1
|
Sun L, Yang L, Dou JH, Li J, Skorupskii G, Mardini M, Tan KO, Chen T, Sun C, Oppenheim JJ, Griffin RG, Dincă M, Rajh T. Room-Temperature Quantitative Quantum Sensing of Lithium Ions with a Radical-Embedded Metal-Organic Framework. J Am Chem Soc 2022; 144:19008-19016. [PMID: 36201712 DOI: 10.1021/jacs.2c07692] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recent advancements in quantum sensing have sparked transformative detection technologies with high sensitivity, precision, and spatial resolution. Owing to their atomic-level tunability, molecular qubits and ensembles thereof are promising candidates for sensing chemical analytes. Here, we show quantum sensing of lithium ions in solution at room temperature with an ensemble of organic radicals integrated in a microporous metal-organic framework (MOF). The organic radicals exhibit electron spin coherence and microwave addressability at room temperature, thus behaving as qubits. The high surface area of the MOF promotes accessibility of the guest analytes to the organic qubits, enabling unambiguous identification of lithium ions and quantitative measurement of their concentration through relaxometric and hyperfine spectroscopic methods based on electron paramagnetic resonance (EPR) spectroscopy. The sensing principle presented in this work is applicable to other metal ions with nonzero nuclear spin.
Collapse
Affiliation(s)
- Lei Sun
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois60439, United States
| | - Luming Yang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Jin-Hu Dou
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Jian Li
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56, Stockholm10044, Sweden
| | - Grigorii Skorupskii
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Michael Mardini
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States.,Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Kong Ooi Tan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States.,Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Tianyang Chen
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Chenyue Sun
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Julius J Oppenheim
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Robert G Griffin
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States.,Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Mircea Dincă
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Tijana Rajh
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois60439, United States.,The School for Molecular Sciences, Arizona State University, Tempe, Arizona85281, United States
| |
Collapse
|
2
|
Ma R, Chen W, Wang L, Yi X, Xiao Y, Gao X, Zhang J, Tang X, Yang C, Meng X, Zheng A, Xiao FS. N-Oxyl Radicals Trapped on Zeolite Surface Accelerate Photocatalysis. ACS Catal 2019. [DOI: 10.1021/acscatal.9b03737] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Runyuan Ma
- Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Key Lab of Applied Chemistry of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310028, China
| | - Wei Chen
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics and Mathematics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liang Wang
- Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xianfeng Yi
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics and Mathematics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Yao Xiao
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics and Mathematics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Xinhua Gao
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Jian Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaomin Tang
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics and Mathematics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Chengguang Yang
- Key Laboratory of Low-Carbon Conversion Science & Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Xiangju Meng
- Key Lab of Applied Chemistry of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310028, China
| | - Anmin Zheng
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics and Mathematics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Feng-Shou Xiao
- Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Key Lab of Applied Chemistry of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310028, China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
3
|
Cremoux T, Batonneau-Gener I, Moissette A, Paillaud JL, Hureau M, Ligner E, Morais C, Laforge S, Marichal C, Nouali H. Influence of hierarchization on electron transfers in structured MFI-type zeolites. Phys Chem Chem Phys 2018; 20:26903-26917. [PMID: 30346020 DOI: 10.1039/c8cp03485k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
H-ZSM-5 zeolite (Si/Al = 19.3) was hydrothermally synthesized. Alkaline and/or acid post-synthesis treatments were carried out to give rise to an interconnected mesoporous volume. The desilication treatment parameters have been tuned (temperature, organic base addition) to obtain a series of samples with increasing mesoporous volume and a constant number of acid sites. The physico-chemical properties of the resulting materials were fully characterized by many techniques (NMR, BET, PXRD, and pyridine thermal desorption followed by infrared spectroscopy). To assess the effect of post-treatments on sample reactivity, the charge separation processes between the zeolite framework and adsorbed trans-stilbene (t-St) molecule were investigated by UV-visible diffuse reflectance. The spectra obtained after t-St adsorption show clear differences depending on the applied post-treatments. It appears that the desilication treatments performed without acidic washing highly stabilize the radical cation resulting from the t-St spontaneous ionization. In contrast, by applying acidic washing after desilication, the ionization process becomes significantly weaker. The results show that the proportion of strong Lewis acid sites in the vicinity of Brønsted sites named Brønsted Strong Lewis Pairs (BSLP), are responsible for the amount of radical cations observed in the different samples. More precisely, it exists an optimal proportion of BSLP to achieve a high ionization rate. On the basis of the experimental results a mechanism for the formation of the t-St radical cation and the charge transfer complex (CTC) is proposed.
Collapse
Affiliation(s)
- T Cremoux
- LASIR, Université de Lille 1, Villeneuve d'Ascq 59655, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Luchez F, Carré S, Moissette A, Poizat O. Sorption and spontaneous ionization of phenothiazine within channel type zeolites: Effect of the confinement on the electron transfers. RSC Adv 2011. [DOI: 10.1039/c1ra00220a] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
5
|
Belhadj F, Moissette A, Brémard C. Long-lived electron–hole pair formation through photoionization of diphenylacetylene occluded in medium pores of aluminum rich M6.6ZSM-5 zeolite (M=Li+, Na+, K+, Rb+, Cs+). J Photochem Photobiol A Chem 2009. [DOI: 10.1016/j.jphotochem.2009.09.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Hureau M, Moissette A, Marquis S, Brémard C, Vezin H. Incorporation and electron transfer of anthracene in pores of ZSM-5 zeolites. Effect of Brønsted acid site density. Phys Chem Chem Phys 2009; 11:6299-307. [PMID: 19606343 DOI: 10.1039/b904010b] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The sorption course of anthracene (ACENE-3) into Brønsted-acidic medium pore MFI zeolites was monitored by in situ EPR and diffuse reflectance UV-visible absorption over one year. Weighed amounts of solid ACENE-3 were merely exposed to H(n)ZSM-5 (H(n)(AlO(2))(n)(SiO(2))(96-n)), with the following Brønsted acid site (BAS) densities, n = 0.0, 0.17, 0.57, 0.95, 2.0, 3.4, 6.6, dehydrated at 623 K under argon. The weighed amounts correspond to 1 ACENE-3 per zeolite unit cell. ACENE-3 is found to be incorporated as intact molecules in purely siliceous MFI (silicalite-1). Monte Carlo simulations indicate that ACENE-3 lies in the intersection of straight and zigzag channels. In contrast, the presence of BASs on the inner surface of channels induces spontaneous ionization of ACENE-3 (ionization potential = 7.44 eV). The charge separation as ACENE-3*(+)@H(n)ZSM-5*(-) is caused by the strong Coulombic field gradient of Si-O(-)(H(+))-Al BAS in the absence of any Lewis acid site. The rate and yield of ionization are found to increase dramatically with BAS density increase. The stabilization of ACENE-3*(+)@H(n)ZSM-5*(-) is explained by the tight fit between the rod-shape ACENE-3 and the channel dimensions and especially by the compartmentalization of ejected electrons as AlO(4)H*(-) centers away from the initial site of ionization. The final charge recombination occurs after more than one year and leads to ACENE-3 occluded in the straight channel in close proximity to BAS without any protonation of ACENE-3 (pK(a) = -13.5).
Collapse
Affiliation(s)
- Matthieu Hureau
- Laboratoire de Spectrochimie Infrarouge et Raman UMR-CNRS 8516, CERLA FR-CNRS 2416, Bât C5 Université des Sciences et Technologies de Lille, 59655 Villeneuve d'Ascq cedex, France
| | | | | | | | | |
Collapse
|
7
|
Moissette A, Belhadj F, Brémard C, Vezin H. Kinetics and characterization of photoinduced long-lived electron–hole pair of p-terphenyl occluded in ZSM-5 zeolites. Effects of aluminium content and extraframework cation. Phys Chem Chem Phys 2009; 11:11022-32. [DOI: 10.1039/b914545a] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
Moissette A, Luchez F, Brémard C, Vezin H, Hureau M. Spontaneous charge separation induced by phenothiazine sorption within acidic HnZSM-5. Phys Chem Chem Phys 2009; 11:4286-97. [DOI: 10.1039/b900324j] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Marquis S, Moissette A, Brémard C. Incorporation of Anthracene into Zeolites: Confinement Effect on the Recombination Rate of Photoinduced Radical Cation-Electron Pair. Chemphyschem 2006; 7:1525-34. [PMID: 16810727 DOI: 10.1002/cphc.200600082] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
FT-Raman spectrometry in combination with diffuse reflectance UV/Vis absorption (DRUVv) and fluorescence emission indicate that complete anthracene (ANT) sorption as intact molecules takes place over 6 months in the medium pores of non-Brønsted acidic M(n)ZSM-5 zeolites (n=0.0, 3.4, 6.6; M=Na+, K+, Rb+, Cs+) with 1 ANT per unit cell loading. The combined effect of confinement and electrostatic field induced by bulky cations (Rb+, Cs+) leads to specific changes in the occluded ANT Raman spectra after very long organization periods (one year). The laser photolysis (266 nm, 355 nm) of ANT@M(n)ZSM-5 equilibrated samples generates long-lived charge separated species in aluminum rich zeolites (n=3.4, 6.6). The very long-lived radical pairs are characterized by conventional DRUVv and CW-EPR spectroscopy. The direct charge recombination rates of ANT.+-electron pairs are dispersive, extending over a broad range of timescales. The kinetic constant values are found to increase dramatically with the aluminum content and increase markedly with M+ according to the following order Na+ < K+ < Rb+ < Cs+. The small reorganization energy (lambda) of ZSM-5 zeolite pores coupled with large negative free energy changes (-DeltaG degrees ) between the ground state ANT oxidation potential and Fermi level of aluminum rich M(n)ZSM-5 explain the observed trends of the ANT.+@M(n)ZSM-5.- charge recombination rates.
Collapse
Affiliation(s)
- Séverine Marquis
- Laboratoire de Spectrochimie Infrarouge et Raman UMR-CNRS 8516, Centre d' Etudes et de Recherches Lasers et Applications FR-CNRS 2416, Bât. C5 Université des Sciences et Technologies de Lille, 59655 Villeneuve d'Ascq cedex, France
| | | | | |
Collapse
|