1
|
Yu M, Wang F, Yao S, Zang Y, Dai C, Liang Y, Zhang M, Gu L, Zhu H, Zhang Y. Structural Elucidation and Total Synthesis of Trichodermotin A, A Natural
α
‐Glucosidase
Inhibitor from
Trichoderma asperellum. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Muyuan Yu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology Wuhan 430030 China
| | - Fengqing Wang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology Wuhan 430030 China
| | - Si Yao
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology Wuhan 430030 China
| | - Yi Zang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology Wuhan 430030 China
| | - Chong Dai
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology Wuhan 430030 China
| | - Yu Liang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology Wuhan 430030 China
| | - Mi Zhang
- National Institutes for food and drug Control (NIFDC), No.2, Tiantan Xili Dongcheng District Beijing 10050 China
| | - Lianghu Gu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology Wuhan 430030 China
| | - Hucheng Zhu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology Wuhan 430030 China
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology Wuhan 430030 China
| |
Collapse
|
2
|
Williams PE, Marshall DL, Poad BLJ, Narreddula VR, Kirk BB, Trevitt AJ, Blanksby SJ. Comparing Positively and Negatively Charged Distonic Radical Ions in Phenylperoxyl Forming Reactions. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:1848-1860. [PMID: 29869328 DOI: 10.1007/s13361-018-1988-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 04/30/2018] [Accepted: 05/03/2018] [Indexed: 06/08/2023]
Abstract
In the gas phase, arylperoxyl forming reactions play a significant role in low-temperature combustion and atmospheric processing of volatile organic compounds. We have previously demonstrated the application of charge-tagged phenyl radicals to explore the outcomes of these reactions using ion trap mass spectrometry. Here, we present a side-by-side comparison of rates and product distributions from the reaction of positively and negatively charge tagged phenyl radicals with dioxygen. The negatively charged distonic radical ions are found to react with significantly greater efficiency than their positively charged analogues. The product distributions of the anion reactions favor products of phenylperoxyl radical decomposition (e.g., phenoxyl radicals and cyclopentadienone), while the comparable fixed-charge cations yield the stabilized phenylperoxyl radical. Electronic structure calculations rationalize these differences as arising from the influence of the charged moiety on the energetics of rate-determining transition states and reaction intermediates within the phenylperoxyl reaction manifold and predict that this influence could extend to intra-molecular charge-radical separations of up to 14.5 Å. Experimental observations of reactions of the novel 4-(1-carboxylatoadamantyl)phenyl radical anion confirm that the influence of the charge on both rate and product distribution can be modulated by increasing the rigidly imposed separation between charge and radical sites. These findings provide a generalizable framework for predicting the influence of charged groups on polarizable radicals in gas phase distonic radical ions. Graphical Abstract.
Collapse
Affiliation(s)
- Peggy E Williams
- Central Analytical Research Facility, Institute for Future Environments, Queensland University of Technology, Brisbane, QLD, Australia
- Failure and Materials Analysis Branch, Flight Systems Division, Naval Surface Warfare Center Crane, Crane, IN, USA
| | - David L Marshall
- Central Analytical Research Facility, Institute for Future Environments, Queensland University of Technology, Brisbane, QLD, Australia
| | - Berwyck L J Poad
- Central Analytical Research Facility, Institute for Future Environments, Queensland University of Technology, Brisbane, QLD, Australia
| | - Venkateswara R Narreddula
- Central Analytical Research Facility, Institute for Future Environments, Queensland University of Technology, Brisbane, QLD, Australia
| | - Benjamin B Kirk
- School of Chemistry, University of Wollongong, Wollongong, NSW, Australia
| | - Adam J Trevitt
- School of Chemistry, University of Wollongong, Wollongong, NSW, Australia
| | - Stephen J Blanksby
- Central Analytical Research Facility, Institute for Future Environments, Queensland University of Technology, Brisbane, QLD, Australia.
| |
Collapse
|
3
|
Zhao P, Lei H, Ni C, Guo JD, Kamali S, Fettinger JC, Grandjean F, Long GJ, Nagase S, Power PP. Quasi-three-coordinate iron and cobalt terphenoxide complexes {Ar(iPr8)OM(μ-O)}2 (Ar(iPr8) = C6H-2,6-(C6H2-2,4,6-(i)Pr3)2-3,5-(i)Pr2; M = Fe or Co) with M(III)2(μ-O)2 core structures and the peroxide dimer of 2-oxepinoxy relevant to benzene oxidation. Inorg Chem 2015; 54:8914-22. [PMID: 26331405 DOI: 10.1021/acs.inorgchem.5b00930] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The bis(μ-oxo) dimeric complexes {Ar(iPr8)OM(μ-O)}2 (Ar(iPr8) = C6H-2,6-(C6H2-2,4,6-(i)Pr3)2-3,5-(i)Pr2; M = Fe (1), Co (2)) were prepared by oxidation of the M(I) half-sandwich complexes {Ar(iPr8)M(η(6)-arene)} (arene = benzene or toluene). Iron species 1 was prepared by reacting {Ar(iPr8)Fe(η(6)-benzene)} with N2O or O2, and cobalt species 2 was prepared by reacting {Ar(iPr8)Co(η(6)-toluene)} with O2. Both 1 and 2 were characterized by X-ray crystallography, UV-vis spectroscopy, magnetic measurements, and, in the case of 1, Mössbauer spectroscopy. The solid-state structures of both compounds reveal unique M2(μ-O)2 (M = Fe (1), Co(2)) cores with formally three-coordinate metal ions. The Fe···Fe separation in 1 bears a resemblance to that in the Fe2(μ-O)2 diamond core proposed for the methane monooxygenase intermediate Q. The structural differences between 1 and 2 are reflected in rather differing magnetic behavior. Compound 2 is thermally unstable, and its decomposition at room temperature resulted in the oxidation of the Ar(iPr8) ligand via oxygen insertion and addition to the central aryl ring of the terphenyl ligand to produce the 5,5'-peroxy-bis[4,6-(i)Pr2-3,7-bis(2,4,6-(i)Pr3-phenyl)oxepin-2(5H)-one] (3). The structure of the oxidized terphenyl species is closely related to that of a key intermediate proposed for the oxidation of benzene.
Collapse
Affiliation(s)
- Pei Zhao
- Department of Chemistry, University of California , Davis, California 95616, United States
| | - Hao Lei
- Department of Chemistry, University of California , Davis, California 95616, United States
| | - Chengbao Ni
- Department of Chemistry, University of California , Davis, California 95616, United States
| | - Jing-Dong Guo
- Fukui Institute for Fundamental Chemistry, Kyoto University , Takano-Nishihiraki-cho, Sakyo-ku, Kyoto 606-8103, Japan
| | - Saeed Kamali
- Department of Chemistry, University of California , Davis, California 95616, United States
| | - James C Fettinger
- Department of Chemistry, University of California , Davis, California 95616, United States
| | - Fernande Grandjean
- Department of Chemistry, Missouri University of Science and Technology, University of Missouri , Rolla, Missouri 65409-0010, United States
| | - Gary J Long
- Department of Chemistry, Missouri University of Science and Technology, University of Missouri , Rolla, Missouri 65409-0010, United States
| | - Shigeru Nagase
- Fukui Institute for Fundamental Chemistry, Kyoto University , Takano-Nishihiraki-cho, Sakyo-ku, Kyoto 606-8103, Japan
| | - Philip P Power
- Department of Chemistry, University of California , Davis, California 95616, United States
| |
Collapse
|
4
|
Gruber T, Thompson AL, Odell B, Bombicz P, Schofield CJ. Conformational studies on substituted ε-caprolactams by X-ray crystallography and NMR spectroscopy. NEW J CHEM 2014. [DOI: 10.1039/c4nj01339e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
5
|
Zhao PJ, Yang YL, Du L, Liu JK, Zeng Y. Elucidating the Biosynthetic Pathway for Vibralactone: A Pancreatic Lipase Inhibitor with a Fused Bicyclic β-Lactone. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201208182] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
6
|
Zhao PJ, Yang YL, Du L, Liu JK, Zeng Y. Elucidating the Biosynthetic Pathway for Vibralactone: A Pancreatic Lipase Inhibitor with a Fused Bicyclic β-Lactone. Angew Chem Int Ed Engl 2013; 52:2298-302. [DOI: 10.1002/anie.201208182] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 11/22/2012] [Indexed: 11/09/2022]
|
7
|
Kirk BB, Harman DG, Kenttämaa HI, Trevitt AJ, Blanksby SJ. Isolation and characterization of charge-tagged phenylperoxyl radicals in the gas phase: direct evidence for products and pathways in low temperature benzene oxidation. Phys Chem Chem Phys 2012; 14:16719-30. [DOI: 10.1039/c2cp43507a] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
8
|
Gansäuer A, Shi L, Keller F, Karbaum P, Fan CA. Regiodivergent epoxide opening (REO) via electron transfer: control elements. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/j.tetasy.2010.03.052] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Hayes CJ, Merle JK, Hadad CM. The chemistry of reactive radical intermediates in combustion and the atmosphere. ADVANCES IN PHYSICAL ORGANIC CHEMISTRY 2009. [DOI: 10.1016/s0065-3160(08)00003-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
10
|
Ichino T, Wren SW, Vogelhuber KM, Gianola AJ, Lineberger WC, Stanton JF. The vibronic level structure of the cyclopentadienyl radical. J Chem Phys 2008; 129:084310. [DOI: 10.1063/1.2973631] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
11
|
Justus K, Herrmann R, Klamann JD, Gruber G, Hellwig V, Ingerl A, Polborn K, Steffan B, Steglich W. Retipolides – Unusual Spiromacrolactones from the MushroomsRetiboletus retipes andR. ornatipes. European J Org Chem 2007. [DOI: 10.1002/ejoc.200700579] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
12
|
da Silva G, Chen CC, Bozzelli JW. Toluene Combustion: Reaction Paths, Thermochemical Properties, and Kinetic Analysis for the Methylphenyl Radical + O2 Reaction. J Phys Chem A 2007; 111:8663-76. [PMID: 17696501 DOI: 10.1021/jp068640x] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Aromatic compounds such as toluene and xylene are major components of many fuels. Accurate kinetic mechanisms for the combustion of toluene are, however, incomplete, as they do not accurately model experimental results such as strain rates and ignition times and consistently underpredict conversion. Current kinetic mechanisms for toluene combustion neglect the reactions of the methylphenyl radicals, and we believe that this is responsible, in part, for the shortcomings of these models. We also demonstrate how methylphenyl radical formation is important in the combustion and pyrolysis of other alkyl-substituted aromatic compounds such as xylene and trimethylbenzene. We have studied the oxidation reactions of the methylphenyl radicals with O2 using computational ab initio and density functional theory methods. A detailed reaction submechanism is presented for the 2-methylphenyl radical + O2 system, with 16 intermediates and products. For each species, enthalpies of formation are calculated using the computational methods G3 and G3B3, with isodesmic work reactions used to minimize computational errors. Transition states are calculated at the G3B3 level, yielding high-pressure limit elementary rate constants as a function of temperature. For the barrierless methylphenyl + O2 and methylphenoxy + O association reactions, rate constants are determined from variational transition state theory. Multichannel, multifrequency quantum Rice-Ramsperger-Kassel (qRRK) theory, with master equation analysis for falloff, provides rate constants as a function of temperature and pressure from 800 to 2400 K and 1 x 10(-4) to 1 x 10(3) atm. Analysis of our results shows that the dominant pathways for reaction of the three isomeric methylphenyl radicals is formation of methyloxepinoxy radicals and subsequent ring opening to methyl-dioxo-hexadienyl radicals. The next most important reaction pathway involves formation of methylphenoxy radicals + O in a chain branching process. At lower temperatures, the formation of stabilized methylphenylperoxy radicals becomes significant. A further important reaction channel is available only to the 2-methylphenyl isomer, where 6-methylene-2,4-cyclohexadiene-1-one (ortho-quinone methide, o-QM) is produced via an intramolecular hydrogen transfer from the methyl group to the peroxy radical in 2-methylphenylperoxy, with subsequent loss of OH. The decomposition of o-QM to benzene + CO reveals a potentially important new pathway for the conversion of toluene to benzene during combustion. A number of the important products of toluene combustion proposed in this study are known to be precursors of polyaromatic hydrocarbons that are involved in soot formation. Reactions leading to the important unsaturated oxygenated intermediates identified in this study, and the further reactions of these intermediates, are not included in current aromatic oxidation mechanisms.
Collapse
Affiliation(s)
- Gabriel da Silva
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, USA
| | | | | |
Collapse
|