1
|
Sarmah MP, Sarma M. Mechanistic insights into the electron attachment process to guanosine in the presence of arginine. Phys Chem Chem Phys 2024; 26:27955-27963. [PMID: 39474863 DOI: 10.1039/d4cp02558j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2024]
Abstract
The attachment of low-energy electrons (LEEs) to DNA biomolecules leads to irreversible damage. However, the behavior of this interaction can be influenced by the presence of amino acids. Herein, we have delved into the mechanism of electron attachment to the guanosine in the presence of arginine. This study used combined molecular dynamics (MD) simulations and quantum mechanics/molecular mechanics (QM/MM) approaches to collect and optimize the geometries having hydrogen-bonds (H-bonds) between guanosine and arginine, respectively, followed by atom centered density matrix propagation (ADMP) simulations to assess the electron attachment ability of guanine with and without arginine. The vertical detachment energy (VDE) and natural population analysis (NPA) suggest that the electron attached to guanosine occurs more readily due to the H-bonds between guanosine and arginine. The singly occupied molecular orbitals (SOMOs), VDE, and NPA from ADMP results corroborated the idea that in the presence of arginine, the electron effectively attached to the guanosine moiety while the auto detachment process becomes less probable in the case of arg-guanosine (two-H bonds). However, in the presence of arginine, the dissociative electron attachment (DEA) process for guanosine is exothermic, while in the absence of arginine, it is endothermic. This study provides new insight into the process of radiation damaging biological systems by elucidating the DEA to DNA subunits in the presence of amino acids, paving the way for a deeper understanding of radiation-induced damage in biological systems.
Collapse
Affiliation(s)
- Manash Pratim Sarmah
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam-781039, India.
| | - Manabendra Sarma
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam-781039, India.
| |
Collapse
|
2
|
Narayanan S J J, Verma P, Adhikary A, Kumar Dutta A. Electron Attachment to the Nucleobase Uracil in Diethylene Glycol: The Signature of a Doorway. Chemphyschem 2024:e202400581. [PMID: 39221972 DOI: 10.1002/cphc.202400581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/01/2024] [Accepted: 09/02/2024] [Indexed: 09/04/2024]
Abstract
The cellular environment plays a significant role in low energy electron-mediated radiation damage to genetic materials. In this study, we have modeled the effect of the bulk medium on electron attachment to nucleobases in diethylene glycol (DEG) using uracil as a test case, in accordance with recent experimental work on the observation of dissociative quasi-free electron attachment to nucleoside via excited anion radical in solution (in DEG). Our EOM-CCSD-based quantum mechanical/molecular mechanical (QM/MM) simulations indicate that the electron scavenging by uracil in DEG is much slower than that observed in the aqueous medium due to its viscosity. This work also establishes that a doorway mechanism exists in uracil microsolvated and bulk solvated with DEG, with the dipole-bound state and solvent-bound state acting as doorway states, respectively.
Collapse
Affiliation(s)
- Jishnu Narayanan S J
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Pooja Verma
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Amitava Adhikary
- Department of Chemistry, Oakland University, 146 Library Drive, Rochester, Michigan, 48309, USA
| | - Achintya Kumar Dutta
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| |
Collapse
|
3
|
Simons J. An environmental impact statement for molecular anions. Phys Chem Chem Phys 2024; 26:1564-1586. [PMID: 38126406 DOI: 10.1039/d3cp04842j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
A molecular anion's (MA's) chemical reactivity and physical behavior can be quite different when it is surrounded by other molecules than when it exists in isolation. This sensitivity to the surrounding environment is especially high for anions because their outermost valence electrons are typically loosely bound and exist in rather spatially diffuse orbitals, allowing even weak intermolecular interactions arising from the environment to have strong effects. This Perspective offers illustrations of such sensitivity for a variety of cases including (i) the effect of solvation on electron binding energies, (ii) how some "well known" anions need to have solvent molecules around to even exist as stable species, (iii) how internal Coulomb repulsions within a multiply charged MA can provide temporary stability toward electron loss, (iv) how MAs arrange themselves spatially near liquid/vapor interfaces in manners that can produce unusual reactivity, (v) how nearby cationic sites can facilitate electron attachment to form a MA site elsewhere, (vi) how internal vibrational or rotational energy can make a MA detach an electron.
Collapse
Affiliation(s)
- Jack Simons
- Henry Eyring Center for Theoretical Chemistry, Department of Chemistry, University of Utah, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
4
|
Verma P, Mukherjee M, Bhattacharya D, Haritan I, Dutta AK. Shape resonance induced electron attachment to cytosine: The effect of aqueous media. J Chem Phys 2023; 159:214303. [PMID: 38038205 DOI: 10.1063/5.0157576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/31/2023] [Indexed: 12/02/2023] Open
Abstract
We have investigated the impact of microsolvation on shape-type resonance states of nucleobases, taking cytosine as a case study. To characterize the resonance position and decay width of the metastable states, we employed the newly developed DLPNO-based EA-EOM-CCSD method in conjunction with the resonance via Padé (RVP) method. Our calculations show that the presence of water molecules causes a redshift in the resonance position and an increase in the lifetime for the three lowest-lying resonance states of cytosine. Furthermore, there are some indications that the lowest resonance state in isolated cytosine may get converted to a bound state in the presence of an aqueous environment. The obtained results are extremely sensitive to the basis set used for the calculations.
Collapse
Affiliation(s)
- Pooja Verma
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Madhubani Mukherjee
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0482, USA
| | - Debarati Bhattacharya
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Idan Haritan
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 3200003, Israel
- Faculty of Engineering, Bar-Ilan University, Ramat Gan, Israel
| | - Achintya Kumar Dutta
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
5
|
Sajeev Y. Prebiotic chemical origin of biomolecular complementarity. Commun Chem 2023; 6:259. [PMID: 38012323 PMCID: PMC10681984 DOI: 10.1038/s42004-023-01060-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/10/2023] [Indexed: 11/29/2023] Open
Abstract
The early Earth, devoid of the protective stratospheric ozone layer, must have sustained an ambient prebiotic physicochemical medium intensified by the co-existence of shortwave UV photons and very low energy electrons (vLEEs). Consequently, only intrinsically stable molecules against these two co-existing molecular destructors must have proliferated and thereby chemically evolved into the advanced molecules of life. Based on this view, we examined the stability inherent in nucleobases and their complementary pairs as resistance to the molecular damaging effects of shortwave UV photons and vLEEs. This leads to the conclusion that nucleobases could only proliferated as their complementary pairs under the unfavorable prebiotic conditions on early Earth. The complementary base pairing not only enhances but consolidates the intrinsic stability of nucleobases against short-range UV photons, vLEEs, and possibly many as-yet-unknown deleterious agents co-existed in the prebiotic conditions of the early Earth. In short, complementary base pairing is a manifestation of chemical evolution in the unfavorable prebiotic medium created by the absence of the stratospheric ozone layer.
Collapse
Affiliation(s)
- Y Sajeev
- Theoretical Chemistry Section, Bhabha Atomic Research Centre, Mumbai, India.
- Homi Bhabha National Institute, Mumbai, India.
| |
Collapse
|
6
|
Mester D, Kállay M. Vertical Ionization Potentials and Electron Affinities at the Double-Hybrid Density Functional Level. J Chem Theory Comput 2023; 19:3982-3995. [PMID: 37326360 PMCID: PMC10339736 DOI: 10.1021/acs.jctc.3c00363] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Indexed: 06/17/2023]
Abstract
The double-hybrid (DH) time-dependent density functional theory is extended to vertical ionization potentials (VIPs) and electron affinities (VEAs). Utilizing the density fitting approximation, efficient implementations are presented for the genuine DH ansatz relying on the perturbative second-order correction, while an iterative analogue is also elaborated using our second-order algebraic-diagrammatic construction [ADC(2)]-based DH approach. The favorable computational requirements of the present schemes are discussed in detail. The performance of the recently proposed spin-component-scaled and spin-opposite-scaled (SOS) range-separated (RS) and long-range corrected (LC) DH functionals is comprehensively assessed, while popular hybrid and global DH approaches are also discussed. For the benchmark calculations, up-to-date test sets are selected with high-level coupled-cluster references. Our results show that the ADC(2)-based SOS-RS-PBE-P86 approach is the most accurate and robust functional. This method consistently outperforms the excellent SOS-ADC(2) approach for VIPs, although the results are somewhat less satisfactory for VEAs. Among the genuine DH functionals, the SOS-ωPBEPP86 approach is also recommended for describing ionization processes, but its performance is even less reliable for electron-attached states. In addition, surprisingly good results are attained by the LC hybrid ωB97X-D functional, where the corresponding occupied (unoccupied) orbital energies are retrieved as VIPs (VEAs) within the present formalism.
Collapse
Affiliation(s)
- Dávid Mester
- Department
of Physical Chemistry and Materials Science, Faculty of Chemical Technology
and Biotechnology, Budapest University of
Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
- ELKH-BME
Quantum Chemistry Research Group, Műegyetem rkp. 3., H-1111 Budapest, Hungary
- MTA-BME
Lendület Quantum Chemistry Research Group, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - Mihály Kállay
- Department
of Physical Chemistry and Materials Science, Faculty of Chemical Technology
and Biotechnology, Budapest University of
Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
- ELKH-BME
Quantum Chemistry Research Group, Műegyetem rkp. 3., H-1111 Budapest, Hungary
- MTA-BME
Lendület Quantum Chemistry Research Group, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| |
Collapse
|
7
|
Abstract
This Perspective attempts to shed light on developments in the theoretical and experimental study of molecular anions highlighting more recent workers in the field. The species I discuss include (i) valence-bound (singly and multiply charged) anions including atmospheric, catalytic, superhalogen, interfacial, and more; (ii) dipole- and correlation-bound anions including their role as doorways to other states and their appearance "in space", and (iii) metastable anions focusing on tools needed for their theoretical treatment. I also briefly discuss angular distributions of photodetached electrons and their growing utilization in experiments and theory. A recurring theme is the dependence of electron binding energies (EBEs) on the surrounding environment. Some anions that are nonexistent as isolated species evolve to be stable but with small EBEs when weakly solvated (e.g., as in a cluster or at an air-solvent interface). Others existing in isolation only as metastable species become stable when the underlying molecular framework contains one or more positively charged group (e.g., protonated side chains in a peptide) that generates a stabilizing Coulomb potential. On the other hand, a destabilizing Coulomb potential between/among negative sites in a multiply charged anion decreases the EBEs of each such site and generates a repulsive Coulomb barrier that can affect stability.
Collapse
Affiliation(s)
- Jack Simons
- Henry Eyring Center for Theoretical Chemistry, Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
8
|
Narayanan S J J, Tripathi D, Verma P, Adhikary A, Dutta AK. Secondary Electron Attachment-Induced Radiation Damage to Genetic Materials. ACS OMEGA 2023; 8:10669-10689. [PMID: 37008102 PMCID: PMC10061531 DOI: 10.1021/acsomega.2c06776] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 02/20/2023] [Indexed: 06/19/2023]
Abstract
Reactions of radiation-produced secondary electrons (SEs) with biomacromolecules (e.g., DNA) are considered one of the primary causes of radiation-induced cell death. In this Review, we summarize the latest developments in the modeling of SE attachment-induced radiation damage. The initial attachment of electrons to genetic materials has traditionally been attributed to the temporary bound or resonance states. Recent studies have, however, indicated an alternative possibility with two steps. First, the dipole-bound states act as a doorway for electron capture. Subsequently, the electron gets transferred to the valence-bound state, in which the electron is localized on the nucleobase. The transfer from the dipole-bound to valence-bound state happens through a mixing of electronic and nuclear degrees of freedom. In the presence of aqueous media, the water-bound states act as the doorway state, which is similar to that of the presolvated electron. Electron transfer from the initial doorway state to the nucleobase-bound state in the presence of bulk aqueous media happens on an ultrafast time scale, and it can account for the decrease in DNA strand breaks in aqueous environments. Analyses of the theoretically obtained results along with experimental data have also been discussed.
Collapse
Affiliation(s)
- Jishnu Narayanan S J
- Department
of Chemistry, Indian Institute of Technology
Bombay, Powai, Mumbai 400076, India
| | - Divya Tripathi
- Department
of Chemistry, Indian Institute of Technology
Bombay, Powai, Mumbai 400076, India
| | - Pooja Verma
- Department
of Chemistry, Indian Institute of Technology
Bombay, Powai, Mumbai 400076, India
| | - Amitava Adhikary
- Department
of Chemistry, Oakland University, 146 Library Drive, Rochester, Michigan 48309, United States
| | - Achintya Kumar Dutta
- Department
of Chemistry, Indian Institute of Technology
Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
9
|
Verma P, Narayanan S J J, Dutta AK. Electron Attachment to DNA: The Protective Role of Amino Acids. J Phys Chem A 2023; 127:2215-2227. [PMID: 36881498 DOI: 10.1021/acs.jpca.2c06624] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
We have studied the effect of amino acids on the electron attachment properties of a DNA nucleobase, with cytosine as a model system. The equation of motion coupled cluster theory with an extended basis set has been used to simulate the electron-attached state of the DNA model system. Arginine, alanine, lysine, and glycine are the four amino acids considered to investigate their role in electron attachment to a DNA nucleobase. The electron attachment to cytosine in all the four cytosine-amino acid gas-phase dimer complexes follows a doorway mechanism, where the electron gets transferred from the initial dipole-bound doorway state to the final nucleobase-bound state through the mixing of electronic and nuclear degrees of freedom. When cytosine is bulk-solvated with glycine, the glycine-bound state acts as the doorway state, where the initial electron density is localized on the bulk amino acid and away from the nucleobase, thus leading to the physical shielding of the nucleobase from the incoming electron. At the same time, the presence of amino acids can increase the stability of the nucleobase-bound anionic state, which can suppress the sugar-phosphate bond rupture caused by dissociative electron attachment to DNA.
Collapse
Affiliation(s)
- Pooja Verma
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Jishnu Narayanan S J
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Achintya Kumar Dutta
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
10
|
Mechanisms of Nanoscale Radiation Enhancement by Metal Nanoparticles: Role of Low Energy Electrons. Int J Mol Sci 2023; 24:ijms24054697. [PMID: 36902132 PMCID: PMC10003700 DOI: 10.3390/ijms24054697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023] Open
Abstract
Metal nanoparticles are considered as highly promising radiosensitizers in cancer radiotherapy. Understanding their radiosensitization mechanisms is critical for future clinical applications. This review is focused on the initial energy deposition by short-range Auger electrons; when high energy radiation is absorbed by gold nanoparticles (GNPs) located near vital biomolecules; such as DNA. Auger electrons and the subsequent production of secondary low energy electrons (LEEs) are responsible for most the ensuing chemical damage near such molecules. We highlight recent progress on DNA damage induced by the LEEs produced abundantly within about 100 nanometers from irradiated GNPs; and by those emitted by high energy electrons and X-rays incident on metal surfaces under differing atmospheric environments. LEEs strongly react within cells; mainly via bound breaking processes due to transient anion formation and dissociative electron attachment. The enhancement of damages induced in plasmid DNA by LEEs; with or without the binding of chemotherapeutic drugs; are explained by the fundamental mechanisms of LEE interactions with simple molecules and specific sites on nucleotides. We address the major challenge of metal nanoparticle and GNP radiosensitization; i.e., to deliver the maximum local dose of radiation to the most sensitive target of cancer cells (i.e., DNA). To achieve this goal the emitted electrons from the absorbed high energy radiation must be short range, and produce a large local density of LEEs, and the initial radiation must have the highest possible absorption coefficient compared to that of soft tissue (e.g., 20-80 keV X-rays).
Collapse
|
11
|
Narayanan S J J, Bachhar A, Tripathi D, Dutta AK. Electron Attachment to Wobble Base Pairs. J Phys Chem A 2023; 127:457-467. [PMID: 36622294 DOI: 10.1021/acs.jpca.2c07469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
We have analyzed the low-energy electron attachment to wobble base pairs using the equation of motion coupled cluster method and extended basis sets. A doorway mechanism exists for the attachment of the additional electron to the base pairs, where the initially formed dipole-bound anion captures the incoming electron. The doorway dipole-bound anionic state subsequently leads to the formation of a valence-bound state, and the transfer of extra electron occurs by mixing of electronic and nuclear degrees of freedom. The formation of the valence-bound anion is associated with proton transfer in hypoxanthine-cytosine and hypoxanthine-adenine base pairs, which happens through a concerted electron-proton transfer process. The calculated rate constant for the dipole-bound to valence-bound transition in wobble base pairs is slower than that observed in the Watson-Crick guanine-cytosine base pair.
Collapse
Affiliation(s)
- Jishnu Narayanan S J
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai400076, India
| | - Arnab Bachhar
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai400076, India
| | - Divya Tripathi
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai400076, India
| | - Achintya Kumar Dutta
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai400076, India
| |
Collapse
|
12
|
Alcocer Ávila ME, Hindié E, Champion C. How to explain the sensitivity of DNA double-strand breaks yield to 125I position? Int J Radiat Biol 2023; 99:103-108. [PMID: 35259042 DOI: 10.1080/09553002.2022.2047822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
PURPOSE Auger emitters exhibit interesting features due to their emission of a cascade of short-range Auger electrons. Maximum DNA breakage efficacy is achieved when decays occur near DNA. Studies of double-strand breaks (DSBs) yields in plasmids revealed cutoff distances from DNA axis of 10.5 Å-12 Å, beyond which the mechanism of DSBs moves from direct to indirect effects, and the yield decreases rapidly. Some authors suggested that the average energy deposited in a DNA cylinder could explain such cutoffs. We aimed to study this hypothesis in further detail. MATERIALS AND METHODS Using the Monte Carlo code CELLDOSE, we investigated the influence of the 125I atom position on energy deposits and absorbed doses per decay not only in a DNA cylinder, but also in individual strands, each modeled as 10 spheres encompassing the fragility sites for phosphodiester bond cleavage. RESULTS The dose per decay decreased much more rapidly for a sphere in the proximal strand than for the DNA cylinder. For example, when moving the 125I source from 10.5 Å to 11.5 Å, the average dose to the sphere dropped by 43%, compared to only 13% in the case of the cylinder. CONCLUSIONS Explaining variations in DSBs yields with 125I position should consider the probability of inducing damage in the proximal strand (nearest to the 125I atom). The energy received by fragility sites in this strand is highly influenced by the isotropic (4π) emission of 125I low-energy Auger electrons. The positioning of Auger emitters for targeted radionuclide therapy can be envisioned accordingly.
Collapse
Affiliation(s)
| | - Elif Hindié
- Université de Bordeaux, INCIA, CHU de Bordeaux - Service de Médecine Nucléaire, Pessac, France.,Institut Universitaire de France (IUF), Paris, France
| | - Christophe Champion
- Université de Bordeaux-CNRS-CEA, Centre Lasers Intenses et Applications, UMR 5107, Talence, France
| |
Collapse
|
13
|
Kumari B, Huwaidi A, Robert G, Cloutier P, Bass AD, Sanche L, Wagner JR. Shape Resonances in DNA: Nucleobase Release, Reduction, and Dideoxynucleoside Products Induced by 1.3 to 2.3 eV Electrons. J Phys Chem B 2022; 126:5175-5184. [PMID: 35793462 DOI: 10.1021/acs.jpcb.2c01851] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Understanding the details of DNA damage caused by high-energy particles or photons is complicated by the multitude of reactive species, arising from the ionization and dissociation of H2O, DNA, and protein. In this work, oligonucleotides (ODNs) are irradiated with a beam of low-energy electrons of 1.3 to 2.3 eV, which can only induce damage via the decay of shape resonances into various dissociative electron attachment channels. Using LC-MS/MS analysis, the major products are the release of nonmodified nucleobases (NB; Cyt ≫ Thy ∼ Ade > Gua). Additional damage includes 5,6-dihydropyrimidines (dHT > dHU) and eight nucleosides with modified sugar moieties consisting of 2',3'- and 2',5'-dideoxynucleosides (ddG > ddA ∼ ddC > ddT). The distribution of products is remarkably different in a 16-mer ODN compared to that observed previously with thymidylyl-(3'-5')-thymidine. This difference is explained by electron delocalization occurring within a sufficiently long strand, the DEA theory of O'Malley, and recent time-dependent density functional theory calculations.
Collapse
Affiliation(s)
- Bhavini Kumari
- Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3001 12e Avenue Nord, Québec J1H 5N4, Canada
| | - Alaa Huwaidi
- Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3001 12e Avenue Nord, Québec J1H 5N4, Canada
| | - Gabriel Robert
- Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3001 12e Avenue Nord, Québec J1H 5N4, Canada
| | - Pierre Cloutier
- Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3001 12e Avenue Nord, Québec J1H 5N4, Canada
| | - Andrew D Bass
- Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3001 12e Avenue Nord, Québec J1H 5N4, Canada
| | - Léon Sanche
- Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3001 12e Avenue Nord, Québec J1H 5N4, Canada
| | - J Richard Wagner
- Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3001 12e Avenue Nord, Québec J1H 5N4, Canada
| |
Collapse
|
14
|
Ding Z, Guo Z, Zheng Y, Wang Z, Fu Q, Liu Z. Radiotherapy Reduces N-Oxides for Prodrug Activation in Tumors. J Am Chem Soc 2022; 144:9458-9464. [PMID: 35594148 DOI: 10.1021/jacs.2c02521] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Precisely activating chemotherapeutic prodrugs in a tumor-selective manner is an ideal way to cure cancers without causing systemic toxicities. Although many efforts have been made, developing spatiotemporally controllable activation methods is still an unmet challenge. Here, we report a novel prodrug activation strategy using radiotherapy (X-ray). Due to its precision and deep tissue penetration, X-ray matches the need for altering molecules in tumors through water radiolysis. We first demonstrated that N-oxides can be effectively reduced by hydrated electrons (e-aq) generated from radiation both in tubes and living cells. A screening is performed to investigate the structure-reduction relationship and mechanism of the e-aq-mediated reductions. We then apply the strategy to activate N-oxide prodrugs. The anticancer drug camptothecin (CPT)-based N-oxide prodrug shows a remarkable anticancer effect upon activation by radiotherapy. This radiation-induced in vivo chemistry may enable versatile designs of radiotherapy-activated prodrugs, which are of remarkable clinical relevance, as over 50% of cancer patients take radiotherapy.
Collapse
Affiliation(s)
- Zexuan Ding
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.,Peking University-Tsinghua University Center for Life Sciences, Peking University, Beijing 100871, China
| | - Zhibin Guo
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yuedan Zheng
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Ziyang Wang
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Qunfeng Fu
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhibo Liu
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.,Peking University-Tsinghua University Center for Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
15
|
Liu C, Zheng Y, Sanche L. Damage Induced to DNA and Its Constituents by 0-3 eV UV Photoelectrons †. Photochem Photobiol 2021; 98:546-563. [PMID: 34767635 DOI: 10.1111/php.13559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/07/2021] [Indexed: 11/28/2022]
Abstract
The complex physical and chemical interactions between DNA and 0-3 eV electrons released by UV photoionization can lead to the formation of various lesions such as base modifications and cleavage, crosslinks and single strand breaks. Furthermore, in the presence of platinum chemotherapeutic agents, these electrons can cause clustered lesions, including double strand breaks. We explain the mechanisms responsible for these damages via the production 0-3 eV electrons by UVC radiation, and by UV photons of any wavelengths, when they are produced by photoemission from nanoparticles lying within about 10 nm from DNA. We review experimental evidence showing that a single 0-3 eV electron can produce these damages. The foreseen benefits UV-irradiation of nanoparticles targeted to the cell nucleus are mentioned in the context of cancer therapy, as well as the potential hazards to human health when they are present in cells.
Collapse
Affiliation(s)
- Chaochao Liu
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, China
| | - Yi Zheng
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, China
| | - Léon Sanche
- Département de Médecine Nucléaire et Radiobiologie et Centre de Recherche Clinique, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
16
|
Narayanan S J J, Tripathi D, Dutta AK. Doorway Mechanism for Electron Attachment Induced DNA Strand Breaks. J Phys Chem Lett 2021; 12:10380-10387. [PMID: 34669407 DOI: 10.1021/acs.jpclett.1c02735] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We report a new doorway mechanism for the dissociative electron attachment to genetic materials. The dipole-bound state of the nucleotide anion acts as the doorway for electron capture in the genetic material. The electron gets subsequently transferred to a dissociative σ*-type anionic state localized on a sugar-phosphate or a sugar-nucleobase bond, leading to their cleavage. The electron transfer is mediated by the mixing of electronic and nuclear degrees of freedom. The cleavage rate of the sugar-phosphate bond predicted by this new mechanism is higher than that of the sugar-nucleobase bond breaking, and both processes are considerably slower than the formation of a stable valence-bound anion. The new mechanism can explain the relative rates of electron attachment induced bond cleavages in genetic materials.
Collapse
Affiliation(s)
- Jishnu Narayanan S J
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Divya Tripathi
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Achintya Kumar Dutta
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
17
|
Huwaidi A, Kumari B, Robert G, Guérin B, Sanche L, Wagner JR. Profiling DNA Damage Induced by the Irradiation of DNA with Gold Nanoparticles. J Phys Chem Lett 2021; 12:9947-9954. [PMID: 34617774 DOI: 10.1021/acs.jpclett.1c02598] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The presence of gold nanoparticles (AuNPs) greatly enhances the formation of DNA damage when exposed to therapeutic X-rays. Three types of DNA damage are assessed in irradiated DNA by enzymatic digestion coupled to liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis. The major type of damage is release of the four nonmodified nucleobases, with a bias toward the release of cytosine and thymine. The second most important pathway involves the formation of several common reduction and oxidation products of DNA. Lastly, eight unique modifications of the 2-deoxyribose moiety are formed, which includes the 2',3'- and 2',5'-dideoxynucleosides (ddNs) of the four canonical nucleosides. The yield of ddNs decreases in the following order: ddG > ddA > ddC > ddT. From the yield and distribution of products, most of the damage is considered to arise from the generation of Auger/low-energy electrons (LEEs) and their reaction with DNA.
Collapse
Affiliation(s)
- Alaa Huwaidi
- Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3001 12e Avenue Nord, Québec J1H 5N4, Canada
| | - Bhavini Kumari
- Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3001 12e Avenue Nord, Québec J1H 5N4, Canada
| | - Gabriel Robert
- Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3001 12e Avenue Nord, Québec J1H 5N4, Canada
| | - Brigitte Guérin
- Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3001 12e Avenue Nord, Québec J1H 5N4, Canada
| | - Léon Sanche
- Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3001 12e Avenue Nord, Québec J1H 5N4, Canada
| | - J Richard Wagner
- Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3001 12e Avenue Nord, Québec J1H 5N4, Canada
| |
Collapse
|
18
|
Gao Y, Zheng Y, Sanche L. Low-Energy Electron Damage to Condensed-Phase DNA and Its Constituents. Int J Mol Sci 2021; 22:7879. [PMID: 34360644 PMCID: PMC8345953 DOI: 10.3390/ijms22157879] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/30/2021] [Accepted: 06/30/2021] [Indexed: 11/18/2022] Open
Abstract
The complex physical and chemical reactions between the large number of low-energy (0-30 eV) electrons (LEEs) released by high energy radiation interacting with genetic material can lead to the formation of various DNA lesions such as crosslinks, single strand breaks, base modifications, and cleavage, as well as double strand breaks and other cluster damages. When crosslinks and cluster damages cannot be repaired by the cell, they can cause genetic loss of information, mutations, apoptosis, and promote genomic instability. Through the efforts of many research groups in the past two decades, the study of the interaction between LEEs and DNA under different experimental conditions has unveiled some of the main mechanisms responsible for these damages. In the present review, we focus on experimental investigations in the condensed phase that range from fundamental DNA constituents to oligonucleotides, synthetic duplex DNA, and bacterial (i.e., plasmid) DNA. These targets were irradiated either with LEEs from a monoenergetic-electron or photoelectron source, as sub-monolayer, monolayer, or multilayer films and within clusters or water solutions. Each type of experiment is briefly described, and the observed DNA damages are reported, along with the proposed mechanisms. Defining the role of LEEs within the sequence of events leading to radiobiological lesions contributes to our understanding of the action of radiation on living organisms, over a wide range of initial radiation energies. Applications of the interaction of LEEs with DNA to radiotherapy are briefly summarized.
Collapse
Affiliation(s)
- Yingxia Gao
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350116, China;
| | - Yi Zheng
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350116, China;
| | - Léon Sanche
- Département de Médecine Nucléaire et Radiobiologie et Centre de Recherche Clinique, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada;
| |
Collapse
|
19
|
Dong Y, Liao H, Gao Y, Cloutier P, Zheng Y, Sanche L. Early Events in Radiobiology: Isolated and Cluster DNA Damage Induced by Initial Cations and Nonionizing Secondary Electrons. J Phys Chem Lett 2021; 12:717-723. [PMID: 33400538 DOI: 10.1021/acs.jpclett.0c03341] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Radiobiological damage is principally triggered by an initial cation and a secondary electron (SE). We address the fundamental questions: What lesions are first produced in DNA by this cation or nonionizing SE? What are their relative contributions to isolated and potentially lethal cluster lesions? Five monolayer films of dry plasmid DNA deposited on graphite or tantalum substrates are bombarded by 0.1-100 eV electrons in a vacuum. From measurements of the current transmitted through the films, 3.5 and 4.5 cations per incident 60 and 100 eV electrons, respectively, are estimated to be produced and stabilized within DNA. Damage analysis at 6, 10, 20, 30, 60, and 100 eV indicates that essentially all lesions, but preferentially cluster damages, are produced by non-ionizing or weakly ionizing electrons of energies below 12 eV. Most of these lesions are induced within femtosecond times, via transient anions and electron transfer within DNA, with little contributions from the numerous cations.
Collapse
Affiliation(s)
- Yanfang Dong
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350116, P.R. China
| | - Hong Liao
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350116, P.R. China
| | - Yingxia Gao
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350116, P.R. China
| | - Pierre Cloutier
- Department of Nuclear Medicine and Radiobiology and Clinical Research Center, Faculty of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada J1H 5N4
| | - Yi Zheng
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350116, P.R. China
| | - Léon Sanche
- Department of Nuclear Medicine and Radiobiology and Clinical Research Center, Faculty of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada J1H 5N4
| |
Collapse
|
20
|
Basumallick S, Sajeev Y, Pal S, Vaval N. Negative Ion Resonance States: The Fock-Space Coupled-Cluster Way. J Phys Chem A 2020; 124:10407-10421. [PMID: 33327725 DOI: 10.1021/acs.jpca.0c09148] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The negative ion resonance states, which are electron-molecule metastable compound states, play the most important role in free-electron controlled molecular reactions and low-energy free-electron-induced DNA damage. Their electronic structure is often only poorly described but crucial to an understanding of their reaction dynamics. One of the most important challenges to current electronic structure theory is the computation of negative ion resonance states. As a major step forward, coupled-cluster theories, which are well-known for their ability to produce the best approximate bound state electronic eigen solutions, are upgraded to offer the most accurate and effective approximations for negative ion resonance states. The existing Fock-space coupled-cluster (FSCC) and the equation-of-motion coupled-cluster (EOM-CC) approaches that compute bound states are redesigned for the direct and simultaneous determination of both the kinetic energy of the free electron at which the electron-molecule compound states are resonantly formed and the corresponding autodetachment decay rate of the electron from the metastable compound state. This Feature Article reviews the computation of negative ion resonances using the FSCC approach and, in passing, provides the highlights of the equivalent EOM-CC approach.
Collapse
Affiliation(s)
- Suhita Basumallick
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India
| | - Y Sajeev
- Theoretical Chemistry Section, Bhabha Atomic Research Centre, Mumbai 400 094, India
| | - Sourav Pal
- Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia 741 246, West Bengal, India
| | - Nayana Vaval
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune 411 008, India
| |
Collapse
|
21
|
Abstract
The resonance capture of ubiquitous very low energy electrons (vLEEs) into the π* orbitals of nucleobases is a potential doorway to DNA damage. Our ab initio quantum chemical calculations reveal a possible protection function, which is specific to the complementary basepairing, against such vLEE induced DNA damage.
Collapse
Affiliation(s)
- Daly Davis
- Electromagnetic Application & Instrumentation Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - Y Sajeev
- Theoretical Chemistry Section, Bhabha Atomic Research Centre, Mumbai-400085, India.
| |
Collapse
|
22
|
Pshenichnyuk SA, Modelli A, Asfandiarov NL, Komolov AS. Ionizing radiation and natural constituents of living cells: Low-energy electron interaction with coenzyme Q analogs. J Chem Phys 2020; 153:111103. [PMID: 32962391 DOI: 10.1063/5.0022188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Resonance electron attachment to short-tail analogs of coenzyme Q10 is investigated in the electron energy range 0 eV-14 eV under gas-phase conditions by means of dissociative electron attachment spectroscopy. Formation of long-lived (milliseconds) molecular negative ions is detected at 1.2 eV, but not at thermal energy. A huge increase in the electron detachment time as compared with the reference para-benzoquinone (40 µs) is ascribed to the presence of the isoprene side chains. Elimination of a neutral CH3 radical is found to be the most intense decay detected on the microsecond time scale. The results give some insight into the timescale of electron-driven processes stimulated in living tissues by high-energy radiation and are of importance in prospective fields of radiobiology and medicine.
Collapse
Affiliation(s)
- Stanislav A Pshenichnyuk
- Institute of Molecule and Crystal Physics, Ufa Federal Research Centre, Russian Academy of Sciences, Prospekt Oktyabrya 151, 450075 Ufa, Russia
| | - Alberto Modelli
- Università di Bologna, Dipartimento di Chimica "G. Ciamician", Via Selmi 2, 40126 Bologna, Italy
| | - Nail L Asfandiarov
- Institute of Molecule and Crystal Physics, Ufa Federal Research Centre, Russian Academy of Sciences, Prospekt Oktyabrya 151, 450075 Ufa, Russia
| | - Alexey S Komolov
- St. Petersburg State University, Universitetskaya nab. 7/9, 199034 St. Petersburg, Russia
| |
Collapse
|
23
|
Kempson I. Mechanisms of nanoparticle radiosensitization. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 13:e1656. [PMID: 32686321 DOI: 10.1002/wnan.1656] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 06/04/2020] [Accepted: 06/04/2020] [Indexed: 02/06/2023]
Abstract
Metal-based nanoparticles applied to potentiating the effects of radiotherapy have drawn significant attention from the research community and are now available clinically. By improving our mechanistic understanding, nanoparticles are likely to evolve to provide very significant improvements in radiotherapy outcomes with only incremental increase in cost. This review critically assesses the inconsistent observations surrounding physical, physicochemical, chemical and biological mechanisms of radiosensitization. In doing so, a number of needs are identified for continuing research and are highlighted. The large degree of variability from one nanoparticle to another emphasizes that it is a mistake to generalize nanoparticle radiosensitizer mechanisms. Nanoparticle formulations should be considered in an analogous way as pharmacological agents and as a broad class of therapeutic agents, needing to be considered with a high degree of individuality with respect to their interactions and ultimate impact on radiobiological response. In the same way that no universal anti-cancer drug exists, it is unlikely that a single nanoparticle formulation will lead to the best therapeutic outcomes for all cancers. The high degree of complexity and variability in mechanistic action provides notable opportunities for nanoparticle formulations to be optimized for specific indications. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Ivan Kempson
- Future Industries Institute, University of South Australia, Mawson Lakes, SA, Australia
| |
Collapse
|
24
|
Water acting as a catalyst for electron-driven molecular break-up of tetrahydrofuran. Nat Commun 2020; 11:2194. [PMID: 32366861 PMCID: PMC7198510 DOI: 10.1038/s41467-020-15958-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 04/02/2020] [Indexed: 11/09/2022] Open
Abstract
Low-energy electron-induced reactions in hydrated molecular complexes are important in various fields ranging from the Earth’s environment to radiobiological processes including radiation therapy. Nevertheless, our understanding of the reaction mechanisms in particular in the condensed phase and the role of water in aqueous environments is incomplete. Here we use small hydrogen-bonded pure and mixed dimers of the heterocyclic molecule tetrahydrofuran (THF) and water as models for biochemically relevant systems. For electron-impact-induced ionization of these dimers, a molecular ring-break mechanism is observed, which is absent for the THF monomer. Employing coincident fragment ion mass and electron momentum spectroscopy, and theoretical calculations, we find that ionization of the outermost THF orbital initiates significant rearrangement of the dimer structure increasing the internal energy and leading to THF ring-break. These results demonstrate that the local environment in form of hydrogen-bonded molecules can considerably affect the stability of molecular covalent bonds. Reactions induced by low-energy electrons in hydrated systems are central to radiation therapy, but a full understanding of their mechanism is lacking. Here the authors investigate the electron-impact induced ionization and subsequent dissociation of tetrahydrofuran, model for biochemically relevant systems, in a micro-solvated environment.
Collapse
|
25
|
Thodika M, Fennimore M, Karsili TNV, Matsika S. Comparative study of methodologies for calculating metastable states of small to medium-sized molecules. J Chem Phys 2019; 151:244104. [DOI: 10.1063/1.5134700] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Mushir Thodika
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Mark Fennimore
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Tolga N. V. Karsili
- Department of Chemistry, University of Louisiana, Lafayette, Louisiana 70504, USA
| | - Spiridoula Matsika
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, USA
| |
Collapse
|
26
|
Simons J. Concluding remarks for advances in ion spectroscopy Faraday Discussion. Faraday Discuss 2019; 217:623-643. [PMID: 31169273 DOI: 10.1039/c9fd00058e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Because the Introductory Lecture of this Faraday Discussion emphasized the recent history and exciting developments in the fields of experimental methods and applications of gaseous ion spectroscopy, these Concluding Remarks are, by design, directed somewhat more toward the roles played by theory. In discussing both the experimental and theoretical studies of gaseous ions, it is important to recognize and appreciate the delicate balance workers in the field are pursuing in terms of methodological/tool development and applications to current-day pressing problems in chemistry, physics, materials science, and biology. Without both components of modern research in this field, progress will not be efficient. Substantial discussion is included about the reductive approach that is commonly used to attempt to connect studies of ions in the gas phase (i.e., as isolated species) with properties of these ions as they exist in nature. Issues of how small a model system can be, to what extent surroundings/solvation can be addressed, and how our experimental or theoretical tools might limit us are all discussed in some detail. The current ability of theory to assist in the interpretation of experimental spectral data on gaseous ions is discussed, as are several of the most pressing limitations of theory on this front. Finally, the author offers his thoughts about what advances/improvements in theory are needed and the outlook for when they might be expected, and urges the experimental community to remain in close contact with theory groups developing new methods so that progress can be optimized.
Collapse
Affiliation(s)
- Jack Simons
- Dept. of Chemistry, Henry Eyring Center for Theoretical Chemistry, University of Utah, USA.
| |
Collapse
|
27
|
Khorsandgolchin G, Sanche L, Cloutier P, Wagner JR. Strand Breaks Induced by Very Low Energy Electrons: Product Analysis and Mechanistic Insight into the Reaction with TpT. J Am Chem Soc 2019; 141:10315-10323. [PMID: 31244176 DOI: 10.1021/jacs.9b03295] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Numerous experimental studies show that 5-15 eV electrons induce strand breaks in DNA at energies below the ionization threshold of DNA components. In this energy range, DNA damage arises principally by the formation of transient negative ions, decaying into dissociative electron attachment (DEA) and electronic excitation of dissociative states. Here, we carried out LC-MS/MS analysis of the degradation products arising from bombardment of TpT, a DNA model compound, irradiated with very low energy electrons (vLEEs; ∼1.8 eV). The formation of thymidine 5'-monophosphate (TMP5') together with 2',3'-dideoxythymidine (ddT3') can be explained by cleavage of the C3'-O bond of TpT, whereas thymidine 3'-monophosphate (TMP3') and 2',5'-dideoxythymidine (ddT5') are formed by cleavage of the C5'-O bond. The formation of ddT3' and ddT5' decreased upon irradiation of either TMP5' or TMP3', and even further in the case of thymidine, underlining the critical role of the phosphate group. Interestingly, the yield of TMP5' and TMP3' was higher than that of the corresponding ddT3' and ddT5' products, suggesting alternative fates of C3' and C5'-centered sugar radicals. In contrast, the release of thymine from TpT was minor (<20%) and did not result in the formation of expected products from DEA-mediated cleavage at the N-glycosidic bond. Lastly, vLEE induced the conversion of thymine to 5,6-dihydrothymine (5,6-dhT) within TpT, a reaction likely involving thymine anion radicals. In summary, we show that a major pathway of vLEEs involves DEA-mediated cleavage of the C3'-O and C5'-O bonds of TpT, resulting in the formation of specific fragments, which represent a prompt single strand break in DNA.
Collapse
Affiliation(s)
- Ghazal Khorsandgolchin
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences , Université de Sherbrooke , Sherbrooke , Quebec J1H 5N4 , Canada
| | - Léon Sanche
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences , Université de Sherbrooke , Sherbrooke , Quebec J1H 5N4 , Canada
| | - Pierre Cloutier
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences , Université de Sherbrooke , Sherbrooke , Quebec J1H 5N4 , Canada
| | - J Richard Wagner
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences , Université de Sherbrooke , Sherbrooke , Quebec J1H 5N4 , Canada
| |
Collapse
|
28
|
McKee AD, Schaible MJ, Rosenberg RA, Kundu S, Orlando TM. Low energy secondary electron induced damage of condensed nucleotides. J Chem Phys 2019; 150:204709. [PMID: 31153208 DOI: 10.1063/1.5090491] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Radiation damage and stimulated desorption of nucleotides 2'-deoxyadenosine 5'-monophosphate (dAMP), adenosine 5'-monophosphate (rAMP), 2'-deoxycytidine 5'-monophosphate (dCMP), and cytidine 5'-monophosphate (rCMP) deposited on Au have been measured using x-rays as both the probe and source of low energy secondary electrons. The fluence dependent behavior of the O-1s, C-1s, and N-1s photoelectron transitions was analyzed to obtain phosphate, sugar, and nucleobase damage cross sections. Although x-ray induced reactions in nucleotides involve both direct ionization and excitation, the observed bonding changes were likely dominated by the inelastic energy-loss channels associated with secondary electron capture and transient negative ion decay. Growth of the integrated peak area for the O-1s component at 531.3 eV, corresponding to cleavage of the C-O-P phosphodiester bond, yielded effective damage cross sections of about 23 Mb and 32 Mb (1 Mb = 10-18 cm2) for AMP and CMP molecules, respectively. The cross sections for sugar damage, as determined from the decay of the C-1s component at 286.4 eV and the glycosidic carbon at 289.0 eV, were slightly lower (about 20 Mb) and statistically similar for the r- and d- forms of the nucleotides. The C-1s component at 287.6 eV, corresponding to carbons in the nucleobase ring, showed a small initial increase and then decayed slowly, yielding a low damage cross section (∼5 Mb). Although there is no statistical difference between the sugar forms, changing the nucleobase from adenine to cytidine has a slight effect on the damage cross section, possibly due to differing electron capture and transfer probabilities.
Collapse
Affiliation(s)
- A D McKee
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - M J Schaible
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - R A Rosenberg
- Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - S Kundu
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - T M Orlando
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| |
Collapse
|
29
|
Ma J, Marignier JL, Pernot P, Houée-Levin C, Kumar A, Sevilla MD, Adhikary A, Mostafavi M. Direct observation of the oxidation of DNA bases by phosphate radicals formed under radiation: a model of the backbone-to-base hole transfer. Phys Chem Chem Phys 2018; 20:14927-14937. [PMID: 29786710 DOI: 10.1039/c8cp00352a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In irradiated DNA, by the base-to-base and backbone-to-base hole transfer processes, the hole (i.e., the unpaired spin) localizes on the most electropositive base, guanine. Phosphate radicals formed via ionization events in the DNA-backbone must play an important role in the backbone-to-base hole transfer process. However, earlier studies on irradiated hydrated DNA, on irradiated DNA-models in frozen aqueous solution and in neat dimethyl phosphate showed the formation of carbon-centered radicals and not phosphate radicals. Therefore, to model the backbone-to-base hole transfer process, we report picosecond pulse radiolysis studies of the reactions between H2PO4˙ with the DNA bases - G, A, T, and C in 6 M H3PO4 at 22 °C. The time-resolved observations show that in 6 M H3PO4, H2PO4˙ causes the one-electron oxidation of adenine, guanine and thymine, by forming the cation radicals via a single electron transfer (SET) process; however, the rate constant of the reaction of H2PO4˙ with cytosine is too low (<107 L mol-1 s-1) to be measured. The rates of these reactions are influenced by the protonation states and the reorganization energies of the base radicals and of the phosphate radical in 6 M H3PO4.
Collapse
Affiliation(s)
- Jun Ma
- Laboratoire de Chimie Physique, CNRS/Université Paris-Sud 11, Bâtiment 349, 91405 Orsay, France.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Kočišek J, Sedmidubská B, Indrajith S, Fárník M, Fedor J. Electron Attachment to Microhydrated Deoxycytidine Monophosphate. J Phys Chem B 2018; 122:5212-5217. [PMID: 29706064 DOI: 10.1021/acs.jpcb.8b03033] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
DNA constituents are effectively decomposed via dissociative electron attachment (DEA). However, the DEA contribution to radiation damage in living tissues is a subject of ongoing discussion. We address an essential question, how aqueous environment influences the DEA to DNA. In particular, we report experimental fragmentation patterns for DEA to microhydrated 2-deoxycytidine 5-monophosphate (dCMP). Isolated dCMP was previously set as a model to describe mechanisms of DNA-strand breaks induced by secondary electrons and decomposes primarily by dissociation of the C-O phosphoester bond. We show that hydrated molecules decompose via dissociation of the C-N glycosidic bond followed by dissociation of the P-O bond. This significant change of the proposed mechanism can be interpreted by a reactive role of water in the postattachment dynamics. Comparison of the fragmentation with previous macroscopic irradiation studies suggests that the actual contribution of DEA to DNA radiation damage in living tissue is rather small.
Collapse
Affiliation(s)
- Jaroslav Kočišek
- J. Heyrovský Institute of Physical Chemistry v.v.i., The Czech Academy of Sciences , Dolejškova 3 , 18223 Prague , Czech Republic
| | - Barbora Sedmidubská
- J. Heyrovský Institute of Physical Chemistry v.v.i., The Czech Academy of Sciences , Dolejškova 3 , 18223 Prague , Czech Republic.,Deptartment of Nuclear Chemistry, Faculty of Nuclear Sciences and Physical Engineering , Czech Technical University in Prague , Brehová 7 , 115 19 Prague , Czech Republic
| | | | - Michal Fárník
- J. Heyrovský Institute of Physical Chemistry v.v.i., The Czech Academy of Sciences , Dolejškova 3 , 18223 Prague , Czech Republic
| | - Juraj Fedor
- J. Heyrovský Institute of Physical Chemistry v.v.i., The Czech Academy of Sciences , Dolejškova 3 , 18223 Prague , Czech Republic
| |
Collapse
|
31
|
Lemelin V, Bass AD, Wagner JR, Sanche L. Absolute vibrational excitation cross sections for 1-18 eV electron scattering from condensed dimethyl phosphate (DMP). J Chem Phys 2017; 147:234305. [DOI: 10.1063/1.5008486] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- V. Lemelin
- Groupe en Sciences des Radiations, Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine et Sciences des Radiations, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - A. D. Bass
- Groupe en Sciences des Radiations, Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine et Sciences des Radiations, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - J. R. Wagner
- Groupe en Sciences des Radiations, Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine et Sciences des Radiations, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | - L. Sanche
- Groupe en Sciences des Radiations, Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine et Sciences des Radiations, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| |
Collapse
|
32
|
Abstract
Ectoine plays an important role in protecting biomolecules and entire cells against environmental stressors such as salinity, freezing, drying and high temperatures. Recent studies revealed that ectoine also provides effective protection for human skin cells from damage caused by UV-A radiation. These protective properties make ectoine a valuable compound and it is applied as an active ingredient in numerous pharmaceutical devices and cosmetics. Interestingly, the underlying mechanism resulting in protecting cells from radiation is not yet fully understood. Here we present a study on ectoine and its protective influence on DNA during electron irradiation. Applying gel electrophoresis and atomic force microscopy, we demonstrate for the first time that ectoine prevents DNA strand breaks caused by ionizing electron radiation. The results presented here point to future applications of ectoine for instance in cancer radiation therapy.
Collapse
|
33
|
Kohanoff J, McAllister M, Tribello GA, Gu B. Interactions between low energy electrons and DNA: a perspective from first-principles simulations. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:383001. [PMID: 28617676 DOI: 10.1088/1361-648x/aa79e3] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
DNA damage caused by irradiation has been studied for many decades. Such studies allow us to better assess the dangers posed by radiation, and to increase the efficiency of the radiotherapies that are used to combat cancer. A full description of the irradiation process involves multiple size and time scales. It starts with the interaction of radiation-either photons or swift ions-and the biological medium, which causes electronic excitation and ionisation. The two main products of ionising radiation are thus electrons and radicals. Both of these species can cause damage to biological molecules, in particular DNA. In the long run, this molecular level damage can prevent cells from replicating and can hence lead to cell death. For a long time it was assumed that the main actors in the damage process were the radicals. However, experiments in a seminal paper by the group of Leon Sanche in 2000 showed that low-energy electrons (LEE), such as those generated when ionising biological targets, can also cause bond breaks in biomolecules, and strand breaks in plasmid DNA in particular (Boudaiffa et al 2000 Science 287 1658-60). These results prompted a significant amount of experimental and theoretical work aimed at elucidating the role played by LEE in DNA damage. In this Topical Review we provide a general overview of the problem. We discuss experimental findings and theoretical results hand in hand with the aim of describing the physics and chemistry that occurs during the process of radiation damage, from the initial stages of electronic excitation, through the inelastic propagation of electrons in the medium, the interaction of electrons with DNA, and the chemical end-point effects on DNA. A very important aspect of this discussion is the consideration of a realistic, physiological environment. The role played by the aqueous solution and the amino acids from the histones in chromatin must be considered. Moreover, thermal fluctuations must be incorporated when studying these phenomena. Hence, a special place in this Topical Review is occupied by our recent first-principles molecular dynamics simulations that address the issue of how the environment favours or prevents LEEs from causing damage to DNA. We finish by summarising the conclusions achieved so far, and by suggesting a number of possible directions for further study.
Collapse
Affiliation(s)
- Jorge Kohanoff
- Atomistic Simulation Centre, Queen's University Belfast, Belfast BT7 1NN, United Kingdom
| | | | | | | |
Collapse
|
34
|
Schürmann R, Tsering T, Tanzer K, Denifl S, Kumar SVK, Bald I. Resonant Formation of Strand Breaks in Sensitized Oligonucleotides Induced by Low-Energy Electrons (0.5-9 eV). Angew Chem Int Ed Engl 2017; 56:10952-10955. [PMID: 28670830 DOI: 10.1002/anie.201705504] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Indexed: 12/20/2022]
Abstract
Halogenated nucleobases are used as radiosensitizers in cancer radiation therapy, enhancing the reactivity of DNA to secondary low-energy electrons (LEEs). LEEs induce DNA strand breaks at specific energies (resonances) by dissociative electron attachment (DEA). Although halogenated nucleobases show intense DEA resonances at various electron energies in the gas phase, it is inherently difficult to investigate the influence of halogenated nucleobases on the actual DNA strand breakage over the broad range of electron energies at which DEA can take place (<12 eV). By using DNA origami nanostructures, we determined the energy dependence of the strand break cross-section for oligonucleotides modified with 8-bromoadenine (8Br A). These results were evaluated against DEA measurements with isolated 8Br A in the gas phase. Contrary to expectations, the major contribution to strand breaks is from resonances at around 7 eV while resonances at very low energy (<2 eV) have little influence on strand breaks.
Collapse
Affiliation(s)
- Robin Schürmann
- Department of Chemistry-Physical Chemistry, University of Potsdam, Karl-Liebknecht-Strasse 24-25, 14476, Potsdam-Golm, Germany.,Department 1-Analytical Chemistry and Reference Materials, BAM Federal Institute for Materials Research and Testing, Richard-Willstätter Strasse 11, 12489, Berlin, Germany
| | - Thupten Tsering
- Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba Mumbai, 400 005, India
| | - Katrin Tanzer
- Institute of Ion Physics and Applied Physics, University of Innsbruck, Technikerstrasse 25, A-6020, Innsbruck, Austria
| | - Stephan Denifl
- Institute of Ion Physics and Applied Physics, University of Innsbruck, Technikerstrasse 25, A-6020, Innsbruck, Austria
| | - S V K Kumar
- Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba Mumbai, 400 005, India
| | - Ilko Bald
- Department of Chemistry-Physical Chemistry, University of Potsdam, Karl-Liebknecht-Strasse 24-25, 14476, Potsdam-Golm, Germany.,Department 1-Analytical Chemistry and Reference Materials, BAM Federal Institute for Materials Research and Testing, Richard-Willstätter Strasse 11, 12489, Berlin, Germany
| |
Collapse
|
35
|
Schürmann R, Tsering T, Tanzer K, Denifl S, Kumar SVK, Bald I. Resonante Bildung von Strangbrüchen in sensibilisierten Oligonukleotiden induziert durch niederenergetische Elektronen (0.5-9.0 eV). Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201705504] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Robin Schürmann
- Institut für Chemie - Physikalische Chemie; Universität Potsdam; Karl-Liebknecht-Straße 24-25 14476 Potsdam-Golm Deutschland
- Abteilung 1 - Analytische Chemie und Referenzmaterialien; Bundesanstalt für Materialforschung und -prüfung; Richard-Willstätter Str. 11 12489 Berlin Deutschland
| | - Thupten Tsering
- Tata Institute of Fundamental Research; Homi Bhabha Road Colaba Mumbai 400 005 Indien
| | - Katrin Tanzer
- Institut für Ionenphysik und Angewandte Physik; Universität Innsbruck; Technikerstraße 25 A-6020 Innsbruck Österreich
| | - Stephan Denifl
- Institut für Ionenphysik und Angewandte Physik; Universität Innsbruck; Technikerstraße 25 A-6020 Innsbruck Österreich
| | - S. V. K. Kumar
- Tata Institute of Fundamental Research; Homi Bhabha Road Colaba Mumbai 400 005 Indien
| | - Ilko Bald
- Institut für Chemie - Physikalische Chemie; Universität Potsdam; Karl-Liebknecht-Straße 24-25 14476 Potsdam-Golm Deutschland
- Abteilung 1 - Analytische Chemie und Referenzmaterialien; Bundesanstalt für Materialforschung und -prüfung; Richard-Willstätter Str. 11 12489 Berlin Deutschland
| |
Collapse
|
36
|
Liu W, Tan Z, Zhang L, Champion C. Calculation on spectrum of direct DNA damage induced by low-energy electrons including dissociative electron attachment. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2017; 56:99-110. [PMID: 28185000 DOI: 10.1007/s00411-016-0681-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 12/30/2016] [Indexed: 06/06/2023]
Abstract
In this work, direct DNA damage induced by low-energy electrons (sub-keV) is simulated using a Monte Carlo method. The characteristics of the present simulation are to consider the new mechanism of DNA damage due to dissociative electron attachment (DEA) and to allow determining damage to specific bases (i.e., adenine, thymine, guanine, or cytosine). The electron track structure in liquid water is generated, based on the dielectric response model for describing electron inelastic scattering and on a free-parameter theoretical model and the NIST database for calculating electron elastic scattering. Ionization cross sections of DNA bases are used to generate base radicals, and available DEA cross sections of DNA components are applied for determining DNA-strand breaks and base damage induced by sub-ionization electrons. The electron elastic scattering from DNA components is simulated using cross sections from different theoretical calculations. The resulting yields of various strand breaks and base damage in cellular environment are given. Especially, the contributions of sub-ionization electrons to various strand breaks and base damage are quantitatively presented, and the correlation between complex clustered DNA damage and the corresponding damaged bases is explored. This work shows that the contribution of sub-ionization electrons to strand breaks is substantial, up to about 40-70%, and this contribution is mainly focused on single-strand break. In addition, the base damage induced by sub-ionization electrons contributes to about 20-40% of the total base damage, and there is an evident correlation between single-strand break and damaged base pair A-T.
Collapse
Affiliation(s)
- Wei Liu
- School of Electrical Engineering, Shandong University, Jinan, 250061, Shandong, People's Republic of China
| | - Zhenyu Tan
- School of Electrical Engineering, Shandong University, Jinan, 250061, Shandong, People's Republic of China.
| | - Liming Zhang
- School of Electrical Engineering, Shandong University, Jinan, 250061, Shandong, People's Republic of China
- Electric Power Research Institute of Tianjin Electric Power Corporation, Tianjin, 300384, People's Republic of China
| | - Christophe Champion
- Centre d'Etudes Nucléaires de Bordeaux Gradignan, Université de Bordeaux, CNRS/IN2P3, BP 120, 33175, Gradignan, France
| |
Collapse
|
37
|
Black PJ, Miller AS, Hayes JJ. Radioresistance of GGG sequences to prompt strand break formation from direct-type radiation damage. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2016; 55:411-422. [PMID: 27349757 PMCID: PMC5093048 DOI: 10.1007/s00411-016-0660-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 06/19/2016] [Indexed: 06/06/2023]
Abstract
As humans, we are constantly exposed to ionizing radiation from natural, man-made and cosmic sources which can damage DNA, leading to deleterious effects including cancer incidence. In this work, we introduce a method to monitor strand breaks resulting from damage due to the direct effect of ionizing radiation and provide evidence for sequence-dependent effects leading to strand breaks. To analyze only DNA strand breaks caused by radiation damage due to the direct effect of ionizing radiation, we combined an established technique to generate dehydrated DNA samples with a technique to analyze single-strand breaks on short oligonucleotide sequences via denaturing gel electrophoresis. We find that direct damage primarily results in a reduced number of strand breaks in guanine triplet regions (GGG) when compared to isolated guanine (G) bases with identical flanking base context. In addition, we observe strand break behavior possibly indicative of protection of guanine bases when flanked by pyrimidines and sensitization of guanine to strand break when flanked by adenine (A) bases in both isolated G and GGG cases. These observations provide insight into the strand break behavior in GGG regions damaged via the direct effect of ionizing radiation. In addition, this could be indicative of DNA sequences that are naturally more susceptible to strand break due to the direct effect of ionizing radiation.
Collapse
Affiliation(s)
- Paul J Black
- Department of Radiation Oncology, Columbia University, New York, NY, 10027, USA
| | - Adam S Miller
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA.
| | - Jeffrey J Hayes
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, NY, 14642, USA
| |
Collapse
|
38
|
Fromm M, Boulanouar O. Low energy electrons and ultra-soft X-rays irradiation of plasmid DNA. Technical innovations. Radiat Phys Chem Oxf Engl 1993 2016. [DOI: 10.1016/j.radphyschem.2016.05.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
39
|
Choofong S, Cloutier P, Sanche L, Wagner JR. Base Release and Modification in Solid-Phase DNA Exposed to Low-Energy Electrons. Radiat Res 2016; 186:520-530. [PMID: 27802110 DOI: 10.1667/rr14476.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Ionization generates a large number of secondary low-energy electrons (LEEs) with a most probable energy of approximately 10 eV, which can break DNA bonds by dissociative electron attachment (DEA) and lead to DNA damage. In this study, we investigated radiation damage to dry DNA induced by X rays (1.5 keV) alone on a glass substrate or X rays combined with extra LEEs (average energy of 5.8 eV) emitted from a tantalum (Ta) substrate under an atmosphere of N2 and standard ambient conditions of temperature and pressure. The targets included calf-thymus DNA and double-stranded synthetic oligonucleotides. We developed analytical methods to measure the release of non-modified DNA bases from DNA and the formation of several base modifications by LC-MS/MS with isotopic dilution for precise quantification. The results show that the yield of non-modified bases as well as base modifications increase by 20-30% when DNA is deposited on a Ta substrate compared to that on a glass substrate. The order of base release (Gua > Ade > Thy ∼ Cyt) agrees well with several theoretical studies indicating that Gua is the most susceptible site toward sugar-phosphate cleavage. The formation of DNA damage by LEEs is explained by DEA leading to the release of non-modified bases involving the initial cleavage of N1-C1', C3'-O3' or C5'-O5' bonds. The yield of base modifications was lower than the release of non-modified bases. The main LEE-induced base modifications include 5,6-dihydrothymine (5,6-dHT), 5,6-dihydrouracil (5-dHU), 5-hydroxymethyluracil (5-HmU) and 5-formyluracil (5-ForU). The formation of base modifications by LEEs can be explained by DEA and cleavage of the C-H bond of the methyl group of Thy (giving 5-HmU and 5-ForU) and by secondary reactions of H atoms and hydride anions that are generated by primary LEE reactions followed by subsequent reaction with Cyt and Thy (giving 5,6-dHU and 5,6-dHT).
Collapse
Affiliation(s)
- Surakarn Choofong
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Pierre Cloutier
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Léon Sanche
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - J Richard Wagner
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
40
|
Wu RR, Chen Y, Rodgers MT. Mechanisms and energetics for N-glycosidic bond cleavage of protonated 2'-deoxyguanosine and guanosine. Phys Chem Chem Phys 2016; 18:2968-80. [PMID: 26740232 DOI: 10.1039/c5cp05738h] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Experimental and theoretical investigations suggest that hydrolysis of N-glycosidic bonds generally involves a concerted SN2 or a stepwise SN1 mechanism. While theoretical investigations have provided estimates for the intrinsic activation energies associated with N-glycosidic bond cleavage reactions, experimental measurements to validate the theoretical studies remain elusive. Here we report experimental investigations for N-glycosidic bond cleavage of the protonated guanine nucleosides, [dGuo+H](+) and [Guo+H](+), using threshold collision-induced dissociation (TCID) techniques. Two major dissociation pathways involving N-glycosidic bond cleavage, resulting in production of protonated guanine or the elimination of neutral guanine are observed in competition for both [dGuo+H](+) and [Guo+H](+). The detailed mechanistic pathways for the N-glycosidic bond cleavage reactions observed are mapped via electronic structure calculations. Excellent agreement between the measured and B3LYP calculated activation energies and reaction enthalpies for N-glycosidic bond cleavage of [dGuo+H](+) and [Guo+H](+) in the gas phase is found indicating that these dissociation pathways involve stepwise E1 mechanisms in analogy to the SN1 mechanisms that occur in the condensed phase. In contrast, MP2 is found to significantly overestimate the activation energies and slightly overestimate the reaction enthalpies. The 2'-hydroxyl substituent is found to stabilize the N-glycosidic bond such that [Guo+H](+) requires ∼25 kJ mol(-1) more than [dGuo+H](+) to activate the glycosidic bond.
Collapse
Affiliation(s)
- R R Wu
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA.
| | - Yu Chen
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA.
| | - M T Rodgers
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA.
| |
Collapse
|
41
|
Gu J, Wang J, Leszczynski J. Electron interaction with a DNA duplex: dCpdC:dGpdG. Phys Chem Chem Phys 2016; 18:13657-65. [PMID: 27139598 DOI: 10.1039/c6cp01408a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electron attachment to double-stranded cytosine-rich DNA, dCpdC:dGpdG, has been studied by density functional theory. This system represents a minimal descriptive unit of a cytosine-rich double-stranded DNA helix. A significant electron affinity for the formation of a cytosine-centered radical anion is revealed to be about 2.2 eV. The excess electron may reside on the nucleobase at the 5' position (dC˙(-)pdC:dGpdG) or at the 3' position (dCpdC˙(-):dGpdG). The inter-strand proton transfer between the radical anion centered cytosine (N3) and the paired guanine (HN1) results in the formation of radical anion center separated complexes dC1H˙pdC:dG2-H(-)pdG and dCpdC2H˙:dGpdG1-H(-). These distonic radical anions are found to be approximately 1 to 4 kcal mol(-1) more stable than the normal radical anions. Intra-strand cytosine π→π transition energies are below the electron detachment energy. Inter-strand π→π transitions of the excess electron from C to G are predicted to be less than 2.79 eV. Electron transfer might also be possible through the inter-strand base-jumping mode. An analysis of absorption visible spectra reveals the absorption bands ranging from 500 nm to 700 nm for the cytosine-rich radical anions of the DNA duplex. Electron attachment to cytidine oligomers might add color to the DNA duplex.
Collapse
Affiliation(s)
- Jiande Gu
- Drug Design & Discovery Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | | | | |
Collapse
|
42
|
Wang S, Zhao P, Zhang C, Bu Y. The Equally Important Role of Adenine Derivatives to That of Pyrimidine Derivatives in Near‐0 eV Electron‐Induced DNA Lesions. Chemphyschem 2016; 17:1669-77. [DOI: 10.1002/cphc.201600002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Indexed: 01/27/2023]
Affiliation(s)
- Shoushan Wang
- Institute of Theoretical Chemistry School of Chemistry and Chemical Engineering Shandong University Jinan 250100 P. R. China
| | - Peiwen Zhao
- Institute of Theoretical Chemistry School of Chemistry and Chemical Engineering Shandong University Jinan 250100 P. R. China
| | - Changzhe Zhang
- Institute of Theoretical Chemistry School of Chemistry and Chemical Engineering Shandong University Jinan 250100 P. R. China
| | - Yuxiang Bu
- Institute of Theoretical Chemistry School of Chemistry and Chemical Engineering Shandong University Jinan 250100 P. R. China
| |
Collapse
|
43
|
Wang S, Zhang C, Zhao P, Bu Y. Efficient and Substantial DNA Lesions From Near 0 eV Electron-Induced Decay of the O4-Hydrogenated Thymine Nucleotides: A DFT Study. J Phys Chem B 2015; 119:13971-9. [PMID: 26441346 DOI: 10.1021/acs.jpcb.5b06195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Possible electron-induced ruptures of C3'-O3', C5'-O5', and N1-C1' bonds in O4-hydrogenated 2'-deoxythymidine-3'-monophosphate (3'-dT(O4H)MPH) and 2'-deoxythymidine-5'-monophosphate (5'-dT(O4H)MPH) are investigated using density functional theory calculations, and efficient pathways are proposed. Electron attachment causes remarkable structural relaxation in the thymine C6 site. A concerted process of intramolecular proton transfer (IPT) from the C2' site of 2'-deoxyribose to the C6 site and the C3'-O3' bond rupture is observed in [3'-dT(O4H)MPH](-). A low activation barrier (9.32 kcal/mol) indicates that this pathway is the most efficient one as compared to other known pathways leading to backbone breaks of a single strand DNA at the non-3'-end thymine, which prevents the N1-C1' bond cleavage in [3'-dT(O4H)MPH](-). However, essentially spontaneous N1-C1' bond cleavage following similar IPT is predicted in [5'-dT(O4H)MPH](-). A moderate activation barrier (13.02 kcal/mol) for the rate-controlling IPT step suggests that base release from the N1-C1' cleavage arises readily at the 3'-end of single strand DNA with the strand ended by a thymine. The C5'-O5' bond has only an insignificant change in the IPT process. Solvent effects are found to increase slightly the energy requirements for either bond ruptures (11.23 kcal/mol (C3'-O3') vs 16.18 kcal/mol (N1-C1')), but not change their relative efficiencies.
Collapse
Affiliation(s)
- Shoushan Wang
- School of Chemistry and Chemical Engineering, Institute of Theoretical Chemistry, Shandong University , Jinan, 250100 P. R. China
| | - Changzhe Zhang
- School of Chemistry and Chemical Engineering, Institute of Theoretical Chemistry, Shandong University , Jinan, 250100 P. R. China
| | - Peiwen Zhao
- School of Chemistry and Chemical Engineering, Institute of Theoretical Chemistry, Shandong University , Jinan, 250100 P. R. China
| | - Yuxiang Bu
- School of Chemistry and Chemical Engineering, Institute of Theoretical Chemistry, Shandong University , Jinan, 250100 P. R. China
| |
Collapse
|
44
|
Champion C, Quinto MA, Monti JM, Galassi ME, Weck PF, Fojón OA, Hanssen J, Rivarola RD. Water versus DNA: new insights into proton track-structure modelling in radiobiology and radiotherapy. Phys Med Biol 2015; 60:7805-28. [PMID: 26406277 DOI: 10.1088/0031-9155/60/20/7805] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Water is a common surrogate of DNA for modelling the charged particle-induced ionizing processes in living tissue exposed to radiations. The present study aims at scrutinizing the validity of this approximation and then revealing new insights into proton-induced energy transfers by a comparative analysis between water and realistic biological medium. In this context, a self-consistent quantum mechanical modelling of the ionization and electron capture processes is reported within the continuum distorted wave-eikonal initial state framework for both isolated water molecules and DNA components impacted by proton beams. Their respective probability of occurrence-expressed in terms of total cross sections-as well as their energetic signature (potential and kinetic) are assessed in order to clearly emphasize the differences existing between realistic building blocks of living matter and the controverted water-medium surrogate. Consequences in radiobiology and radiotherapy will be discussed in particular in view of treatment planning refinement aiming at better radiotherapy strategies.
Collapse
Affiliation(s)
- C Champion
- Université de Bordeaux, CNRS/IN2P3, Centre d'Etudes Nucléaires de Bordeaux Gradignan, Gradignan, France
| | | | | | | | | | | | | | | |
Collapse
|
45
|
McAllister M, Smyth M, Gu B, Tribello GA, Kohanoff J. Understanding the Interaction between Low-Energy Electrons and DNA Nucleotides in Aqueous Solution. J Phys Chem Lett 2015; 6:3091-3097. [PMID: 26267207 DOI: 10.1021/acs.jpclett.5b01011] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Reactions that can damage DNA have been simulated using a combination of molecular dynamics and density functional theory. In particular, the damage caused by the attachment of a low energy electron to the nucleobase. Simulations of anionic single nucleotides of DNA in an aqueous environment that was modeled explicitly have been performed. This has allowed us to examine the role played by the water molecules that surround the DNA in radiation damage mechanisms. Our simulations show that hydrogen bonding and protonation of the nucleotide by the water can have a significant effect on the barriers to strand breaking reactions. Furthermore, these effects are not the same for all four of the bases.
Collapse
Affiliation(s)
- Maeve McAllister
- †Atomistic Simulation Centre, School of Mathematics and Physics, Queen's University Belfast, Belfast BT7 1NN, United Kingdom
| | - Maeve Smyth
- †Atomistic Simulation Centre, School of Mathematics and Physics, Queen's University Belfast, Belfast BT7 1NN, United Kingdom
| | - Bin Gu
- †Atomistic Simulation Centre, School of Mathematics and Physics, Queen's University Belfast, Belfast BT7 1NN, United Kingdom
- ‡Department of Physics, Nanjing University of Information Science and Technology, Nanjing 21004, China
| | - Gareth A Tribello
- †Atomistic Simulation Centre, School of Mathematics and Physics, Queen's University Belfast, Belfast BT7 1NN, United Kingdom
| | - Jorge Kohanoff
- †Atomistic Simulation Centre, School of Mathematics and Physics, Queen's University Belfast, Belfast BT7 1NN, United Kingdom
| |
Collapse
|
46
|
Chomicz L, Golon Ł, Rak J. The radiosensitivity of 5- and 6-bromocytidine derivatives--electron induced DNA degradation. Phys Chem Chem Phys 2015; 16:19424-8. [PMID: 25102433 DOI: 10.1039/c4cp03139c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Halogenated nucleotides belong to the group of radiosensitizers that sensitize solid tumors when incorporated into genomic DNA. Here, we consider the propensity of two isomeric bromocytidine derivatives, 3',5'-diphosphates of 5-bromo-2'-deoxycytidine (5BrdCDP) and 6-bromo-2'-deoxycytidine (6BrdCDP), to be damaged by electrons - one of the most abundant products formed during radiotherapy. An intranucleotide degradation mechanism leading to phosphodiester bond breakage (a model of single strand breakage in labeled DNA) and a ketone derivative formation was found for 6BrdCDP, while for 5BrdCDP a similar mechanism is sterically hindered. 5BrdCDP is, therefore, suggested to undergo electron induced degradation involving hydrogen transfer from a neighboring nucleotide or environment.
Collapse
Affiliation(s)
- Lidia Chomicz
- Department of Chemistry, University of Gdansk, 80-308 Gdansk, Poland.
| | | | | |
Collapse
|
47
|
Herbert JM. The Quantum Chemistry of Loosely-Bound Electrons. REVIEWS IN COMPUTATIONAL CHEMISTRY 2015. [DOI: 10.1002/9781118889886.ch8] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
48
|
Alizadeh E, Orlando TM, Sanche L. Biomolecular damage induced by ionizing radiation: the direct and indirect effects of low-energy electrons on DNA. Annu Rev Phys Chem 2015; 66:379-98. [PMID: 25580626 DOI: 10.1146/annurev-physchem-040513-103605] [Citation(s) in RCA: 251] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Many experimental and theoretical advances have recently allowed the study of direct and indirect effects of low-energy electrons (LEEs) on DNA damage. In an effort to explain how LEEs damage the human genome, researchers have focused efforts on LEE interactions with bacterial plasmids, DNA bases, sugar analogs, phosphate groups, and longer DNA moieties. Here, we summarize the current understanding of the fundamental mechanisms involved in LEE-induced damage of DNA and complex biomolecule films. Results obtained by several laboratories on films prepared and analyzed by different methods and irradiated with different electron-beam current densities and fluencies are presented. Despite varied conditions (e.g., film thicknesses and morphologies, intrinsic water content, substrate interactions, and extrinsic atmospheric compositions), comparisons show a striking resemblance in the types of damage produced and their yield functions. The potential of controlling this damage using molecular and nanoparticle targets with high LEE yields in targeted radiation-based cancer therapies is also discussed.
Collapse
Affiliation(s)
- Elahe Alizadeh
- Groupe en Sciences des Radiations, Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, J1H 5N4 Sherbrooke, Canada
| | | | | |
Collapse
|
49
|
Kouass Sahbani S, Sanche L, Cloutier P, Bass AD, Hunting DJ. Loss of cellular transformation efficiency induced by DNA irradiation with low-energy (10 eV) electrons. J Phys Chem B 2014; 118:13123-31. [PMID: 25325149 DOI: 10.1021/jp508170c] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Low energy electrons (LEEs) of energies less than 20 eV are generated in large quantities by ionizing radiation in biological matter. While LEEs are known to induce single (SSBs) and double strand breaks (DSBs) in DNA, their ability to inactivate cells by inducing nonreparable lethal damage has not yet been demonstrated. Here we observe the effect of LEEs on the functionality of DNA, by measuring the efficiency of transforming Escherichia coli with a [pGEM-3Zf (-)] plasmid irradiated with 10 eV electrons. Highly ordered DNA films were prepared on pyrolitic graphite by molecular self-assembly using 1,3-diaminopropane ions (Dap(2+)). The uniformity of these films permits the inactivation of approximately 50% of the plasmids compared to <10% using previous methods, which is sufficient for the subsequent determination of their functionality. Upon LEE irradiation, the fraction of functional plasmids decreased exponentially with increasing electron fluence, while LEE-induced isolated base damage, frank DSB, and non DSB-cluster damage increased linearly with fluence. While DSBs can be toxic, their levels were too low to explain the loss of plasmid functionality observed upon LEE irradiation. Similarly, non-DSB cluster damage, revealed by transforming cluster damage into DSBs by digestion with repair enzymes, also occurred relatively infrequently. The exact nature of the lethal damage remains unknown, but it is probably a form of compact cluster damage in which the lesions are too close to be revealed by purified repair enzymes. In addition, this damage is either not repaired or is misrepaired by E. coli, since it results in plasmid inactivation, when they contain an average of three lesions. Comparison with previous results from a similar experiment performed with γ-irradiated plasmids indicates that the type of clustered DNA lesions, created directly on cellular DNA by LEEs, may be more difficult to repair than those produced by other species from radiolysis.
Collapse
Affiliation(s)
- Saloua Kouass Sahbani
- Department of Nuclear Medicine & Radiobiology, Faculty of Medicine, Université de Sherbrooke , Sherbrooke, Quebec, Canada J1H 5N4
| | | | | | | | | |
Collapse
|
50
|
Chen Z, Zeng B, Tao J, Kang Y, Xue Y. A theoretical exploration of the photoinduced reductive repair mechanisms of thymidine glycol. J Photochem Photobiol A Chem 2014. [DOI: 10.1016/j.jphotochem.2014.08.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|