1
|
Frost CF, Antoniou D, Schwartz SD. Transition Path Sampling Based Free Energy Calculations of Evolution's Effect on Rates in β-Lactamase: The Contributions of Rapid Protein Dynamics to Rate. J Phys Chem B 2024; 128:11658-11665. [PMID: 39536181 PMCID: PMC11628163 DOI: 10.1021/acs.jpcb.4c06689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
β-Lactamases are one of the primary enzymes responsible for antibiotic resistance and have existed for billions of years. The structural differences between a modern class A TEM-1 β-lactamase compared to a sequentially reconstructed Gram-negative bacteria β-lactamase are minor. Despite the similar structures and mechanisms, there are different functions between the two enzymes. We recently identified differences in dynamics effects that result from evolutionary changes that could potentially account for the increase in substrate specificity and catalytic rate. In this study, we used transition path sampling-based calculations of free energies to identify how evolutionary changes found between an ancestral β-lactamase, and its extant counterpart TEM-1 β-lactamase affect rate.
Collapse
Affiliation(s)
- Clara F Frost
- Department of Chemistry & Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Dimitri Antoniou
- Department of Chemistry & Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Steven D Schwartz
- Department of Chemistry & Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
2
|
Sun J, Boyle AL, Brünle S, Ubbink M. A low-barrier proton shared between two aspartates acts as a conformational switch that changes the substrate specificity of the β-lactamase BlaC. Int J Biol Macromol 2024; 278:134665. [PMID: 39134195 DOI: 10.1016/j.ijbiomac.2024.134665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 08/09/2024] [Accepted: 08/09/2024] [Indexed: 08/19/2024]
Abstract
Serine β-lactamases inactivate β-lactam antibiotics in a two-step mechanism comprising acylation and deacylation. For the deacylation step, a water molecule is activated by a conserved glutamate residue to release the adduct from the enzyme. The third-generation cephalosporin ceftazidime is a poor substrate for the class A β-lactamase BlaC from Mycobacterium tuberculosis but it can be hydrolyzed faster when the active site pocket is enlarged, as was reported for mutant BlaC P167S. The conformational change in the Ω-loop of the P167S mutant displaces the conserved glutamate (Glu166), suggesting it is not required for deacylation of the ceftazidime adduct. Here, we report the characterization of wild type BlaC and BlaC E166A at various pH values. The presence of Glu166 strongly enhances activity against nitrocefin but not ceftazidime, indicating it is indeed not required for deacylation of the adduct of the latter substrate. At high pH wild type BlaC was found to exist in two states, one of which converts ceftazidime much faster, resembling the open state previously reported for the BlaC mutant P167S. The pH-dependent switch between the closed and open states is caused by the loss at high pH of a low-barrier hydrogen bond, a proton shared between Asp172 and Asp179. These results illustrate how readily shifts in substrate specificity can occur as a consequence of subtle changes in protein structure.
Collapse
Affiliation(s)
- Jing Sun
- Macromolecular Biochemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, the Netherlands
| | - Aimee L Boyle
- Macromolecular Biochemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, the Netherlands
| | - Steffen Brünle
- Biophysical Structure Chemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, the Netherlands
| | - Marcellus Ubbink
- Macromolecular Biochemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, the Netherlands.
| |
Collapse
|
3
|
Frost CF, Antoniou D, Schwartz SD. The Evolution of the Acylation Mechanism in β-Lactamase and Rapid Protein Dynamics. ACS Catal 2024; 14:13640-13651. [PMID: 39464311 PMCID: PMC11507604 DOI: 10.1021/acscatal.4c03065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
β-Lactamases are a class of well-studied enzymes that are known to have existed since billions of years ago, starting as a defense mechanism to stave off competitors and are now enzymes responsible for antibiotic resistance. Using ancestral sequence reconstruction, it is possible to study the crystal structure of a laboratory resurrected 2-3 billion year-old β-lactamase. Comparing the ancestral enzyme to its modern counterpart, a TEM-1 β-lactamase, the structural changes are minor, and it is probable that dynamic effects play an important role in the evolution of function. We used molecular dynamics simulations and employed transition path sampling methods to identify the presence of rate-enhancing dynamics at the femtosecond level in both systems, found that these fast motions are more efficiently coordinated in the modern enzyme, and examined how specific dynamics can pinpoint evolutionary effects that are essential for improving enzymatic catalysis.
Collapse
Affiliation(s)
- Clara F Frost
- Department of Chemistry & Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Dimitri Antoniou
- Department of Chemistry & Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Steven D Schwartz
- Department of Chemistry & Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
4
|
Benselama W, Benchouk W. In silico design based on quantum chemical, molecular docking studies and ADMET predictions of ciprofloxacin derivatives as novel potential antibacterial and antimycrobacterium agents. J Biomol Struct Dyn 2024; 42:7650-7666. [PMID: 37551116 DOI: 10.1080/07391102.2023.2240906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 07/20/2023] [Indexed: 08/09/2023]
Abstract
Drug designing and development is an important area of research for pharmaceutical companies and chemical scientists. In this paper, we report the prediction of new ciprofloxacin derivatives by quantum chemical, molecular docking studies and pharmacokinetic properties. Theoretical studies were performed by geometry optimization computation using B3LYP level at 6-311 G (d,p) basis set. The absorption, distribution, metabolism, excretion and toxicity (ADMET) parameters were predicted and the result show that all compounds have a great ADMET profile. To study the antibacterial, anti-Mycobacterium tuberculosis activities, ciprofloxacin and its derivatives were interacted with the proteins: Thymidylate Kinase (PDB: 4QGG), Biotin carboxylase (PDB: 3JZF) and β-lactamase BlaC (PDB: 3N7W). The results of the docking studies indicate that one pharmacophore designed presents a great inhibition behavior against gram-positive organism (4QGG) and significant interactions observed between the compound and ARG48, GLN101, ARG105 and GLU37 residues of 4QGG. Also, another derivative designed present the best inhibition against gram-negative organism (3JZF) several interactions were noticed between the compound and GLY165, ILE287, LEU278, HIS236, HIS209, MET169 and LYS159 residues of (3JZF). As well as, one designed candidate is good inhibitors for β-lactamase (3N7W) multiple no bonded interactions were observed between the compound and SER84, ILE117, ASN186, LYS87, ARG187, ASN186 and THR251 residues of(3N7W). Molecular dynamics (MD) simulation study was also performed for 100 ns to confirm the stability behaviour of the main protein and inhibitor complexes. The MD simulation study validated the stability of three compounds in the protein binding pocket as potent binders. Natural bonding orbital analysis, reactivity indices and molecular electrostatic potential were carried out. The research finding of this study can be helpful to design a new potent antibacterial, antimycrobacterium candidate's drugs that will serve as the basis for future in vitro and in vivo research.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Wafa Benselama
- Laboratory of Applied Thermodynamics and Molecular Modeling, Department of Chemistry, Faculty of Science, University of Tlemcen, Tlemcen, Algeria
| | - Wafaa Benchouk
- Laboratory of Applied Thermodynamics and Molecular Modeling, Department of Chemistry, Faculty of Science, University of Tlemcen, Tlemcen, Algeria
| |
Collapse
|
5
|
Yehorova D, Crean RM, Kasson PM, Kamerlin SCL. Key interaction networks: Identifying evolutionarily conserved non-covalent interaction networks across protein families. Protein Sci 2024; 33:e4911. [PMID: 38358258 PMCID: PMC10868456 DOI: 10.1002/pro.4911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 02/16/2024]
Abstract
Protein structure (and thus function) is dictated by non-covalent interaction networks. These can be highly evolutionarily conserved across protein families, the members of which can diverge in sequence and evolutionary history. Here we present KIN, a tool to identify and analyze conserved non-covalent interaction networks across evolutionarily related groups of proteins. KIN is available for download under a GNU General Public License, version 2, from https://www.github.com/kamerlinlab/KIN. KIN can operate on experimentally determined structures, predicted structures, or molecular dynamics trajectories, providing insight into both conserved and missing interactions across evolutionarily related proteins. This provides useful insight both into protein evolution, as well as a tool that can be exploited for protein engineering efforts. As a showcase system, we demonstrate applications of this tool to understanding the evolutionary-relevant conserved interaction networks across the class A β-lactamases.
Collapse
Affiliation(s)
- Dariia Yehorova
- School of Chemistry and Biochemistry, Georgia Institute of TechnologyAtlantaGeorgiaUSA
| | - Rory M. Crean
- Department of Chemistry—BMCUppsala UniversityUppsalaSweden
| | - Peter M. Kasson
- Department of Molecular PhysiologyUniversity of VirginiaCharlottesvilleVirginiaUSA
- Department Biomedical EngineeringUniversity of VirginiaCharlottesvilleVirginiaUSA
- Department of Cell and Molecular BiologyUppsala UniversityUppsalaSweden
| | - Shina C. L. Kamerlin
- School of Chemistry and Biochemistry, Georgia Institute of TechnologyAtlantaGeorgiaUSA
- Department of Chemistry—BMCUppsala UniversityUppsalaSweden
| |
Collapse
|
6
|
Chen S, Mack AR, Hujer AM, Bethel CR, Bonomo RA, Haider S. Ω-Loop mutations control the dynamics of the active site by modulating a network of hydrogen bonds in PDC-3 β-lactamase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.04.578824. [PMID: 38370743 PMCID: PMC10871217 DOI: 10.1101/2024.02.04.578824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
The expression of antibiotic-inactivating enzymes, such as Pseudomonas-derived cephalosporinase-3 (PDC-3), is a major mechanism of intrinsic resistance in bacteria. To explore the relationships between structural dynamics and altered substrate specificity as a result of amino acid substitutions in PDC-3, innovative computational methods like machine learning driven adaptive bandit molecular dynamics simulations and markov state modeling of the wild-type PDC-3 and nine clinically identified variants were conducted. Our analysis reveals that structural changes in the Ω loop controls the dynamics of the active site. The E219K and Y221A substitutions have the most pronounced effects. The modulation of three key hydrogen bonds K67(sc)-G220(bb), Y150(bb)-A292(bb) and N287(sc)-N314(sc) were found to result in an expansion of the active site, which could have implications for the binding and inactivation of cephalosporins. Overall, the findings highlight the importance of understanding the structural dynamics of PDC-3 in the development of new treatments for antibiotic-resistant infections.
Collapse
Affiliation(s)
| | - Andrew R Mack
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Andrea M Hujer
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Christopher R Bethel
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA
| | - Robert A Bonomo
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Clinician Scientist Investigator, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA
- Departments of Pharmacology, Biochemistry, and Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES) Cleveland, OH, USA
| | - Shozeb Haider
- UCL School of Pharmacy, London UK
- UCL Centre for Advanced Research Computing, London UK
| |
Collapse
|
7
|
Sun Z, Lin H, Hu L, Neetu N, Sankaran B, Wang J, Prasad BVV, Palzkill T. Klebsiella pneumoniae carbapenemase variant 44 acquires ceftazidime-avibactam resistance by altering the conformation of active-site loops. J Biol Chem 2024; 300:105493. [PMID: 38000656 PMCID: PMC10716778 DOI: 10.1016/j.jbc.2023.105493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/14/2023] [Accepted: 11/18/2023] [Indexed: 11/26/2023] Open
Abstract
Klebsiella pneumoniae carbapenemase 2 (KPC-2) is an important source of drug resistance as it can hydrolyze and inactivate virtually all β-lactam antibiotics. KPC-2 is potently inhibited by avibactam via formation of a reversible carbamyl linkage of the inhibitor with the catalytic serine of the enzyme. However, the use of avibactam in combination with ceftazidime (CAZ-AVI) has led to the emergence of CAZ-AVI-resistant variants of KPC-2 in clinical settings. One such variant, KPC-44, bears a 15 amino acid duplication in one of the active-site loops (270-loop). Here, we show that the KPC-44 variant exhibits higher catalytic efficiency in hydrolyzing ceftazidime, lower efficiency toward imipenem and meropenem, and a similar efficiency in hydrolyzing ampicillin, than the WT KPC-2 enzyme. In addition, the KPC-44 variant enzyme exhibits 12-fold lower AVI carbamylation efficiency than the KPC-2 enzyme. An X-ray crystal structure of KPC-44 showed that the 15 amino acid duplication results in an extended and partially disordered 270-loop and also changes the conformation of the adjacent 240-loop, which in turn has altered interactions with the active-site omega loop. Furthermore, a structure of KPC-44 with avibactam revealed that formation of the covalent complex results in further disorder in the 270-loop, suggesting that rearrangement of the 270-loop of KPC-44 facilitates AVI carbamylation. These results suggest that the duplication of 15 amino acids in the KPC-44 enzyme leads to resistance to CAZ-AVI by modulating the stability and conformation of the 270-, 240-, and omega-loops.
Collapse
Affiliation(s)
- Zhizeng Sun
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas, USA
| | - Hanfeng Lin
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas, USA
| | - Liya Hu
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas, USA
| | - Neetu Neetu
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas, USA
| | - Banumathi Sankaran
- Department of Molecular Biophysics and Integrated Bioimaging, Berkeley Center for Structural Biology, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Jin Wang
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas, USA
| | - B V Venkataram Prasad
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas, USA
| | - Timothy Palzkill
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas, USA.
| |
Collapse
|
8
|
Krajewska J, Chyży P, Durka K, Wińska P, Krzyśko KA, Luliński S, Laudy AE. Aromatic Diboronic Acids as Effective KPC/AmpC Inhibitors. Molecules 2023; 28:7362. [PMID: 37959781 PMCID: PMC10648349 DOI: 10.3390/molecules28217362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/26/2023] [Accepted: 10/28/2023] [Indexed: 11/15/2023] Open
Abstract
Over 30 compounds, including para-, meta-, and ortho-phenylenediboronic acids, ortho-substituted phenylboronic acids, benzenetriboronic acids, di- and triboronated thiophenes, and pyridine derivatives were investigated as potential β-lactamase inhibitors. The highest activity against KPC-type carbapenemases was found for ortho-phenylenediboronic acid 3a, which at the concentration of 8/4 mg/L reduced carbapenems' MICs up to 16/8-fold, respectively. Checkerboard assays revealed strong synergy between carbapenems and 3a with the fractional inhibitory concentrations indices of 0.1-0.32. The nitrocefin hydrolysis test and the whole cell assay with E. coli DH5α transformant carrying blaKPC-3 proved KPC enzyme being its molecular target. para-Phenylenediboronic acids efficiently potentiated carbapenems against KPC-producers and ceftazidime against AmpC-producers, whereas meta-phenylenediboronic acids enhanced only ceftazidime activity against the latter ones. Finally, the statistical analysis confirmed that ortho-phenylenediboronic acids act synergistically with carbapenems significantly stronger than other groups. Since the obtained phenylenediboronic compounds are not toxic to MRC-5 human fibroblasts at the tested concentrations, they can be considered promising scaffolds for the future development of novel KPC/AmpC inhibitors. The complexation of KPC-2 with the most representative isomeric phenylenediboronic acids 1a, 2a, and 3a was modeled by quantum mechanics/molecular mechanics calculations. Compound 3a reached the most effective configuration enabling covalent binding to the catalytic Ser70 residue.
Collapse
Affiliation(s)
- Joanna Krajewska
- Department of Pharmaceutical Microbiology and Bioanalysis, Medical University of Warsaw, 02-097 Warsaw, Poland;
| | - Piotr Chyży
- Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland;
| | - Krzysztof Durka
- Faculty of Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland; (K.D.); (P.W.); (S.L.)
| | - Patrycja Wińska
- Faculty of Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland; (K.D.); (P.W.); (S.L.)
| | | | - Sergiusz Luliński
- Faculty of Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland; (K.D.); (P.W.); (S.L.)
| | - Agnieszka E. Laudy
- Department of Pharmaceutical Microbiology and Bioanalysis, Medical University of Warsaw, 02-097 Warsaw, Poland;
| |
Collapse
|
9
|
Das CK, Gupta A, Nair NN. Probing the general base for DNA polymerization in telomerase: a molecular dynamics investigation. Phys Chem Chem Phys 2023; 25:14147-14157. [PMID: 37162325 DOI: 10.1039/d3cp00521f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Telomerase is an RNA-dependent DNA polymerase that plays a role in the maintenance of the 3' end of the eukaryotic chromosome, known as a telomere, by catalyzing the DNA polymerization reaction in cancer and embryonic stem cells. The detailed molecular details of the DNA polymerization by telomerase, especially the general base for deprotonating the terminal 3'-hydroxyl, which triggers the chemical reaction, remain elusive. We conducted a computational investigation using hybrid quantum mechanical/molecular mechanical (QM/MM) molecular dynamics (MD) simulations to probe the detailed mechanism of the reaction. Our simulations started with the telomerase:RNA:DNA:dNTP ternary complex, and by using enhanced sampling QM/MM MD simulations, we probed the general base involved directly in the polymerization. We report the participation of an aspartate (Asp344) coordinated to Mg and an active site water molecule, jointly acting as a base during nucleic acid addition. The Asp344 residue remains transiently protonated during the course of the reaction, and later it deprotonates by transferring its proton to the water at the end of the reaction.
Collapse
Affiliation(s)
- Chandan Kumar Das
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India.
| | - Abhinav Gupta
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India.
| | - Nisanth N Nair
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India.
| |
Collapse
|
10
|
Lu S, Montoya M, Hu L, Neetu N, Sankaran B, Prasad BVV, Palzkill T. Mutagenesis and structural analysis reveal the CTX-M β-lactamase active site is optimized for cephalosporin catalysis and drug resistance. J Biol Chem 2023; 299:104630. [PMID: 36963495 PMCID: PMC10139949 DOI: 10.1016/j.jbc.2023.104630] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 03/26/2023] Open
Abstract
CTX-M β-lactamases are a widespread source of resistance to β-lactam antibiotics in Gram-negative bacteria. These enzymes readily hydrolyze penicillins and cephalosporins, including oxyimino-cephalosporins such as cefotaxime. To investigate the preference of CTX-M enzymes for cephalosporins, we examined eleven active-site residues in the CTX-M-14 β-lactamase model system by alanine mutagenesis to assess the contribution of the residues to catalysis and specificity for the hydrolysis of the penicillin, ampicillin, and the cephalosporins cephalothin and cefotaxime. Key active site residues for class A β-lactamases, including Lys73, Ser130, Asn132, Lys234, Thr216, and Thr235, contribute significantly to substrate binding and catalysis of penicillin and cephalosporin substrates in that alanine substitutions decrease both kcat and kcat/KM. A second group of residues, including Asn104, Tyr105, Asn106, Thr215, and Thr216, contribute only to substrate binding, with the substitutions decreasing only kcat/KM. Importantly, calculating the average effect of a substitution across the 11 active-site residues shows that the most significant impact is on cefotaxime hydrolysis while ampicillin hydrolysis is least affected, suggesting the active site is highly optimized for cefotaxime catalysis. Furthermore, we determined X-ray crystal structures for the apo-enzymes of the mutants N106A, S130A, N132A, N170A, T215A, and T235A. Surprisingly, in the structures of some mutants, particularly N106A and T235A, the changes in structure propagate from the site of substitution to other regions of the active site, suggesting that the impact of substitutions is due to more widespread changes in structure and illustrating the interconnected nature of the active site.
Collapse
Affiliation(s)
- Shuo Lu
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Miranda Montoya
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Liya Hu
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Neetu Neetu
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Banumathi Sankaran
- Department of Molecular Biophysics and Integrated Bioimaging, Berkeley Center for Structural Biology, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - B V Venkataram Prasad
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Timothy Palzkill
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas, USA; Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA.
| |
Collapse
|
11
|
Song Z, Trozzi F, Tian H, Yin C, Tao P. Mechanistic Insights into Enzyme Catalysis from Explaining Machine-Learned Quantum Mechanical and Molecular Mechanical Minimum Energy Pathways. ACS PHYSICAL CHEMISTRY AU 2022; 2:316-330. [PMID: 35936506 PMCID: PMC9344433 DOI: 10.1021/acsphyschemau.2c00005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
With the increasing popularity of machine learning (ML) applications, the demand for explainable artificial intelligence techniques to explain ML models developed for computational chemistry has also emerged. In this study, we present the development of the Boltzmann-weighted cumulative integrated gradients (BCIG) approach for effective explanation of mechanistic insights into ML models trained on high-level quantum mechanical and molecular mechanical (QM/MM) minimum energy pathways. Using the acylation reactions of the Toho-1 β-lactamase and two antibiotics (ampicillin and cefalexin) as the model systems, we show that the BCIG approach could quantitatively attribute the energetic contribution in one system and the relative reactivity of individual steps across different systems to specific chemical processes such as the bond making/breaking and proton transfers. The proposed BCIG contribution attribution method quantifies chemistry-interpretable insights in terms of contributions from each elementary chemical process, which is in agreement with the validating QM/MM calculations and our intuitive mechanistic understandings of the model reactions.
Collapse
|
12
|
Dalal V, Golemi-Kotra D, Kumar P. Quantum Mechanics/Molecular Mechanics Studies on the Catalytic Mechanism of a Novel Esterase (FmtA) of Staphylococcus aureus. J Chem Inf Model 2022; 62:2409-2420. [PMID: 35475370 DOI: 10.1021/acs.jcim.2c00057] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
FmtA is a novel esterase that shares the penicillin-binding protein (PBP) core structural folding but found to hydrolyze the removal of d-Ala from teichoic acids. Molecular docking, dynamics, and MM-GBSA of FmtA and its variants S127A, K130A, Y211A, D213A, and K130AY211A, in the presence or absence of wall teichoic acid (WTA), suggest that active site residues S127, K130, Y211, D213, N343, and G344 play a role in substrate binding. Quantum mechanics (QM)/molecular mechanics (MM) calculations reveal that during WTA catalysis, K130 deprotonates S127, and the nucleophilic S127 attacks the carbonyl carbon of d-Ala bound to WTA. The tetrahedral intermediate (TI) complex is stabilized by hydrogen bonding to the oxyanion holes. The TI complex displays a high energy gap and collapses to an energetically favorable acyl-enzyme complex.
Collapse
Affiliation(s)
- Vikram Dalal
- Department of Biosciences and Bioengineering, IIT Roorkee, Roorkee, Uttrakhand 247667, India
| | - Dasantila Golemi-Kotra
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario M3J 1P3, Canada
| | - Pravindra Kumar
- Department of Biosciences and Bioengineering, IIT Roorkee, Roorkee, Uttrakhand 247667, India
| |
Collapse
|
13
|
Song Z, Trozzi F, Palzkill T, Tao P. QM/MM modeling of class A β-lactamases reveals distinct acylation pathways for ampicillin and cefalexin. Org Biomol Chem 2021; 19:9182-9189. [PMID: 34647114 PMCID: PMC8613693 DOI: 10.1039/d1ob01593a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Efficient mechanism-based design of antibiotics that are not susceptible to β-lactamases is hindered by the lack of comprehensive knowledge on the energetic landscapes for the hydrolysis of various β-lactams. Herein, we adopted efficient quantum mechanics/molecular mechanics simulations to explore the acylation reaction catalyzed by CTX-M-44 (Toho-1) β-lactamase. We show that the catalytic pathways for β-lactam hydrolysis are correlated to substrate scaffolds: using Glu166 as the only general base for acylation is viable for ampicillin but prohibitive for cefalexin. The present computational workflow provides quantitative insights to facilitate the optimization of future β-lactam antibiotics.
Collapse
Affiliation(s)
- Zilin Song
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, Texas 75205, USA.
| | - Francesco Trozzi
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, Texas 75205, USA.
| | - Timothy Palzkill
- The Verna and Marrs McLean Department of Biochemistry and Molecular Biology and Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Peng Tao
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, Texas 75205, USA.
| |
Collapse
|
14
|
Kemp MT, Nichols DA, Zhang X, Defrees K, Na I, Renslo AR, Chen Y. Mutation of the conserved Asp-Asp pair impairs the structure, function, and inhibition of CTX-M Class A β-lactamase. FEBS Lett 2021; 595:2981-2994. [PMID: 34704263 DOI: 10.1002/1873-3468.14215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/07/2021] [Accepted: 10/21/2021] [Indexed: 11/07/2022]
Abstract
The Asp233-Asp246 pair is highly conserved in Class A β-lactamases, which hydrolyze β-lactam antibiotics. Here, we characterize its function using CTX-M-14 β-lactamase. The D233N mutant displayed decreased activity that is substrate-dependent, with reductions in kcat /Km ranging from 20% for nitrocefin to 6-fold for cefotaxime. In comparison, the mutation reduced the binding of a known reversible inhibitor by 10-fold. The mutant structures showed movement of the 213-219 loop and the loss of the Thr216-Thr235 hydrogen bond, which was restored by inhibitor binding. Mutagenesis of Thr216 further highlighted its contribution to CTX-M activity. These results demonstrate the importance of the aspartate pair to CTX-M hydrolysis of substrates with bulky side chains, while suggesting increased protein flexibility as a means to evolve drug resistance.
Collapse
Affiliation(s)
- M Trent Kemp
- Department of Molecular Medicine, University of South Florida College of Medicine, Tampa, FL, USA
| | - Derek A Nichols
- Department of Molecular Medicine, University of South Florida College of Medicine, Tampa, FL, USA
| | - Xiujun Zhang
- Department of Molecular Medicine, University of South Florida College of Medicine, Tampa, FL, USA
| | - Kyle Defrees
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - Insung Na
- Department of Molecular Medicine, University of South Florida College of Medicine, Tampa, FL, USA
| | - Adam R Renslo
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - Yu Chen
- Department of Molecular Medicine, University of South Florida College of Medicine, Tampa, FL, USA
| |
Collapse
|
15
|
Mora-Ochomogo M, Lohans CT. β-Lactam antibiotic targets and resistance mechanisms: from covalent inhibitors to substrates. RSC Med Chem 2021; 12:1623-1639. [PMID: 34778765 PMCID: PMC8528271 DOI: 10.1039/d1md00200g] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/25/2021] [Indexed: 12/24/2022] Open
Abstract
The β-lactams are the most widely used antibacterial agents worldwide. These antibiotics, a group that includes the penicillins and cephalosporins, are covalent inhibitors that target bacterial penicillin-binding proteins and disrupt peptidoglycan synthesis. Bacteria can achieve resistance to β-lactams in several ways, including the production of serine β-lactamase enzymes. While β-lactams also covalently interact with serine β-lactamases, these enzymes are capable of deacylating this complex, treating the antibiotic as a substrate. In this tutorial-style review, we provide an overview of the β-lactam antibiotics, focusing on their covalent interactions with their target proteins and resistance mechanisms. We begin by describing the structurally diverse range of β-lactam antibiotics and β-lactamase inhibitors that are currently used as therapeutics. Then, we introduce the penicillin-binding proteins, describing their functions and structures, and highlighting their interactions with β-lactam antibiotics. We next describe the classes of serine β-lactamases, exploring some of the mechanisms by which they achieve the ability to degrade β-lactams. Finally, we introduce the l,d-transpeptidases, a group of bacterial enzymes involved in peptidoglycan synthesis which are also targeted by β-lactam antibiotics. Although resistance mechanisms are now prevalent for all antibiotics in this class, past successes in antibiotic development have at least delayed this onset of resistance. The β-lactams continue to be an essential tool for the treatment of infectious disease, and recent advances (e.g., β-lactamase inhibitor development) will continue to support their future use.
Collapse
Affiliation(s)
| | - Christopher T Lohans
- Department of Biomedical and Molecular Sciences, Queen's University Kingston ON K7L 3N6 Canada
| |
Collapse
|
16
|
Bahr G, González LJ, Vila AJ. Metallo-β-lactamases in the Age of Multidrug Resistance: From Structure and Mechanism to Evolution, Dissemination, and Inhibitor Design. Chem Rev 2021; 121:7957-8094. [PMID: 34129337 PMCID: PMC9062786 DOI: 10.1021/acs.chemrev.1c00138] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Antimicrobial resistance is one of the major problems in current practical medicine. The spread of genes coding for resistance determinants among bacteria challenges the use of approved antibiotics, narrowing the options for treatment. Resistance to carbapenems, last resort antibiotics, is a major concern. Metallo-β-lactamases (MBLs) hydrolyze carbapenems, penicillins, and cephalosporins, becoming central to this problem. These enzymes diverge with respect to serine-β-lactamases by exhibiting a different fold, active site, and catalytic features. Elucidating their catalytic mechanism has been a big challenge in the field that has limited the development of useful inhibitors. This review covers exhaustively the details of the active-site chemistries, the diversity of MBL alleles, the catalytic mechanism against different substrates, and how this information has helped developing inhibitors. We also discuss here different aspects critical to understand the success of MBLs in conferring resistance: the molecular determinants of their dissemination, their cell physiology, from the biogenesis to the processing involved in the transit to the periplasm, and the uptake of the Zn(II) ions upon metal starvation conditions, such as those encountered during an infection. In this regard, the chemical, biochemical and microbiological aspects provide an integrative view of the current knowledge of MBLs.
Collapse
Affiliation(s)
- Guillermo Bahr
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Lisandro J. González
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | - Alejandro J. Vila
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET, Universidad Nacional de Rosario, Ocampo y Esmeralda S/N, 2000 Rosario, Argentina
- Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| |
Collapse
|
17
|
Wei WM, Xu YL, Zheng RH, Zhao T, Fang W, Qin YD. Theoretical Study on the Mechanism of the Acylate Reaction of β-Lactamase. ACS OMEGA 2021; 6:12598-12604. [PMID: 34056410 PMCID: PMC8154126 DOI: 10.1021/acsomega.1c00592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/26/2021] [Indexed: 05/25/2023]
Abstract
Using density functional theory and a cluster approach, we study the reaction potential surface and compute Gibbs free energies for the acylate reaction of β-lactamase with penicillin G, where the solvent effect is important and taken into consideration. Two reaction paths are investigated: one is a multi-step process with a rate-limit energy barrier of 19.1 kcal/mol, which is relatively small, and the reaction can easily occur; the other is a one-step process with a barrier of 45.0 kcal/mol, which is large and thus makes the reaction hard to occur. The reason why the two paths have different barriers is explained.
Collapse
Affiliation(s)
- Wen-Mei Wei
- School
of Basic Medical Sciences, Anhui Medical
University, Hefei, Anhui 230032, P.
R. China
| | - Yan-Li Xu
- School
of Basic Medical Sciences, Anhui Medical
University, Hefei, Anhui 230032, P.
R. China
| | - Ren-Hui Zheng
- Beijing
National Laboratory for Molecular Sciences, State Key Laboratory for
Structural Chemistry of Unstable and Stable Species, Institute of
Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, P. R. China
| | - Tingting Zhao
- School
of Basic Medical Sciences, Anhui Medical
University, Hefei, Anhui 230032, P.
R. China
| | - Weijun Fang
- School
of Basic Medical Sciences, Anhui Medical
University, Hefei, Anhui 230032, P.
R. China
| | - Yi-De Qin
- School
of Basic Medical Sciences, Anhui Medical
University, Hefei, Anhui 230032, P.
R. China
| |
Collapse
|
18
|
Evaluating the covalent binding of carbapenems on BlaC using noncovalent interactions. J Mol Model 2021; 27:161. [PMID: 33966119 DOI: 10.1007/s00894-021-04760-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/18/2021] [Indexed: 10/21/2022]
Abstract
Carbapenems, as irreversible covalent binders and slow substrates to the class A β-lactamase (BlaC) of Mycobacterium tuberculosis, can inhibit BlaC to hydrolyze the β-lactam drugs which are used to control tuberculosis. Their binding on BlaC involves covalent bonding and noncovalent interaction. We introduce a hypothesis that the noncovalent interactions dominate the difference of binding free energies for covalent ligands based on the assumption that their covalent bonding energies are the same. MM/GBSA binding free energies calculated from the noncovalent interactions provided a threshold with respect to the experimental kinetic data, to select slow carbapenem substrates which were either constructed using the structural units of experimentally identified carbapenems or obtained from the similarity search over the ZINC15 database. Combining molecular docking with consensus scoring and molecular dynamics simulation with MM/GBSA binding free energy calculations, a computational protocol was developed from which several new tight-binding carbapenems were theoretically identified.
Collapse
|
19
|
Kemp MT, Lewandowski EM, Chen Y. Low barrier hydrogen bonds in protein structure and function. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2021; 1869:140557. [PMID: 33148530 PMCID: PMC7736181 DOI: 10.1016/j.bbapap.2020.140557] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/17/2020] [Accepted: 10/22/2020] [Indexed: 01/05/2023]
Abstract
Low-barrier hydrogen bonds (LBHBs) are a special type of short hydrogen bond (HB) that is characterized by the equal sharing of a hydrogen atom. The existence and catalytic role of LBHBs in proteins has been intensely contested. Advancements in X-ray and neutron diffraction methods has revealed delocalized hydrogen atoms involved in potential LBHBs in a number of proteins, while also demonstrating that short HBs are not necessarily LBHBs. More importantly, a series of experiments on ketosteroid isomerase (KSI) have suggested that LBHBs are significantly stronger than standard HBs in the protein microenvironment in terms of enthalpy, but not free energy. The discrepancy between the enthalpy and free energy of LBHBs offers clues to the challenges, and potential solutions, of the LBHB debate, where the unique strength of LBHBs plays a special role in the kinetic processes of enzyme function and structure, together with other molecular forces in a pre-organized environment.
Collapse
Affiliation(s)
- M Trent Kemp
- Department of Molecular Medicine, University of South Florida Morsani College of Medicine, 12901 Bruce B. Downs Blvd, MDC 3522, Tampa, Florida 33612, United States
| | - Eric M Lewandowski
- Department of Molecular Medicine, University of South Florida Morsani College of Medicine, 12901 Bruce B. Downs Blvd, MDC 3522, Tampa, Florida 33612, United States
| | - Yu Chen
- Department of Molecular Medicine, University of South Florida Morsani College of Medicine, 12901 Bruce B. Downs Blvd, MDC 3522, Tampa, Florida 33612, United States.
| |
Collapse
|
20
|
Cao TP, Yi H, Dhanasingh I, Ghosh S, Choi JM, Lee KH, Ryu S, Kim HS, Lee SH. Non-catalytic-Region Mutations Conferring Transition of Class A β-Lactamases Into ESBLs. Front Mol Biosci 2020; 7:598998. [PMID: 33335913 PMCID: PMC7737660 DOI: 10.3389/fmolb.2020.598998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/28/2020] [Indexed: 12/03/2022] Open
Abstract
Despite class A ESBLs carrying substitutions outside catalytic regions, such as Cys69Tyr or Asn136Asp, have emerged as new clinical threats, the molecular mechanisms underlying their acquired antibiotics-hydrolytic activity remains unclear. We discovered that this non-catalytic-region (NCR) mutations induce significant dislocation of β3-β4 strands, conformational changes in critical residues associated with ligand binding to the lid domain, dynamic fluctuation of Ω-loop and β3-β4 elements. Such structural changes increase catalytic regions’ flexibility, enlarge active site, and thereby accommodate third-generation cephalosporin antibiotics, ceftazidime (CAZ). Notably, the electrostatic property around the oxyanion hole of Cys69Tyr ESBL is significantly changed, resulting in possible additional stabilization of the acyl-enzyme intermediate. Interestingly, the NCR mutations are as effective for antibiotic resistance by altering the structure and dynamics in regions mediating substrate recognition and binding as single amino-acid substitutions in the catalytic region of the canonical ESBLs. We believe that our findings are crucial in developing successful therapeutic strategies against diverse class A ESBLs, including the new NCR-ESBLs.
Collapse
Affiliation(s)
- Thinh-Phat Cao
- Department of Cellular and Molecular Medicine, Chosun University School of Medicine, Gwangju, South Korea.,Department of Biomedical Sciences, Gwangju Alzheimer's Disease and Related Dementia Cohort Research Center, College of Natural Sciences and Public Health and Safety, Chosun University, Gwangju, South Korea
| | - Hyojeong Yi
- Division of Biosystems & Biomedical Sciences, College of Health Sciences, Korea University, Seoul, South Korea
| | - Immanuel Dhanasingh
- Department of Cellular and Molecular Medicine, Chosun University School of Medicine, Gwangju, South Korea
| | - Suparna Ghosh
- Department of Cellular and Molecular Medicine, Chosun University School of Medicine, Gwangju, South Korea
| | - Jin Myung Choi
- Department of Cellular and Molecular Medicine, Chosun University School of Medicine, Gwangju, South Korea
| | - Kun Ho Lee
- Department of Biomedical Sciences, Gwangju Alzheimer's Disease and Related Dementia Cohort Research Center, College of Natural Sciences and Public Health and Safety, Chosun University, Gwangju, South Korea.,Aging Neuroscience Research Group, Korea Brain Research Institute, Daegu, South Korea
| | - Seol Ryu
- Department of Chemistry, Chosun University, Gwangju, South Korea
| | - Heenam Stanley Kim
- Division of Biosystems & Biomedical Sciences, College of Health Sciences, Korea University, Seoul, South Korea
| | - Sung Haeng Lee
- Department of Cellular and Molecular Medicine, Chosun University School of Medicine, Gwangju, South Korea.,Department of Biomedical Sciences, Gwangju Alzheimer's Disease and Related Dementia Cohort Research Center, College of Natural Sciences and Public Health and Safety, Chosun University, Gwangju, South Korea
| |
Collapse
|
21
|
Song Z, Zhou H, Tian H, Wang X, Tao P. Unraveling the energetic significance of chemical events in enzyme catalysis via machine-learning based regression approach. Commun Chem 2020; 3:134. [PMID: 36703376 PMCID: PMC9814854 DOI: 10.1038/s42004-020-00379-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/11/2020] [Indexed: 01/29/2023] Open
Abstract
The bacterial enzyme class of β-lactamases are involved in benzylpenicillin acylation reactions, which are currently being revisited using hybrid quantum mechanical molecular mechanical (QM/MM) chain-of-states pathway optimizations. Minimum energy pathways are sampled by reoptimizing pathway geometry under different representative protein environments obtained through constrained molecular dynamics simulations. Predictive potential energy surface models in the reaction space are trained with machine-learning regression techniques. Herein, using TEM-1/benzylpenicillin acylation reaction as the model system, we introduce two model-independent criteria for delineating the energetic contributions and correlations in the predicted reaction space. Both methods are demonstrated to effectively quantify the energetic contribution of each chemical process and identify the rate limiting step of enzymatic reaction with high degrees of freedom. The consistency of the current workflow is tested under seven levels of quantum chemistry theory and three non-linear machine-learning regression models. The proposed approaches are validated to provide qualitative compliance with experimental mutagenesis studies.
Collapse
Affiliation(s)
- Zilin Song
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, TX, 75275, USA
| | - Hongyu Zhou
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, TX, 75275, USA
| | - Hao Tian
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, TX, 75275, USA
| | - Xinlei Wang
- Department of Statistical Science, Southern Methodist University, Dallas, TX, 75275, USA
| | - Peng Tao
- Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, TX, 75275, USA.
| |
Collapse
|
22
|
Structural Basis and Binding Kinetics of Vaborbactam in Class A β-Lactamase Inhibition. Antimicrob Agents Chemother 2020; 64:AAC.00398-20. [PMID: 32778546 DOI: 10.1128/aac.00398-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 07/31/2020] [Indexed: 12/20/2022] Open
Abstract
Class A β-lactamases are a major cause of β-lactam resistance in Gram-negative bacteria. The recently FDA-approved cyclic boronate vaborbactam is a reversible covalent inhibitor of class A β-lactamases, including CTX-M extended-spectrum β-lactamase and KPC carbapenemase, both frequently observed in the clinic. Intriguingly, vaborbactam displayed different binding kinetics and cell-based activity for these two enzymes, despite their similarity. A 1.0-Å crystal structure of CTX-M-14 demonstrated that two catalytic residues, K73 and E166, are positively charged and neutral, respectively. Meanwhile, a 1.25-Å crystal structure of KPC-2 revealed a more compact binding mode of vaborbactam versus CTX-M-14, as well as alternative conformations of W105. Together with kinetic analysis of W105 mutants, the structures demonstrate the influence of this residue and the unusual conformation of the β3 strand on the inactivation rate, as well as the stability of the reversible covalent bond with S70. Furthermore, studies of KPC-2 S130G mutant shed light on the different impacts of S130 in the binding of vaborbactam versus avibactam, another recently approved β-lactamase inhibitor. Taken together, these new data provide valuable insights into the inhibition mechanism of vaborbactam and future development of cyclic boronate inhibitors.
Collapse
|
23
|
De Angelis G, Del Giacomo P, Posteraro B, Sanguinetti M, Tumbarello M. Molecular Mechanisms, Epidemiology, and Clinical Importance of β-Lactam Resistance in Enterobacteriaceae. Int J Mol Sci 2020; 21:ijms21145090. [PMID: 32708513 PMCID: PMC7404273 DOI: 10.3390/ijms21145090] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/13/2020] [Accepted: 07/17/2020] [Indexed: 12/16/2022] Open
Abstract
Despite being members of gut microbiota, Enterobacteriaceae are associated with many severe infections such as bloodstream infections. The β-lactam drugs have been the cornerstone of antibiotic therapy for such infections. However, the overuse of these antibiotics has contributed to select β-lactam-resistant Enterobacteriaceae isolates, so that β-lactam resistance is nowadays a major concern worldwide. The production of enzymes that inactivate β-lactams, mainly extended-spectrum β-lactamases and carbapenemases, can confer multidrug resistance patterns that seriously compromise therapeutic options. Further, β-lactam resistance may result in increases in the drug toxicity, mortality, and healthcare costs associated with Enterobacteriaceae infections. Here, we summarize the updated evidence about the molecular mechanisms and epidemiology of β-lactamase-mediated β-lactam resistance in Enterobacteriaceae, and their potential impact on clinical outcomes of β-lactam-resistant Enterobacteriaceae infections.
Collapse
Affiliation(s)
- Giulia De Angelis
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (G.D.A.); (B.P.); (M.S.)
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy;
| | - Paola Del Giacomo
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy;
| | - Brunella Posteraro
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (G.D.A.); (B.P.); (M.S.)
- Dipartimento di Scienze Gastroenterologiche, Endocrino-Metaboliche e Nefro-Urologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Maurizio Sanguinetti
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (G.D.A.); (B.P.); (M.S.)
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy;
| | - Mario Tumbarello
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy;
- Dipartimento di Sicurezza e Bioetica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Correspondence:
| |
Collapse
|
24
|
Das CK, Nair NN. Elucidating the Molecular Basis of Avibactam‐Mediated Inhibition of Class A β‐Lactamases. Chemistry 2020; 26:9639-9651. [DOI: 10.1002/chem.202001261] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/10/2020] [Indexed: 12/25/2022]
Affiliation(s)
- Chandan Kumar Das
- Department of ChemistryIndian Institute of Technology Kanpur Kanpur 208016 India
- Current Address: Lehrstuhl für Theoretische ChemieRuhr Universität Bochum 44780 Bochum Germany
| | - Nisanth N. Nair
- Department of ChemistryIndian Institute of Technology Kanpur Kanpur 208016 India
| |
Collapse
|
25
|
He Y, Lei J, Pan X, Huang X, Zhao Y. The hydrolytic water molecule of Class A β-lactamase relies on the acyl-enzyme intermediate ES* for proper coordination and catalysis. Sci Rep 2020; 10:10205. [PMID: 32576842 PMCID: PMC7311446 DOI: 10.1038/s41598-020-66431-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 01/06/2020] [Indexed: 11/16/2022] Open
Abstract
Serine-based β-lactamases of Class A, C and D all rely on a key water molecule to hydrolyze and inactivate β-lactam antibiotics. This process involves two conserved catalytic steps. In the first acylation step, the β-lactam antibiotic forms an acyl-enzyme intermediate (ES*) with the catalytic serine residue. In the second deacylation step, an activated water molecule serves as nucleophile (WAT_Nu) to attack ES* and release the inactivated β-lactam. The coordination and activation of WAT_Nu is not fully understood. Using time-resolved x-ray crystallography and QM/MM simulations, we analyzed three intermediate structures of Class A β-lactamase PenP as it slowly hydrolyzed cephaloridine. WAT_Nu is centrally located in the apo structure but becomes slightly displaced away by ES* in the post-acylation structure. In the deacylation structure, WAT_Nu moves back and is positioned along the Bürgi–Dunitz trajectory with favorable energetic profile to attack ES*. Unexpectedly, WAT_Nu is also found to adopt a catalytically incompetent conformation in the deacylation structure forming a hydrogen bond with ES*. Our results reveal that ES* plays a significant role in coordinating and activating WAT_Nu through subtle yet distinct interactions at different stages of the catalytic process. These interactions may serve as potential targets to circumvent β-lactamase-mediated antibiotic resistance.
Collapse
Affiliation(s)
- Yunjiao He
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, P. R. China.,Department of Applied Biology and Chemical Technology, State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, P. R. China
| | - Jinping Lei
- Department of Chemistry, Center of Systems Biology and Human Health, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China.,School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, P. R. China
| | - Xuehua Pan
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, P. R. China.,Department of Applied Biology and Chemical Technology, State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, P. R. China
| | - Xuhui Huang
- Department of Chemistry, Center of Systems Biology and Human Health, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China.
| | - Yanxiang Zhao
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, P. R. China. .,Department of Applied Biology and Chemical Technology, State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, P. R. China.
| |
Collapse
|
26
|
Sirirak J, Lawan N, Van der Kamp MW, Harvey JN, Mulholland AJ. Benchmarking quantum mechanical methods for calculating reaction energies of reactions catalyzed by enzymes. PEERJ PHYSICAL CHEMISTRY 2020. [DOI: 10.7717/peerj-pchem.8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
To assess the accuracy of different quantum mechanical methods for biochemical modeling, the reaction energies of 20 small model reactions (chosen to represent chemical steps catalyzed by commonly studied enzymes) were calculated. The methods tested included several popular Density Functional Theory (DFT) functionals, second-order Møller Plesset perturbation theory (MP2) and its spin-component scaled variant (SCS-MP2), and coupled cluster singles and doubles and perturbative triples (CCSD(T)). Different basis sets were tested. CCSD(T)/aug-cc-pVTZ results for all 20 reactions were used to benchmark the other methods. It was found that MP2 and SCS-MP2 reaction energy calculation results are similar in quality to CCSD(T) (mean absolute error (MAE) of 1.2 and 1.3 kcal mol−1, respectively). MP2 calculations gave a large error in one case, and are more subject to basis set effects, so in general SCS-MP2 calculations are a good choice when CCSD(T) calculations are not feasible. Results with different DFT functionals were of reasonably good quality (MAEs of 2.5–5.1 kcal mol−1), whereas popular semi-empirical methods (AM1, PM3, SCC-DFTB) gave much larger errors (MAEs of 11.6–14.6 kcal mol−1). These results should be useful in guiding methodological choices and assessing the accuracy of QM/MM calculations on enzyme-catalyzed reactions.
Collapse
Affiliation(s)
- Jitnapa Sirirak
- Department of Chemistry, Faculty of Science, Silpakorn University, Nakhon Pathom, Thailand
| | - Narin Lawan
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | | | | | - Adrian J. Mulholland
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
27
|
Uzzaman M, Junaid M, Uddin MN. Evaluation of anti-tuberculosis activity of some oxotitanium(IV) Schiff base complexes; molecular docking, dynamics simulation and ADMET studies. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-2644-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
28
|
Cheng Q, Xu C, Chai J, Zhang R, Wai chi Chan E, Chen S. Structural Insight into the Mechanism of Inhibitor Resistance in CTX-M-199, a CTX-M-64 Variant Carrying the S 130T Substitution. ACS Infect Dis 2020; 6:577-587. [PMID: 31709791 DOI: 10.1021/acsinfecdis.9b00345] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The smart design of β-lactamase inhibitors allowed us to combat extended-spectrum β-lactamase (ESBL)-producing organisms for many years without developing resistance to these inhibitors. However, novel resistant variants have emerged recently, and notable examples are the CTX-M-190 and CTX-M-199 variants, which carried a S130T amino acid substitution and exhibited resistance to inhibitors such as sulbactam and tazobactam. Using mass spectrometric and crystallographic approaches, this study depicted the mechanisms of inhibitor resistance. Our data showed that CTX-M-64 (S130T) did not cause any conformational change or exert any effect on its ability to hydrolyze β-lactam substrates. However, binding of sulbactam, but not clavulanic acid, to the active site of CTX-M-64 (S130T) led to the conformational changes in such active site, which comprised the key residues involved in substrate catalysis, namely, Thr130, Lys73, Lys234, Asn104, and Asn132. This conformational change weakened the binding of the sulbactam trans-enamine intermediate (TSL) to the active site and rendered the formation of the inhibitor-enzyme complex, which features a covalent acrylic acid (AKR)-T130 bond, inefficient, thereby resulting in inhibitor resistance in CTX-M-64 (S130T). Understanding the mechanisms of inhibitor resistance provided structural insight for the future development of new inhibitors against inhibitor-resistant β-lactamases.
Collapse
Affiliation(s)
- Qipeng Cheng
- State Key Lab of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Chen Xu
- State Key Lab of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Jiachang Chai
- Department of Clinical Medicine, Second Affiliated Hospital of Zhejiang University, Hangzhou 310009, China
| | - Rong Zhang
- Department of Clinical Medicine, Second Affiliated Hospital of Zhejiang University, Hangzhou 310009, China
| | - Edward Wai chi Chan
- State Key Lab of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Sheng Chen
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong
| |
Collapse
|
29
|
Mechanism of proton transfer in class A β-lactamase catalysis and inhibition by avibactam. Proc Natl Acad Sci U S A 2020; 117:5818-5825. [PMID: 32123084 DOI: 10.1073/pnas.1922203117] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Gram-negative bacteria expressing class A β-lactamases pose a serious health threat due to their ability to inactivate all β-lactam antibiotics. The acyl-enzyme intermediate is a central milestone in the hydrolysis reaction catalyzed by these enzymes. However, the protonation states of the catalytic residues in this complex have never been fully analyzed experimentally due to inherent difficulties. To help unravel the ambiguity surrounding class A β-lactamase catalysis, we have used ultrahigh-resolution X-ray crystallography and the recently approved β-lactamase inhibitor avibactam to trap the acyl-enzyme complex of class A β-lactamase CTX-M-14 at varying pHs. A 0.83-Å-resolution CTX-M-14 complex structure at pH 7.9 revealed a neutral state for both Lys73 and Glu166. Furthermore, the avibactam hydroxylamine-O-sulfonate group conformation varied according to pH, and this conformational switch appeared to correspond to a change in the Lys73 protonation state at low pH. In conjunction with computational analyses, our structures suggest that Lys73 has a perturbed acid dissociation constant (pKa) compared with acyl-enzyme complexes with β-lactams, hindering its function to deprotonate Glu166 and the initiation of the deacylation reaction. Further NMR analysis demonstrated Lys73 pKa to be ∼5.2 to 5.6. Together with previous ultrahigh-resolution crystal structures, these findings enable us to follow the proton transfer process of the entire acylation reaction and reveal the critical role of Lys73. They also shed light on the stability and reversibility of the avibactam carbamoyl acyl-enzyme complex, highlighting the effect of substrate functional groups in influencing the protonation states of catalytic residues and subsequently the progression of the reaction.
Collapse
|
30
|
β-Lactamase of Mycobacterium tuberculosis Shows Dynamics in the Active Site That Increase upon Inhibitor Binding. Antimicrob Agents Chemother 2020; 64:AAC.02025-19. [PMID: 31871087 DOI: 10.1128/aac.02025-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 12/19/2019] [Indexed: 12/11/2022] Open
Abstract
The Mycobacterium tuberculosis β-lactamase BlaC is a broad-spectrum β-lactamase that can convert a range of β-lactam antibiotics. Enzymes with low specificity are expected to exhibit active-site flexibility. To probe the motions in BlaC, we studied the dynamic behavior in solution using nuclear magnetic resonance (NMR) spectroscopy. 15N relaxation experiments show that BlaC is mostly rigid on the pico- to nanosecond timescale. Saturation transfer experiments indicate that also on the high-millisecond timescale BlaC is not dynamic. Using relaxation dispersion experiments, clear evidence was obtained for dynamics in the low-millisecond range, with an exchange rate of ca. 860 s-1 The dynamic amide groups are localized in the active site. Upon formation of an adduct with the inhibitor avibactam, extensive line broadening occurs, indicating an increase in magnitude of the active-site dynamics. Furthermore, the rate of the motions increases significantly. Upon reaction with the inhibitor clavulanic acid, similar line broadening is accompanied by duplication of NMR signals, indicative of at least one additional, slower exchange process (exchange rate, k ex, of <100 s-1), while for this inhibitor also loss of pico- to nanosecond timescale rigidity is observed for some amides in the α domain. Possible sources of the observed dynamics, such as motions in the omega loop and rearrangements of active-site residues, are discussed. The increase in dynamics upon ligand binding argues against a model of inhibitor binding through conformational selection. Rather, the induced dynamics may serve to maximize the likelihood of sampling the optimal conformation for hydrolysis of the bound ligand.
Collapse
|
31
|
Langan PS, Sullivan B, Weiss KL, Coates L. Probing the role of the conserved residue Glu166 in a class A β-lactamase using neutron and X-ray protein crystallography. Acta Crystallogr D Struct Biol 2020; 76:118-123. [PMID: 32038042 PMCID: PMC7008513 DOI: 10.1107/s2059798319016334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 12/03/2019] [Indexed: 11/10/2022] Open
Abstract
The amino-acid sequence of the Toho-1 β-lactamase contains several conserved residues in the active site, including Ser70, Lys73, Ser130 and Glu166, some of which coordinate a catalytic water molecule. This catalytic water molecule is essential in the acylation and deacylation parts of the reaction mechanism through which Toho-1 inactivates specific antibiotics and provides resistance to its expressing bacterial strains. To investigate the function of Glu166 in the acylation part of the catalytic mechanism, neutron and X-ray crystallographic studies were performed on a Glu166Gln mutant. The structure of this class A β-lactamase mutant provides several insights into its previously reported reduced drug-binding kinetic rates. A joint refinement of both X-ray and neutron diffraction data was used to study the effects of the Glu166Gln mutation on the active site of Toho-1. This structure reveals that while the Glu166Gln mutation has a somewhat limited impact on the positions of the conserved amino acids within the active site, it displaces the catalytic water molecule from the active site. These subtle changes offer a structural explanation for the previously observed decreases in the binding of non-β-lactam inhibitors such as the recently developed diazobicyclooctane inhibitor avibactam.
Collapse
Affiliation(s)
- Patricia S. Langan
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Brendan Sullivan
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Kevin L. Weiss
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Leighton Coates
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
32
|
|
33
|
Tooke CL, Hinchliffe P, Bragginton EC, Colenso CK, Hirvonen VHA, Takebayashi Y, Spencer J. β-Lactamases and β-Lactamase Inhibitors in the 21st Century. J Mol Biol 2019; 431:3472-3500. [PMID: 30959050 PMCID: PMC6723624 DOI: 10.1016/j.jmb.2019.04.002] [Citation(s) in RCA: 491] [Impact Index Per Article: 81.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/27/2019] [Accepted: 04/01/2019] [Indexed: 12/31/2022]
Abstract
The β-lactams retain a central place in the antibacterial armamentarium. In Gram-negative bacteria, β-lactamase enzymes that hydrolyze the amide bond of the four-membered β-lactam ring are the primary resistance mechanism, with multiple enzymes disseminating on mobile genetic elements across opportunistic pathogens such as Enterobacteriaceae (e.g., Escherichia coli) and non-fermenting organisms (e.g., Pseudomonas aeruginosa). β-Lactamases divide into four classes; the active-site serine β-lactamases (classes A, C and D) and the zinc-dependent or metallo-β-lactamases (MBLs; class B). Here we review recent advances in mechanistic understanding of each class, focusing upon how growing numbers of crystal structures, in particular for β-lactam complexes, and methods such as neutron diffraction and molecular simulations, have improved understanding of the biochemistry of β-lactam breakdown. A second focus is β-lactamase interactions with carbapenems, as carbapenem-resistant bacteria are of grave clinical concern and carbapenem-hydrolyzing enzymes such as KPC (class A) NDM (class B) and OXA-48 (class D) are proliferating worldwide. An overview is provided of the changing landscape of β-lactamase inhibitors, exemplified by the introduction to the clinic of combinations of β-lactams with diazabicyclooctanone and cyclic boronate serine β-lactamase inhibitors, and of progress and strategies toward clinically useful MBL inhibitors. Despite the long history of β-lactamase research, we contend that issues including continuing unresolved questions around mechanism; opportunities afforded by new technologies such as serial femtosecond crystallography; the need for new inhibitors, particularly for MBLs; the likely impact of new β-lactam:inhibitor combinations and the continuing clinical importance of β-lactams mean that this remains a rewarding research area.
Collapse
Affiliation(s)
- Catherine L Tooke
- School of Cellular and Molecular Medicine, University of Bristol Biomedical Sciences Building, University Walk, Bristol BS8 1TD, United Kingdom
| | - Philip Hinchliffe
- School of Cellular and Molecular Medicine, University of Bristol Biomedical Sciences Building, University Walk, Bristol BS8 1TD, United Kingdom
| | - Eilis C Bragginton
- School of Cellular and Molecular Medicine, University of Bristol Biomedical Sciences Building, University Walk, Bristol BS8 1TD, United Kingdom
| | - Charlotte K Colenso
- School of Cellular and Molecular Medicine, University of Bristol Biomedical Sciences Building, University Walk, Bristol BS8 1TD, United Kingdom
| | - Viivi H A Hirvonen
- School of Cellular and Molecular Medicine, University of Bristol Biomedical Sciences Building, University Walk, Bristol BS8 1TD, United Kingdom
| | - Yuiko Takebayashi
- School of Cellular and Molecular Medicine, University of Bristol Biomedical Sciences Building, University Walk, Bristol BS8 1TD, United Kingdom
| | - James Spencer
- School of Cellular and Molecular Medicine, University of Bristol Biomedical Sciences Building, University Walk, Bristol BS8 1TD, United Kingdom.
| |
Collapse
|
34
|
Structural Insights into the Inhibition of the Extended-Spectrum β-Lactamase PER-2 by Avibactam. Antimicrob Agents Chemother 2019; 63:AAC.00487-19. [PMID: 31235626 DOI: 10.1128/aac.00487-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 06/17/2019] [Indexed: 02/07/2023] Open
Abstract
The diazabicyclooctane (DBO) avibactam (AVI) reversibly inactivates most serine-β-lactamases. Previous investigations showed that inhibition constants of AVI toward class A PER-2 are reminiscent of values observed for class C and D β-lactamases (i.e., k 2/K of ≈103 M-1 s-1) but lower than other class A β-lactamases (i.e., k 2/K = 104 to 105 M-1 s-1). Herein, biochemical and structural studies were conducted with PER-2 and AVI to explore these differences. Furthermore, biochemical studies on Arg220 and Thr237 variants with AVI were conducted to gain deeper insight into the mechanism of PER-2 inactivation. The main biochemical and structural observations revealed the following: (i) both amino-acid substitutions in Arg220 and the rich hydrophobic content in the active site hinder the binding of catalytic waters and acylation, impairing AVI inhibition; (ii) movement of Ser130 upon binding of AVI favors the formation of a hydrogen bond with the sulfate group of AVI; and (iii) the Thr237Ala substitution alters the AVI inhibition constants. The acylation constant (k 2/K) of PER-2 by AVI is primarily influenced by stabilizing hydrogen bonds involving AVI and important residues such as Thr237 and Arg220. (Variants in Arg220 demonstrate a dramatic reduction in k 2/K) We also observed that displacement of Ser130 side chain impairs AVI acylation, an observation not made in other extended-spectrum β-lactamases (ESBLs). Comparatively, relebactam combined with a β-lactam is more potent against Escherichia coli producing PER-2 variants than β-lactam-AVI combinations. Our findings provide a rationale for evaluating the utility of the currently available DBO inhibitors against unique ESBLs like PER-2 and anticipate the effectiveness of these inhibitors toward variants that may eventually be selected upon AVI usage.
Collapse
|
35
|
Wang F, Shen L, Zhou H, Wang S, Wang X, Tao P. Machine Learning Classification Model for Functional Binding Modes of TEM-1 β-Lactamase. Front Mol Biosci 2019; 6:47. [PMID: 31355207 PMCID: PMC6629954 DOI: 10.3389/fmolb.2019.00047] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 06/11/2019] [Indexed: 11/13/2022] Open
Abstract
TEM family of enzymes is one of the most commonly encountered β-lactamases groups with different catalytic capabilities against various antibiotics. Despite the studies investigating the catalytic mechanism of TEM β-lactamases, the binding modes of these enzymes against ligands in different functional catalytic states have been largely overlooked. But the binding modes may play a critical role in the function and even the evolution of these proteins. In this work, a newly developed machine learning analysis approach to the recognition of protein dynamics states was applied to compare the binding modes of TEM-1 β-lactamase with regard to penicillin in different catalytic states. While conventional analysis methods, including principal components analysis (PCA), could not differentiate TEM-1 in different binding modes, the application of a machine learning method led to excellent classification models differentiating these states. It was also revealed that both reactant/product states and apo/product states are more differentiable than the apo/reactant states. The feature importance generated by the training procedure of the machine learning model was utilized to evaluate the contribution from residues at active sites and in different secondary structures. Key active site residues, Ser70 and Ser130, play a critical role in differentiating reactant/product states, while other active site residues are more important for differentiating apo/product states. Overall, this study provides new insights into the different dynamical function states of TEM-1 and may open a new venue for β-lactamases functional and evolutional studies in general.
Collapse
Affiliation(s)
- Feng Wang
- Department of Chemistry, Center for Scientific Computation, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, TX, United States
| | - Li Shen
- Department of Chemistry, Center for Scientific Computation, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, TX, United States
| | - Hongyu Zhou
- Department of Chemistry, Center for Scientific Computation, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, TX, United States
| | - Shouyi Wang
- Department of Industrial, Manufacturing, and Systems Engineering, University of Texas at Arlington, Arlington, TX, United States
| | - Xinlei Wang
- Department of Statistical Science, Southern Methodist University, Dallas, TX, United States
| | - Peng Tao
- Department of Chemistry, Center for Scientific Computation, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist University, Dallas, TX, United States
| |
Collapse
|
36
|
Mojica MF, Rutter JD, Taracila M, Abriata LA, Fouts DE, Papp-Wallace KM, Walsh TJ, LiPuma JJ, Vila AJ, Bonomo RA. Population Structure, Molecular Epidemiology, and β-Lactamase Diversity among Stenotrophomonas maltophilia Isolates in the United States. mBio 2019; 10:e00405-19. [PMID: 31266860 PMCID: PMC6606795 DOI: 10.1128/mbio.00405-19] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 06/03/2019] [Indexed: 01/06/2023] Open
Abstract
Stenotrophomonas maltophilia is a Gram-negative, nonfermenting, environmental bacillus that is an important cause of nosocomial infections, primarily associated with the respiratory tract in the immunocompromised population. Aiming to understand the population structure, microbiological characteristics and impact of allelic variation on β-lactamase structure and function, we collected 130 clinical isolates from across the United States. Identification of 90 different sequence types (STs), of which 63 are new allelic combinations, demonstrates the high diversity of this species. The majority of the isolates (45%) belong to genomic group 6. We also report excellent activity of the ceftazidime-avibactam and aztreonam combination, especially against strains recovered from blood and respiratory infections for which the susceptibility is higher than the susceptibility to trimethoprim-sulfamethoxazole, considered the "first-line" antibiotic to treat S. maltophilia Analysis of 73 blaL1 and 116 blaL2 genes identified 35 and 43 novel variants of L1 and L2 β-lactamases, respectively. Investigation of the derived amino acid sequences showed that substitutions are mostly conservative and scattered throughout the protein, preferentially affecting positions that do not compromise enzyme function but that may have an impact on substrate and inhibitor binding. Interestingly, we detected a probable association between a specific type of L1 and L2 and genomic group 6. Taken together, our results provide an overview of the molecular epidemiology of S. maltophilia clinical strains from the United States. In particular, the discovery of new L1 and L2 variants warrants further study to fully understand the relationship between them and the β-lactam resistance phenotype in this pathogen.IMPORTANCE Multiple antibiotic resistance mechanisms, including two β-lactamases, L1, a metallo-β-lactamase, and L2, a class A cephalosporinase, make S. maltophilia naturally multidrug resistant. Thus, infections caused by S. maltophilia pose a big therapeutic challenge. Our study aims to understand the microbiological and molecular characteristics of S. maltophilia isolates recovered from human sources. A highlight of the resistance profile of this collection is the excellent activity of the ceftazidime-avibactam and aztreonam combination. We hope this result prompts controlled and observational studies to add clinical data on the utility and safety of this therapy. We also identify 35 and 43 novel variants of L1 and L2, respectively, some of which harbor novel substitutions that could potentially affect substrate and/or inhibitor binding. We believe our results provide valuable knowledge to understand the epidemiology of this species and to advance mechanism-based inhibitor design to add to the limited arsenal of antibiotics active against this pathogen.
Collapse
Affiliation(s)
- Maria F Mojica
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Research Service, Louis Stokes Veterans Affairs Medical Center, Cleveland, Ohio, USA
| | - Joseph D Rutter
- Research Service, Louis Stokes Veterans Affairs Medical Center, Cleveland, Ohio, USA
| | - Magdalena Taracila
- Research Service, Louis Stokes Veterans Affairs Medical Center, Cleveland, Ohio, USA
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Luciano A Abriata
- Laboratory for Biomolecular Modeling, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | | | - Krisztina M Papp-Wallace
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Research Service, Louis Stokes Veterans Affairs Medical Center, Cleveland, Ohio, USA
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Thomas J Walsh
- Transplantation Oncology Infectious Diseases Program, Weill Cornell Medical Center, New York, New York, USA
| | - John J LiPuma
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Alejandro J Vila
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Rosario, Argentina
| | - Robert A Bonomo
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Center for Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Medical Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio, USA
- GRECC, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio, USA
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, USA
| |
Collapse
|
37
|
Shurina BA, Page RC. Influence of substrates and inhibitors on the structure of Klebsiella pneumoniae carbapenemase-2. Exp Biol Med (Maywood) 2019; 244:1596-1604. [PMID: 31161945 DOI: 10.1177/1535370219854322] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The hydrolysis of last resort carbapenem antibiotics by Klebsiella pneumoniae carbapenemase-2 (KPC-2) presents a significant danger to global health. Combined with horizontal gene transfer, the emergence KPC-2 threatens to quickly expand carbapenemase activity to ever increasing numbers of pathogens. Our understanding of KPC-2 has greatly increased over the past decade thanks, in great part, to 20 crystal structures solved by groups around the world. These include apo KPC-2 structures, along with structures featuring a library of 10 different inhibitors representing diverse structural and functional classes. Herein we focus on cataloging the available KPC-2 structures and presenting a discussion of key aspects of each structure and important relationships between structures. Although the available structures do not provide information on dynamic motions with KPC-2, and the family of structures indicates small conformational changes across a wide array of bound inhibitors, substrates, and products, the structures provide a strong foundation for additional studies in the coming years to discover new KPC-2 inhibitors. Impact statement The work herein is important to the field as it provides a clear and succinct accounting of available KPC-2 structures. The work advances the field by collecting and analyzing differences and similarities across the available structures. This work features new analyses and interpretations of the existing structures which will impact the field in a positive way by making structural insights more widely available among the beta-lactamase community.
Collapse
Affiliation(s)
- Ben A Shurina
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Richard C Page
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| |
Collapse
|
38
|
Molecular Basis for the Potent Inhibition of the Emerging Carbapenemase VCC-1 by Avibactam. Antimicrob Agents Chemother 2019; 63:AAC.02112-18. [PMID: 30782990 DOI: 10.1128/aac.02112-18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 01/18/2019] [Indexed: 11/20/2022] Open
Abstract
In 2016, we identified a new class A carbapenemase, VCC-1, in a nontoxigenic Vibrio cholerae strain that had been isolated from retail shrimp imported into Canada for human consumption. Shortly thereafter, seven additional VCC-1-producing V. cholerae isolates were recovered along the German coastline. These isolates appear to have acquired the VCC-1 gene (bla VCC-1) independently from the Canadian isolate, suggesting that bla VCC-1 is mobile and widely distributed. VCC-1 hydrolyzes penicillins, cephalothin, aztreonam, and carbapenems and, like the broadly disseminated class A carbapenemase KPC-2, is only weakly inhibited by clavulanic acid or tazobactam. Although VCC-1 has yet to be observed in the clinic, its encroachment into aquaculture and other areas with human activity suggests that the enzyme may be emerging as a public health threat. To preemptively address this threat, we examined the structural and functional biology of VCC-1 against the FDA-approved non-β-lactam-based inhibitor avibactam. We found that avibactam restored the in vitro sensitivity of V. cholerae to meropenem, imipenem, and ertapenem. The acylation efficiency was lower for VCC-1 than for KPC-2 and akin to that of Pseudomonas aeruginosa PAO1 AmpC (k 2/Ki = 3.0 × 103 M-1 s-1). The tertiary structure of VCC-1 is similar to that of KPC-2, and they bind avibactam similarly; however, our analyses suggest that VCC-1 may be unable to degrade avibactam, as has been found for KPC-2. Based on our prior genomics-based surveillance, we were able to target VCC-1 for detailed molecular studies to gain early insights that could be used to combat this carbapenemase in the future.
Collapse
|
39
|
Marion A, Gokcan H, Monard G. Semi-Empirical Born-Oppenheimer Molecular Dynamics (SEBOMD) within the Amber Biomolecular Package. J Chem Inf Model 2019; 59:206-214. [PMID: 30433776 DOI: 10.1021/acs.jcim.8b00605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Semi-empirical quantum methods from the neglect of differential diatomic overlap (NDDO) family such as MNDO, AM1, or PM3 are fast albeit approximate quantum methods. By combining them with linear scaling methods like the divide & conquer (D&C) method, it is possible to quickly evaluate the energy of systems containing hundreds to thousands of atoms. We here present our implementation in the Amber biomolecular package of a SEBOMD module that provides a way to run semi-empirical Born-Oppenheimer molecular dynamics. At each step of a SEBOMD, a fully converged self-consistent field (SCF) calculation is performed to obtain the semiempirical quantum potential energy of a molecular system encaged or not in periodic boundary conditions. We describe the implementation and the features of our SEBOMD implementation. We show the requirements to conserve the total energy in NVE simulations, and how to accelerate SCF convergence through density matrix extrapolation. Specific ways of handling periodic boundary conditions using mechanical embedding or electrostatic embedding through a tailored quantum Ewald summation is developed. The parallel performance of SEBOMD simulations using the D&C scheme are presented for liquid water systems of various sizes, and a comparison between the traditional full diagonalization scheme and the D&C approach for the reproduction of the structure of liquid water illustrates the potentiality of SEBOMD to simulate molecular systems containing several hundreds of atoms for hundreds of picoseconds with a quantum mechanical potential in a reasonable amount of CPU time.
Collapse
Affiliation(s)
- Antoine Marion
- Université de Lorraine, CNRS, LPCT , F-54000 Nancy , France.,Department of Chemistry , Middle East Technical University , 06800 , Ankara , Turkey
| | - Hatice Gokcan
- Université de Lorraine, CNRS, LPCT , F-54000 Nancy , France.,Department of Chemistry , University of North Texas , Denton , Texas 76201 , United States
| | - Gerald Monard
- Université de Lorraine, CNRS, LPCT , F-54000 Nancy , France
| |
Collapse
|
40
|
Cortina GA, Kasson PM. Predicting allostery and microbial drug resistance with molecular simulations. Curr Opin Struct Biol 2018; 52:80-86. [PMID: 30243041 PMCID: PMC6296865 DOI: 10.1016/j.sbi.2018.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 08/31/2018] [Accepted: 09/07/2018] [Indexed: 11/30/2022]
Abstract
Beta-lactamase enzymes mediate the most common forms of gram-negative antibiotic resistance affecting clinical treatment. They also constitute an excellent model system for the difficult problem of understanding how allosteric mutations can augment catalytic activity of already-competent enzymes. Multiple allosteric mutations have been identified that alter catalytic activity or drug-resistance spectrum in class A beta lactamases, but predicting these in advance continues to be challenging. Here, we review computational techniques based on structure and/or molecular simulation to predict such mutations. Structure-based techniques have been particularly helpful in developing graph algorithms for analyzing critical residues in beta-lactamase function, while classical molecular simulation has recently shown the ability to prospectively predict allosteric mutations increasing beta-lactamase activity and drug resistance. These will ultimately achieve the greatest power when combined with simulation methods that model reactive chemistry to calculate activation free energies directly.
Collapse
Affiliation(s)
- George A Cortina
- Departments of Molecular Physiology and of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, United States
| | - Peter M Kasson
- Departments of Molecular Physiology and of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, United States; Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala 75146, Sweden.
| |
Collapse
|
41
|
Knox R, Lento C, Wilson DJ. Mapping Conformational Dynamics to Individual Steps in the TEM-1 β-Lactamase Catalytic Mechanism. J Mol Biol 2018; 430:3311-3322. [PMID: 29964048 DOI: 10.1016/j.jmb.2018.06.045] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/14/2018] [Accepted: 06/22/2018] [Indexed: 10/28/2022]
Abstract
Conformational dynamics are increasingly recognized as being essential for enzyme function. However, there is virtually no direct experimental evidence to support the notion that individual dynamic modes are required for specific catalytic processes, apart from the initial step of substrate binding. In this work, we use a unique approach based on millisecond hydrogen-deuterium exchange mass spectrometry to identify dynamic modes linked to individual catalytic processes in the antibiotic resistance enzyme TEM-1 β-lactamase. Using a "good" substrate (ampicillin), a poorly hydrolyzed substrate (cephalexin) and a covalent inhibitor (clavulanate), we are able to isolate dynamic modes that are specifically linked to substrate binding, productive lactam ring hydrolysis and deacylation. These discoveries are ultimately translated into specific targets for allosteric TEM-1 inhibitor development.
Collapse
Affiliation(s)
- Ruth Knox
- Department of Chemistry, York University, Toronto, Canada M3J 1P3
| | - Cristina Lento
- Department of Chemistry, York University, Toronto, Canada M3J 1P3
| | - Derek J Wilson
- Department of Chemistry, York University, Toronto, Canada M3J 1P3; Center for Research in Mass Spectrometry, York University, Toronto, Canada M3J 1P3.
| |
Collapse
|
42
|
Lizana I, Delgado EJ. Theoretical insights on the inhibition mechanism of a class A Serine Hydrolase by avibactam. J Comput Chem 2018; 39:1943-1948. [PMID: 29707791 DOI: 10.1002/jcc.25340] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/08/2018] [Accepted: 04/08/2018] [Indexed: 11/10/2022]
Abstract
The inhibition mechanism of CTX-M-15 class A serine hydrolase by the inhibitor avibactam is addressed by a combined molecular dynamics (MD) and quantum mechanics/molecular mechanics (QM/MM) approach postulating that the residue Ser70 is the sole reacting residue, that is, itself may play the role of the acid-base species required for the enzyme inhibition. Other residues located in the active site have key participation in the positioning of the inhibitor in the right conformation to favor the attack of Ser70, in addition to the stabilization of the transition state by electrostatic interactions with avibactam. The results validate the hypothesis and show that the reaction follows an asynchronous concerted mechanism, in which the nucleophilic attack of the hydroxyl oxygen of Ser70 precedes the protonation of the amidic nitrogen and ring opening. The calculated activation barrier is 16 kcal/mol in agreement with the experimental evidence. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ignacio Lizana
- Computational Chemistry Group, Department of Physical Chemistry, Faculty of Chemical Sciences, Universidad de Concepcion, Concepcion, Chile
| | - Eduardo J Delgado
- Computational Chemistry Group, Department of Physical Chemistry, Faculty of Chemical Sciences, Universidad de Concepcion, Concepcion, Chile
| |
Collapse
|
43
|
van den Akker F, Bonomo RA. Exploring Additional Dimensions of Complexity in Inhibitor Design for Serine β-Lactamases: Mechanistic and Intra- and Inter-molecular Chemistry Approaches. Front Microbiol 2018; 9:622. [PMID: 29675000 PMCID: PMC5895744 DOI: 10.3389/fmicb.2018.00622] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 03/19/2018] [Indexed: 01/14/2023] Open
Abstract
As a bacterial resistance strategy, serine β-lactamases have evolved from cell wall synthesizing enzymes known as penicillin-binding proteins (PBP), by not only covalently binding β-lactam antibiotics but, also acquiring mechanisms of deacylating these antibiotics. This critical deacylation step leads to release of hydrolyzed and inactivated β-lactams, thereby providing resistance for the bacteria against these antibiotics targeting the cell wall. To combat β-lactamase-mediated antibiotic resistance, numerous β-lactamase inhibitors were developed that utilize various strategies to inactivate the β-lactamase. Most of these compounds are “mechanism-based” inhibitors that in some manner mimic the β-lactam substrate, having a carbonyl moiety and a negatively charged carboxyl or sulfate group. These compounds form a covalent adduct with the catalytic serine via an initial acylation step. To increase the life-time of the inhibitory covalent adduct intermediates, a remarkable array of different strategies was employed to improve inhibition potency. Such approaches include post-acylation intra- and intermolecular chemical rearrangements as well as affecting the deacylation water. These approaches transform the inhibitor design process from a 3-dimensional problem (i.e., XYZ coordinates) to one with additional dimensions of complexity as the reaction coordinate and time spent at each chemical state need to be taken into consideration. This review highlights the mechanistic intricacies of the design efforts of the β-lactamase inhibitors which so far have resulted in the development of “two generations” and 5 clinically available inhibitors.
Collapse
Affiliation(s)
- Focco van den Akker
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Robert A Bonomo
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH, United States.,Medicine, Pharmacology, Molecular Biology and Microbiology, Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, OH, United States.,Medical Service and Geriatric Research, Education, and Clinical Centers (GRECC), Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, United States.,Case Western Reserve University-VA Medical Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, OH, United States
| |
Collapse
|
44
|
Junaid M, Alam MJ, Hossain MK, Halim MA, Ullah MO. Molecular docking and dynamics of Nickel-Schiff base complexes for inhibiting β-lactamase of Mycobacterium tuberculosis. In Silico Pharmacol 2018; 6:6. [PMID: 30607319 DOI: 10.1007/s40203-018-0044-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 03/19/2018] [Indexed: 12/31/2022] Open
Abstract
In recent years, multidrug-resistance has become a primary concern in the treatment and management of tuberculosis, an infectious disease caused by Mycobacterium tuberculosis. In this context, searching new anti-tuberculosis agents particularly targeting the β-lactamase (BlaC) is reported to be promising as this enzyme is one of the key player in the development of multidrug resistance. This study reports the design of some Nickel (Ni) based tetradentate N2O2 Schiff bases, employing density functional theory. All analogs are optimized at B3LYP/SDD level of theory. Dipole moment, electronic energy, enthalpy, Gibbs free energy, HOMO-LUMO gap, and softness of these modified drugs are also investigated. Molecular interactions between designed ligands and BlaC have been analyzed by molecular docking approach, followed by molecular dynamics (MD) simulation. All designed compounds show low HOMO-LUMO gap, while addition of halogen increases the dipole moment of the compounds. Docking and MD simulation investigations reveal that the designed compounds are more potent than standard inhibitor, where Ile117, Pro290, Arg236 and Thr253 residues of BlaC are found to play important role in the ligand binding. Through MD simulation study, the best binding compound is also observed to form stable complex by increasing the protein rigidness. The ADME/T analysis suggests that modified drugs are less toxic and shows an improved pharmacokinetic properties than that of the standard drug. These results further confirm the ability of Ni-directed Schiff bases to bind simultaneously to the active site of BlaC and support them as potential candidates for the future treatment of tuberculosis disease.
Collapse
Affiliation(s)
- Md Junaid
- 1Department of Pharmaceutical Sciences, North South University, Dhaka, 1229 Bangladesh
| | - Md Jahangir Alam
- 1Department of Pharmaceutical Sciences, North South University, Dhaka, 1229 Bangladesh
| | - Md Kamal Hossain
- 2Department of Chemistry, Jahangirnagar University, Savar, Dhaka, 1342 Bangladesh
| | - Mohammad A Halim
- Division of Computer-Aided Drug Design, The Red-Green Research Centre, BICCB, 218 Elephant Road, Dhaka, 1205 Bangladesh.,4Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, Lyon, France
| | - M Obayed Ullah
- 1Department of Pharmaceutical Sciences, North South University, Dhaka, 1229 Bangladesh
| |
Collapse
|
45
|
Palzkill T. Structural and Mechanistic Basis for Extended-Spectrum Drug-Resistance Mutations in Altering the Specificity of TEM, CTX-M, and KPC β-lactamases. Front Mol Biosci 2018; 5:16. [PMID: 29527530 PMCID: PMC5829062 DOI: 10.3389/fmolb.2018.00016] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 02/08/2018] [Indexed: 11/13/2022] Open
Abstract
The most common mechanism of resistance to β-lactam antibiotics in Gram-negative bacteria is the production of β-lactamases that hydrolyze the drugs. Class A β-lactamases are serine active-site hydrolases that include the common TEM, CTX-M, and KPC enzymes. The TEM enzymes readily hydrolyze penicillins and older cephalosporins. Oxyimino-cephalosporins, such as cefotaxime and ceftazidime, however, are poor substrates for TEM-1 and were introduced, in part, to circumvent β-lactamase-mediated resistance. Nevertheless, the use of these antibiotics has lead to evolution of numerous variants of TEM with mutations that significantly increase the hydrolysis of the newer cephalosporins. The CTX-M enzymes emerged in the late 1980s and hydrolyze penicillins and older cephalosporins and derive their name from the ability to also hydrolyze cefotaxime. The CTX-M enzymes, however, do not efficiently hydrolyze ceftazidime. Variants of CTX-M enzymes, however, have evolved that exhibit increased hydrolysis of ceftazidime. Finally, the KPC enzyme emerged in the 1990s and is characterized by its broad specificity that includes penicillins, most cephalosporins, and carbapenems. The KPC enzyme, however, does not efficiently hydrolyze ceftazidime. As with the TEM and CTX-M enzymes, variants have recently evolved that extend the spectrum of KPC β-lactamase to include ceftazidime. This review discusses the structural and mechanistic basis for the expanded substrate specificity of each of these enzymes that result from natural mutations that confer oxyimino-cephalosporin resistance. For the TEM enzyme, extended-spectrum mutations act by establishing new interactions with the cephalosporin. These mutations increase the conformational heterogeneity of the active site to create sub-states that better accommodate the larger drugs. The mutations expanding the spectrum of CTX-M enzymes also affect the flexibility and conformation of the active site to accommodate ceftazidime. Although structural data are limited, extended-spectrum mutations in KPC may act by mediating new, direct interactions with substrate and/or altering conformations of the active site. In many cases, mutations that expand the substrate profile of these enzymes simultaneously decrease the thermodynamic stability. This leads to the emergence of additional global suppressor mutations that help correct the stability defects leading to increased protein expression and increased antibiotic resistance.
Collapse
Affiliation(s)
- Timothy Palzkill
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, United States
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
46
|
Langan PS, Vandavasi VG, Cooper CJ, Weiss KL, Ginell SL, Parks JM, Coates L. Substrate Binding Induces Conformational Changes in a Class A β-lactamase That Prime It for Catalysis. ACS Catal 2018. [DOI: 10.1021/acscatal.7b04114] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Patricia S. Langan
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Venu Gopal Vandavasi
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Connor J. Cooper
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Kevin L. Weiss
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Stephan L. Ginell
- Structural Biology Center, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, United States
| | - Jerry M. Parks
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, Tennessee 37996, United States
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6309, United States
| | - Leighton Coates
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
47
|
Saravanan M, Ramachandran B, Barabadi H. The prevalence and drug resistance pattern of extended spectrum β–lactamases (ESBLs) producing Enterobacteriaceae in Africa. Microb Pathog 2018; 114:180-192. [DOI: 10.1016/j.micpath.2017.11.061] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 11/27/2017] [Accepted: 11/27/2017] [Indexed: 10/18/2022]
|
48
|
Lewandowski EM, Lethbridge KG, Sanishvili R, Skiba J, Kowalski K, Chen Y. Mechanisms of proton relay and product release by Class A β-lactamase at ultrahigh resolution. FEBS J 2017; 285:87-100. [PMID: 29095570 DOI: 10.1111/febs.14315] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 09/15/2017] [Accepted: 10/28/2017] [Indexed: 01/25/2023]
Abstract
The β-lactam antibiotics inhibit penicillin-binding proteins (PBPs) by forming a stable, covalent, acyl-enzyme complex. During the evolution from PBPs to Class A β-lactamases, the β-lactamases acquired Glu166 to activate a catalytic water and cleave the acyl-enzyme bond. Here we present three product complex crystal structures of CTX-M-14 Class A β-lactamase with a ruthenocene-conjugated penicillin-a 0.85 Å resolution structure of E166A mutant complexed with the penilloate product, a 1.30 Å resolution complex structure of the same mutant with the penicilloate product, and a 1.18 Å resolution complex structure of S70G mutant with a penicilloate product epimer-shedding light on the catalytic mechanisms and product inhibition of PBPs and Class A β-lactamases. The E166A-penilloate complex captured the hydrogen bonding network following the protonation of the leaving group and, for the first time, unambiguously show that the ring nitrogen donates a proton to Ser130, which in turn donates a proton to Lys73. These observations indicate that in the absence of Glu166, the equivalent lysine would be neutral in PBPs and therefore capable of serving as the general base to activate the catalytic serine. Together with previous results, this structure suggests a common proton relay network shared by Class A β-lactamases and PBPs, from the catalytic serine to the lysine, and ultimately to the ring nitrogen. Additionally, the E166A-penicilloate complex reveals previously unseen conformational changes of key catalytic residues during the release of the product, and is the first structure to capture the hydrolyzed product in the presence of an unmutated catalytic serine. DATABASE Structural data are available in the PDB database under the accession numbers 5TOP, 5TOY, and 5VLE.
Collapse
Affiliation(s)
- Eric M Lewandowski
- Department of Molecular Medicine, University of South Florida College of Medicine, Tampa, FL, USA
| | - Kathryn G Lethbridge
- Department of Molecular Medicine, University of South Florida College of Medicine, Tampa, FL, USA
| | - Ruslan Sanishvili
- GMCA@APS, X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, IL, USA
| | - Joanna Skiba
- Department of Organic Chemistry, Faculty of Chemistry, University of Lodz, Poland
| | - Konrad Kowalski
- Department of Organic Chemistry, Faculty of Chemistry, University of Lodz, Poland
| | - Yu Chen
- Department of Molecular Medicine, University of South Florida College of Medicine, Tampa, FL, USA
| |
Collapse
|
49
|
Calvopiña K, Hinchliffe P, Brem J, Heesom KJ, Johnson S, Cain R, Lohans CT, Fishwick CWG, Schofield CJ, Spencer J, Avison MB. Structural/mechanistic insights into the efficacy of nonclassical β-lactamase inhibitors against extensively drug resistantStenotrophomonas maltophiliaclinical isolates. Mol Microbiol 2017; 106:492-504. [DOI: 10.1111/mmi.13831] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2017] [Indexed: 01/23/2023]
Affiliation(s)
- Karina Calvopiña
- School of Cellular & Molecular Medicine; University of Bristol; Bristol UK
| | - Philip Hinchliffe
- School of Cellular & Molecular Medicine; University of Bristol; Bristol UK
| | - Jürgen Brem
- Department of Chemistry; University of Oxford; Oxford UK
| | | | - Samar Johnson
- School of Cellular & Molecular Medicine; University of Bristol; Bristol UK
| | - Ricky Cain
- School of Chemistry; University of Leeds; Leeds UK
| | | | | | | | - James Spencer
- School of Cellular & Molecular Medicine; University of Bristol; Bristol UK
| | - Matthew B. Avison
- School of Cellular & Molecular Medicine; University of Bristol; Bristol UK
| |
Collapse
|
50
|
Abstract
The reaction between the antibiotic cefotaxime and the CTX-M-14 class A serine hydrolase is addressed from a theoretical point of view, by means of hybrid quantum mechanics/molecular mechanical (QM/MM) calculations, adopting a new approach that postulates that the residue Ser70 itself should play the role of the acid-base species required for the cefotaxime acylation. The proposed mechanism differs from earlier proposals existing in literature for other class A β-lactamases. The results confirm the hypothesis, and show that the reaction should occur via a concerted mechanism in which the acylation of the lactam carbonyl carbon, protonation of the N7 lactam atom, and opening of the β-lactam ring occurs simultaneously. Exploration of the potential energy surface shows three critical points, associated with reactants, transition state and product. The transition state is characterized by frequency, intrinsic reaction coordinate, atomic charge, and bond orders calculations. The calculated activation barrier is 20 kcal mol-1, and the reaction appears to be slightly endothermic by about 12 kcal mol-1. We conclude that this approach is feasible, and should be considered as an alternative mechanism or may exist in competition with others already published in the literature. This information should be useful for the design of novel antibiotics and β-lactamase inhibitors. Graphical abstract Three-dimensional view of the potential energy surface of cefotaxime.
Collapse
Affiliation(s)
- Ignacio Lizana
- Computational Chemistry Group, Faculty of Chemical Sciences, Universidad de Concepción, Concepción, Chile
| | - Eduardo J Delgado
- Computational Chemistry Group, Faculty of Chemical Sciences, Universidad de Concepción, Concepción, Chile.
| |
Collapse
|