1
|
Paquette AR, Boddy CN. Double Stranded DNA Binding Stapled Peptides: An Emerging Tool for Transcriptional Regulation. Chembiochem 2023; 24:e202300594. [PMID: 37750576 DOI: 10.1002/cbic.202300594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 09/27/2023]
Abstract
Stapled peptides have rapidly established themselves as a powerful technique to mimic α-helical interactions with a short peptide sequence. There are many examples of stapled peptides that successfully disrupt α-helix-mediated protein-protein interactions, with an example currently in clinical trials. DNA-protein interactions are also often mediated by α-helices and are involved in all transcriptional regulation processes. Unlike DNA-binding small molecules, which typically lack DNA sequence selectivity, DNA-binding proteins bind with high affinity and high selectivity. These are ideal candidates for the design DNA-binding stapled peptides. Despite the parallel to protein-protein interaction disrupting stapled peptides and the need for sequence specific DNA binders, there are very few DNA-binding stapled peptides. In this review we examine all the known DNA-binding stapled peptides. Their design concepts are compared to stapled peptides that disrupt protein-protein interactions and based on the few examples in the literature, DNA-binding stapled peptide trends are discussed.
Collapse
Affiliation(s)
- André R Paquette
- Department of Chemistry and Biomolecular Sciences, The University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Christopher N Boddy
- Department of Chemistry and Biomolecular Sciences, The University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| |
Collapse
|
2
|
Matsuura K, Inaba H. Photoresponsive peptide materials: Spatiotemporal control of self-assembly and biological functions. BIOPHYSICS REVIEWS 2023; 4:041303. [PMID: 38505425 PMCID: PMC10903425 DOI: 10.1063/5.0179171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/27/2023] [Indexed: 03/21/2024]
Abstract
Peptides work as both functional molecules to modulate various biological phenomena and self-assembling artificial materials. The introduction of photoresponsive units to peptides allows the spatiotemporal remote control of their structure and function upon light irradiation. This article overviews the photoresponsive peptide design, interaction with biomolecules, and applications in self-assembling materials over the last 30 years. Peptides modified with photochromic (photoisomerizable) molecules, such as azobenzene and spiropyran, reversibly photo-controlled the binding to biomolecules and nanostructure formation through self-assembly. Photocleavable molecular units irreversibly control the functions of peptides through cleavage of the main chain and deprotection by light. Photocrosslinking between peptides or between peptides and other biomolecules enhances the structural stability of peptide assemblies and complexes. These photoresponsive peptides spatiotemporally controlled the formation and dissociation of peptide assemblies, gene expressions, protein-drug interactions, protein-protein interactions, liposome deformation and motility, cytoskeleton structure and stability, and cell functions by appropriate light irradiation. These molecular systems can be applied to photo-control biological functions, molecular robots, artificial cells, and next-generation smart drug delivery materials.
Collapse
|
3
|
Intrinsic Fluorescence of UV-Irradiated DNA. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
4
|
Volarić J, Thallmair S, Feringa BL, Szymanski W. Photoswitchable, Water‐soluble Bis‐azobenzene Cross‐linkers with Enhanced Properties for Biological Applications. CHEMPHOTOCHEM 2022. [DOI: 10.1002/cptc.202200170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Jana Volarić
- University of Groningen: Rijksuniversiteit Groningen Stratingh Institute for Chemistry NETHERLANDS
| | - Sebastian Thallmair
- Frankfurt Institute for Advanced Studies Frankfurt Institute for Advanced Studies GERMANY
| | - Ben L. Feringa
- University of Groningen: Rijksuniversiteit Groningen Stratingh Institute for Chemistry NETHERLANDS
| | - Wiktor Szymanski
- University Medical Center Groningen Department of Radiology Hanzeplein 1 9747AG Groningen NETHERLANDS
| |
Collapse
|
5
|
Paquette AR, Payne SR, McKay GA, Brazeau-Henrie JT, Darnowski MG, Kammili A, Bernal F, Mah TF, Gruenheid S, Nguyen D, Boddy CN. RpoN-Based stapled peptides with improved DNA binding suppress Pseudomonas aeruginosa virulence. RSC Med Chem 2022; 13:445-455. [PMID: 35647551 PMCID: PMC9020619 DOI: 10.1039/d1md00371b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/02/2022] [Indexed: 11/21/2022] Open
Abstract
Stapled peptides have the ability to mimic α-helices involved in protein binding and have proved to be effective pharmacological agents for disrupting protein-protein interactions. DNA-binding proteins such as transcription factors bind their cognate DNA sequences via an α-helix interacting with the major groove of DNA. We previously developed a stapled peptide based on the bacterial alternative sigma factor RpoN capable of binding the RpoN DNA promoter sequence and inhibiting RpoN-mediated expression in Escherichia coli. We have elucidated a structure-activity relationship for DNA binding by this stapled peptide, improving DNA binding affinity constants in the high nM range. Lead peptides were shown to have low toxicity as determined by their low hemolytic activity at 100 μM and were shown to have anti-virulence activity in a Galleria mellonella model of Pseudomonas aeruginosa infection. These findings support further preclinical development of stapled peptides as antivirulence agents targeting P. aeruginosa.
Collapse
Affiliation(s)
- André R. Paquette
- Department of Chemistry and Biomolecular Sciences, University of OttawaOttawaONK1N 6N5 Canada
| | - Sterling R. Payne
- Laboratory of Protein Dynamics and Signaling, National Cancer Institute, National Institutes of HealthFrederickMD 21702USA
| | - Geoffrey A. McKay
- Meakins-Christie Laboratories, Research Institute of the McGill University Health CentreMontrealQuebec H4A 3J1Canada
| | | | - Micheal G. Darnowski
- Department of Chemistry and Biomolecular Sciences, University of OttawaOttawaONK1N 6N5 Canada
| | - Anitha Kammili
- Department of Chemistry and Biomolecular Sciences, University of Ottawa Ottawa ON K1N 6N5 Canada
| | - Federico Bernal
- Laboratory of Protein Dynamics and Signaling, National Cancer Institute, National Institutes of HealthFrederickMD 21702USA
| | - Thien-Fah Mah
- Department of Biochemistry, Microbiology, and Immunology, University of OttawaOttawaONK1H 8M5Canada
| | | | - Dao Nguyen
- Meakins-Christie Laboratories, Research Institute of the McGill University Health CentreMontrealQuebec H4A 3J1Canada,Department of Medicine, McGill UniversityMontrealQuebec H4A 3J1Canada
| | - Christopher N. Boddy
- Department of Chemistry and Biomolecular Sciences, University of OttawaOttawaONK1N 6N5 Canada
| |
Collapse
|
6
|
Bozovic O, Jankovic B, Hamm P. Using azobenzene photocontrol to set proteins in motion. Nat Rev Chem 2021; 6:112-124. [PMID: 37117294 DOI: 10.1038/s41570-021-00338-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2021] [Indexed: 02/06/2023]
Abstract
Controlling the activity of proteins with azobenzene photoswitches is a potent tool for manipulating their biological function. With the help of light, it is possible to change binding affinities, control allostery or manipulate complex biological processes, for example. Additionally, owing to their intrinsically fast photoisomerization, azobenzene photoswitches can serve as triggers that initiate out-of-equilibrium processes. Such switching of the activity initiates a cascade of conformational events that can be accessed with time-resolved methods. In this Review, we show how the potency of azobenzene photoswitching can be combined with transient spectroscopic techniques to disclose the order of events and experimentally observe biomolecular interactions in real time. This strategy will further our understanding of how a protein can accommodate, adapt and readjust its structure to answer an incoming signal, revealing more of the dynamical character of proteins.
Collapse
|
7
|
Development and Characterization of Light-Responsive Peptide Macrocycles. Methods Mol Biol 2021. [PMID: 34596861 DOI: 10.1007/978-1-0716-1689-5_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Small molecules, peptide macrocycles, and protein conjugates that reversibly turn their function on and off in response to visible light enabled the fields of photopharmacology and optochemical genetics. In this chapter, we describe a method for the synthesis of light-responsive (LR) macrocycles from linear peptides composed of 20 natural amino acids. Bioactive LR molecules can be produced by grafting azobenzene or other LR-structures onto molecules with known biological functions (e.g., alpha-helical peptides). The resulting macrocyclic peptide contains two loops of amino acids, which is constrained with an azobenzene moiety that can change the conformation in response to visible light.
Collapse
|
8
|
Leistner AL, Kirchner S, Karcher J, Bantle T, Schulte ML, Gödtel P, Fengler C, Pianowski ZL. Fluorinated Azobenzenes Switchable with Red Light. Chemistry 2021; 27:8094-8099. [PMID: 33769596 PMCID: PMC8252058 DOI: 10.1002/chem.202005486] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Indexed: 02/06/2023]
Abstract
Molecular photoswitches triggered with red or NIR light are optimal for photomodulation of complex biological systems, including efficient penetration of the human body for therapeutic purposes ("therapeutic window"). Yet, they are rarely reported, and even more rarely functional under aqueous conditions. In this work, fluorinated azobenzenes are shown to exhibit efficient E→Z photoisomerization with red light (PSS660nm >75 % Z) upon conjugation with unsaturated substituents. Initially demonstrated for aldehyde groups, this effect was also observed in a more complex structure by incorporating the chromophore into a cyclic dipeptide with propensity for self-assembly. Under physiological conditions, the latter molecule formed a supramolecular material that reversibly changed its viscosity upon irradiation with red light. Our observation can lead to design of new photopharmacology agents or phototriggered materials for in vivo use.
Collapse
Affiliation(s)
- Anna-Lena Leistner
- Institut für Organische Chemie, Karlsruher Institut für Technologie, Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
| | - Susanne Kirchner
- Institut für Organische Chemie, Karlsruher Institut für Technologie, Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
| | - Johannes Karcher
- Institut für Organische Chemie, Karlsruher Institut für Technologie, Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
| | - Tobias Bantle
- Institut für Organische Chemie, Karlsruher Institut für Technologie, Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
| | - Mariam L Schulte
- Institut für Organische Chemie, Karlsruher Institut für Technologie, Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
| | - Peter Gödtel
- Institut für Organische Chemie, Karlsruher Institut für Technologie, Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
| | - Christian Fengler
- Institut für Technische Chemie und Polymerchemie, Karlsruher Institut für Technologie (KIT), Engesserstraße 18, 76128, Karlsruhe, Germany
| | - Zbigniew L Pianowski
- Institut für Organische Chemie, Karlsruher Institut für Technologie, Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
- Institute of Biological and Chemical Systems - FMS, Karlsruhe Institute of Technology, Hermann-von-Helmholtz Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
9
|
Raghavendra, Gupta SK, Kumar B. Effect of iron-iron oxide particles on the rate of isomerization of azobenzene moieties in polymeric liquid crystals at air-water interface. Colloid Polym Sci 2020. [DOI: 10.1007/s00396-020-04776-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Li X, Chen S, Zhang WD, Hu HG. Stapled Helical Peptides Bearing Different Anchoring Residues. Chem Rev 2020; 120:10079-10144. [DOI: 10.1021/acs.chemrev.0c00532] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Xiang Li
- School of Pharmacy, Second Military Medical University, Shanghai, China
- Insititute of Translational Medicine, Shanghai University, Shanghai, China
| | - Si Chen
- School of Medicine, Shanghai University, Shanghai, China
| | - Wei-Dong Zhang
- School of Pharmacy, Second Military Medical University, Shanghai, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hong-Gang Hu
- Insititute of Translational Medicine, Shanghai University, Shanghai, China
- Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China
| |
Collapse
|
11
|
Azobenzene-grafted carboxymethyl cellulose hydrogels with photo-switchable, reduction-responsive and self-healing properties for a controlled drug release system. Int J Biol Macromol 2020; 163:824-832. [PMID: 32653370 DOI: 10.1016/j.ijbiomac.2020.07.071] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/30/2020] [Accepted: 07/07/2020] [Indexed: 01/05/2023]
Abstract
In this study, multifunctional hydrogels containing host-guest complex formation between azobenzene-grafted carboxymethyl cellulose (CMC-Azo) and β-cyclodextrin (CD) dimers connected by disulfide bonds with agarose for structural support were prepared. The obtained hydrogels exhibited self-healing properties by host-guest complexation as well as gel-sol phase transition in response to ultraviolet (UV) light and reducing agents. Photo-switchable properties of the hydrogels depend on changes in the complex formation of CD-dimers through the trans(450 nm) to cis(365 nm) photo-isomerization of azobenzene. The tensile and strain sweep tests confirmed that the hydrogel's self-healing ability was 79.44% and 81.59%, respectively. In addition, drug release from the hydrogels was controlled to accelerate to 80% in 3 h using UV light or reducing agent. Since the suggested photo-switchable, reduction-responsive, and self-healable hydrogels are non-cytotoxic, they can be potentially applied as biomedical materials in the development of hydrogel-based drug release systems.
Collapse
|
12
|
Roberson MG, Duncan JM, Flieth KJ, Geary LM, Tucker MJ. Photo-initiated rupture of azobenzene micelles to enable the spectroscopic analysis of antimicrobial peptide dynamics. RSC Adv 2020; 10:21464-21472. [PMID: 32879729 PMCID: PMC7449587 DOI: 10.1039/d0ra01920h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/27/2020] [Indexed: 01/03/2023] Open
Abstract
Antimicrobial peptides (AMPs) show promise for the treatment of bacterial infections, but many have undesired hemolytic activities. The AMP MP1 not only has broad spectrum bactericidal activity, but has been shown to have antitumor activity. The interaction between AMPs and cellular membranes gives rise to a peptide's cell-specificity and activity. However, direct analysis of the biophysical interactions between peptides and membrane is complex, in part due to the nature of membrane environments as well as structural changes in the peptide that occurs upon binding to the membrane. In order to investigate the interplay between cell selectivity, activity, and secondary structural changes involved in antimicrobial peptide activity, we sought to implement photolizable membrane mimics to assess the types of information available from infrared spectroscopic measurements that follow from photoinitiated peptide dynamics. Azo-surfactants (APEG) form micelles containing a photolizable azobenzene core, which upon irradiation can induce membrane deformation resulting in breakdown of micelles. Spectroscopic analysis of membrane deformation may provide insights into the physical behavior associated with unfolding and dissociation of antimicrobial peptides within a membrane environment. Herein, we synthesized and characterized two new azo-surfactants, APEGTMG and APEGNEt2MeI. Furthermore, we demonstrate the viability of azosurfactants as membrane mimics by examining both the membrane binding and dissociation induced secondary structural changes of the antimicrobial peptide, MP1.
Collapse
Affiliation(s)
- Matthew G Roberson
- Department of Chemistry, University of Nevada, Reno, Reno, Nevada 89501, USA. ;
| | - Julia M Duncan
- Department of Chemistry, University of Nevada, Reno, Reno, Nevada 89501, USA. ;
| | - Keveen J Flieth
- Department of Chemistry, University of Nevada, Reno, Reno, Nevada 89501, USA. ;
| | - Laina M Geary
- Department of Chemistry, University of Nevada, Reno, Reno, Nevada 89501, USA. ;
| | - Matthew J Tucker
- Department of Chemistry, University of Nevada, Reno, Reno, Nevada 89501, USA. ;
| |
Collapse
|
13
|
Preußke N, Moormann W, Bamberg K, Lipfert M, Herges R, Sönnichsen FD. Visible-light-driven photocontrol of the Trp-cage protein fold by a diazocine cross-linker. Org Biomol Chem 2020; 18:2650-2660. [PMID: 32207764 DOI: 10.1039/c9ob02442e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Diazocines are characterized by extraordinary photochemical properties rendering them of particular interest for switching the conformation of biomolecules with visible light. Current developments afford synthetic access to unprecedented diazocine derivatives promising particular opportunities in photocontrol of proteins and biological systems. In this work, the well-established approach of photocontrolling the secondary structure of α-helices was exploited using a diazocine to reversibly fold and unfold the tertiary structure of a small protein. The protein of choice was the globulary folded Trp-cage, a widely used model system for the elucidation of protein folding pathways. A specifically designed, short and rigid dicarboxy-functionalized diazocine-based cross-linker was attached to two solvent-exposed side chains at the α-helix of the miniprotein through the use of a primary amine-selective active ester. This cross-linking strategy is orthogonal to the common cysteine-based chemistry. The cross-linked Trp-cage was successfully photoisomerized and exhibited a strong correlation between protein fold and diazocine isomeric state. As determined by NMR spectroscopy, the cis-isomer stabilized the fold, while the trans-isomer led to complete protein unfolding. The successful switching of the protein fold in principle demonstrates the ability to control protein function, as the activity depends on their structural integrity.
Collapse
Affiliation(s)
- Nils Preußke
- Otto-Diels-Institute for Organic Chemistry, Christian-Albrechts-University of Kiel, Otto-Hahn-Platz 4, 24118 Kiel, Germany.
| | | | | | | | | | | |
Collapse
|
14
|
Two-Photon Excitation of Azobenzene Photoswitches for Synthetic Optogenetics. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10030805] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Synthetic optogenetics is an emerging optical technique that enables users to photocontrol molecules, proteins, and cells in vitro and in vivo. This is achieved by use of synthetic chromophores—denoted photoswitches—that undergo light-dependent changes (e.g., isomerization), which are meticulously designed to interact with unique cellular targets, notably proteins. Following light illumination, the changes adopted by photoswitches are harnessed to affect the function of nearby proteins. In most instances, photoswitches absorb visible light, wavelengths of poor tissue penetration, and excessive scatter. These shortcomings impede their use in vivo. To overcome these challenges, photoswitches of red-shifted absorbance have been developed. Notably, this shift in absorbance also increases their compatibility with two-photon excitation (2PE) methods. Here, we provide an overview of recent efforts devoted towards optimizing azobenzene-based photoswitches for 2PE and their current applications.
Collapse
|
15
|
Albert L, Vázquez O. Photoswitchable peptides for spatiotemporal control of biological functions. Chem Commun (Camb) 2019; 55:10192-10213. [PMID: 31411602 DOI: 10.1039/c9cc03346g] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Light is unsurpassed in its ability to modulate biological interactions. Since their discovery, chemists have been fascinated by photosensitive molecules capable of switching between isomeric forms, known as photoswitches. Photoswitchable peptides have been recognized for many years; however, their functional implementation in biological systems has only recently been achieved. Peptides are now acknowledged as excellent protein-protein interaction modulators and have been important in the emergence of photopharmacology. In this review, we briefly explain the different classes of photoswitches and summarize structural studies when they are incorporated into peptides. Importantly, we provide a detailed overview of the rapidly increasing number of examples, where biological modulation is driven by the structural changes. Furthermore, we discuss some of the remaining challenges faced in this field. These exciting proof-of-principle studies highlight the tremendous potential of photocontrollable peptides as optochemical tools for chemical biology and biomedicine.
Collapse
Affiliation(s)
- Lea Albert
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043, Marburg, Germany.
| | | |
Collapse
|
16
|
Jafari MR, Yu H, Wickware JM, Lin YS, Derda R. Light-responsive bicyclic peptides. Org Biomol Chem 2019; 16:7588-7594. [PMID: 30067270 DOI: 10.1039/c7ob03178e] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this paper, we describe a method for the synthesis of light-responsive (LR) bicyclic macrocycles from linear peptides composed of 20 natural amino acids. Small molecules, peptide macrocycles, and protein conjugates that reversibly turn their function on and off in response to visible light enabled the fields of photopharmacology and optochemical genetics. Bioactive LR molecules could be produced by grafting azobenzene or other LR-structures onto molecules with known biological functions (e.g., alpha-helical peptides). It is also possible to discover such LR ligands de novo by selecting compounds with a desired function-such as binding to a target-from a library of LR-compounds or a genetically-encoded (GE) library of LR-macrocycles. The bicyclic topology of ligands offers added value such as improved binding and stability when compared to monocyclic peptides, but approaches for the design of bicyclic light-responsive architectures are limited. To address this need, we developed a tridentate C2-symmetric hydroxyl amine and di-chlorobenzene containing azobenzene (HADCAz) LR-linker with two orthogonally reactive functionalities (chlorobenzyl and hydroxylamine) to convert a linear unprotected peptide into a bicyclic peptide in a one-pot, two-step reaction. This linker reversibly isomerizes from the trans to cis form upon irradiation with blue light (365 nm). The resulting bicyclic peptide contains two loops of amino acids, one of which is constrained with an azobenzene moiety that can change the conformation in response to visible light. A scalable synthetic route to the HADCAz linker allowed us to demonstrate its application in multiple synthetic bicyclic peptides with loops that contain 2-5 amino acids.
Collapse
Affiliation(s)
- Mohammad R Jafari
- Department of Chemistry, University of Alberta, Edmonton, AB T6G2G2, Canada.
| | | | | | | | | |
Collapse
|
17
|
Pianowski ZL. Recent Implementations of Molecular Photoswitches into Smart Materials and Biological Systems. Chemistry 2019; 25:5128-5144. [PMID: 30614091 DOI: 10.1002/chem.201805814] [Citation(s) in RCA: 192] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/30/2018] [Indexed: 12/11/2022]
Abstract
Light is a nearly ideal stimulus for molecular systems. It delivers information encoded in the form of wavelengths and their intensities with high precision in space and time. Light is a mild trigger that does not permanently contaminate targeted samples. Its energy can be reversibly transformed into molecular motion, polarity, or flexibility changes. This leads to sophisticated functions at the supramolecular and macroscopic levels, from light-triggered nanomaterials to photocontrol over biological systems. New methods and molecular adapters of light are reported almost daily. Recently reported applications of photoresponsive systems, particularly azobenzenes, spiropyrans, diarylethenes, and indigoids, for smart materials and photocontrol of biological setups are described herein with the aim to demonstrate that the 21st century has become the Age of Enlightenment-"Le siècle des Lumières"-in molecular sciences.
Collapse
Affiliation(s)
- Zbigniew L Pianowski
- Institut für Organische Chemie, Karlsruher Institut für Technologie, Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany.,Institut für Toxikologie und Genetik, Karlsruher Institut für Technologie, Campus Nord, Hermann-von-Helmholtz Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
18
|
Kazem-Rostami M, Akhmedov NG, Faramarzi S. Molecular lambda shape light-driven dual switches: Spectroscopic and computational studies of the photoisomerization of bisazo Tröger base analogs. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2018.10.071] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Roy S, Ghosh P, Ahmed I, Chakraborty M, Naiya G, Ghosh B. Constrained α-Helical Peptides as Inhibitors of Protein-Protein and Protein-DNA Interactions. Biomedicines 2018; 6:E118. [PMID: 30567318 PMCID: PMC6315407 DOI: 10.3390/biomedicines6040118] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/13/2018] [Accepted: 09/14/2018] [Indexed: 02/06/2023] Open
Abstract
Intracellular regulatory pathways are replete with protein-protein and protein-DNA interactions, offering attractive targets for therapeutic interventions. So far, most drugs are targeted toward enzymes and extracellular receptors. Protein-protein and protein-DNA interactions have long been considered as "undruggable". Protein-DNA interactions, in particular, present a difficult challenge due to the repetitive nature of the B-DNA. Recent studies have provided several breakthroughs; however, a design methodology for these classes of inhibitors is still at its infancy. A dominant motif of these macromolecular interactions is an α-helix, raising possibilities that an appropriate conformationally-constrained α-helical peptide may specifically disrupt these interactions. Several methods for conformationally constraining peptides to the α-helical conformation have been developed, including stapling, covalent surrogates of hydrogen bonds and incorporation of unnatural amino acids that restrict the conformational space of the peptide. We will discuss these methods and several case studies where constrained α-helices have been used as building blocks for appropriate molecules. Unlike small molecules, the delivery of these short peptides to their targets is not straightforward as they may possess unfavorable cell penetration and ADME properties. Several methods have been developed in recent times to overcome some of these problems. We will discuss these issues and the prospects of this class of molecules as drugs.
Collapse
Affiliation(s)
- Siddhartha Roy
- Department of Biophysics, Bose Institute, P1/12 CIT Scheme VII M, Kolkata 700054, India.
| | - Piya Ghosh
- Department of Biophysics, Bose Institute, P1/12 CIT Scheme VII M, Kolkata 700054, India.
| | - Israr Ahmed
- Department of Biophysics, Bose Institute, P1/12 CIT Scheme VII M, Kolkata 700054, India.
| | - Madhumita Chakraborty
- Department of Biophysics, Bose Institute, P1/12 CIT Scheme VII M, Kolkata 700054, India.
| | - Gitashri Naiya
- Department of Biophysics, Bose Institute, P1/12 CIT Scheme VII M, Kolkata 700054, India.
| | - Basusree Ghosh
- Department of Biophysics, Bose Institute, P1/12 CIT Scheme VII M, Kolkata 700054, India.
| |
Collapse
|
20
|
Abstract
The last few years have witnessed significant advances in the use of light as a stimulus to control biomolecular interactions. Great efforts have been devoted to the development of genetically encoded optobiological and small photochromic switches. Newly discovered small molecules now allow researchers to build molecular systems that are sensitive to a wider range of wavelengths of light than ever before with improved switching fidelities and increased lifetimes of the photoactivated states. Because these molecules are relatively small and adopt predictable conformations they are well suited as tools to interrogate cellular function in a spatially and temporally contolled fashion and for applications in photopharmacology.
Collapse
Affiliation(s)
- Robert J Mart
- School of Chemistry & Cardiff Catalysis Institute, Cardiff University, Park Place, Cardiff, CF10 3AT, UK.
| | - Rudolf K Allemann
- School of Chemistry & Cardiff Catalysis Institute, Cardiff University, Park Place, Cardiff, CF10 3AT, UK.
| |
Collapse
|
21
|
Zhu M, Zhou H. Azobenzene-based small molecular photoswitches for protein modulation. Org Biomol Chem 2018; 16:8434-8445. [DOI: 10.1039/c8ob02157k] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This review highlights the design strategies of azobenzene photoswitches as well as their applications in the manipulation of biological systems.
Collapse
Affiliation(s)
- Mingyan Zhu
- State Key Laboratory of Microbial Metabolism
- School of Pharmacy
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Huchen Zhou
- State Key Laboratory of Microbial Metabolism
- School of Pharmacy
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| |
Collapse
|
22
|
Tylkowski B, Trojanowska A, Marturano V, Nowak M, Marciniak L, Giamberini M, Ambrogi V, Cerruti P. Power of light – Functional complexes based on azobenzene molecules. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.05.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
23
|
Zhou Q, Fursule I, Berron BJ, Beck MJ. Toward Spatiotemporally Controlled Synthesis of Photoresponsive Polymers: Computational Design of Azobenzene-Containing Monomers for Light-Mediated ROMP. J Phys Chem A 2016; 120:7101-11. [DOI: 10.1021/acs.jpca.6b05807] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Qunfei Zhou
- Department of Chemical and Materials Engineering and ‡Center for Computational
Sciences, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Ishan Fursule
- Department of Chemical and Materials Engineering and ‡Center for Computational
Sciences, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Brad J. Berron
- Department of Chemical and Materials Engineering and ‡Center for Computational
Sciences, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Matthew J. Beck
- Department of Chemical and Materials Engineering and ‡Center for Computational
Sciences, University of Kentucky, Lexington, Kentucky 40506, United States
| |
Collapse
|
24
|
Tylkowski B, Jastrząb R, Skrobańska M. Photo-sensitive complexes based on azobenzene. PHYSICAL SCIENCES REVIEWS 2016. [DOI: 10.1515/psr-2016-0002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
25
|
Jafari MR, Lakusta J, Lundgren RJ, Derda R. Allene Functionalized Azobenzene Linker Enables Rapid and Light-Responsive Peptide Macrocyclization. Bioconjug Chem 2016; 27:509-14. [DOI: 10.1021/acs.bioconjchem.6b00026] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Mohammad R. Jafari
- Department of Chemistry and ‡Alberta Glycomics
Centre, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Jenner Lakusta
- Department of Chemistry and ‡Alberta Glycomics
Centre, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Rylan J. Lundgren
- Department of Chemistry and ‡Alberta Glycomics
Centre, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Ratmir Derda
- Department of Chemistry and ‡Alberta Glycomics
Centre, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
26
|
Nagashima T, Ueda K, Nishimura C, Yamazaki T. Structure-Correlation NMR Spectroscopy for Macromolecules Using Repeated Bidirectional Photoisomerization of Azobenzene. Anal Chem 2015; 87:11544-52. [PMID: 26479462 DOI: 10.1021/acs.analchem.5b03427] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Control over macromolecular structure offers bright potentials for manipulation of macromolecular functions. We here present structure-correlation NMR spectroscopy to analyze the correlation between polymorphic macromolecular structures driven by photoisomerization of azobenzene. The structural conversion of azobenzene was induced within the mixing time of a NOESY experiment using a colored light source, and the reverse structural conversion was induced during the relaxation delay using a light source of another color. The correlation spectrum between trans- and cis-azobenzene was then obtained. To maximize the efficiency of the bidirectional photoisomerization of azobenzene-containing macromolecules, we developed a novel light-irradiation NMR sample tube and method for irradiating target molecules in an NMR radio frequency (rf) coil. When this sample tube was used for photoisomerization of an azobenzene derivative at a concentration of 0.2 mM, data collection with reasonable sensitivity applicable to macromolecules was achieved. We performed isomerization of an azobenzene-cross-linked peptide within the mixing time of a NOESY experiment that produced cross-peaks between helix and random-coil forms of the peptide. Thus, these results indicate that macromolecular structure manipulation can be incorporated into an NMR pulse sequence using an azobenzene derivative and irradiation with light of two types of wavelengths, providing a new method for structural analysis of metastable states of macromolecules.
Collapse
Affiliation(s)
- Toshio Nagashima
- RIKEN Center for Life Science Technologies , 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Keisuke Ueda
- RIKEN Center for Life Science Technologies , 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Chiaki Nishimura
- Faculty of Pharmaceutical Sciences, Teikyo Heisei University , 4-21-2 Nakano, Nakano-ku, Tokyo 164-8530, Japan
| | - Toshio Yamazaki
- RIKEN Center for Life Science Technologies , 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| |
Collapse
|
27
|
Computational design of co-assembling protein-DNA nanowires. Nature 2015; 525:230-3. [PMID: 26331548 DOI: 10.1038/nature14874] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 06/30/2015] [Indexed: 11/09/2022]
Abstract
Biomolecular self-assemblies are of great interest to nanotechnologists because of their functional versatility and their biocompatibility. Over the past decade, sophisticated single-component nanostructures composed exclusively of nucleic acids, peptides and proteins have been reported, and these nanostructures have been used in a wide range of applications, from drug delivery to molecular computing. Despite these successes, the development of hybrid co-assemblies of nucleic acids and proteins has remained elusive. Here we use computational protein design to create a protein-DNA co-assembling nanomaterial whose assembly is driven via non-covalent interactions. To achieve this, a homodimerization interface is engineered onto the Drosophila Engrailed homeodomain (ENH), allowing the dimerized protein complex to bind to two double-stranded DNA (dsDNA) molecules. By varying the arrangement of protein-binding sites on the dsDNA, an irregular bulk nanoparticle or a nanowire with single-molecule width can be spontaneously formed by mixing the protein and dsDNA building blocks. We characterize the protein-DNA nanowire using fluorescence microscopy, atomic force microscopy and X-ray crystallography, confirming that the nanowire is formed via the proposed mechanism. This work lays the foundation for the development of new classes of protein-DNA hybrid materials. Further applications can be explored by incorporating DNA origami, DNA aptamers and/or peptide epitopes into the protein-DNA framework presented here.
Collapse
|
28
|
Ali AM, Forbes MW, Woolley GA. Optimizing the Photocontrol of bZIP Coiled Coils with Azobenzene Crosslinkers: Role of the Crosslinking Site. Chembiochem 2015; 16:1757-63. [DOI: 10.1002/cbic.201500191] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Indexed: 11/07/2022]
|
29
|
QIN CG, LU CX, OUYANG GW, QIN K, ZHANG F, SHI HT, WANG XH. Progress of Azobenzene-based Photoswitchable Molecular Probes and Sensory Chips for Chemical and Biological Analysis. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2015. [DOI: 10.1016/s1872-2040(15)60809-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
30
|
Iyer A, Van Lysebetten D, Ruiz García Y, Louage B, De Geest BG, Madder A. Stapling monomeric GCN4 peptides allows for DNA binding and enhanced cellular uptake. Org Biomol Chem 2015; 13:3856-62. [DOI: 10.1039/c4ob02659d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Facile synthesis of DNA binding stapled peptides which show enhanced cellular uptake is described considering the GCN4 transcription factor as a model protein.
Collapse
Affiliation(s)
- Abhishek Iyer
- Organic and Biomimetic Chemistry Research Group
- B-9000 Gent
- Belgium
| | | | - Yara Ruiz García
- Organic and Biomimetic Chemistry Research Group
- B-9000 Gent
- Belgium
| | - Benoit Louage
- Department of Pharmaceutics. Ghent University
- 9000 Ghent
- Belgium
| | | | - Annemieke Madder
- Organic and Biomimetic Chemistry Research Group
- B-9000 Gent
- Belgium
| |
Collapse
|
31
|
Kundu PK, Klajn R. Watching single molecules move in response to light. ACS NANO 2014; 8:11913-11916. [PMID: 25474733 DOI: 10.1021/nn506656r] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Nature has long inspired scientists with its seemingly unlimited ability to harness solar energy and to utilize it to drive various physiological processes. With the help of man-made molecular photoswitches, we now have the potential to outperform natural systems in many ways, with the ultimate goal of fabricating multifunctional materials that operate at different light wavelengths. An important challenge in developing light-controlled artificial molecular machines lies in attaining a detailed understanding of the photoisomerization-coupled conformational changes that occur in macromolecules and molecular assemblies. In this issue of ACS Nano, Bléger, Rabe, and co-workers use force microscopy to provide interesting insights into the behavior of individual photoresponsive molecules and to identify contraction, extension, and crawling events accompanying light-induced isomerization.
Collapse
Affiliation(s)
- Pintu K Kundu
- Department of Organic Chemistry, Weizmann Institute of Science , Rehovot 76100, Israel
| | | |
Collapse
|
32
|
Markiewicz BN, Culik RM, Gai F. Tightening up the structure, lighting up the pathway: Application of molecular constraints and light to manipulate protein folding, self-assembly and function. Sci China Chem 2014; 57:1615-1624. [PMID: 25722715 PMCID: PMC4337807 DOI: 10.1007/s11426-014-5225-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Chemical cross-linking provides an effective avenue to reduce the conformational entropy of polypeptide chains and hence has become a popular method to induce or force structural formation in peptides and proteins. Recently, other types of molecular constraints, especially photoresponsive linkers and functional groups, have also found increased use in a wide variety of applications. Herein, we provide a concise review of using various forms of molecular strategies to constrain proteins, thereby stabilizing their native states, gaining insight into their folding mechanisms, and/or providing a handle to trigger a conformational process of interest with light. The applications discussed here cover a wide range of topics, ranging from delineating the details of the protein folding energy landscape to controlling protein assembly and function.
Collapse
Affiliation(s)
| | - Robert M. Culik
- Department of Biochemistry and Biophysics, University of Pennsylvania, PA, 19104, USA
| | - Feng Gai
- Department of Chemistry, University of Pennsylvania, PA, 19104, USA
| |
Collapse
|
33
|
Mart RJ, Errington RJ, Watkins CL, Chappell SC, Wiltshire M, Jones AT, Smith PJ, Allemann RK. BH3 helix-derived biophotonic nanoswitches regulate cytochrome c release in permeabilised cells. MOLECULAR BIOSYSTEMS 2014; 9:2597-603. [PMID: 23942570 DOI: 10.1039/c3mb70246d] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Dynamic physical interactions between proteins underpin all key cellular processes and are a highly attractive area for the development of research tools and medicines. Protein-protein interactions frequently involve α-helical structures, but peptides matching the sequences of these structures usually do not fold correctly in isolation. Therefore, much research has focused on the creation of small peptides that adopt stable α-helical structures even in the absence of their intended protein targets. We show that short peptides alkylated with azobenzene crosslinkers can be used to photo-stimulate mitochondrial membrane depolarization and cytochrome c release in permeabilised cells, the initial events of the intrinsic apoptosis pathway.
Collapse
Affiliation(s)
- Robert J Mart
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Mosquera J, Rodríguez J, Vázquez ME, Mascareñas JL. Selective DNA-binding by designed bisbenzamidine-homeodomain chimeras. Chembiochem 2014; 15:1092-5. [PMID: 24764315 DOI: 10.1002/cbic.201400079] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Indexed: 02/06/2023]
Abstract
We report the construction of conjugates between three variants of the helix 3 region of a Q50K engrailed homeodomain and bisbenzamidine minor-groove DNA binders. The hybrid featuring the sequence of the native protein failed to bind to DNA; however, modifications that increased the α-helical folding propensity of the peptide allowed specific DNA binding by a bipartite (major/minor groove) interaction.
Collapse
Affiliation(s)
- Jesús Mosquera
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, Jenaro de la Fuente sn, 15782 Santiago de Compostela (Spain)
| | | | | | | |
Collapse
|
35
|
Jafari MR, Deng L, Kitov PI, Ng S, Matochko WL, Tjhung KF, Zeberoff A, Elias A, Klassen JS, Derda R. Discovery of light-responsive ligands through screening of a light-responsive genetically encoded library. ACS Chem Biol 2014; 9:443-50. [PMID: 24195775 DOI: 10.1021/cb4006722] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Light-responsive ligands are useful tools in biochemistry and cell biology because the function of these ligands can be spatially and temporally controlled. Conventional design of such ligands relies on previously available data about the structure of both the ligand and the receptor. In this paper, we describe de novo discovery of light-responsive ligands through screening of a genetically encoded light-responsive library. We ligated a photoresponsive azobenzene core to a random CX7C peptide library displayed on the coat protein of M13 phage. A one-pot alkylation/reduction of the cysteines yielded a photoresponsive library of random heptapeptide macrocycles with over 2 × 10(8) members. We characterized the reaction on-phage and optimized the yield of the modifications in phage libraries. Screening of the library against streptavidin yielded three macrocycles that bind to streptavidin in the dark and cease binding upon irradiation with 370 nm light. All ligands restored their binding properties upon thermal relaxation and could be turned ON and OFF for several cycles. We measured dissociation constants, Kd, by electrospray ionization mass spectrometry (ESI-MS) binding assay. For ligand ACGFERERTCG, the Kd of cis and trans isomers differed by 22-fold; an incomplete isomerization (85%), however, resulted in the apparent difference of 4.5-fold between the dark and the irradiated state. We anticipate that the selection strategy described in this report can be used to find light-responsive ligands for many targets that do not have known natural ligands.
Collapse
Affiliation(s)
- Mohammad R. Jafari
- Department
of Chemistry and Alberta Glycomics Centre, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Lu Deng
- Department
of Chemistry and Alberta Glycomics Centre, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Pavel I. Kitov
- Department
of Chemistry and Alberta Glycomics Centre, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Simon Ng
- Department
of Chemistry and Alberta Glycomics Centre, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Wadim L. Matochko
- Department
of Chemistry and Alberta Glycomics Centre, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Katrina F. Tjhung
- Department
of Chemistry and Alberta Glycomics Centre, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Anthony Zeberoff
- Department
of Chemical and Material Engineering, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Anastasia Elias
- Department
of Chemical and Material Engineering, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - John S. Klassen
- Department
of Chemistry and Alberta Glycomics Centre, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Ratmir Derda
- Department
of Chemistry and Alberta Glycomics Centre, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
36
|
Ritterson RS, Kuchenbecker KM, Michalik M, Kortemme T. Design of a photoswitchable cadherin. J Am Chem Soc 2013; 135:12516-9. [PMID: 23923816 PMCID: PMC3774674 DOI: 10.1021/ja404992r] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Indexed: 01/31/2023]
Abstract
There is a growing interest in engineering proteins whose function can be controlled with the spatial and temporal precision of light. Here, we present a novel example of a functional light-triggered switch in the Ca-dependent cell-cell adhesion protein E-cadherin, created using a mechanism-based design strategy. We report an 18-fold change in apparent Ca(2+) binding affinity upon illumination. Our results include a detailed examination of functional switching via linked changes in Ca(2+) binding and cadherin dimerization. This design opens avenues toward controllable tools that could be applied to many long-standing questions about cadherin's biological function in cell-cell adhesion and downstream signaling.
Collapse
Affiliation(s)
- Ryan S Ritterson
- Graduate Group in Biophysics, University of California, San Francisco, San Francisco, California 94158, USA.
| | | | | | | |
Collapse
|
37
|
Haney CM, Horne WS. Oxime side-chain cross-links in an α-helical coiled-coil protein: structure, thermodynamics, and folding-templated synthesis of bicyclic species. Chemistry 2013; 19:11342-51. [PMID: 23843311 DOI: 10.1002/chem.201300506] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Indexed: 01/11/2023]
Abstract
Covalent side-chain cross-links are a versatile method to control peptide folding, particularly when α-helical secondary structure is the target. Here, we examine the application of oxime bridges, formed by the chemoselective reaction between aminooxy and aldehyde side chains, for the stabilization of a helical peptide involved in a protein-protein complex. A series of sequence variants of the dimeric coiled coil GCN4-p1 bearing oxime bridges at solvent-exposed positions were prepared and biophysically characterized. Triggered unmasking of a side-chain aldehyde in situ and subsequent cyclization proceed rapidly and cleanly at pH 7 in the folded protein complex. Comparison of folding thermodynamics among a series of different oxime bridges show that the cross links are consistently stabilizing to the coiled coil, with the extent of stabilization sensitive to the exact size and structure of the macrocycle. X-ray crystallographic analysis of a coiled coil with the best cross link in place and a second structure of its linear precursor show how the bridge is accommodated into an α-helix. Preparation of a bicyclic oligomer by simultaneous formation of two linkages in situ demonstrates the potential use of triggered oxime formation to both trap and stabilize a particular peptide folded conformation in the bound state.
Collapse
Affiliation(s)
- Conor M Haney
- Department of Chemistry, University of Pittsburgh, 219 Parkman Ave., Pittsburgh, PA 15260, USA
| | | |
Collapse
|
38
|
Goulet-Hanssens A, Barrett CJ. Photo-control of biological systems with azobenzene polymers. ACTA ACUST UNITED AC 2013. [DOI: 10.1002/pola.26735] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Alexis Goulet-Hanssens
- Department of Chemistry; McGill University; 801 Sherbrooke Street West Montreal Quebec Canada H3A 0B8
| | - Christopher J. Barrett
- Department of Chemistry; McGill University; 801 Sherbrooke Street West Montreal Quebec Canada H3A 0B8
| |
Collapse
|
39
|
Szymański W, Beierle JM, Kistemaker HAV, Velema WA, Feringa BL. Reversible Photocontrol of Biological Systems by the Incorporation of Molecular Photoswitches. Chem Rev 2013; 113:6114-78. [DOI: 10.1021/cr300179f] [Citation(s) in RCA: 847] [Impact Index Per Article: 70.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Wiktor Szymański
- Stratingh Institute
for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The
Netherlands
| | - John M. Beierle
- Stratingh Institute
for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The
Netherlands
| | - Hans A. V. Kistemaker
- Stratingh Institute
for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The
Netherlands
| | - Willem A. Velema
- Stratingh Institute
for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The
Netherlands
| | - Ben L. Feringa
- Stratingh Institute
for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The
Netherlands
| |
Collapse
|
40
|
Ulrich S, Dumy P, Boturyn D, Renaudet O. Engineering of biomolecules for sensing and imaging applications. J Drug Deliv Sci Technol 2013. [DOI: 10.1016/s1773-2247(13)50001-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
41
|
Ali AM, Woolley GA. The effect of azobenzene cross-linker position on the degree of helical peptide photo-control. Org Biomol Chem 2013; 11:5325-31. [DOI: 10.1039/c3ob40684a] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
42
|
Samanta S, Qureshi HI, Woolley GA. A bisazobenzene crosslinker that isomerizes with visible light. Beilstein J Org Chem 2012; 8:2184-90. [PMID: 23359333 PMCID: PMC3554325 DOI: 10.3762/bjoc.8.246] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 11/26/2012] [Indexed: 11/23/2022] Open
Abstract
Background: Large conformational and functional changes of azobenzene-modified biomolecules require longer azobenzene derivatives that undergo large end-to-end distance changes upon photoisomerization. In addition, isomerization that occurs with visible rather than UV irradiation is preferred for biological applications. Results: We report the synthesis and characterization of a new crosslinker in which a central piperazine unit links two azobenzene chromophores. Molecular modeling indicates that this crosslinker can undergo a large change in end-to-end distance upon trans,trans to cis,cis isomerization. Photochemical characterization indicates that it does isomerize with visible light (violet to blue wavelengths). However, the thermal relaxation rate of this crosslinker is rather high (τ½ ~ 1 s in aqueous buffer at neutral pH) so that it is difficult to produce large fractions of the cis,cis-species without very bright light sources. Conclusion: While cis-lifetimes may be longer when the crosslinker is attached to a biomolecule, it appears the para-piperazine unit may be best suited for applications where rapid thermal relaxation is required.
Collapse
Affiliation(s)
- Subhas Samanta
- Department of Chemistry, University of Toronto, 80 St. George St., Toronto, ON, M5S 3H6, Canada; telephone: (416) 978-0675, fax: (416) 978-8775
| | | | | |
Collapse
|
43
|
Wang G, Zhang J. Photoresponsive molecular switches for biotechnology. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2012. [DOI: 10.1016/j.jphotochemrev.2012.06.002] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
44
|
Jiménez-Balsa A, Pazos E, Martínez-Albardonedo B, Mascareñas JL, Vázquez ME. Temporary Electrostatic Impairment of DNA Recognition: Light-Driven DNA Binding of Peptide Dimers. Angew Chem Int Ed Engl 2012; 51:8825-9. [DOI: 10.1002/anie.201201627] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Indexed: 12/18/2022]
|
45
|
Jiménez-Balsa A, Pazos E, Martínez-Albardonedo B, Mascareñas JL, Vázquez ME. Temporary Electrostatic Impairment of DNA Recognition: Light-Driven DNA Binding of Peptide Dimers. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201201627] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
46
|
Merino E, Ribagorda M. Control over molecular motion using the cis-trans photoisomerization of the azo group. Beilstein J Org Chem 2012; 8:1071-90. [PMID: 23019434 PMCID: PMC3458724 DOI: 10.3762/bjoc.8.119] [Citation(s) in RCA: 306] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 06/21/2012] [Indexed: 12/16/2022] Open
Abstract
Control over molecular motion represents an important objective in modern chemistry. Aromatic azobenzenes are excellent candidates as molecular switches since they can exist in two forms, namely the cis (Z) and trans (E) isomers, which can interconvert both photochemically and thermally. This transformation induces a molecular movement and a significant geometric change, therefore the azobenzene unit is an excellent candidate to build dynamic molecular devices. We describe selected examples of systems containing an azobenzene moiety and their motions and geometrical changes caused by external stimuli.
Collapse
Affiliation(s)
- Estíbaliz Merino
- Instituto de Química Orgánica General, Centro Superior de Investigaciones Científicas (CSIC), C/ Juan de la Cierva, 3, 28006, Madrid, Spain
| | - María Ribagorda
- Departmento de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| |
Collapse
|
47
|
Wysoczanski P, Mart RJ, Loveridge EJ, Williams C, Whittaker SBM, Crump MP, Allemann RK. NMR Solution Structure of a Photoswitchable Apoptosis Activating Bak Peptide Bound to Bcl-xL. J Am Chem Soc 2012; 134:7644-7. [DOI: 10.1021/ja302390a] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Piotr Wysoczanski
- School of Chemistry and Cardiff
Catalysis Institute, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Robert J. Mart
- School of Chemistry and Cardiff
Catalysis Institute, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| | - E. Joel Loveridge
- School of Chemistry and Cardiff
Catalysis Institute, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Christopher Williams
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol
BS8 1TS, United Kingdom
| | - Sara B.-M. Whittaker
- School
of Cancer Sciences, University of Birmingham, Henry Wellcome Building for
Biomolecular NMR Spectroscopy, Birmingham B15 2TT, United Kingdom
| | - Matthew P. Crump
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol
BS8 1TS, United Kingdom
| | - Rudolf K. Allemann
- School of Chemistry and Cardiff
Catalysis Institute, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| |
Collapse
|
48
|
Mart RJ, Wysoczański P, Kneissl S, Ricci A, Brancale A, Allemann RK. Design of Photocontrolled RNA-Binding Peptidomimetics. Chembiochem 2012; 13:515-9. [DOI: 10.1002/cbic.201100800] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2011] [Indexed: 01/01/2023]
|
49
|
Liu M, Tada S, Ito M, Abe H, Ito Y. In vitro selection of a photo-responsive peptide aptamer using ribosome display. Chem Commun (Camb) 2012; 48:11871-3. [DOI: 10.1039/c2cc36618e] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
50
|
Pazos E, Mosquera J, Vázquez ME, Mascareñas JL. DNA Recognition by Synthetic Constructs. Chembiochem 2011; 12:1958-73. [DOI: 10.1002/cbic.201100247] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Indexed: 12/29/2022]
|