi activity compared to unmodified siRNA. Most importantly, an amide linkage between the first and second nucleosides of the passenger strand completely abolished its undesired off-target activity while enhancing the desired RNAi activity. These results suggest that RNAi may tolerate more substantial modifications of siRNAs than the chemistries tried so far. The findings are also important and timely because they demonstrate that amide modifications may reduce off-target activity of siRNAs, which remains an important roadblock for clinical use of RNAi. Taken together, our work suggests that amide linkages have underappreciated potential to optimize the biological and pharmacological properties of RNA. Expanded use of amide linkages in RNA to enhance CRISPR and other technologies requiring chemically stable, functional mimics of noncoding RNAs is expected.
Collapse
Affiliation(s)
- Venubabu Kotikam
- Department of Chemistry, Binghamton University, State University of New York, Binghamton, New York 13902, United States
| | - Eriks Rozners
- Department of Chemistry, Binghamton University, State University of New York, Binghamton, New York 13902, United States
| |
Collapse
|
3
|
Arzel L, Dubreuil D, Dénès F, Silvestre V, Mathé-Allainmat M, Lebreton J. Synthesis of Ribonucleosidic Dimers with an Amide Linkage from d-Xylose. J Org Chem 2016; 81:10742-10758. [DOI: 10.1021/acs.joc.6b01822] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Laurence Arzel
- Université de Nantes, CEISAM-UMR CNRS 6230, Faculté des Sciences et
des Techniques, 2 rue
de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France
| | - Didier Dubreuil
- Université de Nantes, CEISAM-UMR CNRS 6230, Faculté des Sciences et
des Techniques, 2 rue
de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France
| | - Fabrice Dénès
- Université de Nantes, CEISAM-UMR CNRS 6230, Faculté des Sciences et
des Techniques, 2 rue
de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France
| | - Virginie Silvestre
- Université de Nantes, CEISAM-UMR CNRS 6230, Faculté des Sciences et
des Techniques, 2 rue
de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France
| | - Monique Mathé-Allainmat
- Université de Nantes, CEISAM-UMR CNRS 6230, Faculté des Sciences et
des Techniques, 2 rue
de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France
| | - Jacques Lebreton
- Université de Nantes, CEISAM-UMR CNRS 6230, Faculté des Sciences et
des Techniques, 2 rue
de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France
| |
Collapse
|
4
|
Abstract
Oligonucleotide-based therapeutics have made rapid progress in the clinic for treatment of a variety of disease indications. Unmodified oligonucleotides are polyanionic macromolecules with poor drug-like properties. Over the past two decades, medicinal chemists have identified a number of chemical modification and conjugation strategies which can improve the nuclease stability, RNA-binding affinity, and pharmacokinetic properties of oligonucleotides for therapeutic applications. In this perspective, we present a summary of the most commonly used nucleobase, sugar and backbone modification, and conjugation strategies used in oligonucleotide medicinal chemistry.
Collapse
Affiliation(s)
- W Brad Wan
- Department of Medicinal Chemistry, Ionis Pharmaceuticals , 2855 Gazelle Court, Carlsbad, California 92010, United States
| | - Punit P Seth
- Department of Medicinal Chemistry, Ionis Pharmaceuticals , 2855 Gazelle Court, Carlsbad, California 92010, United States
| |
Collapse
|
5
|
Suresh G, Priyakumar UD. Inclusion of methoxy groups inverts the thermodynamic stabilities of DNA-RNA hybrid duplexes: A molecular dynamics simulation study. J Mol Graph Model 2015; 61:150-9. [PMID: 26254870 DOI: 10.1016/j.jmgm.2015.07.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/22/2015] [Accepted: 07/27/2015] [Indexed: 11/30/2022]
Abstract
Modified nucleic acids have found profound applications in nucleic acid based technologies such as antisense and antiviral therapies. Previous studies on chemically modified nucleic acids have suggested that modifications incorporated in furanose sugar especially at 2'-position attribute special properties to nucleic acids when compared to other modifications. 2'-O-methyl modification to deoxyribose sugars of DNA-RNA hybrids is one such modification that increases nucleic acid stability and has become an attractive class of compounds for potential antisense applications. It has been reported that modification of DNA strands with 2'-O-methyl group reverses the thermodynamic stability of DNA-RNA hybrid duplexes. Molecular dynamics simulations have been performed on two hybrid duplexes (DR and RD) which differ from each other and 2'-O-methyl modified counterparts to investigate the effect of 2'-O-methyl modification on their duplex stability. The results obtained suggest that the modification drives the conformations of both the hybrid duplexes towards A-RNA like conformation. The modified hybrid duplexes exhibit significantly contrasting dynamics and hydration patterns compared to respective parent duplexes. In line with the experimental results, the relative binding free energies suggest that the introduced modifications stabilize the less stable DR hybrid, but destabilize the more stable RD duplex. Binding free energy calculations suggest that the increased hydrophobicity is primarily responsible for the reversal of thermodynamic stability of hybrid duplexes. Free energy component analysis further provides insights into the stability of modified duplexes.
Collapse
Affiliation(s)
- Gorle Suresh
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad 500 032, India
| | - U Deva Priyakumar
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad 500 032, India.
| |
Collapse
|
6
|
Mutisya D, Selvam C, Lunstad BD, Pallan PS, Haas A, Leake D, Egli M, Rozners E. Amides are excellent mimics of phosphate internucleoside linkages and are well tolerated in short interfering RNAs. Nucleic Acids Res 2014; 42:6542-51. [PMID: 24813446 PMCID: PMC4041415 DOI: 10.1093/nar/gku235] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 02/20/2014] [Accepted: 03/08/2014] [Indexed: 12/22/2022] Open
Abstract
RNA interference (RNAi) has become an important tool in functional genomics and has an intriguing therapeutic potential. However, the current design of short interfering RNAs (siRNAs) is not optimal for in vivo applications. Non-ionic phosphate backbone modifications may have the potential to improve the properties of siRNAs, but are little explored in RNAi technologies. Using X-ray crystallography and RNAi activity assays, the present study demonstrates that 3'-CH2-CO-NH-5' amides are excellent replacements for phosphodiester internucleoside linkages in RNA. The crystal structure shows that amide-modified RNA forms a typical A-form duplex. The amide carbonyl group points into the major groove and assumes an orientation that is similar to the P-OP2 bond in the phosphate linkage. Amide linkages are well hydrated by tandem waters linking the carbonyl group and adjacent phosphate oxygens. Amides are tolerated at internal positions of both the guide and passenger strand of siRNAs and may increase the silencing activity when placed near the 5'-end of the passenger strand. As a result, an siRNA containing eight amide linkages is more active than the unmodified control. The results suggest that RNAi may tolerate even more extensive amide modification, which may be useful for optimization of siRNAs for in vivo applications.
Collapse
Affiliation(s)
- Daniel Mutisya
- Department of Chemistry, Binghamton University, The State University of New York, Binghamton, NY 13902, USA
| | - Chelliah Selvam
- Department of Chemistry, Binghamton University, The State University of New York, Binghamton, NY 13902, USA
| | - Benjamin D Lunstad
- Global Research and Development in Molecular Biology, Thermo Fisher Scientific Bioscience Division, Lafayette, CO 80026, USA
| | - Pradeep S Pallan
- Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, TN 37232, USA
| | - Amanda Haas
- Global Research and Development in Molecular Biology, Thermo Fisher Scientific Bioscience Division, Lafayette, CO 80026, USA
| | - Devin Leake
- Global Research and Development in Molecular Biology, Thermo Fisher Scientific Bioscience Division, Lafayette, CO 80026, USA
| | - Martin Egli
- Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, TN 37232, USA
| | - Eriks Rozners
- Department of Chemistry, Binghamton University, The State University of New York, Binghamton, NY 13902, USA
| |
Collapse
|
7
|
Suresh G, Priyakumar UD. Atomistic investigation of the effect of incremental modification of deoxyribose sugars by locked nucleic acid (β-D-LNA and α-L-LNA) moieties on the structures and thermodynamics of DNA-RNA hybrid duplexes. J Phys Chem B 2014; 118:5853-63. [PMID: 24845216 DOI: 10.1021/jp5014779] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chemically modified oligonucleotides offer many possibilities in utilizing their special features for a vast number of applications in nucleic acid based therapies and synthetic molecular biology. Locked nucleic acid analogues (α-/β-LNA) are modifications having an extra ring of 2'-O,4'-C-methylene group in the furanose sugar. LNA strands have been shown to exhibit high binding affinity toward RNA and DNA strands, and the resultant duplexes show significantly high melting temperatures. In the present study, molecular dynamics (MD) simulations were performed on DNA-RNA hybrid duplexes by systematically modifying their deoxyribose sugars with locked nucleic acid analogues. Several geometrical and energetic analyses were performed using principal component (PCA) analysis and binding free energy methods to understand the consequence of incorporated isomeric LNA modifications on the structure, dynamics, and stability of DNA-RNA hybrid duplex. The β-modification systematically changes the conformation of the DNA-RNA hybrid duplex whereas drastic changes are observed for α-modification. The fully modified duplexes have distinct properties compared to partial and unmodified duplexes, and the partly modified duplexes have properties intermediate to full strand and unmodified duplexes. The distribution of BI versus BII populations suggests that backbone rearrangement is minimal for β-LNA modification in order to accommodate it in duplexes whereas extensive backbone rearrangement is necessary in order to incorporate α-LNA modification which subsequently alters the energetic and structural properties of the duplexes. The simulation results also suggest that the alteration of DNA-RNA hybrid properties depends on the position of modification and the gap between the modifications.
Collapse
Affiliation(s)
- Gorle Suresh
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology , Hyderabad 500 032, India
| | | |
Collapse
|
8
|
Maláč K, Barvík I. Recognition of 2',5'-linked oligoadenylates by human ribonuclease L: molecular dynamics study. J Mol Model 2014; 20:2123. [PMID: 24633766 DOI: 10.1007/s00894-014-2123-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Accepted: 12/19/2013] [Indexed: 11/29/2022]
Abstract
The capability of current MD simulations to be used as a tool in rational design of agonists of medically interesting enzyme RNase L was tested. Dimerization and enzymatic activity of RNase L is stimulated by 2',5'-linked oligoadenylates (pA₂₅A₂₅A; 2-5A). First, it was necessary to ensure that a complex of monomeric human RNase L and 25A was stable in MD simulations. It turned out that Glu131 had to be protonated. The non-protonated Glu131 caused dissociation of 2-5A from RNase L. Because of the atypical 2'-5' internucleotide linkages and a specific spatial arrangement of the 25A trimer, when a single molecule carries all possible conformers of the glycosidic torsion angle, several versions of the AMBER force field were tested. One that best maintained functionally important interactions of 25A and RNase L was selected for subsequent MD simulations. Furthermore, we wonder whether powerful GPUs are able to produce MD trajectories long enough to convincingly demonstrate effects of subtle perturbations of interactions between 25A and RNase L. Detrimental impacts of various point mutations of RNase L (R155A, F126A, W60A, K89A) on 2-5A binding were observed on a time scale of 200 ns. Finally, 2-5A analogues with a bridged 3'--O,4'--C-alkylene linkage (B) introduced into the adenosine units (A) were used to assess ability of MD simulations to distinguish on the time scale of hundreds of nanoseconds between agonists of RNase L (pA₂₅A₂₅B, pB₂₅A₂₅A, pB₂₅A₂₅B) and inactive analogs (pA₂₅B₂₅A, pA₂₅B₂₅B, pB₂₅B₂₅A, pB₂₅B₂₅B). Agonists were potently bound to RNase L during 200 ns MD runs. For inactive 2-5A analogs, by contrast, significant disruptions of their interactions with RNase L already within 100 ns MD runs were found.
Collapse
Affiliation(s)
- Kamil Maláč
- Faculty of Mathematics and Physics, Institute of Physics, Charles University, Ke Karlovu 5, Prague, 2, 121 16, Czech Republic
| | | |
Collapse
|
9
|
Tanui P, Kennedy SD, Lunstad BD, Haas A, Leake D, Rozners E. Synthesis, biophysical studies and RNA interference activity of RNA having three consecutive amide linkages. Org Biomol Chem 2014; 12:1207-10. [PMID: 24435630 PMCID: PMC3970907 DOI: 10.1039/c3ob42532k] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
RNA sequences having up to three consecutive internal amide linkages were synthesized and studied using UV and NMR spectroscopy. The amide modifications did not interfere with normal base-pairing and A-type RNA conformation. Three consecutive amides were well tolerated in the passenger strand of siRNA and caused little change in RNAi activity.
Collapse
Affiliation(s)
- Paul Tanui
- Department of Chemistry, Binghamton University, The State University of New York, Binghamton, New York 13902, USA.
| | | | | | | | | | | |
Collapse
|
10
|
Li YY, Li XP, Zhang G, Wang YF, Zhang RL, Zhao JS. Synthesis and crystal structure of metal complexes based on 2,6-bis(6-methylquinolin-2-yl)pyridine ligand. RUSS J COORD CHEM+ 2013. [DOI: 10.1134/s1070328413090030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Suresh G, Priyakumar UD. Structures, dynamics, and stabilities of fully modified locked nucleic acid (β-D-LNA and α-L-LNA) duplexes in comparison to pure DNA and RNA duplexes. J Phys Chem B 2013; 117:5556-64. [PMID: 23617391 DOI: 10.1021/jp4016068] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Locked nucleic acid (LNA) is a chemical modification which introduces a -O-CH2- linkage in the furanose sugar of nucleic acids and blocks its conformation in a particular state. Two types of modifications, namely, 2'-O,4'-C-methylene-β-D-ribofuranose (β-D-LNA) and 2'-O,4'-C-methylene-α-L-ribofuranose (α-L-LNA), have been shown to yield RNA and DNA duplex-like structures, respectively. LNA modifications lead to increased melting temperatures of DNA and RNA duplexes, and have been suggested as potential therapeutic agents in antisense therapy. In this study, molecular dynamics (MD) simulations were performed on fully modified LNA duplexes and pure DNA and RNA duplexes sharing a similar sequence to investigate their structure, stabilities, and solvation properties. Both LNA duplexes undergo unwinding of the helical structure compared to the pure DNA and RNA duplexes. Though the α-LNA substituent has been proposed to mimic deoxyribose sugar in its conformational properties, the fully modified duplex was found to exhibit unique structural and dynamic properties with respect to the other three nucleic acid structures. Free energy calculations accurately capture the enhanced stabilization of the LNA duplex structures compared to DNA and RNA molecules as observed in experiments. π-stacking interaction between bases from complementary strands is shown to be one of the contributors to enhanced stabilization upon LNA substitution. A combination of two factors, namely, nature of the -O-CH2- linkage in the LNAs vs their absence in the pure duplexes and similar conformations of the sugar rings in DNA and α-LNA vs the other two, is suggested to contribute to the stark differences among the four duplexes studied here in terms of their structural, dynamic, and energetic properties.
Collapse
Affiliation(s)
- Gorle Suresh
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, India
| | | |
Collapse
|
12
|
Yahara A, Shrestha AR, Yamamoto T, Hari Y, Osawa T, Yamaguchi M, Nishida M, Kodama T, Obika S. Amido-bridged nucleic acids (AmNAs): synthesis, duplex stability, nuclease resistance, and in vitro antisense potency. Chembiochem 2012; 13:2513-6. [PMID: 23081931 DOI: 10.1002/cbic.201200506] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Indexed: 11/06/2022]
Affiliation(s)
- Aiko Yahara
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Selvam C, Thomas S, Abbott J, Kennedy SD, Rozners E. Amides as excellent mimics of phosphate linkages in RNA. Angew Chem Int Ed Engl 2011; 50:2068-70. [PMID: 21344553 DOI: 10.1002/anie.201007012] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Indexed: 11/08/2022]
Affiliation(s)
- Chelliah Selvam
- Department of Chemistry, Binghamton University, The State University of New York, Binghamton, NY 13902, USA
| | | | | | | | | |
Collapse
|
14
|
Selvam C, Thomas S, Abbott J, Kennedy SD, Rozners E. Amides as Excellent Mimics of Phosphate Linkages in RNA. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201007012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
15
|
Kaur H, Arora A, Gogoi K, Solanke P, Gunjal AD, Kumar VA, Maiti S. Effects for the Incorporation of Five-atom Thioacetamido Nucleic Acid (TANA) Backbone on Hybridization Thermodynamics and Kinetics of DNA Duplexes. J Phys Chem B 2009; 113:2944-51. [DOI: 10.1021/jp808747g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Harleen Kaur
- Institute of Genomics and Integrative Biology, CSIR, Mall Road, Delhi 110 007, India, and Division of Organic Chemistry, National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
| | - Amit Arora
- Institute of Genomics and Integrative Biology, CSIR, Mall Road, Delhi 110 007, India, and Division of Organic Chemistry, National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
| | - K. Gogoi
- Institute of Genomics and Integrative Biology, CSIR, Mall Road, Delhi 110 007, India, and Division of Organic Chemistry, National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
| | - P. Solanke
- Institute of Genomics and Integrative Biology, CSIR, Mall Road, Delhi 110 007, India, and Division of Organic Chemistry, National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
| | - Anita D. Gunjal
- Institute of Genomics and Integrative Biology, CSIR, Mall Road, Delhi 110 007, India, and Division of Organic Chemistry, National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
| | - Vaijayanti A. Kumar
- Institute of Genomics and Integrative Biology, CSIR, Mall Road, Delhi 110 007, India, and Division of Organic Chemistry, National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
| | - Souvik Maiti
- Institute of Genomics and Integrative Biology, CSIR, Mall Road, Delhi 110 007, India, and Division of Organic Chemistry, National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
| |
Collapse
|
16
|
Priyakumar UD, Mackerell AD. Atomic detail investigation of the structure and dynamics of DNA.RNA hybrids: a molecular dynamics study. J Phys Chem B 2008; 112:1515-24. [PMID: 18197661 DOI: 10.1021/jp709827m] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
DNA.RNA hybrid duplexes are biologically important molecules and are shown to have potential therapeutic properties. To investigate the relationship between structures, energetics, solvation and RNase H activity of hybrid duplexes in comparison with pure DNA and RNA duplexes, a molecular dynamics study using the CHARMM27 force field was undertaken. The structural properties of all four nucleic acids considered are in very good agreement with the experimental data. The backbone dihedral angles and the puckering of the (deoxy)ribose indicate that the purine rich strands retain their A-/B-like properties but the pyrimidine rich DNA strand undergoes A-B conformational transitions. The minor groove widths of the hybrid structures are narrower than those in the RNA duplex, a requirement for RNase H binding. In addition, sampling of noncanonical phosphodiester backbone dihedrals by the DNA strands, differential solvation properties and helical properties, most notably rise, are suggested to contribute to hybrids being RNase H substrates. Differential RNase H activity toward hybrids containing purine versus pyrimidine rich RNA strands is suggested to be due to sampling of values of the phosphodiester backbone dihedrals in the DNA strands. Notably, the present results indicate that hybrids have decreased flexibility as compared to RNA, in contrast to previous reports.
Collapse
Affiliation(s)
- U Deva Priyakumar
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201, USA
| | | |
Collapse
|
17
|
Gogoi K, Gunjal AD, Phalgune UD, Kumar VA. Synthesis and RNA binding selectivity of oligonucleotides modified with five-atom thioacetamido nucleic acid backbone structures. Org Lett 2007; 9:2697-700. [PMID: 17552532 DOI: 10.1021/ol070990u] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Convenient chemical synthesis and incorporation of dithymidine and thymidine-cytidine dimer blocks connected with a five-atom amide linker N3'-CO-CH2-S-CH2 into oligonucleotides (ONs) are reported. The UV-Tm experiments for binding affinities of these mixed backbone ONs with complementary DNA and RNA sequences revealed important results such as significantly higher RNA-binding selectivity as compared with complementary DNA. NMR studies of the dimer blocks suggested a marginal increase in the N-type sugar conformations over that of the native DNA.
Collapse
Affiliation(s)
- Khirud Gogoi
- Division of Organic Chemistry, National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
| | | | | | | |
Collapse
|
18
|
McDowell SE, Špačková N, Šponer J, Walter NG. Molecular dynamics simulations of RNA: an in silico single molecule approach. Biopolymers 2007; 85:169-84. [PMID: 17080418 PMCID: PMC2018183 DOI: 10.1002/bip.20620] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
RNA molecules are now known to be involved in the processing of genetic information at all levels, taking on a wide variety of central roles in the cell. Understanding how RNA molecules carry out their biological functions will require an understanding of structure and dynamics at the atomistic level, which can be significantly improved by combining computational simulation with experiment. This review provides a critical survey of the state of molecular dynamics (MD) simulations of RNA, including a discussion of important current limitations of the technique and examples of its successful application. Several types of simulations are discussed in detail, including those of structured RNA molecules and their interactions with the surrounding solvent and ions, catalytic RNAs, and RNA-small molecule and RNA-protein complexes. Increased cooperation between theorists and experimentalists will allow expanded judicious use of MD simulations to complement conceptually related single molecule experiments. Such cooperation will open the door to a fundamental understanding of the structure-function relationships in diverse and complex RNA molecules. .
Collapse
Affiliation(s)
- S. Elizabeth McDowell
- Biophysics Research Division, Single Molecule Analysis Group, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109-1055
| | - Nad'a Špačková
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic
| | - Jiří Šponer
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 612 65 Brno, Czech Republic
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague
| | - Nils G. Walter
- Department of Chemistry, Single Molecule Analysis Group, University of Michigan, 930 N. University Avenue, Ann Arbor, MI 48109-1055
| |
Collapse
|
19
|
Lundin KE, Good L, Strömberg R, Gräslund A, Smith CIE. Biological activity and biotechnological aspects of peptide nucleic acid. ADVANCES IN GENETICS 2006; 56:1-51. [PMID: 16735154 DOI: 10.1016/s0065-2660(06)56001-8] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
During the latest decades a number of different nucleic acid analogs containing natural nucleobases on a modified backbone have been synthesized. An example of this is peptide nucleic acid (PNA), a DNA mimic with a noncyclic peptide-like backbone, which was first synthesized in 1991. Owing to its flexible and neutral backbone PNA displays very good hybridization properties also at low-ion concentrations and has subsequently attracted large interest both in biotechnology and biomedicine. Numerous modifications have been made, which could be of value for particular settings. However, the original PNA does so far perform well in many diverse applications. The high biostability makes it interesting for in vivo use, although the very limited diffusion over lipid membranes requires further modifications in order to make it suitable for treatment in eukaryotic cells. The possibility to use this nucleic acid analog for gene regulation and gene editing is discussed. Peptide nucleic acid is now also used for specific genetic detection in a number of diagnostic techniques, as well as for site-specific labeling and hybridization of functional molecules to both DNA and RNA, areas that are also discussed in this chapter.
Collapse
Affiliation(s)
- Karin E Lundin
- Department of Laboratory Medicine, Clinical Research Center Karolinska Institutet, Karolinska University Hospital, Huddinge 141 86 Stockholm, Sweden
| | | | | | | | | |
Collapse
|