1
|
Bian T, Pei Y, Gao S, Zhou S, Sun X, Dong M, Song J. Xeno Nucleic Acids as Functional Materials: From Biophysical Properties to Application. Adv Healthc Mater 2024; 13:e2401207. [PMID: 39036821 DOI: 10.1002/adhm.202401207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/14/2024] [Indexed: 07/23/2024]
Abstract
Xeno nucleic acid (XNA) are artificial nucleic acids, in which the chemical composition of the sugar moiety is changed. These modifications impart distinct physical and chemical properties to XNAs, leading to changes in their biological, chemical, and physical stability. Additionally, these alterations influence the binding dynamics of XNAs to their target molecules. Consequently, XNAs find expanded applications as functional materials in diverse fields. This review provides a comprehensive summary of the distinctive biophysical properties exhibited by various modified XNAs and explores their applications as innovative functional materials in expanded fields.
Collapse
Affiliation(s)
- Tianyuan Bian
- Academy of Medical Engineering and Translational Medicine (AMT), Tianjin University, Tianjin, 300072, China
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Yufeng Pei
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Shitao Gao
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, 310022, China
- College of Materials Science and Engineering, Zhejiang University of Technology, ChaoWang Road 18, HangZhou, 310014, China
| | - Songtao Zhou
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Xinyu Sun
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, 310022, China
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Mingdong Dong
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C, Aarhus, DK-8000, Denmark
| | - Jie Song
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, 310022, China
| |
Collapse
|
2
|
Zhang Z, Mlýnský V, Krepl M, Šponer J, Stadlbauer P. Mechanical Stability and Unfolding Pathways of Parallel Tetrameric G-Quadruplexes Probed by Pulling Simulations. J Chem Inf Model 2024; 64:3896-3911. [PMID: 38630447 PMCID: PMC11094737 DOI: 10.1021/acs.jcim.4c00227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/02/2024] [Accepted: 04/02/2024] [Indexed: 05/14/2024]
Abstract
Guanine quadruplex (GQ) is a noncanonical nucleic acid structure formed by guanine-rich DNA and RNA sequences. Folding of GQs is a complex process, where several aspects remain elusive, despite being important for understanding structure formation and biological functions of GQs. Pulling experiments are a common tool for acquiring insights into the folding landscape of GQs. Herein, we applied a computational pulling strategy─steered molecular dynamics (SMD) simulations─in combination with standard molecular dynamics (MD) simulations to explore the unfolding landscapes of tetrameric parallel GQs. We identified anisotropic properties of elastic conformational changes, unfolding transitions, and GQ mechanical stabilities. Using a special set of structural parameters, we found that the vertical component of pulling force (perpendicular to the average G-quartet plane) plays a significant role in disrupting GQ structures and weakening their mechanical stabilities. We demonstrated that the magnitude of the vertical force component depends on the pulling anchor positions and the number of G-quartets. Typical unfolding transitions for tetrameric parallel GQs involve base unzipping, opening of the G-stem, strand slippage, and rotation to cross-like structures. The unzipping was detected as the first and dominant unfolding event, and it usually started at the 3'-end. Furthermore, results from both SMD and standard MD simulations indicate that partial spiral conformations serve as a transient ensemble during the (un)folding of GQs.
Collapse
Affiliation(s)
- Zhengyue Zhang
- Institute
of Biophysics of the Czech Academy of Sciences, Královopolská 135, Brno 61200, Czech Republic
- CEITEC−Central
European Institute of Technology, Masaryk
University, Kamenice
5, Brno 625 00, Czech Republic
- National
Center for Biomolecular Research,
Faculty of Science, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
| | - Vojtěch Mlýnský
- Institute
of Biophysics of the Czech Academy of Sciences, Královopolská 135, Brno 61200, Czech Republic
| | - Miroslav Krepl
- Institute
of Biophysics of the Czech Academy of Sciences, Královopolská 135, Brno 61200, Czech Republic
| | - Jiří Šponer
- Institute
of Biophysics of the Czech Academy of Sciences, Královopolská 135, Brno 61200, Czech Republic
| | - Petr Stadlbauer
- Institute
of Biophysics of the Czech Academy of Sciences, Královopolská 135, Brno 61200, Czech Republic
| |
Collapse
|
3
|
Thermally Induced Transitions of d(G4T4G3) Quadruplexes Can Be Described as Kinetically Driven Processes. Life (Basel) 2022; 12:life12060825. [PMID: 35743856 PMCID: PMC9225023 DOI: 10.3390/life12060825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/24/2022] [Accepted: 05/27/2022] [Indexed: 11/16/2022] Open
Abstract
DNA sequences that are rich in guanines and can form four-stranded structures are called G-quadruplexes. Due to the growing evidence that they may play an important role in several key biological processes, the G-quadruplexes have captured the interest of several researchers. G-quadruplexes may form in the presence of different metal cations as polymorphic structures formed in kinetically governed processes. Here we investigate a complex polymorphism of d(G4T4G3) quadruplexes at different K+ concentrations. We show that population size of different d(G4T4G3) quadruplex conformations can be manipulated by cooling rate and/or K+ concentration. We use a kinetic model to describe data obtained from DSC, CD and UV spectroscopy and PAGE experiments. Our model is able to describe the observed thermally induced conformational transitions of d(G4T4G3) quadruplexes at different K+ concentrations.
Collapse
|
4
|
Amato J, D'Aria F, Marzano S, Iaccarino N, Randazzo A, Giancola C, Pagano B. On the thermodynamics of folding of an i-motif DNA in solution under favorable conditions. Phys Chem Chem Phys 2021; 23:15030-15037. [PMID: 34151914 DOI: 10.1039/d1cp01779a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Under slightly acidic conditions, cytosine-rich DNA sequences can form non-canonical secondary structures called i-motifs, which occur as four stretches of cytosine repeats form hemi-protonated C·C+ base pairs. The growing interest in the i-motif structures as important components in functional DNA-based nanotechnology or as potential targets of anticancer drugs, increases the need for a deep understanding of the energetics of their structural transitions. Here, a combination of spectroscopic and calorimetric techniques is used to unravel the thermodynamics of folding of an i-motif DNA under favorable conditions. The results give new insights into the energetic aspects of i-motifs and show that thermodynamic and thermal stability are related but not identical properties of such DNA structures.
Collapse
Affiliation(s)
- Jussara Amato
- Department of Pharmacy, University of Naples Federico II, Naples, I-80131, Italy.
| | - Federica D'Aria
- Department of Pharmacy, University of Naples Federico II, Naples, I-80131, Italy.
| | - Simona Marzano
- Department of Pharmacy, University of Naples Federico II, Naples, I-80131, Italy.
| | - Nunzia Iaccarino
- Department of Pharmacy, University of Naples Federico II, Naples, I-80131, Italy.
| | - Antonio Randazzo
- Department of Pharmacy, University of Naples Federico II, Naples, I-80131, Italy.
| | - Concetta Giancola
- Department of Pharmacy, University of Naples Federico II, Naples, I-80131, Italy.
| | - Bruno Pagano
- Department of Pharmacy, University of Naples Federico II, Naples, I-80131, Italy.
| |
Collapse
|
5
|
Romanucci V, Oliva R, Petraccone L, Claes S, Schols D, Zarrelli A, Di Fabio G. Synthesis of new riboflavin modified ODNs: Effect of riboflavin moiety on the G-quadruplex arrangement and stability. Bioorg Chem 2020; 104:104213. [PMID: 32919132 DOI: 10.1016/j.bioorg.2020.104213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/31/2020] [Accepted: 08/24/2020] [Indexed: 10/23/2022]
Abstract
In the panorama of modified G-quadruplexes (G4s) with interesting proprieties, here, it has been reported the synthesis of new modified d(TGGGAG) sequences forming G-quadruplexes, with the insertion of a riboflavin unit (Rf, vitamin B2). Exploiting the flavin similarity with the hydrogen bond pattern of guanine and aiming at mimic a typical nucleoside scaffold, the synthesis of the riboflavin building block 3 it has been efficiently carried out. The effect of insertion of riboflavin mimic nucleoside on the G-quadruplex properties has been here, for the first time investigated. A biophysical characterization of Rf-modified sequences (A-D) has been carried out by circular dichroism (CD), fluorescence spectroscopy, differential scanning calorimetry (DSC) and native gel electrophoresis. CD and electrophoresis data have suggested that Rf-modified sequences are able to form parallel tetramolecular G4 structures similar to that of the unmodified sequence. Analysis of the DSC thermograms has revealed that all modified G-quadruplexes have a higher thermal stability compared with the natural sequence, particularly the stabilisation is higher when the Rf residue is introduced at the 3'-end. Further, DSC analysis has revealed that the Rf residues introduced at the 3'-end are able to form additional stabilising interactions, energetically almost comparable to the enthalpic contribution of a G-tetrad. Fluorescence measurement are consistent with this result showing that the Rf residues introduced at 3'-end are able to form stacking interactions with the adjacent bases within the G-quadruplex structure. The whole of data suggested that the introduction of Rf unit can stabilize G-quadruplex structures and can be a promising candidate for future theranostic applications.
Collapse
Affiliation(s)
- Valeria Romanucci
- Department of Chemical Sciences, University of Napoli Federico II, Complesso di Monte Sant'Angelo, Via Cintia 4, I-80126 Napoli, Italy.
| | - Rosario Oliva
- Department of Chemical Sciences, University of Napoli Federico II, Complesso di Monte Sant'Angelo, Via Cintia 4, I-80126 Napoli, Italy; Physical Chemistry I - Biophysical Chemistry, TU Dortmund University, Otto-Hahn Strasse 4a, D-44227 Dortmund, Germany
| | - Luigi Petraccone
- Department of Chemical Sciences, University of Napoli Federico II, Complesso di Monte Sant'Angelo, Via Cintia 4, I-80126 Napoli, Italy
| | - Sandra Claes
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Dominique Schols
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Armando Zarrelli
- Department of Chemical Sciences, University of Napoli Federico II, Complesso di Monte Sant'Angelo, Via Cintia 4, I-80126 Napoli, Italy
| | - Giovanni Di Fabio
- Department of Chemical Sciences, University of Napoli Federico II, Complesso di Monte Sant'Angelo, Via Cintia 4, I-80126 Napoli, Italy.
| |
Collapse
|
6
|
Su Y, Edwards PJB, Stetsenko DA, Filichev VV. The Importance of Phosphates for DNA G-Quadruplex Formation: Evaluation of Zwitterionic G-Rich Oligodeoxynucleotides. Chembiochem 2020; 21:2455-2466. [PMID: 32281223 DOI: 10.1002/cbic.202000110] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/09/2020] [Indexed: 12/21/2022]
Abstract
A quaternary ammonium butylsulfonyl phosphoramidate group (N+) was designed to replace all the phosphates in a G-rich oligodeoxynucleotide d(TG4 T), resulting in a formally charge-neutral zwitterionic N+TG4 T sequence. We evaluated the effects of N+phosphate modifications on the structural, thermodynamic and kinetic properties of the parallel G-quadruplexes (G4) formed by TG4 T and compared them to the properties of the recently published phosphoryl guanidine d(TG4 T) (PG-TG4 T). Using size-exclusion chromatography, we established that, unlike PG-TG4 T, which exists as a mixture of complexes of different molecularity in solution, N+TG4 T forms an individual tetramolecular complex. In contrast to PG modifications that destabilized G4s, the presence of N+ modifications increased thermal stability relative to unmodified [d(TG4 T)]4 . The initial stage of assembly of N+TG4 T proceeded faster in the presence of Na+ than K+ ions and, similarly to PG-TG4 T, was independent of the salt concentration. However, after complex formation exceeded 75 %, N+TG4 T in solution with Na+ showed slower association than with K+ . N+TG4 T could also form G4s in solution with Li+ ions at a very low strand concentration (10 μM); something that has never been reported for the native d(TG4 T). Charge-neutral PG-G4s can invade preformed native G4s, whereas no invasion was observed between N+and native G4s, possibly due to the increased thermal stability of [N+TG4 T]4 . The N+ modification makes d(TG4 T) fully resistant to enzymatic digestion, which could be useful for intracellular application of N+-modified DNA or RNA.
Collapse
Affiliation(s)
- Yongdong Su
- School of Fundamental Sciences, Massey University, Private Bag 11-222, 4442, Palmerston North, New Zealand
| | - Patrick J B Edwards
- School of Fundamental Sciences, Massey University, Private Bag 11-222, 4442, Palmerston North, New Zealand
| | - Dmitry A Stetsenko
- Novosibirsk State University, 2 Pirogov Street, Novosibirsk, 630090, Russia.,Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Lavrentiev Avenue, Novosibirsk, 630090, Russia
| | - Vyacheslav V Filichev
- School of Fundamental Sciences, Massey University, Private Bag 11-222, 4442, Palmerston North, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, 1142, New Zealand
| |
Collapse
|
7
|
Su Y, Fujii H, Burakova EA, Chelobanov BP, Fujii M, Stetsenko DA, Filichev VV. Neutral and Negatively Charged Phosphate Modifications Altering Thermal Stability, Kinetics of Formation and Monovalent Ion Dependence of DNA G-Quadruplexes. Chem Asian J 2019; 14:1212-1220. [PMID: 30600926 DOI: 10.1002/asia.201801757] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/22/2018] [Indexed: 12/18/2022]
Abstract
The effect of phosphate group modifications on formation and properties of G-quadruplexes (G4s) has not been investigated in detail. Here, we evaluated the structural, thermodynamic and kinetic properties of the parallel G-quadruplexes formed by oligodeoxynucleotides d(G4 T), d(TG4 T) and d(TG5 T), in which all phosphates were replaced with N-methanesulfonyl (mesyl) phosphoramidate or phosphoryl guanidine groups resulting in either negatively charged or neutral DNA sequences, respectively. We established that all modified sequences were able to form G-quadruplexes of parallel topology; however, the presence of modifications led to a decrease in thermal stability relative to unmodified G4s. In contrast to negatively charged G4s, assembly of neutral G4 DNA species was faster in the presence of sodium ions than potassium ions, and was independent of the salt concentration used. Formation of mixed G4s composed of both native and neutral G-rich strands has been detected using native gel electrophoresis, size-exclusion chromatography and ESI-MS. In summary, our results indicate that the phosphate modifications studied are compatible with G-quadruplex formation, which could be used for the design of biologically active compounds.
Collapse
Affiliation(s)
- Yongdong Su
- Institute of Fundamental Sciences, Massey University, Private Bag 11-222, 4442, Palmerston North, New Zealand
| | - Hirofumi Fujii
- Department of Biological and Environmental Chemistry, School of Humanity Oriented Science and Technology, Kindai University, Fukuoka, Iizuka, Japan
| | - Ekaterina A Burakova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Boris P Chelobanov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | - Masayuki Fujii
- Department of Biological and Environmental Chemistry, School of Humanity Oriented Science and Technology, Kindai University, Fukuoka, Iizuka, Japan
| | - Dmitry A Stetsenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | - Vyacheslav V Filichev
- Institute of Fundamental Sciences, Massey University, Private Bag 11-222, 4442, Palmerston North, New Zealand
| |
Collapse
|
8
|
Gajarský M, Živković ML, Stadlbauer P, Pagano B, Fiala R, Amato J, Tomáška L, Šponer J, Plavec J, Trantírek L. Structure of a Stable G-Hairpin. J Am Chem Soc 2017; 139:3591-3594. [PMID: 28217994 DOI: 10.1021/jacs.6b10786] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In this study, we report the first atomic resolution structure of a stable G-hairpin formed by a natively occurring DNA sequence. An 11-nt long G-rich DNA oligonucleotide, 5'-d(GTGTGGGTGTG)-3', corresponding to the most abundant sequence motif in irregular telomeric DNA from Saccharomyces cerevisiae (yeast), is demonstrated to adopt a novel type of mixed parallel/antiparallel fold-back DNA structure, which is stabilized by dynamic G:G base pairs that transit between N1-carbonyl symmetric and N1-carbonyl, N7-amino base-pairing arrangements. Although the studied sequence first appears to possess a low capacity for base pairing, it forms a thermodynamically stable structure with a rather complex topology that includes a chain reversal arrangement of the backbone in the center of the continuous G-tract and 3'-to-5' stacking of the terminal residues. The structure reveals previously unknown principles of the folding of G-rich oligonucleotides that could be applied to the prediction of natural and/or the design of artificial recognition DNA elements. The structure also demonstrates that the folding landscapes of short DNA single strands is much more complex than previously assumed.
Collapse
Affiliation(s)
- Martin Gajarský
- Central European Institute of Technology, Masaryk University , Kamenice 753/5, 62500 Brno, Czech Republic
| | | | - Petr Stadlbauer
- Institute of Biophysics, v.v.i., Academy of Sciences of the Czech Republic , Kralovopolska 135, 61265 Brno, Czech Republic
| | - Bruno Pagano
- Department of Pharmacy, University of Naples "Federico II" , Via D. Montesano 49, I-80131 Naples, Italy
| | - Radovan Fiala
- Central European Institute of Technology, Masaryk University , Kamenice 753/5, 62500 Brno, Czech Republic
| | - Jussara Amato
- Department of Pharmacy, University of Naples "Federico II" , Via D. Montesano 49, I-80131 Naples, Italy
| | - L'ubomír Tomáška
- Department of Genetics, Faculty of Natural Sciences, Comenius University , Mlynska dolina B-1, Ilkovicova 6, 84215 Bratislava, Slovakia
| | - Jiří Šponer
- Central European Institute of Technology, Masaryk University , Kamenice 753/5, 62500 Brno, Czech Republic.,Institute of Biophysics, v.v.i., Academy of Sciences of the Czech Republic , Kralovopolska 135, 61265 Brno, Czech Republic
| | - Janez Plavec
- Slovenian NMR Centre, National Institute of Chemistry , Hajdrihova 19, SI-1000 Ljubljana, Slovenia.,EN-FIST Centre of Excellence , Trg Osvobodilne fronte 13, SI-1001 Ljubljana, Slovenia.,Faculty of Chemistry and Chemical Technology, University of Ljubljana , Večna pot 113, SI-1000 Ljubljana, Slovenia
| | - Lukáš Trantírek
- Central European Institute of Technology, Masaryk University , Kamenice 753/5, 62500 Brno, Czech Republic
| |
Collapse
|
9
|
Virgilio A, Esposito V, Mayol L, Giancola C, Petraccone L, Galeone A. The oxidative damage to the human telomere: effects of 5-hydroxymethyl-2'-deoxyuridine on telomeric G-quadruplex structures. Org Biomol Chem 2016; 13:7421-9. [PMID: 25997822 DOI: 10.1039/c5ob00748h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
As part of the genome, human telomeric regions can be damaged by the chemically reactive molecules responsible for oxidative DNA damage. Considering that G-quadruplex structures have been proven to occur in human telomere regions, several studies have been devoted to investigating the effect of oxidation products on the properties of these structures. However only investigations concerning the presence in G-quadruplexes of the main oxidation products of deoxyguanosine and deoxyadenosine have appeared in the literature. Here, we investigated the effects of 5-hydroxymethyl-2'-deoxyuridine (5-hmdU), one of the main oxidation products of T, on the physical-chemical properties of the G-quadruplex structures formed by two human telomeric sequences. Collected calorimetric, circular dichroism and electrophoretic data suggest that, in contrast to most of the results on other damage, the replacement of a T with a 5-hmdU results in only negligible effects on structural stability. Reported results and other data from literature suggest a possible protecting effect of the loop residues on the other parts of the G-quadruplexes.
Collapse
Affiliation(s)
- Antonella Virgilio
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II", Via D. Montesano 49, I-80131 Napoli, Italy.
| | | | | | | | | | | |
Collapse
|
10
|
Gupta P, Rastede EE, Appella DH. Multivalent LKγ-PNA oligomers bind to a human telomere DNA G-rich sequence to form quadruplexes. Bioorg Med Chem Lett 2015; 25:4757-4760. [PMID: 26259805 PMCID: PMC5603266 DOI: 10.1016/j.bmcl.2015.07.075] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 07/20/2015] [Accepted: 07/22/2015] [Indexed: 12/15/2022]
Abstract
We report G-quadruplex formation between peptide nucleic acids (PNAs) composed of (L)Kγ-PNA-G monomers and a known portion of human telomeric DNA that adopts three G3 tracts via intramolecular hydrogen bonding. The resulting complex is a bimolecular PNA-DNA heteroquadruplex. In this Letter, we show that introduction of a γ-modification and addition of a peptide ligand does not disrupt the heteroquadruplex. Although the unmodified PNA1 forms a quadruplex with itself, the γ-substituted PNAs (PNA2-PNA6) do not form G-quadruplexes on their own, at even high concentrations. The selectivity of these PNAs could influence the design of new quadruplex-targeting molecules or allow the quadruplex structure to be used as a scaffold for multivalent display of protein binding ligands.
Collapse
Affiliation(s)
- Pankaj Gupta
- Laboratory of Bioorganic Chemistry, NIDDK, NIH, Bethesda, MD 20892, USA
| | | | - Daniel H Appella
- Laboratory of Bioorganic Chemistry, NIDDK, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
11
|
Patwa A, Salgado G, Dole F, Navailles L, Barthélémy P. Tuning molecular interactions in lipid-oligonucleotides assemblies via locked nucleic acid (LNA)-based lipids. Org Biomol Chem 2014; 11:7108-12. [PMID: 24065175 DOI: 10.1039/c3ob41707g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hybrid nucleotide-lipids containing locked nucleic acid (LNA) show enhanced hybridization properties with complementary single strand RNAs compared to DNA lipid analogues. The LNA adenosine lipid features unique binding properties with a high binding affinity for poly-uridine and the entropically driven formation of a stable complex (K(d) ≈ 43 nM). Enhanced hybridization properties of LNA-based lipids should be applicable for the development of oligonucleotide (ON) delivery systems or as small molecule binders to RNA for novel therapeutic strategies.
Collapse
Affiliation(s)
- Amit Patwa
- Univ. Bordeaux, ARNA laboratory, F-33076 Bordeaux, France.
| | | | | | | | | |
Collapse
|
12
|
Zhou J, Rosu F, Amrane S, Korkut DN, Gabelica V, Mergny JL. Assembly of chemically modified G-rich sequences into tetramolecular DNA G-quadruplexes and higher order structures. Methods 2014; 67:159-68. [DOI: 10.1016/j.ymeth.2014.01.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 12/20/2013] [Accepted: 01/02/2014] [Indexed: 10/25/2022] Open
|
13
|
Binding ability of a thymine-functionalized oligolysine towards nucleic acids. Bioorg Med Chem 2014; 22:997-1002. [DOI: 10.1016/j.bmc.2013.12.053] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 12/08/2013] [Accepted: 12/21/2013] [Indexed: 01/20/2023]
|
14
|
Amato J, Stellato MI, Pizzo E, Petraccone L, Oliviero G, Borbone N, Piccialli G, Orecchia A, Bellei B, Castiglia D, Giancola C. PNA as a potential modulator of COL7A1 gene expression in dominant dystrophic epidermolysis bullosa: a physico-chemical study. MOLECULAR BIOSYSTEMS 2013; 9:3166-74. [PMID: 24121392 DOI: 10.1039/c3mb70283a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Dominant diseases are single gene disorders occurring in the heterozygous state. The mutated allele exerts a dominant effect because it produces an abnormal polypeptide that interferes with the function of the normal allele product. Peptide Nucleic Acids (PNAs) offer a route for a potential therapy for dominant diseases by selectively silencing the allele carrying the dominant mutation. Here, we have synthesized and studied the properties of a 15-mer PNA fully complementary to the site of the c.5272-38T>A sequence variation, which identifies a recurrent mutant COL7A1 allele causing dominant dystrophic epidermolysis bullosa (DDEB), a mendelian disease characterized by skin blistering. The PNA was conjugated with four lysine residues at the C-terminus and a fluorescent probe at the N-terminus. Physico-chemical results proved the formation of a stable, selective PNA/mutant-DNA heteroduplex in vitro. Intriguingly, when transfected into normal human fibroblasts, the PNA correctly localized in the cell nucleus. Our results open new therapeutic possibilities for patients with DDEB.
Collapse
Affiliation(s)
- Jussara Amato
- Department of Pharmacy, University of Naples "Federico II", via D. Montesano 49, 80131 Naples, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Zhou J, Abramov M, Liu F, Amrane S, Bourdoncle A, Herdewijn P, Mergny JL. Effects of six-membered carbohydrate rings on structure, stability, and kinetics of G-quadruplexes. Chemistry 2013; 19:14719-25. [PMID: 24027098 DOI: 10.1002/chem.201301743] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 07/24/2013] [Indexed: 12/13/2022]
Abstract
We have evaluated the conformational, thermal, and kinetic properties of d(TGGGGT) analogues with one or five of the ribose nucleotides replaced with the carbohydrate residues hexitol nucleic acid (HNA), cyclohexenyl nucleic acid (CeNA), or altritol nucleic acid (ANA). All of the modified oligonucleotides formed G-quadruplexes, but substitution with the six-membered rings resulted in a mixture of G-quadruplex structures. UV and CD melting analyses showed that the structure formed by d(TGGGGT) modified with HNA was stabilized whereas that modified with CeNA was destabilized, relative to the structure formed by the unmodified oligonucleotide. Substitution at the fourth base of the G-tract with ANA resulted in a greater stabilization effect than substitution at the first G residue; substitution with five ANA residues resulted in significant stabilization of the G-quadruplex. A single substitution with CeNA at the first base of the G-tract or five substitutions with HNA resulted in striking deceleration or acceleration of G-quadruplex formation, respectively. Our results shed light on the effect of the sugar moiety on the properties of G-quadruplex structures.
Collapse
Affiliation(s)
- Jun Zhou
- Univ. Bordeaux, ARNA Laboratory, 33000 Bordeaux (France); INSERM, U869, IECB, 33600 Pessac (France), Fax: (+33) 5-4000-3004
| | | | | | | | | | | | | |
Collapse
|
16
|
Roviello GN, Musumeci D, D'Alessandro C, Pedone C. Synthesis of a thymine-functionalized nucleoamino acid for the solid phase assembly of cationic nucleopeptides. Amino Acids 2013; 45:779-84. [PMID: 23722416 DOI: 10.1007/s00726-013-1520-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 05/21/2013] [Indexed: 10/26/2022]
Abstract
In this work, we report the synthesis of a thymine-functionalized nucleoamino acid suitable for the solid phase synthesis of nucleopeptides. The monomer was obtained in solution starting from commercial compounds and after NMR ((1)H and (13)C) and ESIMS (positive ions) characterization it was used for the assembly of a cationic nucleopeptide obtained by sequentially introducing underivatized L-lysine units and nucleoamino acid monomers. After detachment from the resin, performed in acidic conditions, the oligomer was purified by HPLC and characterized by LC-ESIMS (positive ions) which confirmed the identity of the thymine-based nucleopeptide. The cationic nucleobase-containing peptide, well soluble in water, was studied by CD spectroscopy which allowed us to exclude any helical pre-organization of the nucleopeptide in the experimental conditions used. Furthermore, CD behavior of the oligomer at different temperatures was also studied as described in this work.
Collapse
Affiliation(s)
- Giovanni N Roviello
- Istituto di Biostrutture e Bioimmagini, CNR, Via Mezzocannone 16, 80134, Naples, Italy,
| | | | | | | |
Collapse
|
17
|
Pagano B, Randazzo A, Fotticchia I, Novellino E, Petraccone L, Giancola C. Differential scanning calorimetry to investigate G-quadruplexes structural stability. Methods 2013; 64:43-51. [PMID: 23500655 DOI: 10.1016/j.ymeth.2013.02.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 02/19/2013] [Accepted: 02/25/2013] [Indexed: 01/20/2023] Open
Abstract
Differential Scanning Calorimetry (DSC) is a straightforward methodology to characterize the energetics of thermally-induced transitions of DNA and other biological macromolecules. Therefore, DSC has been used to study the thermodynamic stability of several nucleic acids structures. G-quadruplexes are among the most important non-canonical nucleic acid architectures that are receiving great consideration. This article reports examples on the contribution of DSC to the knowledge of G-quadruplex structures. The selected case studies show the potential of this method in investigating the structure stability of G-quadruplex forming nucleic acids, and in providing information on their structural complexity. Indeed, DSC can determine thermodynamic parameters of G-quadruplex folding/unfolding processes, but it can also be useful to reveal the formation of multiple conformations or the presence of intermediate states along the unfolding pathway, and to evaluate the impact of chemical modifications on their structural stability. This article aims to show that DSC is an important complementary methodology to structural techniques, such as NMR and X-ray crystallography, in the study of G-quadruplex forming nucleic acids.
Collapse
Affiliation(s)
- Bruno Pagano
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II", Via D. Montesano 49, I-80131 Napoli, Italy
| | | | | | | | | | | |
Collapse
|
18
|
Limongelli V, De Tito S, Cerofolini L, Fragai M, Pagano B, Trotta R, Cosconati S, Marinelli L, Novellino E, Bertini I, Randazzo A, Luchinat C, Parrinello M. The G-Triplex DNA. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201206522] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
19
|
Limongelli V, De Tito S, Cerofolini L, Fragai M, Pagano B, Trotta R, Cosconati S, Marinelli L, Novellino E, Bertini I, Randazzo A, Luchinat C, Parrinello M. The G-triplex DNA. Angew Chem Int Ed Engl 2013; 52:2269-73. [PMID: 23335456 DOI: 10.1002/anie.201206522] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Indexed: 11/08/2022]
Affiliation(s)
- Vittorio Limongelli
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano, 49, 80131 Naples, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Zhou J, Murayama K, Amrane S, Rosu F, Kashida H, Bourdoncle A, Asanuma H, Mergny JL. A “sugar-deficient” G-quadruplex: incorporation of aTNA in G4 structures. Chem Sci 2013. [DOI: 10.1039/c3sc50474c] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
21
|
Li P, Zhan C, Zhang S, Ding X, Guo F, He S, Yao J. Alkali metal cations control over nucleophilic substitutions on aromatic fused pyrimidine-2,4-[1H,3H]-diones: towards new PNA monomers. Tetrahedron 2012. [DOI: 10.1016/j.tet.2012.08.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
22
|
Roviello GN, Musumeci D, Bucci EM, Pedone C. Synthesis of a diaminopropanoic acid-based nucleoamino acid and assembly of cationic nucleopeptides for biomedical applications. Amino Acids 2012; 43:2537-43. [PMID: 22688861 DOI: 10.1007/s00726-012-1335-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2012] [Accepted: 05/29/2012] [Indexed: 11/29/2022]
Abstract
In this work, we report a synthetic approach to a Fmoc-protected nucleoamino acid, based on L-diaminopropanoic acid, carrying the DNA nucleobase on the alpha-amino group by means of an amide bond, suitable for the solid-phase synthesis of novel nucleopeptides of potential interest in biomedicine. After ESI-MS and NMR characterization this building block was used for the assembly of a thymine-functionalized nucleopeptide, composed of nucleobase-containing L-diaminopropanoic acid moieties and underivatized L-lysine residues alternated in the backbone. Circular dichroism studies performed on the cationic nucleopeptide and adenine-containing DNA and RNA molecules suggested that the thymine-containing peptide is able to interact with both DNA and RNA. In particular, a significant conformational variation in the RNA structure was suggested by CD studies. Human serum stability assays were also conducted on the cationic nucleopeptide, which was found to be highly resistant to enzymatic degradation.
Collapse
Affiliation(s)
- Giovanni N Roviello
- Istituto di Biostrutture e Bioimmagini-CNR, Via Mezzocannone 16, 80134, Naples, Italy.
| | | | | | | |
Collapse
|
23
|
Avitabile C, Moggio L, Malgieri G, Capasso D, Di Gaetano S, Saviano M, Pedone C, Romanelli A. γ Sulphate PNA (PNA S): highly selective DNA binding molecule showing promising antigene activity. PLoS One 2012; 7:e35774. [PMID: 22586450 PMCID: PMC3346730 DOI: 10.1371/journal.pone.0035774] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 03/21/2012] [Indexed: 11/18/2022] Open
Abstract
Peptide Nucleic Acids (PNAs), nucleic acid analogues showing high stability to enzyme degradation and strong affinity and specificity of binding toward DNA and RNA are widely investigated as tools to interfere in gene expression. Several studies have been focused on PNA analogues with modifications on the backbone and bases in the attempt to overcome solubility, uptake and aggregation issues. γ PNAs, PNA derivatives having a substituent in the γ position of the backbone show interesting properties in terms of secondary structure and affinity of binding toward complementary nucleic acids. In this paper we illustrate our results obtained on new analogues, bearing a sulphate in the γ position of the backbone, developed to be more DNA-like in terms of polarity and charge. The synthesis of monomers and oligomers is described. NMR studies on the conformational properties of monomers and studies on the secondary structure of single strands and triplexes are reported. Furthermore the hybrid stability and the effect of mismatches on the stability have also been investigated. Finally, the ability of the new analogue to work as antigene, interfering with the transcription of the ErbB2 gene on a human cell line overexpressing ErbB2 (SKBR3), assessed by FACS and qPCR, is described.
Collapse
Affiliation(s)
- Concetta Avitabile
- Dipartimento delle Scienze Biologiche, Facoltà di Scienze Biotecnologiche, Università di Napoli “Federico II”, Napoli, Italy
| | - Loredana Moggio
- Dipartimento delle Scienze Biologiche, Facoltà di Scienze Biotecnologiche, Università di Napoli “Federico II”, Napoli, Italy
| | - Gaetano Malgieri
- Dipartimento di Scienze Ambientali, Seconda Università degli Studi di Napoli, Caserta, Italy
| | - Domenica Capasso
- Dipartimento delle Scienze Biologiche, Facoltà di Scienze Biotecnologiche, Università di Napoli “Federico II”, Napoli, Italy
| | | | | | - Carlo Pedone
- Dipartimento delle Scienze Biologiche, Facoltà di Scienze Biotecnologiche, Università di Napoli “Federico II”, Napoli, Italy
- Istituto di Biostrutture e Bioimmagini (CNR), Napoli, Italy
| | - Alessandra Romanelli
- Dipartimento delle Scienze Biologiche, Facoltà di Scienze Biotecnologiche, Università di Napoli “Federico II”, Napoli, Italy
- Istituto di Biostrutture e Bioimmagini (CNR), Napoli, Italy
- * E-mail:
| |
Collapse
|
24
|
Petraccone L, Pagano B, Giancola C. Studying the effect of crowding and dehydration on DNA G-quadruplexes. Methods 2012; 57:76-83. [PMID: 22406490 DOI: 10.1016/j.ymeth.2012.02.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 02/20/2012] [Accepted: 02/21/2012] [Indexed: 01/01/2023] Open
Abstract
Intracellular environment is crowded with biomolecules that occupy a significant fraction (up to 40%) of the cellular volume, with a total concentration in the range 300-400mg/ml. Recently, the effect of crowding/dehydrating agents on the DNA G-quadruplexes has become a subject of an increasing interest. Crowding and/or dehydrating agents have been used to simulate how G-quadruplexes behave under cell-mimicking conditions characterized by a large excluded volume and a lower water activity. Indeed, the presence of both steric crowding and a lower water activity can affect G-quadruplex stability, their folding/unfolding kinetics, as well as their binding processes with proteins or small ligands. Many of these effects can be explored experimentally by measuring the dependence of the conformational stability, isomerisation kinetics and equilibria on the concentration of cosolutes which do not interact with the molecules (G-quadruplexes) under investigation. Spectroscopic methodologies, like circular dichroism, UV and fluorescence, have been widely employed to study G-quadruplexes in dilute solution. Here we focus on some aspects that need to be taken into account when employing such techniques in the presence of large amount of a cosolute. Additionally, we discuss possible problems/artifacts that arise in setting experiments in presence of these commonly employed cosolutes and in interpreting the results.
Collapse
Affiliation(s)
- Luigi Petraccone
- Dipartimento di Scienze Chimiche, Università degli Studi di Napoli "Federico II", Via Cintia, I-80126 Napoli, Italy
| | | | | |
Collapse
|
25
|
Petraccone L, Malafronte A, Amato J, Giancola C. G-Quadruplexes from Human Telomeric DNA: How Many Conformations in PEG Containing Solutions? J Phys Chem B 2012; 116:2294-305. [DOI: 10.1021/jp209170v] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Luigi Petraccone
- Dipartimento di Chimica “P.
Corradini”, Via Cintia, Università “Federico II” di Napoli, 80126, Naples, Italy
| | - Anna Malafronte
- Dipartimento di Chimica “P.
Corradini”, Via Cintia, Università “Federico II” di Napoli, 80126, Naples, Italy
| | - Jussara Amato
- Dipartimento di Chimica delle
Sostanze Naturali, Via D. Montesano 49, Università “Federico II” di Napoli, 80131, Naples,
Italy
| | - Concetta Giancola
- Dipartimento di Chimica “P.
Corradini”, Via Cintia, Università “Federico II” di Napoli, 80126, Naples, Italy
| |
Collapse
|
26
|
|
27
|
Prislan I, Lah J, Milanic M, Vesnaver G. Kinetically governed polymorphism of d(G₄T₄G₃) quadruplexes in K+ solutions. Nucleic Acids Res 2010; 39:1933-42. [PMID: 21113023 PMCID: PMC3061076 DOI: 10.1093/nar/gkq867] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
It has been generally recognized that understanding the molecular basis of some important cellular processes is hampered by the lack of knowledge of forces that drive spontaneous formation/disruption of G-quadruplex structures in guanine-rich DNA sequences. According to numerous biophysical and structural studies G-quadruplexes may occur in the presence of K(+) and Na(+) ions as polymorphic structures formed in kinetically governed processes. The reported kinetic models suggested to describe this polymorphism should be considered inappropriate since, as a rule, they include bimolecular single-step associations characterized by negative activation energies. In contrast, our approach in studying polymorphic behavior of G-quadruplexes is based on model mechanisms that involve only elementary folding/unfolding transitions and structural conversion steps that are characterized by positive activation energies. Here, we are investigating a complex polymorphism of d(G(4)T(4)G(3)) quadruplexes in K(+) solutions. On the basis of DSC, circular dichroism and UV spectroscopy and polyacrylamide gel electrophoresis experiments we propose a kinetic model that successfully describes the observed thermally induced conformational transitions of d(G(4)T(4)G(3)) quadruplexes in terms of single-step reactions that involve besides single strands also one tetramolecular and three bimolecular quadruplex structures.
Collapse
Affiliation(s)
- Iztok Prislan
- Faculty of Chemistry and Chemical Technology, Physical Chemistry, University of Ljubljana, Askerceva, Slovenia
| | | | | | | |
Collapse
|
28
|
Esposito V, Martino L, Citarella G, Virgilio A, Mayol L, Giancola C, Galeone A. Effects of abasic sites on structural, thermodynamic and kinetic properties of quadruplex structures. Nucleic Acids Res 2009; 38:2069-80. [PMID: 20026588 PMCID: PMC2847214 DOI: 10.1093/nar/gkp1087] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Abasic sites represent the most frequent lesion in DNA. Since several events generating abasic sites concern guanines, this damage is particularly important in quadruplex forming G-rich sequences, many of which are believed to be involved in several biological roles. However, the effects of abasic sites in sequences forming quadruplexes have been poorly studied. Here, we investigated the effects of abasic site mimics on structural, thermodynamic and kinetic properties of parallel quadruplexes. Investigation concerned five oligodeoxynucleotides based on the sequence d(TGGGGGT), in which all guanines have been replaced, one at a time, by an abasic site mimic (dS). All sequences preserve their ability to form quadruplexes; however, both spectroscopic and kinetic experiments point to sequence-dependent different effects on the structural flexibility and stability. Sequences d(TSGGGGT) and d(TGGGGST) form quite stable quadruplexes; however, for the other sequences, the introduction of the dS in proximity of the 3′-end decreases the stability more considerably than the 5′-end. Noteworthy, sequence d(TGSGGGT) forms a quadruplex where dS does not hamper the stacking between the G-tetrads adjacent to it. These results strongly argue for the central role of apurinic/apyrimidinic site damages and they encourage the production of further studies to better delineate the consequences of their presence in the biological relevant regions of the genome.
Collapse
Affiliation(s)
- Veronica Esposito
- Dipartimento di Chimica delle Sostanze Naturali, Università degli Studi di Napoli Federico II, Via D. Montesano 49, I-80131 Napoli, Italy
| | | | | | | | | | | | | |
Collapse
|
29
|
Paul A, Sengupta P, Krishnan Y, Ladame S. Combining G-quadruplex targeting motifs on a single peptide nucleic acid scaffold: a hybrid (3+1) PNA-DNA bimolecular quadruplex. Chemistry 2008; 14:8682-9. [PMID: 18668497 DOI: 10.1002/chem.200800605] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We describe the first G-quadruplex targeting approach that combines intercalation and hybridization strategies by investigating the interaction of a G-rich peptide nucleic acid (PNA) acridone conjugate 1 with a three-repeat fragment of the human telomere G 3 to form a hybrid PNA-DNA quadruplex that mimicks the biologically relevant (3+1) pure DNA dimeric telomeric quadruplex. Using a combination of UV and fluorescence spectroscopy, circular dichroism (CD), and mass-spectrometry, we show that PNA 1 can induce the formation of a bimolecular hybrid quadruplex even at low salt concentration upon interaction with a single-stranded three-repeat fragment of telomeric DNA. However, PNA 1 cannot invade a short fragment of B-DNA even if the latter contains a CCC motif complementary to the PNA sequence. These studies could open up new possibilities for the design of a novel generation of quadruplex ligands that target not only the external features of the quadruplex but also its central core constituted by the tetrads themselves.
Collapse
Affiliation(s)
- Alexis Paul
- Institut de Science et d'Ingénierie, Supramoléculaires (ISIS), Université Louis Pasteur, CNRS UMR 7006, 8 Allée Gaspard Monge, Strasbourg Cédex, France
| | | | | | | |
Collapse
|
30
|
Prislan I, Lah J, Vesnaver G. Diverse Polymorphism of G-Quadruplexes as a Kinetic Phenomenon. J Am Chem Soc 2008; 130:14161-9. [DOI: 10.1021/ja8026604] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Iztok Prislan
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, Aškerčeva 5, 1000 Ljubljana, Slovenia
| | - Jurij Lah
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, Aškerčeva 5, 1000 Ljubljana, Slovenia
| | - Gorazd Vesnaver
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, Aškerčeva 5, 1000 Ljubljana, Slovenia
| |
Collapse
|
31
|
Gray RD, Chaires JB. Kinetics and mechanism of K+- and Na+-induced folding of models of human telomeric DNA into G-quadruplex structures. Nucleic Acids Res 2008; 36:4191-203. [PMID: 18567908 PMCID: PMC2475619 DOI: 10.1093/nar/gkn379] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cation-induced folding into quadruplex structures for three model human telomeric oligonucleotides, d[AGGG(TTAGGG)3], d[TTGGG(TTAGGG)3A] and d[TTGGG(TTAGGG)3], was characterized by equilibrium titrations with KCl and NaCl and by multiwavelength stopped flow kinetics. Cation binding was cooperative with Hill coefficients of 1.5–2.2 in K+ and 2.4–2.9 in Na+ with half-saturation concentrations of 0.5–1 mM for K+ and 4–13 mM for Na+ depending on the oligonucleotide sequence. Oligonucleotide folding in 50 mM KCl at 25°C consisted of single exponential processes with relaxation times τ of 20–60 ms depending on the sequence. In contrast, folding in100 mM NaCl consisted of three exponentials with τ-values of 40–85 ms, 250–950 ms and 1.5–10.5 s. The folding rate constants approached limiting values with increasing cation concentration; in addition, the rates of folding decreased with increasing temperature over the range 15–45°C. Taken together, these results suggest that folding of G-rich oligonucleotides into quadruplex structures proceeds via kinetically significant intermediates. These intermediates may consist of antiparallel hairpins in rapid equilibrium with less ordered structures. The hairpins may subsequently form nascent G-quartets stabilized by H-bonding and cation binding followed by relatively slow strand rearrangements to form the final completely folded topologies. Fewer kinetic intermediates were evident with K+ than Na+, suggesting a simpler folding pathway in K+ solutions.
Collapse
Affiliation(s)
- Robert D Gray
- James Graham Brown Cancer Center, University of Louisville, 529 S. Jackson Street, Louisville, KY 40202, USA
| | | |
Collapse
|
32
|
Pizzo E, Varcamonti M, Di Maro A, D Maro A, Zanfardino A, Giancola C, D'Alessio G. Ribonucleases with angiogenic and bactericidal activities from the Atlantic salmon. FEBS J 2008; 275:1283-95. [PMID: 18279393 DOI: 10.1111/j.1742-4658.2008.06289.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The importance of fish in vertebrate evolution has been better recognized in recent years after the intense work carried out on fish genomics. The recent discovery that fish genomes comprise homologs of ribonucleases, studied before only in tetrapods, and the isolation of ribonucleases from zebrafish have suggested an experimental model for studying fish and vertebrate evolution. Thus, the cDNAs encoding the RNases from the Atlantic salmon were expressed, and the recombinant RNases (Ss-RNase-1 and Ss-RNase-2) were isolated and characterized as both proteins and for their biological activities. Salmon RNases are less active than RNase A in degrading RNA, but are both sensitive to the action of the human cytosolic RNase inhibitor. The two enzymes possess both angiogenic and bactericidal activities. However, catalytically inactivated Ss-RNases do not exert any angiogenic activity, but preserve their full bactericidal activity, which is surprisingly preserved even when the enzyme proteins are fully denatured. Analyses of the conformational stability of the two RNases has revealed that they are as stable as typical RNases of the superfamily, and Ss-RNase-2, the most active as an enzyme, is also the most resistant to thermal and chemical denaturation. The implications of these findings in terms of the evolution of early RNases, in particular of the physiological significance of the angiogenic and bactericidal activities of fish RNases, are analyzed and discussed.
Collapse
Affiliation(s)
- Elio Pizzo
- Department of Structural and Functional Biology, University of Naples Federico II, Via Cintia, Naples, Italy
| | | | | | | | | | | | | |
Collapse
|
33
|
D'Onofrio J, Petraccone L, Martino L, Di Fabio G, Iadonisi A, Balzarini J, Giancola C, Montesarchio D. Synthesis, biophysical characterization, and anti-HIV activity of glyco-conjugated G-quadruplex-forming oligonucleotides. Bioconjug Chem 2008; 19:607-16. [PMID: 18254584 DOI: 10.1021/bc7003395] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Novel hybrid oligonucleotides carrying the G-quadruplex-forming d(5'TGGGAG3') sequence, conjugated with mono- or disaccharides at the 3' or 5'-end through phosphodiester bonds, have been synthesized as potential anti-HIV agents, via a fully automated, online phosphoramidite-based solid-phase strategy. CD-monitored thermal denaturation studies on the resulting quadruplexes indicated the insertion of a single monosaccharide at the 3'-end as the optimal modification, conferring improved stability to the quadruplex complex. In addition, the 3'-conjugation with glucose or mannose converted the anti-HIV inactive unmodified oligomer into active compounds. On the contrary, the 5'-tethering with these monosaccharides, as well as the conjugation, either at the 5' or 3'-end, with sucrose, were in all cases detrimental to quadruplex stability and did not improve the biological activity. On the basis of the assumption that the kinetically and thermodynamically favored formation of the quadruplex complex is a prerequisite for efficient antiviral activity, a novel bis-conjugated oligonucleotide was designed. This combined a mannose residue at the 3'-phosphate end with bulky aromatic tert-butyldiphenylsilyl (TBDPS) group at the 5'-end, previously shown to markedly favor the formation of quadruplex complexes. The 5',3'-bis-conjugated 6-mer, for which a detailed biophysical characterization has been carried out, resulted in 3-fold greater antiviral activity against HIV-1 than the sole 3'-glyco-conjugated oligonucleotide.
Collapse
Affiliation(s)
- Jennifer D'Onofrio
- Dipartimento di Chimica Organica e Biochimica and Dipartimento di Chimica Paolo Corradini, Università degli Studi di Napoli Federico II, Via Cintia 4, I-80126 Napoli, Italy
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Petraccone L, Erra E, Randazzo A, Giancola C. Energetic aspects of locked nucleic acids quadruplex association and dissociation. Biopolymers 2007; 83:584-94. [PMID: 16944520 DOI: 10.1002/bip.20591] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The design of modified nucleic acid aptamers is improved by considering thermodynamics and kinetics of their association/dissociation processes. Locked Nucleic Acids (LNA) is a promising class of nucleic acid analogs. In this work the thermodynamic and kinetic properties of a LNA quadruplex formed by the TGGGT sequence, containing only conformationally restricted LNA residues, are reported and compared to those of 2'-OMe-RNA (O-RNA) and DNA quadruplexes. The thermodynamic analysis indicates that the sugar-modified quadruplexes (LNA and O-RNA) are stabilized by entropic effects. The kinetic analysis shows that LNA and O-RNA quadruplexes are characterized by a slower dissociation and a faster association with respect to DNA quadruplex. Interestingly, the LNA quadruplex formation process shows a second-order kinetics with respect to single strand concentration and has a negative activation energy. To explain these data, a mechanism for tetramer formation with two intermediate states was proposed.
Collapse
Affiliation(s)
- Luigi Petraccone
- Dipartimento di Scienze Farmaceutiche, Via Ponte Don Melillo, 84084 Fisciano (SA), Italy
| | | | | | | |
Collapse
|
35
|
Merino P, Tejero T, Matés J, Chiacchio U, Corsaro A, Romeo G. 3-(Aminomethyl)-2-(carboxymethyl)isoxazolidinyl nucleosides: building blocks for peptide nucleic acid analogues. ACTA ACUST UNITED AC 2007. [DOI: 10.1016/j.tetasy.2007.06.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
36
|
D'Onofrio J, Petraccone L, Erra E, Martino L, Fabio GD, Napoli LD, Giancola C, Montesarchio D. 5'-Modified G-quadruplex forming oligonucleotides endowed with anti-HIV activity: synthesis and biophysical properties. Bioconjug Chem 2007; 18:1194-204. [PMID: 17569499 DOI: 10.1021/bc070062f] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Oligodeoxyribonucleotides of sequence d(5'TGGGAG3') carrying bulky aromatic groups at the 5' end were found to exhibit potent anti-HIV activity [Hotoda, H., et al. (1998) J. Med. Chem. 41, 3655-3663 and references therein]. Structure-activity relationship investigations indicated that G-quadruplex formation, as well as the presence of large aromatic substituents at the 5'-end, were both essential for their antiviral activity. In this work, we synthesized some representative examples of the anti-HIV active Hotoda's 6-mers and analyzed the resulting G-quadruplexes by CD, DSC, and molecular modeling studies, in comparison with the unmodified oligonucleotide. In the case of the sequence carrying the 3,4-dibenzyloxybenzyl (DBB) group, identified as the best candidate for further drug optimization, we developed an alternative protocol to synthesize the 5'-DBB-thymidine phosphoramidite building block in higher yields. The thermodynamic and kinetic parameters for the association/dissociation processes of the 5'-conjugated quadruplexes, determined with respect to the unmodified one, were discussed in light of the molecular modeling studies. The aromatic groups at the 5' position of d(5'TGGGAG3') dramatically enhance both the equilibrium and the rate of formation of the quadruplex complexes. The overall stability of the investigated quadruplexes was found to correlate with the reported IC50 values, thus furnishing quantitative evidence for the hypothesis that the G-quadruplex structures are the ultimate active species, effectively responsible for the biological activity.
Collapse
Affiliation(s)
- Jennifer D'Onofrio
- Dipartimento di Chimica Organica e Biochimica, Università degli Studi di Napoli Federico II, Complesso Universitario di Monte S. Angelo, via Cintia, 4, I-80126 Napoli, Italy
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Gros J, Rosu F, Amrane S, De Cian A, Gabelica V, Lacroix L, Mergny JL. Guanines are a quartet's best friend: impact of base substitutions on the kinetics and stability of tetramolecular quadruplexes. Nucleic Acids Res 2007; 35:3064-75. [PMID: 17452368 PMCID: PMC1888817 DOI: 10.1093/nar/gkm111] [Citation(s) in RCA: 161] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Parallel tetramolecular quadruplexes may be formed with short oligodeoxynucleotides bearing a block of three or more guanines. We analyze the properties of sequence variants of parallel quadruplexes in which each guanine of the central block was systematically substituted with a different base. Twelve types of substitutions were assessed in more than 100 different sequences. We conducted a comparative kinetic analysis of all tetramers. Electrospray mass spectrometry was used to count the number of inner cations, which is an indicator of the number of effective tetrads. In general, the presence of a single substitution has a strong deleterious impact on quadruplex stability, resulting in reduced quadruplex lifetime/thermal stability and in decreased association rate constants. We demonstrate extremely large differences in the association rate constants of these quadruplexes depending on modification position and type. These results demonstrate that most guanine substitutions are deleterious to tetramolecular quadruplex structure. Despite the presence of well-defined non-guanine base quartets in a number of NMR and X-ray structures, our data suggest that most non-guanine quartets do not participate favorably in structural stability, and that these quartets are formed only by virtue of the docking platform provided by neighboring G-quartets. Two notable exceptions were found with 8-bromo-guanine (X) and 6-methyl-isoxanthopterin (P) substitutions, which accelerate quadruplex formation by a factor of 10 when present at the 5′ end. The thermodynamic and kinetic data compiled here are highly valuable for the design of DNA quadruplex assemblies with tunable association/dissociation properties.
Collapse
Affiliation(s)
- Julien Gros
- Laboratoire de Biophysique, Muséum National d’Histoire Naturelle USM503, INSERM U565, CNRS UMR 5153, 43 rue Cuvier, 75231 Paris cedex 05, France and Laboratoire de Spectrométrie de Masse, Université de Liège, Institut de Chimie, Bat. B6c, B-4000 Liège, Belgium
| | - Frédéric Rosu
- Laboratoire de Biophysique, Muséum National d’Histoire Naturelle USM503, INSERM U565, CNRS UMR 5153, 43 rue Cuvier, 75231 Paris cedex 05, France and Laboratoire de Spectrométrie de Masse, Université de Liège, Institut de Chimie, Bat. B6c, B-4000 Liège, Belgium
| | - Samir Amrane
- Laboratoire de Biophysique, Muséum National d’Histoire Naturelle USM503, INSERM U565, CNRS UMR 5153, 43 rue Cuvier, 75231 Paris cedex 05, France and Laboratoire de Spectrométrie de Masse, Université de Liège, Institut de Chimie, Bat. B6c, B-4000 Liège, Belgium
| | - Anne De Cian
- Laboratoire de Biophysique, Muséum National d’Histoire Naturelle USM503, INSERM U565, CNRS UMR 5153, 43 rue Cuvier, 75231 Paris cedex 05, France and Laboratoire de Spectrométrie de Masse, Université de Liège, Institut de Chimie, Bat. B6c, B-4000 Liège, Belgium
| | - Valérie Gabelica
- Laboratoire de Biophysique, Muséum National d’Histoire Naturelle USM503, INSERM U565, CNRS UMR 5153, 43 rue Cuvier, 75231 Paris cedex 05, France and Laboratoire de Spectrométrie de Masse, Université de Liège, Institut de Chimie, Bat. B6c, B-4000 Liège, Belgium
| | - Laurent Lacroix
- Laboratoire de Biophysique, Muséum National d’Histoire Naturelle USM503, INSERM U565, CNRS UMR 5153, 43 rue Cuvier, 75231 Paris cedex 05, France and Laboratoire de Spectrométrie de Masse, Université de Liège, Institut de Chimie, Bat. B6c, B-4000 Liège, Belgium
| | - Jean-Louis Mergny
- Laboratoire de Biophysique, Muséum National d’Histoire Naturelle USM503, INSERM U565, CNRS UMR 5153, 43 rue Cuvier, 75231 Paris cedex 05, France and Laboratoire de Spectrométrie de Masse, Université de Liège, Institut de Chimie, Bat. B6c, B-4000 Liège, Belgium
- *To whom correspondence should be addressed. +33-1 40 79 36 89+33-1 40 79 37 05
| |
Collapse
|
38
|
Cian AD, Mergny JL. Quadruplex ligands may act as molecular chaperones for tetramolecular quadruplex formation. Nucleic Acids Res 2007; 35:2483-93. [PMID: 17395639 PMCID: PMC1885647 DOI: 10.1093/nar/gkm098] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2006] [Revised: 02/03/2007] [Accepted: 02/03/2007] [Indexed: 11/24/2022] Open
Abstract
G-quadruplexes are a family of four-stranded DNA structures, stabilized by G-quartets, that form in the presence of monovalent cations. Efforts are currently being made to identify ligands that selectively bind to G-quadruplex motifs as these compounds may interfere with the telomere structure, telomere elongation/replication and proliferation of cancer cells. The kinetics of quadruplex-ligands interactions are poorly understood: it is not clear whether quadruplex ligands lock into the preformed structure (i.e. increase the lifetime of the structure by lowering the dissociation constant, k(off)) or whether ligands actively promote the formation of the complex and act as quadruplex chaperones by increasing the association constant, k(on). We studied the effect of a selective quadruplex ligand, a bisquinolinium pyridine dicarboxamide compound called 360A, to distinguish these two possibilities. We demonstrated that, in addition to binding to and locking into preformed quadruplexes, this molecule acted as a chaperone for tetramolecular complexes by acting on k(on). This observation has implications for in vitro and in vivo applications of quadruplexes and should be taken into account when evaluating the cellular responses to these agents.
Collapse
Affiliation(s)
| | - Jean-Louis Mergny
- Laboratoire de Biophysique, Muséum National d′Histoire Naturelle USM 503, INSERM UR 565, CNRS UMR 5153, 43 rue Cuvier, 75231 Paris cedex 05, France
| |
Collapse
|
39
|
Petraccone L, Martino L, Duro I, Oliviero G, Borbone N, Piccialli G, Giancola C. Physico-chemical analysis of G-quadruplex containing bunch-oligonucleotides. Int J Biol Macromol 2006; 40:242-7. [PMID: 16979232 DOI: 10.1016/j.ijbiomac.2006.07.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2006] [Revised: 07/28/2006] [Accepted: 07/28/2006] [Indexed: 11/29/2022]
Abstract
A growing number of evidences suggest that DNA G-quadruplex structures play an important role in many relevant biological processes. The introduction of chemical modifications in quadruplex structures could enhance the in vivo biological activity. The correlation between the physico-chemical properties and chemical modifications represents an essential step toward the de novo design of quadruplex forming oligonucleotides for biomedical applications. We report the physico-chemical characterisation of a quadruplex formed by a bunch of four d(TG4T) oligonucleotides whose 3'-ends are linked together by a tetra-branched linker. The study was performed by circular dichroism, gel electrophoresis and molecular modelling techniques. The data indicate an high stability for this kind of quadruplex and add some information on the role of the tetra-branched linker on the quadruplex stability.
Collapse
Affiliation(s)
- Luigi Petraccone
- Dipartimento di Scienze Farmaceutiche, Via Ponte Don Melillo, 84084 Fisciano (SA), Italy
| | | | | | | | | | | | | |
Collapse
|
40
|
Phan AT, Kuryavyi V, Patel DJ. DNA architecture: from G to Z. Curr Opin Struct Biol 2006; 16:288-98. [PMID: 16714104 PMCID: PMC4689308 DOI: 10.1016/j.sbi.2006.05.011] [Citation(s) in RCA: 214] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2006] [Revised: 04/10/2006] [Accepted: 05/10/2006] [Indexed: 12/27/2022]
Abstract
G-quadruplexes and Z-DNA are two important non-B forms of DNA architecture. Results on novel structural elements, folding and unfolding kinetics, and interactions with small molecules and proteins have been reported recently for these forms. These results will enhance our understanding of the biology of these structures and provide a platform for drug design.
Collapse
Affiliation(s)
- Anh Tuân Phan
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA.
| | | | | |
Collapse
|