1
|
Panetti GB, Kim J, Myong MS, Bird MJ, Scholes GD, Chirik PJ. Photodriven Ammonia Synthesis from Manganese Nitrides: Photophysics and Mechanistic Investigations. J Am Chem Soc 2024; 146:27610-27621. [PMID: 39330978 DOI: 10.1021/jacs.4c08795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Ammonia synthesis from N,N,O,O-supported manganese(V) nitrides and 9,10-dihydroacridine using proton-coupled electron transfer and visible light irradiation in the absence of precious metal photocatalysts is described. While the reactivity of the nitride correlated with increased absorption of blue light, excited-state lifetimes determined by transient absorption were on the order of picoseconds. This eliminated excited-state manganese nitrides as responsible for bimolecular N-H bond formation. Spectroscopic measurements on the hydrogen source, dihydroacridine, demonstrated that photooxidation of 9,10-dihydroacridine was necessary for productive ammonia synthesis. Transient absorption and pulse radiolysis data for dihydroacridine provided evidence for the presence of intermediates with weak E-H bonds, including the dihydroacridinium radical cation and both isomers of the monohydroacridine radical, but notably these intermediates were unreactive toward hydrogen atom transfer and net N-H bond formation. Additional optimization of the reaction conditions using higher photon flux resulted in higher rates of the ammonia production from the manganese(V) nitrides due to increased activation of the dihydroacridine.
Collapse
Affiliation(s)
- Grace B Panetti
- Department of Chemistry, Frick Laboratory, Princeton University, Princeton, New Jersey 08544, United States
| | - Junho Kim
- Department of Chemistry, Frick Laboratory, Princeton University, Princeton, New Jersey 08544, United States
| | - Michele S Myong
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Matthew J Bird
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Gregory D Scholes
- Department of Chemistry, Frick Laboratory, Princeton University, Princeton, New Jersey 08544, United States
| | - Paul J Chirik
- Department of Chemistry, Frick Laboratory, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
2
|
You T, Shing K, Wu L, Wu K, Wang H, Liu Y, Du L, Liang R, Phillips DL, Chang X, Huang J, Che C. Iron Corrole-Catalyzed Intramolecular Amination Reactions of Alkyl Azides. Spectroscopic Characterization and Reactivity of [Fe V(Cor)(NAd)]. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401420. [PMID: 39162002 PMCID: PMC11497103 DOI: 10.1002/advs.202401420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 07/18/2024] [Indexed: 08/21/2024]
Abstract
As nitrogen analogues of iron-oxo species, high-valent iron-imido species have attracted great interest in the past decades. FeV-alkylimido species are generally considered to be key reaction intermediates in Fe(III)-catalyzed C(sp3)─H bond aminations of alkyl azides but remain underexplored. Here, it is reported that iron-corrole (Cor) complexes can catalyze a wide range of intramolecular C─H amination reactions of alkyl azides to afford a variety of 5-, 6- and 7-membered N-heterocycles, including alkaloids and natural product derivatives, with up to 3880 turnover numbers (TONs) and excellent diastereoselectivity (>99:1 d.r.). Mechanistic studies including density functional theory (DFT) calculations and intermolecular hydrogen atom abstraction (HAA) reactions reveal key reactive FeV-alkylimido intermediates. The [FeV(Cor)(NAd)] (Ad = adamantyl) complex is independently prepared and characterized through electron paramagnetic resonance (EPR), resonance Raman (rR) measurement, and X-ray photoelectron spectroscopy (XPS). This complex is reactive toward HAA reactions with kinetic isotope effects (KIEs) similar to [Fe(Cor)]-catalyzed intramolecular C─H amination of alkyl azides.
Collapse
Affiliation(s)
- Tingjie You
- State Key Laboratory of Synthetic ChemistryDepartment of ChemistryThe University of Hong KongPokfulam RoadHong Kong000000P. R. China
| | - Ka‐Pan Shing
- State Key Laboratory of Synthetic ChemistryDepartment of ChemistryThe University of Hong KongPokfulam RoadHong Kong000000P. R. China
| | - Liangliang Wu
- State Key Laboratory of Synthetic ChemistryDepartment of ChemistryThe University of Hong KongPokfulam RoadHong Kong000000P. R. China
| | - Kai Wu
- State Key Laboratory of Synthetic ChemistryDepartment of ChemistryThe University of Hong KongPokfulam RoadHong Kong000000P. R. China
| | - Hua‐Hua Wang
- Department of ChemistrySouthern University of Science and TechnologyShenzhenGuangdong518055P. R. China
| | - Yungen Liu
- Department of ChemistrySouthern University of Science and TechnologyShenzhenGuangdong518055P. R. China
| | - Lili Du
- State Key Laboratory of Synthetic ChemistryDepartment of ChemistryThe University of Hong KongPokfulam RoadHong Kong000000P. R. China
| | - Runhui Liang
- State Key Laboratory of Synthetic ChemistryDepartment of ChemistryThe University of Hong KongPokfulam RoadHong Kong000000P. R. China
| | - David Lee Phillips
- State Key Laboratory of Synthetic ChemistryDepartment of ChemistryThe University of Hong KongPokfulam RoadHong Kong000000P. R. China
| | - Xiao‐Yong Chang
- Department of ChemistrySouthern University of Science and TechnologyShenzhenGuangdong518055P. R. China
| | - Jie‐Sheng Huang
- State Key Laboratory of Synthetic ChemistryDepartment of ChemistryThe University of Hong KongPokfulam RoadHong Kong000000P. R. China
| | - Chi‐Ming Che
- State Key Laboratory of Synthetic ChemistryDepartment of ChemistryThe University of Hong KongPokfulam RoadHong Kong000000P. R. China
- Department of ChemistrySouthern University of Science and TechnologyShenzhenGuangdong518055P. R. China
- HKU Shenzhen Institute of Research and InnovationShenzhenGuangdong518057P. R. China
- Laboratory for Synthetic Chemistry and Chemical Biology LimitedUnits 1503–1511, 15/F., Building 17 W, Hong Kong Science Park, New TerritoriesHong Kong000000P. R. China
| |
Collapse
|
3
|
Thomas J, Goldberg DP. Factors controlling the reactivity of synthetic compound-I Analogs. J PORPHYR PHTHALOCYA 2023; 27:1489-1501. [PMID: 39132380 PMCID: PMC11308481 DOI: 10.1142/s1088424623300136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
A high-valent iron(IV)-oxo porphyrin radical cation (FeIV(O)(porph+•) serves as a key, reactive intermediate for a range of heme enzymes, including cytochrome P450 (CYP), horseradish peroxidase (HRP), and catalase (CAT). Synthetic analogs of this intermediate, known as Compound-I (Cpd-I) in the heme enzyme literature, have been generated with different tetrapyrrolic, macrocyclic ligands, including porphyrin derivatives, and the closely related ring-contracted macrocycles, corroles and corrolazines. These synthetic analogs have been useful for assigning and understanding structural and spectroscopic features and examining the reactivity of Cpd-I-like species in controlled and well-defined environments. This review focuses on summarizing recent developments in the synthesis and reactivity of high-valent iron-oxo porphyrinoid complexes in two main classes of reactions, proton-coupled electron transfer (PCET) and oxygen atom transfer (OAT). The relationship between the structure of the complexes and their reactivity is emphasized, including the influence of axial ligation and peripheral macrocyclic substitution, as well as the effects of solvent and secondary coordination spheres on the reactivity of the Cpd-I analogs. In bringing together the latest findings on Cpd-I analogs, this review intends to broaden our current understanding of the factors that control the stability and reactivity of Cpd-I species. This new knowledge should, in turn, point toward new synthetic strategies for constructing catalysts that rely on Cpd-I-like reactive intermediates.
Collapse
Affiliation(s)
- Jithin Thomas
- Department of Chemistry, The Johns Hopkins University, 3400N. Charles Street, Baltimore, Maryland 21218, USA
| | - David P. Goldberg
- Department of Chemistry, The Johns Hopkins University, 3400N. Charles Street, Baltimore, Maryland 21218, USA
| |
Collapse
|
4
|
Shing KP, Qin L, Wu LL, Huang JS, Che CM. Ruthenium(v) terminal arylimido corroles: isolation, spectroscopic characterization and reactivity. Chem Sci 2023; 14:10602-10609. [PMID: 37800003 PMCID: PMC10548528 DOI: 10.1039/d3sc02266h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 08/31/2023] [Indexed: 10/07/2023] Open
Abstract
Terminal Ru(v)-imido species are thought to be as reactive to group transfer reactions as their Ru(v)-oxo homologues, but are less studied. With the electron-rich corrole ligand, relatively stable and isolable Ru(v)-arylimido complexes [Ru(tBu-Cor)(NAr)] (H3(tBu-Cor) = 5,15-diphenyl-10-(p-tert-butylphenyl)corrole, Ar = 2,4,6-Me3C6H2 (Mes), 2,6-(iPr)2C6H3 (Dipp), 2,4,6-(iPr)3C6H2 (Tipp), and 3,5-(CF3)2C6H3 (BTF)) can be prepared from [Ru(tBu-Cor)]2 under strongly reducing conditions. This type of Ru(v)-monoarylimido corrole complex with S = ½ was characterized by high-resolution ESI mass spectrometry, X-band EPR, resonance Raman spectroscopy, magnetic susceptibility, and elemental analysis, together with computational studies. Under heating/light irradiation (xenon lamp) conditions, the complexes [Ru(tBu-Cor)(NAr)] (Ar = Mes, BTF) could undergo aziridination of styrenes and amination of benzylic C(sp3)-H bonds with up to 90% product yields.
Collapse
Affiliation(s)
- Ka-Pan Shing
- State Key Laboratory of Synthetic Chemistry, Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong China
| | - Lin Qin
- State Key Laboratory of Synthetic Chemistry, Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong China
| | - Liang-Liang Wu
- State Key Laboratory of Synthetic Chemistry, Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong China
| | - Jie-Sheng Huang
- State Key Laboratory of Synthetic Chemistry, Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong China
| | - Chi-Ming Che
- State Key Laboratory of Synthetic Chemistry, Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong China
- HKU Shenzhen Institute of Research and Innovation Shenzhen China
| |
Collapse
|
5
|
Liu Y, Shing KP, Lo VKY, Che CM. Iron- and Ruthenium-Catalyzed C–N Bond Formation Reactions. Reactive Metal Imido/Nitrene Intermediates. ACS Catal 2023. [DOI: 10.1021/acscatal.2c04830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Yungen Liu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, People’s Republic of China
| | - Ka-Pan Shing
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, People’s Republic of China
| | - Vanessa Kar-Yan Lo
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, People’s Republic of China
- HKU Shenzhen Institute of Research and Innovation, Shenzhen 518053, People’s Republic of China
| | - Chi-Ming Che
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, People’s Republic of China
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, People’s Republic of China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Units 1503−1511, 15/F, Building 17W, Hong
Kong Science Park, New Territories, Hong Kong 999077, People’s Republic of China
- HKU Shenzhen Institute of Research and Innovation, Shenzhen 518053, People’s Republic of China
| |
Collapse
|
6
|
Antolini C, Spellman CD, Otolski CJ, Doumy G, March AM, Walko DA, Liu C, Zhang X, Young BT, Goodwill JE, Hayes D. Photochemical and Photophysical Dynamics of the Aqueous Ferrate(VI) Ion. J Am Chem Soc 2022; 144:22514-22527. [PMID: 36454056 DOI: 10.1021/jacs.2c08048] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Ferrate(VI) has the potential to play a key role in future water supplies. Its salts have been suggested as "green" alternatives to current advanced oxidation and disinfection methods in water treatment, especially when combined with ultraviolet light to stimulate generation of highly oxidizing Fe(V) and Fe(IV) species. However, the nature of these intermediates, the mechanisms by which they form, and their roles in downstream oxidation reactions remain unclear. Here, we use a combination of optical and X-ray transient absorption spectroscopies to study the formation, interconversion, and relaxation of several excited-state and metastable high-valent iron species following excitation of aqueous potassium ferrate(VI) by ultraviolet and visible light. Branching from the initially populated ligand-to-metal charge transfer state into independent photophysical and photochemical pathways occurs within tens of picoseconds, with the quantum yield for the generation of reactive Fe(V) species determined by relative rates of the competing intersystem crossing and reverse electron transfer processes. Relaxation of the metal-centered states then occurs within 4 ns, while the formation of metastable Fe(V) species occurs in several steps with time constants of 250 ps and 300 ns. Results here improve the mechanistic understanding of the formation and fate of Fe(V) and Fe(IV), which will accelerate the development of novel advanced oxidation processes for water treatment applications.
Collapse
Affiliation(s)
- Cali Antolini
- Department of Chemistry, University of Rhode Island, 45 Upper College Road, Kingston, Rhode Island 02881, United States
| | - Charles D Spellman
- Department of Civil and Environmental Engineering, University of Rhode Island, 45 Upper College Road, Kingston, Rhode Island 02881, United States
| | - Christopher J Otolski
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, Illinois 60439, United States
| | - Gilles Doumy
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, Illinois 60439, United States
| | - Anne Marie March
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, Illinois 60439, United States
| | - Donald A Walko
- X-ray Science Division, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, Illinois 60439, United States
| | - Cunming Liu
- X-ray Science Division, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, Illinois 60439, United States
| | - Xiaoyi Zhang
- X-ray Science Division, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, Illinois 60439, United States
| | - Benjamin T Young
- Department of Physical Sciences, Rhode Island College, 600 Mt Pleasant Avenue, Providence, Rhode Island 02908, United States
| | - Joseph E Goodwill
- Department of Civil and Environmental Engineering, University of Rhode Island, 45 Upper College Road, Kingston, Rhode Island 02881, United States
| | - Dugan Hayes
- Department of Chemistry, University of Rhode Island, 45 Upper College Road, Kingston, Rhode Island 02881, United States
| |
Collapse
|
7
|
Skipworth T, Khashimov M, Ojo I, Zhang R. Kinetics of chromium(V)-oxo and chromium(IV)-oxo porphyrins: Reactivity and mechanism for sulfoxidation reactions. J Inorg Biochem 2022; 237:112006. [PMID: 36162208 DOI: 10.1016/j.jinorgbio.2022.112006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/13/2022] [Accepted: 09/13/2022] [Indexed: 01/18/2023]
Abstract
In this work, chromium(IV)-oxo porphyrins [CrIV(Por)(O)] (2) (Por = porphyrin) were produced either by oxidation of [CrIII(Por)Cl] (1) with iodobenzene diacetate or visible light photolysis of porphyrin‑chromium(III) chlorates. Subsequent oxidation of 2 with silver perchlorate gave chromium(V)-oxo porphyrins [CrV(Por)(O)](ClO4) (3) in three porphyrin ligands, including 5,10,15,20-tetramesitylporphyrin(TMP, a), 5,10,15,20-tetrakis(2,6-difluorophenyl)porphyrin(TDFPP, b), and 5,10,15,20-tetrakis(pentafluorophenyl)porphyrin (TPFPP, c). Complexes 2 and 3 reacted with thioanisoles to produce the corresponding sulfoxides, and their kinetics of sulfoxidation reactions with a series of aryl methyl sulfides(thioanisoles) were studied in organic solutions. Chromium(V)-oxo porphyrins are several orders of magnitudes more reactive than chromium(IV)-oxo species, and representative second-order rate constants (kox) for the oxidation of thioansole are (0.40 ± 0.01) M-1 s-1 (3a), and (2.82 ± 0.20) × 102 M-1 s-1 (3b), and (2.20 ± 0.01) × 103 M-1 s-1 (3c). The order of reactivity for 2 and 3 follows TPFPP > TDFPP > TMP, in agreement with the electrophilic nature of metal-oxo complexes. Hammett analyses indicate significant charge transfer in the transition states for oxidation of para-substituted thioanisoles by [CrV(Por)(O)]+. The ρ+ constants are -1.69 for 3a, -2.63 for 3b, and - 2.89 for 3c, respectively, mirror values found previously for related metal-oxo species. A mechanism involving the electrophilic attack of the CrV-oxo at sulfides to form a sulfur cation intermediate in the rate-determining step is suggested. Competition studies with chromium(III) porphyrin chloride and PhI(OAc)2 gave relative rate constants for oxidations of competing thioanisoles that closely match ratios of absolute rate constants from chromium(V)-oxo species, which are true oxidants under catalytic conditions.
Collapse
Affiliation(s)
- Tristan Skipworth
- Department of Chemistry, Western Kentucky University, 1906 College Heights Blvd #11079, Bowling Green, KY 42101-1079, United States of America
| | - Mardan Khashimov
- Department of Chemistry, Western Kentucky University, 1906 College Heights Blvd #11079, Bowling Green, KY 42101-1079, United States of America
| | - Iyanu Ojo
- Department of Chemistry, Western Kentucky University, 1906 College Heights Blvd #11079, Bowling Green, KY 42101-1079, United States of America
| | - Rui Zhang
- Department of Chemistry, Western Kentucky University, 1906 College Heights Blvd #11079, Bowling Green, KY 42101-1079, United States of America.
| |
Collapse
|
8
|
Visible light generation of high-valent metal-oxo intermediates and mechanistic insights into catalytic oxidations. J Inorg Biochem 2020; 212:111246. [PMID: 33059321 DOI: 10.1016/j.jinorgbio.2020.111246] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/07/2020] [Accepted: 08/22/2020] [Indexed: 11/21/2022]
Abstract
High-valent metal-oxo complexes play central roles as active oxygen atom transfer (OAT) agents in many enzymatic and synthetic oxidation catalysis. This review focuses on our recent advances in application of photochemical approaches to probe the oxidizing metal-oxo species with different metals and macrocyclic ligands. Under visible light irradiation, a variety of important metal-oxo species including iron-oxo porphyrins, manganese-oxo porphyrin/corroles, ruthenium-oxo porphyrins, and chromium-oxo salens have been successfully generated. Kinetical studies in real time have provided mechanistic insights as to the reactivity and reaction pathways of the metal-oxo intermediates in their oxidation reactions. In photo-induced ligand cleavage reactions, metals in n+ oxidation state with the oxygen-containing ligands bromate, chlorate, or nitrites were photolyzed. Homolytic cleavage of the O-X bond in the ligand gives (n + 1)+ oxidation state metal-oxo species, and heterolytic cleavage gives (n + 2)+ oxidation state metal-oxo species. In photo-disproportionation reactions, reactive Mn+1-oxo species can be formed by photolysis of μ-oxo dimeric Mn+ complexes with the concomitant formation of Mn-1 products. Importantly, the oxidation of Mn-1 products by molecular oxygen (O2) to regenerate the μ-oxo dimeric Mn+ complexes in photo-disproportionation reactions represents an attractive and green catalytic cycle for the development of photocatalytic aerobic oxidations.
Collapse
|
9
|
Klaine S, Bratcher F, Winchester CM, Zhang R. Formation and kinetic studies of manganese(IV)-oxo porphyrins: Oxygen atom transfer mechanism of sulfide oxidations. J Inorg Biochem 2019; 204:110986. [PMID: 31924588 DOI: 10.1016/j.jinorgbio.2019.110986] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/27/2019] [Accepted: 12/28/2019] [Indexed: 11/26/2022]
Abstract
Visible light irradiation of photo-labile porphyrin-manganese(III) chlorates or bromates (2) produced manganese(IV)-oxo porphyrins [MnIV(Por)(O)] (Por = porphyrin) (3) in three porphyrin ligands. The same oxo species 3 were also formed by chemical oxidation of the corresponding manganese(III) precursors (1) with iodobenzene diacetate, i.e. PhI(OAc)2. The systems under study include 5,10,15,20-tetra(pentafluorophenyl)porphyrin‑manganese(IV)-oxo (3a), 5,10,15,20-tetra(2,6-difluorophenyl)porphyrin‑manganese(IV)-oxo (3b), and 5,10,15,20-tetramesitylporphyrin‑manganese(IV)-oxo (3c). As expected, complexes 3 reacted with thioanisoles to produce the corresponding sulfoxides and over-oxidized sulfones. The kinetics of oxygen atom transfer (OAT) reactions of these generated 3 with aryl sulfides were studied in CH3CN solutions. Second-order rate constants for sulfide oxidation reactions are comparable to those of alkene epoxidations and activated CH bond oxidations by the same oxo species 3. For a given substrate, the reactivity order for the manganese(IV)-oxo species was 3a > 3b > 3c, consistent with expectations on the basis of the electron-withdrawing capacity of the porphyrin macrocycles. Free-energy Hammett analyses gave near-linear correlations with σ values, indicating no significant positive charge developed at the sulfur during the oxidation process. The mechanistic results strongly suggest [MnIV(Por)(O)] reacts as a direct OAT agent towards sulfide substrates through a manganese(II) intermediate that was detected in this work. However, an alternative pathway that involves a disproportionation of 3 to form a higher oxidized manganese(V)-oxo species may be significant when less reactive substrates are present. The competition product studies with the Hammett correlation plot confirmed that the observed manganese(IV)-oxo species is not the true oxidant for the sulfide oxidations catalyzed by manganese(III) porphyrins with PhI(OAc)2.
Collapse
Affiliation(s)
- Seth Klaine
- Department of Chemistry, Western Kentucky University, 1906 College Heights Blvd #11079, Bowling Green, KY 42101-1079, United States of America
| | - Fox Bratcher
- Department of Chemistry, Western Kentucky University, 1906 College Heights Blvd #11079, Bowling Green, KY 42101-1079, United States of America
| | - Charles M Winchester
- Department of Chemistry, Western Kentucky University, 1906 College Heights Blvd #11079, Bowling Green, KY 42101-1079, United States of America
| | - Rui Zhang
- Department of Chemistry, Western Kentucky University, 1906 College Heights Blvd #11079, Bowling Green, KY 42101-1079, United States of America.
| |
Collapse
|
10
|
Mondal S, Naik PK, Adha JK, Kar S. Synthesis, characterization, and reactivities of high valent metal–corrole (M = Cr, Mn, and Fe) complexes. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.213043] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
11
|
Phung QM, Pierloot K. Low-Lying Electromeric States in Chloro-Ligated Iron(IV)-Oxo Porphyrin as a Model for Compound I, Studied with Second-Order Perturbation Theory Based on Density Matrix Renormalization Group. J Chem Theory Comput 2019; 15:3033-3043. [PMID: 30995039 DOI: 10.1021/acs.jctc.9b00166] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Employing second-order perturbation theory based on the density matrix renormalization group (DMRG-CASPT2), this work aims at providing a quantitative description of the spin state energetics of a chloro-ligated iron(IV)-oxo porphyrin as a model for the cytochromes P450 active species, also known as compound I (Cpd I). We explored DMRG-CASPT2 to its full extent with an extensive active space (up to 31 active orbitals) as well as a large number of renormalized states m (up to 10000). Different flavors of DMRG-CASPT2, using either the costly exact 4-particle reduced density matrix (4-RDM) or the cheaper cumulant approximated 4-RDM (cu(4)), were analyzed. All flavors essentially converge to similar relative energies between different spin states. Including a correction for the protein environment, we found a quartet FeIVO ground state and, more importantly, a thermally accessible doublet FeVO excited state that might directly contribute to the reactivity of this iron-oxo species. Our results also showed that cheaper approaches, such as CASPT2 based on a smaller active space or the cumulant approximation DMRG-cu(4)-CASPT2, are capable of accurately describing the spin state energetics of this species.
Collapse
Affiliation(s)
- Quan Manh Phung
- Department of Chemistry , KU Leuven , Celestijnenlaan 200F , Leuven 3001 , Belgium.,Institute of Transformative Bio-Molecules (WPI-ITbM) , Nagoya University , Chikusa, Nagoya 464-8602 , Japan
| | - Kristine Pierloot
- Department of Chemistry , KU Leuven , Celestijnenlaan 200F , Leuven 3001 , Belgium
| |
Collapse
|
12
|
Ranburger D, Willis B, Kash B, Jeddi H, Alcantar C, Zhang R. Synthetic and mechanistic investigations on manganese corrole-catalyzed oxidation of sulfides with iodobenzene diacetate. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2018.11.048] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
13
|
|
14
|
Simonova OR, Zaitseva SV, Tyulyaeva EY, Zdanovich SA, Koifman OI. Kinetics of β-Carotene Oxidation in the Presence of Highly Active Forms of µ-Carbido Diiron(IV) Tetraphenylporphyrinate. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2018. [DOI: 10.1134/s0036024418110390] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Lee NF, Patel D, Liu H, Zhang R. Insights from kinetic studies of photo-generated compound II models: Reactivity toward aryl sulfides. J Inorg Biochem 2018; 183:58-65. [PMID: 29550659 DOI: 10.1016/j.jinorgbio.2018.03.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 03/05/2018] [Accepted: 03/08/2018] [Indexed: 10/17/2022]
Abstract
Iron(IV)-oxo porphyrins [FeIV(Por)O] (Por = poprhyrin), commonly called compound II models, were produced in three electron-deficient ligands by visible light irradiation of highly photo-labile porphyrin-iron(III) bromates or chlorates. The kinetics of oxygen transfer atom (OAT) reactions with aryl sulfides by these photo-generated [FeIV(Por)O] (3) were studied in CH3CN solutions. The iron(IV)-oxo porphyrins under study include 5,10,15,20-tetra(2,6-dichlorophenyl)porphyrin-iron(IV)-oxo (3a), 5,10,15,20-tetra(2,6-difluorophenyl)porphyrin-iron(IV)-oxo (3b), and 5,10,15,20-tetra(pentafluorophenyl)porphyrin-iron(IV)-oxo (3c). As expected, complexes 3 were competent oxidants and reacted rapidly with thioanisoles to give the corresponding sulfoxides with minor over-oxidation sulfones. Apparent second-order rate constants determined under pseudo-first-order conditions for sulfide oxidation reactions are (9.8 ± 0.1) × 102-(3.7 ± 0.3) × 101 M-1 s-1, which are 3 to 4 orders of magnitude greater in comparison to those of alkene epoxidations and activated CH bond oxidations by the same oxo species. Conventional Hammett analyses gave non-linear correlations, indicating no significant charge developed at the sulfur during the oxidation process. For a given substrate, the reactivity order for the iron(IV)-oxo species was 3c < 3b < 3a, which is inverted from expectations on the basis of the electron-withdrawing capacity of the porphyrin macrocycles. The absolute rate constants from kinetic studies provided insights into the transient oxidants in catalytic reactions under turnover conditions where actual reactive intermediates are not observable. Our kinetic and catalytic competition results strongly suggest that 3 may undergo a disproportionation reaction to form a higher oxidized iron(IV)-oxo porphyrin radical cations as the true oxidant.
Collapse
Affiliation(s)
- Ngo Fung Lee
- Department of Chemistry, Western Kentucky University, 1906 College Heights Blvd #11079, Bowling Green, KY 42101-1079, United States
| | - Dharmesh Patel
- Department of Chemistry, Western Kentucky University, 1906 College Heights Blvd #11079, Bowling Green, KY 42101-1079, United States
| | - Haiyan Liu
- Department of Chemistry, Western Kentucky University, 1906 College Heights Blvd #11079, Bowling Green, KY 42101-1079, United States
| | - Rui Zhang
- Department of Chemistry, Western Kentucky University, 1906 College Heights Blvd #11079, Bowling Green, KY 42101-1079, United States.
| |
Collapse
|
16
|
Oohora K, Meichin H, Kihira Y, Sugimoto H, Shiro Y, Hayashi T. Manganese(V) Porphycene Complex Responsible for Inert C–H Bond Hydroxylation in a Myoglobin Matrix. J Am Chem Soc 2017; 139:18460-18463. [DOI: 10.1021/jacs.7b11288] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Koji Oohora
- Department
of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan
- Frontier
Research Base for Global Young Researchers, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan
- PRESTO, Japan Science and Technology Agency (JST), Kawaguchi 332-0012, Japan
| | - Hiroyuki Meichin
- Department
of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan
| | - Yushi Kihira
- Department
of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan
| | | | - Yoshitsugu Shiro
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
- Graduate
School of Life Science, University of Hyogo, Hyogo 678-1297, Japan
| | - Takashi Hayashi
- Department
of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan
| |
Collapse
|
17
|
Yadav O, Varshney A, Kumar A. Manganese(III) mediated synthesis of A2B Mn(III) corroles: A new general and green synthetic approach and characterization. INORG CHEM COMMUN 2017. [DOI: 10.1016/j.inoche.2017.10.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
18
|
Baglia RA, Zaragoza JPT, Goldberg DP. Biomimetic Reactivity of Oxygen-Derived Manganese and Iron Porphyrinoid Complexes. Chem Rev 2017; 117:13320-13352. [PMID: 28991451 PMCID: PMC6058703 DOI: 10.1021/acs.chemrev.7b00180] [Citation(s) in RCA: 204] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Heme proteins utilize the heme cofactor, an iron porphyrin, to perform a diverse range of reactions including dioxygen binding and transport, electron transfer, and oxidation/oxygenations. These reactions share several key metalloporphyrin intermediates, typically derived from dioxygen and its congeners such as hydrogen peroxide. These species are composed of metal-dioxygen, metal-superoxo, metal-peroxo, and metal-oxo adducts. A wide variety of synthetic metalloporphyrinoid complexes have been synthesized to generate and stabilize these intermediates. These complexes have been studied to determine the spectroscopic features, structures, and reactivities of such species in controlled and well-defined environments. In this Review, we summarize recent findings on the reactivity of these species with common porphyrinoid scaffolds employed for biomimetic studies. The proposed mechanisms of action are emphasized. This Review is organized by structural type of metal-oxygen intermediate and broken into subsections based on the metal (manganese and iron) and porphyrinoid ligand (porphyrin, corrole, and corrolazine).
Collapse
Affiliation(s)
- Regina A. Baglia
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Jan Paulo T. Zaragoza
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - David P. Goldberg
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
19
|
Ghosh A. Electronic Structure of Corrole Derivatives: Insights from Molecular Structures, Spectroscopy, Electrochemistry, and Quantum Chemical Calculations. Chem Rev 2017; 117:3798-3881. [PMID: 28191934 DOI: 10.1021/acs.chemrev.6b00590] [Citation(s) in RCA: 218] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Presented herein is a comprehensive account of the electronic structure of corrole derivatives. Our knowledge in this area derives from a broad range of methods, including UV-vis-NIR absorption and MCD spectroscopies, single-crystal X-ray structure determination, vibrational spectroscopy, NMR and EPR spectroscopies, electrochemistry, X-ray absorption spectroscopy, and quantum chemical calculations, the latter including both density functional theory and ab initio multiconfigurational methods. The review is organized according to the Periodic Table, describing free-base and main-group element corrole derivatives, then transition-metal corroles, and finally f-block element corroles. Like porphyrins, corrole derivatives with a redox-inactive coordinated atom follow the Gouterman four-orbital model. A key difference from porphyrins is the much wider prevalence of noninnocent electronic structures as well as full-fledged corrole•2- radicals among corrole derivatives. The most common orbital pathways mediating ligand noninnocence in transition-metal corroles are the metal(dz2)-corrole("a2u") interaction (most commonly observed in Mn and Fe corroles) and the metal(dx2-y2)-corrole(a2u) interaction in coinage metal corroles. Less commonly encountered is the metal(dπ)-corrole("a1u") interaction, a unique feature of formal d5 metallocorroles. Corrole derivatives exhibit a rich array of optical properties, including substituent-sensitive Soret maxima indicative of ligand noninnocence, strong fluorescence in the case of lighter main-group element complexes, and room-temperature near-IR phosphorescence in the case of several 5d metal complexes. The review concludes with an attempt at identifying gaps in our current knowledge and potential future directions of electronic-structural research on corrole derivatives.
Collapse
Affiliation(s)
- Abhik Ghosh
- Department of Chemistry and Center for Theoretical and Computational Chemistry, UiT-The Arctic University of Norway , 9037 Tromsø, Norway
| |
Collapse
|
20
|
Ziegler JA, Buckley HL, Arnold J. Synthesis and reactivity of tantalum corrole complexes. Dalton Trans 2017; 46:780-785. [PMID: 27996068 DOI: 10.1039/c6dt04265a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reaction of the free base corrole (Mes2(p-OMePh)corrole)H3 with tantalum trialkyl precursors TaMe3Cl2 and TaBn3NtBu resulted in the formation of the tantalum dichloride (1) and tantalum imido (4) corrole complexes via alkane elimination. The X-ray crystal structures of these two compounds have been determined and the structural parameters are discussed. The Ta centre of 1 was found to sit out of the plane of the corrole ring by 0.903 Å and is cis-ligated, similarly to what has been reported for group 4 porphyrin complexes. From complex 1 we synthesized the dimethyl derivative (2), the reactivity of which is compared to an analogous tantalum dimethyl porphyrin cation. The imido complex 4 reacted with triphenylmethanol and 4-methylbenzyl alcohol, resulting in different extents of protonation of the imido group.
Collapse
Affiliation(s)
- Jessica A Ziegler
- Department of Chemistry, University of California, Berkeley, California 94720, USA.
| | - Heather L Buckley
- Department of Chemistry, University of California, Berkeley, California 94720, USA.
| | - John Arnold
- Department of Chemistry, University of California, Berkeley, California 94720, USA.
| |
Collapse
|
21
|
Kwong KW, Patel D, Malone J, Lee NF, Kash B, Zhang R. An investigation of ligand effects on the visible light-induced formation of porphyrin–iron(iv)-oxo intermediates. NEW J CHEM 2017. [DOI: 10.1039/c7nj03296j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Depending on the structure of the porphyrin ligands, the visible light photolysis of porphyrin–iron(iii) bromates produced iron(iv)-oxo radical cations or iron(iv)-oxo porphyrins, permitting direct kinetic studies of their oxidation reactions.
Collapse
Affiliation(s)
- Ka Wai Kwong
- Department of Chemistry
- Western Kentucky University
- Bowling Green
- USA
| | - Dharmesh Patel
- Department of Chemistry
- Western Kentucky University
- Bowling Green
- USA
| | - Jonathan Malone
- Department of Chemistry
- Western Kentucky University
- Bowling Green
- USA
| | - Ngo Fung Lee
- Department of Chemistry
- Western Kentucky University
- Bowling Green
- USA
| | - Benjamin Kash
- Department of Chemistry
- Western Kentucky University
- Bowling Green
- USA
| | - Rui Zhang
- Department of Chemistry
- Western Kentucky University
- Bowling Green
- USA
| |
Collapse
|
22
|
Chen TH, Kwong KW, Lee NF, Ranburger D, Zhang R. Highly efficient and chemoselective oxidation of sulfides catalyzed by iron(III) corroles with iodobenzene diacetate. Inorganica Chim Acta 2016. [DOI: 10.1016/j.ica.2016.07.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
23
|
Corcos AR, Pap JS, Yang T, Berry JF. A Synthetic Oxygen Atom Transfer Photocycle from a Diruthenium Oxyanion Complex. J Am Chem Soc 2016; 138:10032-40. [PMID: 27406958 PMCID: PMC5972014 DOI: 10.1021/jacs.6b05942] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Three new diruthenium oxyanion complexes have been prepared, crystallographically characterized, and screened for their potential to photochemically unmask a reactive Ru-Ru═O intermediate. The most promising candidate, Ru2(chp)4ONO2 (4, chp = 6-chloro-2-hydroxypyridinate), displays a set of signals centered around m/z = 733 amu in its MALDI-TOF mass spectrum, consistent with the formation of the [Ru2(chp)4O](+) ([6](+)) ion. These signals shift to 735 amu in 4*, which contains an (18)O-labeled nitrate. EPR spectroscopy and headspace GC-MS analysis indicate that NO2(•) is released upon photolysis of 4, also consistent with the formation of 6. Photolysis of 4 in CH2Cl2 at room temperature in the presence of excess PPh3 yields OPPh3 in 173% yield; control experiments implicate 6, NO2(•), and free NO3(-) as the active oxidants. Notably, Ru2(chp)4Cl (3) is recovered after photolysis. Since 3 is the direct precursor to 4, the results described herein constitute the first example of a synthetic cycle for oxygen atom transfer that makes use of light to generate a putative metal oxo intermediate.
Collapse
Affiliation(s)
- Amanda R. Corcos
- Department of Chemistry, University of Wisconsin – Madison, 1101 University Ave., Madison, Wisconsin, 53706, USA
| | - József S. Pap
- Department of Chemistry, University of Wisconsin – Madison, 1101 University Ave., Madison, Wisconsin, 53706, USA
| | - Tzuhsiung Yang
- Department of Chemistry, University of Wisconsin – Madison, 1101 University Ave., Madison, Wisconsin, 53706, USA
| | - John F. Berry
- Department of Chemistry, University of Wisconsin – Madison, 1101 University Ave., Madison, Wisconsin, 53706, USA
| |
Collapse
|
24
|
Ka WK, Ngo FL, Ranburger D, Malone J, Zhang R. Visible light-induced formation of corrole-manganese(V)-oxo complexes: Observation of multiple oxidation pathways. J Inorg Biochem 2016; 163:39-44. [PMID: 27513949 DOI: 10.1016/j.jinorgbio.2016.08.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 08/02/2016] [Accepted: 08/04/2016] [Indexed: 11/19/2022]
Abstract
Two manganese(V)-oxo corroles [MnV(Cor)O] that differ in their electronic environments were produced by visible light irradiation of highly photo-labile corrole-manganese(IV) bromates. The corrole ligands under study include 5,10,15-tris(pentafluorophenyl)corrole (TPFC), and 5,10,15-triphenylcorrole (TPC). The kinetics of oxygen transfer atom (OAT) reactions with various organic reductants by these photo-generated MnV(Cor)O were also studied in CH3CN and CH2Cl2 solutions. MnV(Cor)O exhibits remarkable solvent and ligand effect on its reactivity and spectral behavior. In the more electron-deficient TPFC system and in the polar solvent CH3CN, MnV(Cor)O returned MnIII corrole in the end of oxidation reactions. However, in the less polar solvent CH2Cl2 or in the less electron-deficient TPC system, MnIV product was formed instead of MnIII. Furthermore, with the same substrates and in the same solvent, the order of reactivity of MnV(Cor)O was TPC>TPFC, which is inverted from that expected based on the electron-demand of corrole ligands. Our spectral and kinetic results in this study provide compelling evidence in favor of multiple oxidation pathways, where MnV(Cor)O may serve as direct two-electron oxidant or undergo a disproportionation reaction to form a manganese(VI)-oxo corrole as the true oxidant. The choice of pathways is strongly dependent on the nature of the solvent and the corrole ligand.
Collapse
Affiliation(s)
- Wai Kwong Ka
- Department of Chemistry, Western Kentucky University, Bowling Green, KY 42101-1079, USA
| | - Fung Lee Ngo
- Department of Chemistry, Western Kentucky University, Bowling Green, KY 42101-1079, USA
| | - Davis Ranburger
- Department of Chemistry, Western Kentucky University, Bowling Green, KY 42101-1079, USA
| | - Jonathan Malone
- Department of Chemistry, Western Kentucky University, Bowling Green, KY 42101-1079, USA
| | - Rui Zhang
- Department of Chemistry, Western Kentucky University, Bowling Green, KY 42101-1079, USA.
| |
Collapse
|
25
|
Jung J, Neu HM, Leeladee P, Siegler MA, Ohkubo K, Goldberg DP, Fukuzumi S. Photocatalytic Oxygenation of Substrates by Dioxygen with Protonated Manganese(III) Corrolazine. Inorg Chem 2016; 55:3218-28. [PMID: 26974004 PMCID: PMC4893963 DOI: 10.1021/acs.inorgchem.5b02019] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
UV-vis spectral titrations of a manganese(III) corrolazine complex [Mn(III)(TBP8Cz)] with HOTf in benzonitrile (PhCN) indicate mono- and diprotonation of Mn(III)(TBP8Cz) to give Mn(III)(OTf)(TBP8Cz(H)) and [Mn(III)(OTf)(H2O)(TBP8Cz(H)2)][OTf] with protonation constants of 9.0 × 10(6) and 4.7 × 10(3) M(-1), respectively. The protonated sites of Mn(III)(OTf)(TBP8Cz(H)) and [Mn(III)(OTf)(H2O)(TBP8Cz(H)2)][OTf] were identified by X-ray crystal structures of the mono- and diprotonated complexes. In the presence of HOTf, the monoprotonated manganese(III) corrolazine complex [Mn(III)(OTf)(TBP8Cz(H))] acts as an efficient photocatalytic catalyst for the oxidation of hexamethylbenzene and thioanisole by O2 to the corresponding alcohol and sulfoxide with 563 and 902 TON, respectively. Femtosecond laser flash photolysis measurements of Mn(III)(OTf)(TBP8Cz(H)) and [Mn(III)(OTf)(H2O)(TBP8Cz(H)2)][OTf] in the presence of O2 revealed the formation of a tripquintet excited state, which was rapidly converted to a tripseptet excited state. The tripseptet excited state of Mn(III)(OTf)(TBP8Cz(H)) reacted with O2 with a diffusion-limited rate constant to produce the putative Mn(IV)(O2(•-))(OTf)(TBP8Cz(H)), whereas the tripseptet excited state of [Mn(III)(OTf)(H2O)(TBP8Cz(H)2)][OTf] exhibited no reactivity toward O2. In the presence of HOTf, Mn(V)(O)(TBP8Cz) can oxidize not only HMB but also mesitylene to the corresponding alcohols, accompanied by regeneration of Mn(III)(OTf)(TBP8Cz(H)). This thermal reaction was examined for a kinetic isotope effect, and essentially no KIE (1.1) was observed for the oxidation of mesitylene-d12, suggesting a proton-coupled electron transfer (PCET) mechanism is operative in this case. Thus, the monoprotonated manganese(III) corrolazine complex, Mn(III)(OTf)(TBP8Cz(H)), acts as an efficient photocatalyst for the oxidation of HMB by O2 to the alcohol.
Collapse
Affiliation(s)
- Jieun Jung
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 120-750, Korea
| | - Heather M. Neu
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Pannee Leeladee
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Maxime A. Siegler
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Kei Ohkubo
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 120-750, Korea
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, ALCA and SENTAN, Japan Science and Technology Agency (JST), Suita, Osaka 565-0871, Japan
| | - David P. Goldberg
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 120-750, Korea
- Department of Material and Life Science, Graduate School of Engineering, Osaka University, ALCA and SENTAN, Japan Science and Technology Agency (JST), Suita, Osaka 565-0871, Japan
- Faculty of Science and Engineering, Meijo University, ALCA and SEN TAN, Japan Science and Technology Agency (JST), Nagoya, Aichi 468-0073, Japan
| |
Collapse
|
26
|
Chen TH, Asiri N, Kwong KW, Malone J, Zhang R. Ligand control in the photochemical generation of high-valent porphyrin-iron-oxo derivatives. Chem Commun (Camb) 2016; 51:9949-52. [PMID: 25999215 DOI: 10.1039/c5cc02852c] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Visible-light irradiation of photo-labile bromate porphyrin-iron(III) salts gave iron(IV)-oxo porphyrin radical cations (compound I model) or the neutral iron(IV)-oxo porphyrin (compound II model), depending on the electronic structure of porphyrin ligands.
Collapse
Affiliation(s)
- Tse-Hong Chen
- Department of Chemistry, Western Kentucky University, 1906 College Heights Blvd., Bowling Green, Kentucky, USA.
| | | | | | | | | |
Collapse
|
27
|
Turlington CR, White PS, Brookhart M, Templeton JL. Half-sandwich Rh(Cp*) and Ir(Cp*) complexes with oxygen atom transfer reagents as ligands. J Organomet Chem 2015. [DOI: 10.1016/j.jorganchem.2015.02.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
28
|
İşci Ü, Faponle AS, Afanasiev P, Albrieux F, Briois V, Ahsen V, Dumoulin F, Sorokin AB, de Visser SP. Site-selective formation of an iron(iv)-oxo species at the more electron-rich iron atom of heteroleptic μ-nitrido diiron phthalocyanines. Chem Sci 2015; 6:5063-5075. [PMID: 30155008 PMCID: PMC6088558 DOI: 10.1039/c5sc01811k] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 06/16/2015] [Indexed: 11/21/2022] Open
Abstract
A combination of MS and computation on μ-nitrido bridged diiron complexes reveals H2O2 binding to the complex and generates an oxidant capable of oxidizing methane.
Iron(iv)–oxo species have been identified as the active intermediates in key enzymatic processes, and their catalytic properties are strongly affected by the equatorial and axial ligands bound to the metal, but details of these effects are still unresolved. In our aim to create better and more efficient oxidants of H-atom abstraction reactions, we have investigated a unique heteroleptic diiron phthalocyanine complex. We propose a novel intramolecular approach to determine the structural features that govern the catalytic activity of iron(iv)–oxo sites. Heteroleptic μ-nitrido diiron phthalocyanine complexes having an unsubstituted phthalocyanine (Pc1) and a phthalocyanine ligand substituted with electron-withdrawing alkylsulfonyl groups (PcSO2R) were prepared and characterized. A reaction with terminal oxidants gives two isomeric iron(iv)–oxo and iron(iii)–hydroperoxo species with abundances dependent on the equatorial ligand. Cryospray ionization mass spectrometry (CSI-MS) characterized both hydroperoxo and diiron oxo species in the presence of H2O2. When m-CPBA was used as the oxidant, the formation of diiron oxo species (PcSO2R)FeNFe(Pc1)
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
O was also evidenced. Sufficient amounts of these transient species were trapped in the quadrupole region of the mass-spectrometer and underwent a CID-MS/MS fragmentation. Analyses of fragmentation patterns indicated a preferential formation of hydroperoxo and oxo moieties at more electron-rich iron sites of both heteroleptic μ-nitrido complexes. DFT calculations show that both isomers are close in energy. However, the analysis of the iron(iii)–hydroperoxo bond strength reveals major differences for the (Pc1)FeN(PcSO2R)FeIIIOOH system as compared to (PcSO2R)FeN(Pc1)FeIIIOOH system, and, hence binding of a terminal oxidant will be preferentially on more electron-rich sides. Subsequent kinetics studies showed that these oxidants are able to even oxidize methane to formic acid efficiently.
Collapse
Affiliation(s)
- Ümit İşci
- Gebze Technical University , Department of Chemistry , P.O. Box 141, Gebze , 41400 Kocaeli , Turkey .
| | - Abayomi S Faponle
- Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science , The University of Manchester , 131 Princess Street , Manchester M1 7DN , UK .
| | - Pavel Afanasiev
- Institut de Recherches sur la Catalyse et l'Environnement de Lyon (IRCELYON) , UMR 5256 , CNRS-Université Lyon 1 , 2, av. A. Einstein , 69626 Villeurbanne Cedex , France .
| | - Florian Albrieux
- Centre Commun de Spectrométrie de Masse UMR 5246 , CNRS-Université Claude Bernard Lyon 1 , Université de Lyon , Bâtiment Curien , 43, bd du 11 Novembre , 69622 Villeurbanne Cedex , France
| | - Valérie Briois
- Synchrotron Soleil , L'orme des merisiers, St-Aubin , 91192 Gif-sur-Yvette , France
| | - Vefa Ahsen
- Gebze Technical University , Department of Chemistry , P.O. Box 141, Gebze , 41400 Kocaeli , Turkey .
| | - Fabienne Dumoulin
- Gebze Technical University , Department of Chemistry , P.O. Box 141, Gebze , 41400 Kocaeli , Turkey .
| | - Alexander B Sorokin
- Institut de Recherches sur la Catalyse et l'Environnement de Lyon (IRCELYON) , UMR 5256 , CNRS-Université Lyon 1 , 2, av. A. Einstein , 69626 Villeurbanne Cedex , France .
| | - Sam P de Visser
- Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science , The University of Manchester , 131 Princess Street , Manchester M1 7DN , UK .
| |
Collapse
|
29
|
Sinha W, Kumar M, Garai A, Purohit CS, Som T, Kar S. Semi-insulating behaviour of self-assembled tin(IV)corrole nanospheres. Dalton Trans 2015; 43:12564-73. [PMID: 25005871 DOI: 10.1039/c4dt01257g] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Three novel tin(iv)corrole complexes have been prepared and characterized by various spectroscopic techniques including single crystal X-ray structural analysis. Packing diagrams of the tin(iv)corroles revealed that corrolato-tin(iv)-chloride molecules are interconnected by intermolecular C-HCl hydrogen bonding interactions. HCl distances are 2.848 Å, 3.051 Å, and 2.915 Å, respectively, for the complexes. In addition, the C-HCl angles are 119.72°, 144.70°, and 147.08°, respectively, for the complexes. It was also observed that in one of the three synthesized complexes dimers were formed, while in the other two cases 1D infinite polymer chains were formed. Well-defined and nicely organized three-dimensional hollow nanospheres (SEM images on silicon wafers) with diameters of ca. 676 nm and 661 nm are obtained in the complexes, forming 1D polymer chains. By applying a thin layer of tin(iv)corrole nanospheres to an ITO surface (AFM height images of ITO films; ∼200 nm in height), a device was fabricated with the following composition: Ag/ITO-coated glass/tin(iv)corrole nanospheres/ITO-coated glass/Ag. The resistivity (ρ) of the nanostructured film was calculated to be ∼2.4 × 10(8) Ω cm, which falls in the range of semi-insulating semiconductors. CAFM current maps at 10 V bias show bright spots with a 10-20 pA intensity and indicate that the nanospheres (∼250 nm in diameter) are the electron-conducting pathway in the device. The semi-insulating behavior arises from the non-facile electron transfer in the HOMOs of the tin(iv)corrole nanospheres.
Collapse
Affiliation(s)
- Woormileela Sinha
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar - 751005, India.
| | | | | | | | | | | |
Collapse
|
30
|
Zhang R, Vanover E, Luo W, Newcomb M. Photochemical generation and kinetic studies of a putative porphyrin-ruthenium(V)-oxo species. Dalton Trans 2015; 43:8749-56. [PMID: 24770388 DOI: 10.1039/c4dt00649f] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Photo-disproportionation of a bis-porphyrin-diruthenium(IV) μ-oxo dimer gave a porphyrin-ruthenium(III) species and a putative porphyrin-ruthenium(V)-oxo species that can be detected and studied in real time via laser flash photolysis methods. As determined by its spectral and kinetic behavior, the same oxo transient was also formed by photolysis of a porphyrin-ruthenium(III) N-oxide adduct. Second-order rate constants for reactions with several substrates at 22 °C were determined; representative values of rate constants were kox = 6.6 × 10(3) M(-1) s(-1) for diphenylmethanol, kox = 2.5 × 10(3) M(-1) s(-1) for styrene, and kox = 1.8 × 10(3) M(-1) s(-1) for cyclohexene. The putative porphyrin-ruthenium(V)-oxo transient reacted 5-6 orders of magnitude faster than the corresponding trans-dioxoruthenium(VI) porphyrins, and the rate constants obtained in this work were similar to those of the corrole-iron(V)-oxo derivative. The high reactivity for the photochemically generated ruthenium-oxo species in comparison to other porphyrin-metal-oxo intermediates suggests that it is a true ruthenium(V)-oxo species.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Chemistry, Western Kentucky University, 1906 College Heights Blvd. # 11079, Bowling Green, KY 42101, USA
| | | | | | | |
Collapse
|
31
|
Jung J, Liu S, Ohkubo K, Abu-Omar MM, Fukuzumi S. Catalytic two-electron reduction of dioxygen by ferrocene derivatives with manganese(V) corroles. Inorg Chem 2015; 54:4285-91. [PMID: 25867007 DOI: 10.1021/ic503012s] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Electron transfer from octamethylferrocene (Me8Fc) to the manganese(V) imidocorrole complex (tpfc)Mn(V)(NAr) [tpfc = 5,10,15-tris(pentafluorophenyl)corrole; Ar = 2,6-Cl2C6H3] proceeds efficiently to give an octamethylferrocenium ion (Me8Fc(+)) and [(tpfc)Mn(IV)(NAr)](-) in acetonitrile (MeCN) at 298 K. Upon the addition of trifluoroacetic acid (TFA), further reduction of [(tpfc)Mn(IV)(NAr)](-) by Me8Fc gives (tpfc)Mn(III) and ArNH2 in deaerated MeCN. TFA also results in hydrolysis of (tpfc)Mn(V)(NAr) with residual water to produce a protonated manganese(V) oxocorrole complex ([(tpfc)Mn(V)(OH)](+)) in deaerated MeCN. [(tpfc)Mn(V)(OH)](+) is rapidly reduced by 2 equiv of Me8Fc in the presence of TFA to give (tpfc)Mn(III) in deaerated MeCN. In the presence of dioxygen (O2), (tpfc)Mn(III) catalyzes the two-electron reduction of O2 by Me8Fc with TFA in MeCN to produce H2O2 and Me8Fc(+). The rate of formation of Me8Fc(+) in the catalytic reduction of O2 follows zeroth-order kinetics with respect to the concentrations of Me8Fc and TFA, whereas the rate increases linearly with increasing concentrations of (tpfc)Mn(V)(NAr) and O2. These kinetic dependencies are consistent with the rate-determining step being electron transfer from (tpfc)Mn(III) to O2, followed by further proton-coupled electron transfer from Me8Fc to produce H2O2 and [(tpfc)Mn(IV)](+). Rapid electron transfer from Me8Fc to [(tpfc)Mn(IV)](+) regenerates (tpfc)Mn(III), completing the catalytic cycle. Thus, catalytic two-electron reduction of O2 by Me8Fc with (tpfc)Mn(V)(NAr) as a catalyst precursor proceeds via a Mn(III)/Mn(IV) redox cycle.
Collapse
Affiliation(s)
- Jieun Jung
- †Department of Material and Life Science, Graduate School of Engineering, Osaka University, ALCA and SENTAN, Japan Science and Technology Agency (JST), Suita, Osaka 565-0871, Japan.,‡Department of Bioinspired Science, Ewha Womans University, Seoul 120-750, Korea
| | - Shuo Liu
- §Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Kei Ohkubo
- †Department of Material and Life Science, Graduate School of Engineering, Osaka University, ALCA and SENTAN, Japan Science and Technology Agency (JST), Suita, Osaka 565-0871, Japan
| | - Mahdi M Abu-Omar
- §Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Shunichi Fukuzumi
- †Department of Material and Life Science, Graduate School of Engineering, Osaka University, ALCA and SENTAN, Japan Science and Technology Agency (JST), Suita, Osaka 565-0871, Japan.,‡Department of Bioinspired Science, Ewha Womans University, Seoul 120-750, Korea.,∥Faculty of Science and Engineering, Meijo University, ALCA and SENTAN, Japan Science and Technology Agency (JST), Nagoya, Aichi 468-0073, Japan
| |
Collapse
|
32
|
Monooxygenase, peroxidase and peroxygenase properties and reaction mechanisms of cytochrome P450 enzymes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 851:1-61. [PMID: 26002730 DOI: 10.1007/978-3-319-16009-2_1] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This review examines the monooxygenase, peroxidase and peroxygenase properties and reaction mechanisms of cytochrome P450 (CYP) enzymes in bacterial, archaeal and mammalian systems. CYP enzymes catalyze monooxygenation reactions by inserting one oxygen atom from O2 into an enormous number and variety of substrates. The catalytic versatility of CYP stems from its ability to functionalize unactivated carbon-hydrogen (C-H) bonds of substrates through monooxygenation. The oxidative prowess of CYP in catalyzing monooxygenation reactions is attributed primarily to a porphyrin π radical ferryl intermediate known as Compound I (CpdI) (Por•+FeIV=O), or its ferryl radical resonance form (FeIV-O•). CYP-mediated hydroxylations occur via a consensus H atom abstraction/oxygen rebound mechanism involving an initial abstraction by CpdI of a H atom from the substrate, generating a highly-reactive protonated Compound II (CpdII) intermediate (FeIV-OH) and a carbon-centered alkyl radical that rebounds onto the ferryl hydroxyl moiety to yield the hydroxylated substrate. CYP enzymes utilize hydroperoxides, peracids, perborate, percarbonate, periodate, chlorite, iodosobenzene and N-oxides as surrogate oxygen atom donors to oxygenate substrates via the shunt pathway in the absence of NAD(P)H/O2 and reduction-oxidation (redox) auxiliary proteins. It has been difficult to isolate the historically elusive CpdI intermediate in the native NAD(P)H/O2-supported monooxygenase pathway and to determine its precise electronic structure and kinetic and physicochemical properties because of its high reactivity, unstable nature (t½~2 ms) and short life cycle, prompting suggestions for participation in monooxygenation reactions of alternative CYP iron-oxygen intermediates such as the ferric-peroxo anion species (FeIII-OO-), ferric-hydroperoxo species (FeIII-OOH) and FeIII-(H2O2) complex.
Collapse
|
33
|
Sinha W, Deibel N, Agarwala H, Garai A, Schweinfurth D, Purohit CS, Lahiri GK, Sarkar B, Kar S. Synthesis, Spectral Characterization, Structures, and Oxidation State Distributions in [(corrolato)FeIII(NO)]n (n = 0, +1, −1) Complexes. Inorg Chem 2014; 53:1417-29. [DOI: 10.1021/ic402304e] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Woormileela Sinha
- School
of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, 751005, India
| | - Naina Deibel
- Institut
für Chemie und Biochemie, Anorganische Chemie, Freie Universität Berlin, Fabeckstraße 34-36, D-14195, Berlin, Germany
- Institut
für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring
55, D-70550, Stuttgart, Germany
| | - Hemlata Agarwala
- Department
of Chemistry, Indian Institute of Technology−Bombay, Powai, Mumbai 400076, India
| | - Antara Garai
- School
of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, 751005, India
| | - David Schweinfurth
- Institut
für Chemie und Biochemie, Anorganische Chemie, Freie Universität Berlin, Fabeckstraße 34-36, D-14195, Berlin, Germany
| | - Chandra Shekhar Purohit
- School
of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, 751005, India
| | - Goutam Kumar Lahiri
- Department
of Chemistry, Indian Institute of Technology−Bombay, Powai, Mumbai 400076, India
| | - Biprajit Sarkar
- Institut
für Chemie und Biochemie, Anorganische Chemie, Freie Universität Berlin, Fabeckstraße 34-36, D-14195, Berlin, Germany
| | - Sanjib Kar
- School
of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, 751005, India
| |
Collapse
|
34
|
BHUYAN JAGANNATH, SARKAR SABYASACHI. NO2-induced synthesis of nitrato-iron(III) porphyrin with diverse coordination mode and the formation of isoporphyrin‡. J CHEM SCI 2013. [DOI: 10.1007/s12039-013-0447-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Singh P, Dutta G, Goldberg I, Mahammed A, Gross Z. Expected and Unexpected Transformations of Manganese(III) Tris(4-nitrophenyl)corrole. Inorg Chem 2013; 52:9349-55. [DOI: 10.1021/ic400918d] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Pinky Singh
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 32000,
Israel
| | - Gargi Dutta
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 32000,
Israel
| | - Israel Goldberg
- School of Chemistry, Tel Aviv University, Tel Aviv 69978, Israel
| | - Atif Mahammed
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 32000,
Israel
| | - Zeev Gross
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 32000,
Israel
| |
Collapse
|
36
|
|
37
|
Kumari P, Nagpal R, Chauhan SM. Efficient oxidation of polycyclic aromatic hydrocarbons with H2O2 catalyzed by 5,10,15-triarylcorrolatoiron (IV) chloride in ionic liquids. CATAL COMMUN 2012. [DOI: 10.1016/j.catcom.2012.09.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
38
|
Hrycay EG, Bandiera SM. The monooxygenase, peroxidase, and peroxygenase properties of cytochrome P450. Arch Biochem Biophys 2012; 522:71-89. [DOI: 10.1016/j.abb.2012.01.003] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 12/22/2011] [Accepted: 01/04/2012] [Indexed: 12/30/2022]
|
39
|
Cho K, Leeladee P, McGown AJ, DeBeer S, Goldberg DP. A high-valent iron-oxo corrolazine activates C-H bonds via hydrogen-atom transfer. J Am Chem Soc 2012; 134:7392-9. [PMID: 22489757 DOI: 10.1021/ja3018658] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Oxidation of the Fe(III) complex (TBP(8)Cz)Fe(III) [TBP(8)Cz = octakis(4-tert-butylphenyl)corrolazinate] with O-atom transfer oxidants under a variety of conditions gives the reactive high-valent Fe(O) complex (TBP(8)Cz(+•))Fe(IV)(O) (2). The solution state structure of 2 was characterized by XAS [d(Fe-O) = 1.64 Å]. This complex is competent to oxidize a range of C-H substrates. Product analyses and kinetic data show that these reactions occur via rate-determining hydrogen-atom transfer (HAT), with a linear correlation for log k versus BDE(C-H), and the following activation parameters for xanthene (Xn) substrate: ΔH(++) = 12.7 ± 0.8 kcal mol(-1), ΔS(++) = -9 ± 3 cal K(-1) mol(-1), and KIE = 5.7. Rebound hydroxylation versus radical dimerization for Xn is favored by lowering the reaction temperature. These findings provide insights into the factors that control the intrinsic reactivity of Compound I heme analogues.
Collapse
Affiliation(s)
- Kevin Cho
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, USA
| | | | | | | | | |
Collapse
|
40
|
Latifi R, Valentine JS, Nam W, de Visser SP. Predictive studies of H-atom abstraction reactions by an iron(IV)-oxo corrole cation radical oxidant. Chem Commun (Camb) 2012; 48:3491-3. [PMID: 22377754 DOI: 10.1039/c2cc30365e] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Density functional theory calculations compare the reactivity of iron(IV)-oxo porphyrin and corrole cation radical species in H-atom abstraction reactions.
Collapse
Affiliation(s)
- Reza Latifi
- Department of Chemistry and Nano Science, Department of Bioinspired Science, Centre for Biomimetic Systems, Ewha Womans University, Seoul 120-750, Korea
| | | | | | | |
Collapse
|
41
|
Afanasiev P, Kudrik EV, Albrieux F, Briois V, Koifman OI, Sorokin AB. Generation and characterization of high-valent iron oxo phthalocyanines. Chem Commun (Camb) 2012; 48:6088-90. [DOI: 10.1039/c2cc31917a] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
42
|
Kundu S, Thompson JVK, Ryabov AD, Collins TJ. On the reactivity of mononuclear iron(V)oxo complexes. J Am Chem Soc 2011; 133:18546-9. [PMID: 21985217 DOI: 10.1021/ja208007w] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ferric tetraamido macrocyclic ligand (TAML)-based catalysts [Fe{C(6)H(4)-1,2-(NCOCMe(2)NCO)(2)CR(2)}(OH(2))]PPh(4) [1; R = Me (a), Et (b)] are oxidized by m-chloroperoxybenzoic acid at -40 °C in acetonitrile containing trace water in two steps to form Fe(V)oxo complexes (2a,b). These uniquely authenticated Fe(V)(O) species comproportionate with the Fe(III) starting materials 1a,b to give μ-oxo-(Fe(IV))(2) dimers. The comproportionation of 1a-2a is faster and that of 1b-2b is slower than the oxidation by 2a,b of sulfides (p-XC(6)H(4)SMe) to sulfoxides, highlighting a remarkable steric control of the dynamics. Sulfide oxidation follows saturation kinetics in [p-XC(6)H(4)SMe] with electron-rich substrates (X = Me, H), but changes to linear kinetics with electron-poor substrates (X = Cl, CN) as the sulfide affinity for iron decreases. As the sulfide becomes less basic, the Fe(IV)/Fe(III) ratio at the end of reaction for 2b suggests a decreasing contribution of concerted oxygen-atom transfer (Fe(V) → Fe(III)) concomitant with increasing electron transfer oxidation (Fe(V) → Fe(IV)). Fe(V) is more reactive toward PhSMe than Fe(IV) by 4 orders of magnitude, a gap even larger than that known for peroxidase Compounds I and II. The findings reinforce prior work typecasting TAML activators as faithful peroxidase mimics.
Collapse
Affiliation(s)
- Soumen Kundu
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | |
Collapse
|
43
|
Kojima T, Nakayama K, Sakaguchi M, Ogura T, Ohkubo K, Fukuzumi S. Photochemical Activation of Ruthenium(II)–Pyridylamine Complexes Having a Pyridine-N-Oxide Pendant toward Oxygenation of Organic Substrates. J Am Chem Soc 2011; 133:17901-11. [DOI: 10.1021/ja207572z] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Takahiko Kojima
- Department of Chemistry, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8571, Japan
| | | | - Miyuki Sakaguchi
- Graduate School of Life Science, University of Hyogo, Kouto, Hyogo 678-1297, Japan
| | - Takashi Ogura
- Graduate School of Life Science, University of Hyogo, Kouto, Hyogo 678-1297, Japan
| | | | - Shunichi Fukuzumi
- Department of Bioinspired Science, Ewha Womans University, Seoul 120-750, South Korea
| |
Collapse
|
44
|
Zhang R, Huang Y, Abebrese C, Thompson H, Vanover E, Webb C. Generation of trans-dioxoruthenium(VI) porphyrins: A photochemical approach. Inorganica Chim Acta 2011. [DOI: 10.1016/j.ica.2011.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
45
|
Lanucara F, Crestoni ME. Biomimetic Oxidation Reactions of a Naked Manganese(V)-Oxo Porphyrin Complex. Chemistry 2011; 17:12092-100. [DOI: 10.1002/chem.201101432] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Indexed: 12/14/2022]
|
46
|
Radoń M, Broclawik E, Pierloot K. DFT and Ab Initio Study of Iron-Oxo Porphyrins: May They Have a Low-Lying Iron(V)-Oxo Electromer? J Chem Theory Comput 2011; 7:898-908. [DOI: 10.1021/ct1006168] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mariusz Radoń
- Faculty of Chemistry, Jagiellonian University, ul. Ingardena 3, 30-060 Kraków, Poland
| | - Ewa Broclawik
- Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, ul. Niezapominajek 8, 30-239 Kraków, Poland
| | - Kristine Pierloot
- Department of Chemistry, University of Leuven, Celestijnenlaan 200F, B-3001 Heverlee-Leuven, Belgium
| |
Collapse
|
47
|
Pierloot K, Zhao H, Vancoillie S. Copper Corroles: the Question of Noninnocence. Inorg Chem 2010; 49:10316-29. [DOI: 10.1021/ic100866z] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kristine Pierloot
- Department of Chemistry, University of Leuven, Celestijnenlaan 200F, B-3001 Heverlee-Leuven, Belgium
| | - Hailiang Zhao
- Department of Chemistry, University of Leuven, Celestijnenlaan 200F, B-3001 Heverlee-Leuven, Belgium
| | - Steven Vancoillie
- Department of Chemistry, University of Leuven, Celestijnenlaan 200F, B-3001 Heverlee-Leuven, Belgium
| |
Collapse
|
48
|
Vanover E, Huang Y, Xu L, Newcomb M, Zhang R. Photocatalytic aerobic oxidation by a bis-porphyrin-ruthenium(IV) mu-oxo dimer: observation of a putative porphyrin-ruthenium(V)-oxo intermediate. Org Lett 2010; 12:2246-9. [PMID: 20394434 DOI: 10.1021/ol1005938] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The title complexes catalyze the aerobic oxidations of hydrocarbons using visible light and atmospheric oxygen as oxygen source in sequences employing photodisproportionation reactions. The putative oxidants, ruthenium(V)-oxo porphyrin species, can be detected and studied in real time via laser flash photolysis methods.
Collapse
Affiliation(s)
- Eric Vanover
- Department of Chemistry, Western Kentucky University, 1906 College Heights Boulevard, Bowling Green, Kentucky 42101, USA
| | | | | | | | | |
Collapse
|
49
|
Biswas AN, Pariyar A, Bose S, Das P, Bandyopadhyay P. Mild oxidation of hydrocarbons catalyzed by iron corrole with tert-butylhydroperoxide. CATAL COMMUN 2010. [DOI: 10.1016/j.catcom.2010.05.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
50
|
|