1
|
Gambill L, Staubus A, Mo KW, Ameruoso A, Chappell J. A split ribozyme that links detection of a native RNA to orthogonal protein outputs. Nat Commun 2023; 14:543. [PMID: 36725852 PMCID: PMC9892565 DOI: 10.1038/s41467-023-36073-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 01/13/2023] [Indexed: 02/03/2023] Open
Abstract
Individual RNA remains a challenging signal to synthetically transduce into different types of cellular information. Here, we describe Ribozyme-ENabled Detection of RNA (RENDR), a plug-and-play strategy that uses cellular transcripts to template the assembly of split ribozymes, triggering splicing reactions that generate orthogonal protein outputs. To identify split ribozymes that require templating for splicing, we use laboratory evolution to evaluate the activities of different split variants of the Tetrahymena thermophila ribozyme. The best design delivers a 93-fold dynamic range of splicing with RENDR controlling fluorescent protein production in response to an RNA input. We further resolve a thermodynamic model to guide RENDR design, show how input signals can be transduced into diverse outputs, demonstrate portability across different bacteria, and use RENDR to detect antibiotic-resistant bacteria. This work shows how transcriptional signals can be monitored in situ and converted into different types of biochemical information using RNA synthetic biology.
Collapse
Affiliation(s)
- Lauren Gambill
- PhD Program in Systems, Synthetic, and Physical Biology, Rice University, Houston, TX, 77005, USA
| | - August Staubus
- Department of Biosciences, Rice University, Houston, TX, 77005, USA
| | - Kim Wai Mo
- Department of Biosciences, Rice University, Houston, TX, 77005, USA
| | - Andrea Ameruoso
- Department of Biosciences, Rice University, Houston, TX, 77005, USA
| | - James Chappell
- PhD Program in Systems, Synthetic, and Physical Biology, Rice University, Houston, TX, 77005, USA. .,Department of Biosciences, Rice University, Houston, TX, 77005, USA. .,Department of Bioengineering, Rice University, Houston, TX, 77005, USA.
| |
Collapse
|
2
|
Seo MJ, Park JH, Lee KC, Lee YJ, Lee TS, Choi TH, Lee SW, Kim KI, Kang JH. Small Animal PET Imaging of hTERT RNA-Targeted HSV1-tk Gene Expression with Trans-Splicing Ribozyme. Cancer Biother Radiopharm 2019; 35:26-32. [PMID: 31746630 DOI: 10.1089/cbr.2019.2839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background: Trans-splicing ribozymes (TSR) are useful anticancer agents targeting cancer-specific transcripts and replacing the RNA to induce anticancer gene expression specifically and selectively in cancer cells. Similar to other gene therapy methods, it is also important to evaluate the transgene expression for target specificity and ribozyme activity. Materials and Methods: In this study, the authors performed in vivo small animal positron emission tomography (PET) imaging and biodistribution assay to evaluate human telomerase reverse transcriptase (hTERT) RNA-targeting-specific TSR, which directs the expression of herpes simplex virus type 1 thymidine kinase (HSV1-tk) gene selectively in hTERT-positive tumors through targeted RNA replacement of the hTERT transcript. Results: The hTERT RNA-targeted HSV1-tk expression with TSR was monitored by PET imaging with 124I labeled 2'-fluoro-2'-deoxy-1-β-D-arabinofuranosyl-5-iodouracil, which is one of the thymidine derivatives acting as substrates for HSV1-tk, in hTERT-positive tumor-bearing mice. Conclusions: Imaging of hTERT RNA-targeted HSV1-tk expression by TSR could be used in the development of advanced gene therapy using tumor-specific TSR.
Collapse
Affiliation(s)
- Min-Jung Seo
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Ju Hui Park
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Kyo Chul Lee
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Yong Jin Lee
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Tae Sup Lee
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Tae Hyun Choi
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Seong-Wook Lee
- Department of Integrated Life Sciences, Research Institute of Advanced Omics, Dankook University, Yongin, Korea
| | - Kwang Il Kim
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Joo Hyun Kang
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| |
Collapse
|
3
|
Lee CH, Han SR, Lee SW. Group I Intron-Based Therapeutics Through Trans-Splicing Reaction. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 159:79-100. [PMID: 30340790 DOI: 10.1016/bs.pmbts.2018.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In 1982, the Cech group discovered that an intron structure in an rRNA precursor of Tetrahymena thermophila is sufficient to complete splicing without assistance from proteins. This was the first moment that scientists recognized RNAs can have catalytic activities derived from their own unique three-dimensional structures and thus play more various roles in biological processes than thought before. Several additional catalytic RNAs, called ribozymes, were subsequently identified in nature followed by intense studies to reveal their mechanisms of action and to engineer them for use in fields such as molecular cell biology, therapeutics, imaging, etc. Naturally occurring RNA-targeting ribozymes can be broadly classified into two categories by their abilities: Self-cleavage and self-splicing. Since ribozymes use base-pairing to recognize cleavage sites, identification of the catalytic center of naturally occurring ribozymes enables to engineer from "self" to "trans" acting ones which has accelerated to design and use ribozyme as valuable tools in gene therapy fields. Especially, group I intron-based trans-splicing ribozyme has unique property to use as a gene therapeutic agent. It can destroy and simultaneously repair (and/or reprogram) target RNAs to yield the desired therapeutic RNAs, maintaining endogenous spatial and temporal gene regulation of target RNAs. There have been progressive improvements in trans-splicing ribozymes and successful applications of these elements in gene therapy and molecular imaging approaches for various pathogenic conditions. In this chapter, current status of trans-splicing ribozyme therapeutics, focusing on Tetrahymena group I intron-based ribozymes, and their future prospects will be discussed.
Collapse
Affiliation(s)
- Chang Ho Lee
- Department of Integrated Life Sciences, Dankook University, Yongin, Republic of Korea
| | | | - Seong-Wook Lee
- Department of Integrated Life Sciences, Dankook University, Yongin, Republic of Korea; Rznomics Inc., Gwangju, Republic of Korea.
| |
Collapse
|
4
|
Shi Y, Liu W, Zheng H, Li Z, Shi X, Cai S, Jiao Z, Mao W, Xie J, Tian J, Wang F. Imaging of pre-mRNA splicing in living subjects using a genetically encoded luciferase reporter. BIOMEDICAL OPTICS EXPRESS 2018; 9:518-528. [PMID: 29552390 PMCID: PMC5854055 DOI: 10.1364/boe.9.000518] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 12/13/2017] [Accepted: 12/20/2017] [Indexed: 06/08/2023]
Abstract
Pre-mRNA splicing is an essential step in gene expression in most eukaryote genes. Here we present the feasibility of a genetically encoded luciferase reporter to monitor the pre-mRNA splicing process in living cells and animals. We showed that the splicing activity change induced by isoginkgetin could be readily visualized in vitro both in a dose and time dependent manner. Moreover, the pre-mRNA splicing process could be also obviously detected in mice by bioluminescence imaging and confirmed by RT-PCR. Our work provided a reporter system that allows high-throughput screening of chemical libraries to identify potential compounds leading to aberrant patterns of splicing.
Collapse
Affiliation(s)
- Yaru Shi
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710071, China
- Equal contribution
| | - Wei Liu
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi’an, Shaanxi 710032, China
- Equal contribution
| | - Haifeng Zheng
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710071, China
| | - Zhiqiang Li
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710071, China
| | - Xiaorui Shi
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710071, China
| | - Shixuan Cai
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710071, China
| | - Zhiqiang Jiao
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710071, China
| | - Wenjie Mao
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710071, China
| | - Jinrong Xie
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710071, China
| | - Jie Tian
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710071, China
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Fu Wang
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710071, China
| |
Collapse
|
5
|
Lee CH, Han SR, Lee SW. Therapeutic applications of group I intron-based trans-splicing ribozymes. WILEY INTERDISCIPLINARY REVIEWS-RNA 2018; 9:e1466. [PMID: 29383855 DOI: 10.1002/wrna.1466] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 12/10/2017] [Accepted: 12/14/2017] [Indexed: 12/21/2022]
Abstract
Since the breakthrough discovery of catalytic RNAs (ribozymes) in the early 1980s, valuable ribozyme-based gene therapies have been developed for incurable diseases ranging from genetic disorders to viral infections and cancers. Ribozymes can be engineered and used to downregulate or repair pathogenic genes via RNA cleavage mediated by trans-cleaving ribozymes or repair and reprograming mediated by trans-splicing ribozymes, respectively. Uniquely, trans-splicing ribozymes can edit target RNAs via simultaneous destruction and repair (and/or reprograming) to yield the desired therapeutic RNAs, thus selectively inducing therapeutic gene activity in cells expressing the target RNAs. In contrast to traditional gene therapy approaches, such as simple addition of therapeutic transgenes or inhibition of disease-causing genes, the selective repair and/or reprograming abilities of trans-splicing ribozymes in target RNA-expressing cells facilitates the maintenance of endogenous spatial and temporal gene regulation and reduction of disease-associated transcript expression. In molecular imaging technologies, trans-splicing ribozymes can be used to reprogram specific RNAs in living cells and organisms by the 3'-tagging of reporter RNAs. The past two decades have seen progressive improvements in trans-splicing ribozymes and the successful application of these elements in gene therapy and molecular imaging approaches for various pathogenic conditions, such as genetic, infectious, and malignant disease. This review provides an overview of the current status of trans-splicing ribozyme therapeutics, focusing on Tetrahymena group I intron-based ribozymes, and their future prospects. This article is categorized under: RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Chang Ho Lee
- Department of Integrated Life Sciences, Dankook University, Yongin, Republic of Korea
| | - Seung Ryul Han
- Department of Integrated Life Sciences, Dankook University, Yongin, Republic of Korea
| | - Seong-Wook Lee
- Department of Integrated Life Sciences, Dankook University, Yongin, Republic of Korea
| |
Collapse
|
6
|
Design and Experimental Evolution of trans-Splicing Group I Intron Ribozymes. Molecules 2017; 22:molecules22010075. [PMID: 28045452 PMCID: PMC6155759 DOI: 10.3390/molecules22010075] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 12/27/2016] [Accepted: 12/29/2016] [Indexed: 12/31/2022] Open
Abstract
Group I intron ribozymes occur naturally as cis-splicing ribozymes, in the form of introns that do not require the spliceosome for their removal. Instead, they catalyze two consecutive trans-phosphorylation reactions to remove themselves from a primary transcript, and join the two flanking exons. Designed, trans-splicing variants of these ribozymes replace the 3′-portion of a substrate with the ribozyme’s 3′-exon, replace the 5′-portion with the ribozyme’s 5′-exon, or insert/remove an internal sequence of the substrate. Two of these designs have been evolved experimentally in cells, leading to variants of group I intron ribozymes that splice more efficiently, recruit a cellular protein to modify the substrate’s gene expression, or elucidate evolutionary pathways of ribozymes in cells. Some of the artificial, trans-splicing ribozymes are promising as tools in therapy, and as model systems for RNA evolution in cells. This review provides an overview of the different types of trans-splicing group I intron ribozymes that have been generated, and the experimental evolution systems that have been used to improve them.
Collapse
|
7
|
Olson KE, Müller UF. An in vivo selection method to optimize trans-splicing ribozymes. RNA (NEW YORK, N.Y.) 2012; 18:581-589. [PMID: 22274958 PMCID: PMC3285944 DOI: 10.1261/rna.028472.111] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Accepted: 12/01/2011] [Indexed: 05/31/2023]
Abstract
Group I intron ribozymes can repair mutated mRNAs by replacing the 3'-terminal portion of the mRNA with their own 3'-exon. This trans-splicing reaction has the potential to treat genetic disorders and to selectively kill cancer cells or virus-infected cells. However, these ribozymes have not yet been used in therapy, partially due to a low in vivo trans-splicing efficiency. Previous strategies to improve the trans-splicing efficiencies focused on designing and testing individual ribozyme constructs. Here we describe a method that selects the most efficient ribozymes from millions of ribozyme variants. This method uses an in vivo rescue assay where the mRNA of an inactivated antibiotic resistance gene is repaired by trans-splicing group I intron ribozymes. Bacterial cells that express efficient trans-splicing ribozymes are able to grow on medium containing the antibiotic chloramphenicol. We randomized a 5'-terminal sequence of the Tetrahymena thermophila group I intron and screened a library with 9 × 10⁶ ribozyme variants for the best trans-splicing activity. The resulting ribozymes showed increased trans-splicing efficiency and help the design of efficient trans-splicing ribozymes for different sequence contexts. This in vivo selection method can now be used to optimize any sequence in trans-splicing ribozymes.
Collapse
Affiliation(s)
- Karen E. Olson
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA
| | - Ulrich F. Müller
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA
| |
Collapse
|
8
|
Jiang T, Xing B, Rao J. Recent developments of biological reporter technology for detecting gene expression. Biotechnol Genet Eng Rev 2011; 25:41-75. [PMID: 21412349 DOI: 10.5661/bger-25-41] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Reporter gene assay is an invaluable tool for both biomedical and pharmaceutical researches to monitor cellular events associated with gene expression, regulation and signal transduction. On the basis of the alternations in reporter gene activities mediated by attaching response elements to these reporter genes, one sensitive, reliable and convenient assay can be provided to efficiently report the activation of particular messenger cascades and their effects on gene expression and regulations inside cells or living subjects. In this review, we introduce the current status of several commonly used reporter genes such as chloramphenicol acetyltransferase (CAT), alkaline phosphatase (AP), β-galactosidase (β-gal), luciferases, green fluorescent protein (GFP), and β-lactamase. Their applications in monitoring gene expression and regulations in vitro and in vivo will be summarized. With the development of advanced technology in gene expression and optical imaging modalities, reporter genes will become increasingly important in real-time detection of the gene expression at the single-cell level. This synergy will make it possible to understand the molecular basis of diseases, track the effectiveness of pharmaceuticals, monitor the response to therapies and evaluate the development process of new drugs.
Collapse
Affiliation(s)
- Tingting Jiang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore
| | | | | |
Collapse
|
9
|
Wang XL, Wei L, Tao GH, Huang MQ. Synthesis and characterization of magnetic and luminescent Fe3O4/CdTe nanocomposites using aspartic acid as linker. CHINESE CHEM LETT 2011. [DOI: 10.1016/j.cclet.2010.09.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Yang G, Withers SG. Ultrahigh-throughput FACS-based screening for directed enzyme evolution. Chembiochem 2010; 10:2704-15. [PMID: 19780076 DOI: 10.1002/cbic.200900384] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Directed enzyme evolution has proven to be a powerful tool for improving a range of properties of enzymes through consecutive rounds of diversification and selection. However, its success depends heavily on the efficiency of the screening strategy employed. Fluorescence-activated cell sorting (FACS) has recently emerged as a powerful tool for screening enzyme libraries due to its high sensitivity and its ability to analyze as many as 10(8) mutants per day. Applications of FACS screening have allowed the isolation of enzyme variants with significantly improved activities, altered substrate specificities, or even novel functions. This review discusses FACS-based screening for enzymatic activity and its potential application for the directed evolution of enzymes, ribozymes, and catalytic antibodies.
Collapse
Affiliation(s)
- Guangyu Yang
- Centre for High-Throughput Biology (CHiBi) and Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, B.C. V6T 1Z1, Canada
| | | |
Collapse
|
11
|
A medaka model of cancer allowing direct observation of transplanted tumor cells in vivo at a cellular-level resolution. Proc Natl Acad Sci U S A 2009; 106:13832-7. [PMID: 19666513 DOI: 10.1073/pnas.0903999106] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The recent success with small fish as an animal model of cancer with the aid of fluorescence technique has attracted cancer modelers' attention because it would be possible to directly visualize tumor cells in vivo in real time. Here, we report a medaka model capable of allowing the observation of various cell behaviors of transplanted tumor cells, such as cell proliferation and metastasis, which were visualized easily in vivo. We established medaka melanoma (MM) cells stably expressing GFP and transplanted them into nonirradiated and irradiated medaka. The tumor cells were grown at the injection sites in medaka, and the spatiotemporal changes were visualized under a fluorescence stereoscopic microscope at a cellular-level resolution, and even at a single-cell level. Tumor dormancy and metastasis were also observed. Interestingly, in irradiated medaka, accelerated tumor growth and metastasis of the transplanted tumor cells were directly visualized. Our medaka model provides an opportunity to visualize in vivo tumor cells "as seen in a culture dish" and would be useful for in vivo tumor cell biology.
Collapse
|
12
|
So MK, Gowrishankar G, Hasegawa S, Chung JK, Rao J. Imaging Target mRNA and siRNA-Mediated Gene Silencing In Vivo with Ribozyme-Based Reporters. Chembiochem 2008; 9:2682-91. [DOI: 10.1002/cbic.200800370] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
13
|
Hong SH, Jeong JS, Lee YJ, Jung HI, Kim KT, Kim YH, Lee YS, Lee SW, Bae CD, Park J, Kim IH. Molecular imaging of endogenous mRNA expression in a mouse tumor model by adenovirus harboringtrans-splicing ribozyme. FEBS Lett 2007; 581:5396-400. [DOI: 10.1016/j.febslet.2007.10.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2007] [Revised: 10/17/2007] [Accepted: 10/18/2007] [Indexed: 11/27/2022]
|
14
|
Yao H, So MK, Rao J. A Bioluminogenic Substrate for In Vivo Imaging of β-Lactamase Activity. Angew Chem Int Ed Engl 2007. [DOI: 10.1002/ange.200701931] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
15
|
Yao H, So MK, Rao J. A Bioluminogenic Substrate for In Vivo Imaging of β-Lactamase Activity. Angew Chem Int Ed Engl 2007; 46:7031-4. [PMID: 17676567 DOI: 10.1002/anie.200701931] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Hequan Yao
- Molecular Imaging Program at Stanford, Department of Radiology, Biophysics, Cancer Biology Programs, Stanford University School of Medicine, 1201 Welch Road, Stanford, CA 94305-5484, USA
| | | | | |
Collapse
|
16
|
Abstract
Ribozymes are RNA molecules capable of associating with other RNA molecules through base-pairing and catalyzing various reactions involving phosphate group transfer. Of particular interest to us is the well known ribozyme from Tetrahymena thermophila capable of catalyzing RNA splicing in eukaryotic systems, chiefly because of its potential use as a gene therapy agent. In this article we review the progress made towards visualizing the RNA splicing mediated by the Tetrahymena ribozyme in single living mammalian cells with the beta-lactamase reporter system and highlight the development made in imaging RNA splicing with the luciferase reporter system in living animals.
Collapse
Affiliation(s)
- Gayatri Gowrishankar
- Molecular Imaging Program at Stanford, Department of Radiology & Bio-X Program, Cancer Biology Program, Stanford University School of Medicine, 1201 Welch Road, Stanford, California 94305-5484, USA.
| | | |
Collapse
|
17
|
Hasegawa S, Gowrishankar G, Rao J. Detection of mRNA in mammalian cells with a split ribozyme reporter. Chembiochem 2006; 7:925-8. [PMID: 16671127 DOI: 10.1002/cbic.200600061] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Sumitaka Hasegawa
- Department of Radiology, Stanford University School of Medicine, 1201 Welch Road, Stanford, CA 94305-5484, USA
| | | | | |
Collapse
|
18
|
Xu C, Xing B, Rao J. A self-assembled quantum dot probe for detecting β-lactamase activity. Biochem Biophys Res Commun 2006; 344:931-5. [PMID: 16631595 DOI: 10.1016/j.bbrc.2006.03.225] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2006] [Accepted: 03/31/2006] [Indexed: 11/22/2022]
Abstract
This communication describes a quantum dot probe that can be activated by a reporter enzyme, beta-lactamase. Our design is based on the principle of fluorescence resonance energy transfer (FRET). A biotinylated beta-lactamase substrate was labeled with a carbocyanine dye, Cy5, and immobilized on the surface of quantum dots through the binding of biotin to streptavidin pre-coated on the quantum dots. In assembling this nanoprobe, we have found that both the distance between substrates and the quantum dot surface, and the density of substrates are important for its function. The fluorescence emission from quantum dots can be efficiently quenched (up to 95%) by Cy5 due to FRET. Our final quantum dot probe, assembled with QD605 and 1:1 mixture of biotin and a Cy5-labeled lactam, can be activated by 32microg/mL of beta-lactamase with 4-fold increase in the fluorescence emission.
Collapse
Affiliation(s)
- Chenjie Xu
- Biophysics, Cancer Biology, and Molecular Imaging Programs, Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | |
Collapse
|
19
|
Mitchell LG, McGarrity GJ. Gene therapy progress and prospects: reprograming gene expression by trans-splicing. Gene Ther 2006; 12:1477-85. [PMID: 16121205 DOI: 10.1038/sj.gt.3302596] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The term 'trans-splicing' encompasses several platform technologies that combine two RNA or protein molecules to generate a new, chimeric product. RNA trans-splicing reprograms the sequences of endogenous messenger mRNA or pre-mRNA, converting them to a new, desired gene product. Trans-splicing has broad applications, depending on the nature of the sequences that are inserted or trans-spliced to the defined target. Trans-splicing RNA therapy offers significant advantages over conventional gene therapy: expression of the trans-spliced sequence is controlled by the endogenous regulation of the target pre-mRNA; reduction or elimination of undesirable ectopic expression; the ability to use smaller constructs that trans-splice only a portion of the gene to be replaced; and the conversion of dominant-negative mutations to wild-type gene products.
Collapse
|
20
|
Hasegawa S, Rao J. Modulating the splicing activity of Tetrahymena ribozyme via RNA self-assembly. FEBS Lett 2006; 580:1592-6. [PMID: 16472807 DOI: 10.1016/j.febslet.2006.01.090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2005] [Revised: 01/20/2006] [Accepted: 01/30/2006] [Indexed: 10/25/2022]
Abstract
The internal guiding sequence (IGS) is normally located at the 5' end of trans-splicing ribozymes that are derived from the Tetrahymena group I intron, and is required for the recognition of substrate RNAs and for trans-splicing reactions. Here, we separated the Tetrahymena group I intron at the L2 loop to produce two fragments: the IGS-containing substrate, and the IGS-lacking ribozyme. We show here that two fragments can complex not through the IGS interaction but under the guidance of appended interacting nucleotides, and perform trans-splicing. The splicing reactions took place both in vitro and in mammalian cells, and the spliced mRNA product from the self-assembled ribozyme complex can be translated into functional proteins in vivo. The splicing efficiency was dependent on the length of appending nucleotides.
Collapse
Affiliation(s)
- Sumitaka Hasegawa
- Biophysics Program, Department of Radiology, Stanford University School of Medicine, 1201 Welch Road, Stanford, CA 94305-5484, USA
| | | |
Collapse
|
21
|
Xing B, Khanamiryan A, Rao J. Cell-permeable near-infrared fluorogenic substrates for imaging beta-lactamase activity. J Am Chem Soc 2005; 127:4158-9. [PMID: 15783183 DOI: 10.1021/ja042829+] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This communication describes a design of cell-permeable near-infrared fluorogenic substrates for imaging beta-lactamase expression in living mammalian cells. This design is based on fluorescence energy transfer resonance and utilizes a peracetylated d-glucosamine to facilitate the transport of the near-infrared probe across cell membranes. This new type of fluorogenic probe may also be applied to image gene expression in living animals.
Collapse
Affiliation(s)
- Bengang Xing
- Department of Radiology, Biophysics, Bio-X, Cancer Biology, and Molecular Imaging Programs at Stanford, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, California 94305-5344, USA
| | | | | |
Collapse
|