1
|
Choi J, Ahn J, Bae J, Yoon M, Yun H, Koh M. Designing a Novel Temperature- and Noncanonical Amino Acid-Controlled Biological Logic Gate in Escherichia coli. ACS Synth Biol 2024; 13:2587-2599. [PMID: 39110782 DOI: 10.1021/acssynbio.4c00423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Genetic code expansion (GCE) is a powerful strategy that expands the genetic code of an organism for incorporating noncanonical amino acids into proteins using engineered tRNAs and aminoacyl-tRNA synthetases (aaRSs). While GCE has opened up new possibilities for synthetic biology, little is known about the potential side effects of exogenous aaRS/tRNA pairs. In this study, we investigated the impact of exogenous aaRS and amber suppressor tRNA on gene expression in Escherichia coli. We discovered that in DH10β ΔcyaA, transformed with the F1RP/F2P two-hybrid system, the high consumption rate of cellular adenosine triphosphate by exogenous aaRS/tRNA at elevated temperatures induces temperature sensitivity in the expression of genes regulated by the cyclic AMP receptor protein (CRP). We harnessed this temperature sensitivity to create a novel biological AND gate in E. coli, responsive to both p-benzoylphenylalanine (BzF) and low temperature, using a BzF-dependent variant of E. coli chorismate mutase and split subunits of Bordetella pertussis adenylate cyclase. Our study provides new insights into the unexpected effects of exogenous aaRS/tRNA pairs and offers a new approach for constructing a biological logic gate.
Collapse
Affiliation(s)
- Jongdoo Choi
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| | - Jiyeun Ahn
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| | - Jieun Bae
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| | - Moonsang Yoon
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| | - Hwayoung Yun
- College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| | - Minseob Koh
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
2
|
Goettig P, Koch NG, Budisa N. Non-Canonical Amino Acids in Analyses of Protease Structure and Function. Int J Mol Sci 2023; 24:14035. [PMID: 37762340 PMCID: PMC10531186 DOI: 10.3390/ijms241814035] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/18/2023] [Accepted: 08/20/2023] [Indexed: 09/29/2023] Open
Abstract
All known organisms encode 20 canonical amino acids by base triplets in the genetic code. The cellular translational machinery produces proteins consisting mainly of these amino acids. Several hundred natural amino acids serve important functions in metabolism, as scaffold molecules, and in signal transduction. New side chains are generated mainly by post-translational modifications, while others have altered backbones, such as the β- or γ-amino acids, or they undergo stereochemical inversion, e.g., in the case of D-amino acids. In addition, the number of non-canonical amino acids has further increased by chemical syntheses. Since many of these non-canonical amino acids confer resistance to proteolytic degradation, they are potential protease inhibitors and tools for specificity profiling studies in substrate optimization and enzyme inhibition. Other applications include in vitro and in vivo studies of enzyme kinetics, molecular interactions and bioimaging, to name a few. Amino acids with bio-orthogonal labels are particularly attractive, enabling various cross-link and click reactions for structure-functional studies. Here, we cover the latest developments in protease research with non-canonical amino acids, which opens up a great potential, e.g., for novel prodrugs activated by proteases or for other pharmaceutical compounds, some of which have already reached the clinical trial stage.
Collapse
Affiliation(s)
- Peter Goettig
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Paracelsus Medical University, Strubergasse 21, 5020 Salzburg, Austria
| | - Nikolaj G. Koch
- Biocatalysis Group, Technische Universität Berlin, 10623 Berlin, Germany;
- Bioanalytics Group, Institute of Biotechnology, Technische Universität Berlin, 10623 Berlin, Germany;
| | - Nediljko Budisa
- Bioanalytics Group, Institute of Biotechnology, Technische Universität Berlin, 10623 Berlin, Germany;
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
3
|
Yao CY, Lin HY, Morgenfurt P, Keyes TE, de Silva AP. Multiple molecular logic gate arrays in one system of (2-(2'-pyridyl)imidazole)Ru(ii) complexes and trimeric cyclophanes in water. Chem Sci 2022; 13:10856-10867. [PMID: 36320709 PMCID: PMC9491216 DOI: 10.1039/d2sc03617g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/25/2022] [Indexed: 12/05/2022] Open
Abstract
Shape-switchable cyclophane hosts allow the controlled capture and release of reactive polypyridineRu(ii) complexes in water. This gives rise to a network of host-guest binding, acid-base reactions in ground and excited states, and chemical redox interconversions. In the case of (2-(2'-pyridyl)imidazole)Ru(ii) complexes, several molecular logic gate arrays of varying complexity emerge as a result. Cyclophane-induced 'off-on' switching of luminescence in neutral solution is found to originate from two features of these aromatic hosts: enhancement of radiative decay by the polarizable host and the suppression of nonradiative decay involving deprotonation by reducing the water content within the deep host cavity. These are examples of nanometric coordination chemistry/physics being controlled by inclusion in an open box. The aromatic units of the macrocycle are also responsible for the shape-switching mechanism of wall collapse/erection.
Collapse
Affiliation(s)
- Chao-Yi Yao
- School of Chemistry and Chemical Engineering, Queen's University Belfast BT9 5AG UK
| | - Hong-Yu Lin
- School of Chemistry and Chemical Engineering, Queen's University Belfast BT9 5AG UK
| | - Philip Morgenfurt
- School of Chemical Sciences, Dublin City University Dublin 9 Ireland
| | - Tia E Keyes
- School of Chemical Sciences, Dublin City University Dublin 9 Ireland
| | - A Prasanna de Silva
- School of Chemistry and Chemical Engineering, Queen's University Belfast BT9 5AG UK
| |
Collapse
|
4
|
Three-dimensional structure-guided evolution of a ribosome with tethered subunits. Nat Chem Biol 2022; 18:990-998. [PMID: 35836020 PMCID: PMC9815830 DOI: 10.1038/s41589-022-01064-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 05/17/2022] [Indexed: 01/11/2023]
Abstract
RNA-based macromolecular machines, such as the ribosome, have functional parts reliant on structural interactions spanning sequence-distant regions. These features limit evolutionary exploration of mutant libraries and confound three-dimensional structure-guided design. To address these challenges, we describe Evolink (evolution and linkage), a method that enables high-throughput evolution of sequence-distant regions in large macromolecular machines, and library design guided by computational RNA modeling to enable exploration of structurally stable designs. Using Evolink, we evolved a tethered ribosome with a 58% increased activity in orthogonal protein translation and a 97% improvement in doubling times in SQ171 cells compared to a previously developed tethered ribosome, and reveal new permissible sequences in a pair of ribosomal helices with previously explored biological function. The Evolink approach may enable enhanced engineering of macromolecular machines for new and improved functions for synthetic biology.
Collapse
|
5
|
Joo M, Yeom JH, Choi Y, Jun H, Song W, Kim HL, Lee K, Shin E. Specialised ribosomes as versatile regulators of gene expression. RNA Biol 2022; 19:1103-1114. [PMID: 36255182 PMCID: PMC9586635 DOI: 10.1080/15476286.2022.2135299] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
The ribosome has long been thought to be a homogeneous cellular machine that constitutively and globally synthesises proteins from mRNA. However, recent studies have revealed that ribosomes are highly heterogeneous, dynamic macromolecular complexes with specialised roles in translational regulation in many organisms across the kingdoms. In this review, we summarise the current understanding of ribosome heterogeneity and the specialised functions of heterogeneous ribosomes. We also discuss specialised translation systems that utilise orthogonal ribosomes.
Collapse
Affiliation(s)
- Minju Joo
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Ji-Hyun Yeom
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Younkyung Choi
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Hyeon Jun
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Wooseok Song
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Hyun-Lee Kim
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Kangseok Lee
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Eunkyoung Shin
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| |
Collapse
|
6
|
Cui Z, Johnston WA, Alexandrov K. Cell-Free Approach for Non-canonical Amino Acids Incorporation Into Polypeptides. Front Bioeng Biotechnol 2020; 8:1031. [PMID: 33117774 PMCID: PMC7550873 DOI: 10.3389/fbioe.2020.01031] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/07/2020] [Indexed: 12/12/2022] Open
Abstract
Synthetic biology holds promise to revolutionize the life sciences and biomedicine via expansion of macromolecular diversity outside the natural chemical space. Use of non-canonical amino acids (ncAAs) via codon reassignment has found diverse applications in protein structure and interaction analysis, introduction of post-translational modifications, production of constrained peptides, antibody-drug conjugates, and novel enzymes. However, simultaneously encoding multiple ncAAs in vivo requires complex engineering and is sometimes restricted by the cell's poor uptake of ncAAs. In contrast the open nature of cell-free protein synthesis systems offers much greater freedom for manipulation and repurposing of the biosynthetic machinery by controlling the level and identity of translational components and reagents, and allows simultaneous incorporation of multiple ncAAs with non-canonical side chains and even backbones (N-methyl, D-, β-amino acids, α-hydroxy acids etc.). This review focuses on the two most used Escherichia coli-based cell-free protein synthesis systems; cell extract- and PURE-based systems. The former is a biological mixture with >500 proteins, while the latter consists of 38 individually purified biomolecules. We delineate compositions of these two systems and discuss their respective advantages and applications. Also, we dissect the translational components required for ncAA incorporation and compile lists of ncAAs that can be incorporated into polypeptides via different acylation approaches. We highlight the recent progress in using unnatural nucleobase pairs to increase the repertoire of orthogonal codons, as well as using tRNA-specific ribozymes for in situ acylation. We summarize advances in engineering of translational machinery such as tRNAs, aminoacyl-tRNA synthetases, elongation factors, and ribosomes to achieve efficient incorporation of structurally challenging ncAAs. We note that, many engineered components of biosynthetic machinery are developed for the use in vivo but are equally applicable to the in vitro systems. These are included in the review to provide a comprehensive overview for ncAA incorporation and offer new insights for the future development in cell-free systems. Finally, we highlight the exciting progress in the genomic engineering, resulting in E. coli strains free of amber and some redundant sense codons. These strains can be used for preparation of cell extracts offering multiple reassignment options.
Collapse
Affiliation(s)
- Zhenling Cui
- Synthetic Biology Laboratory, School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD, Australia
| | - Wayne A Johnston
- Synthetic Biology Laboratory, School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD, Australia
| | - Kirill Alexandrov
- Synthetic Biology Laboratory, School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
7
|
Rondon RE, Groseclose TM, Short AE, Wilson CJ. Transcriptional programming using engineered systems of transcription factors and genetic architectures. Nat Commun 2019; 10:4784. [PMID: 31636266 PMCID: PMC6803630 DOI: 10.1038/s41467-019-12706-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 09/23/2019] [Indexed: 11/28/2022] Open
Abstract
The control of gene expression is an important tool for metabolic engineering, the design of synthetic gene networks, and protein manufacturing. The most successful approaches to date are based on modulating mRNA synthesis via an inducible coupling to transcriptional effectors. Here we present a biological programming structure that leverages a system of engineered transcription factors and complementary genetic architectures. We use a modular design strategy to create 27 non-natural and non-synonymous transcription factors using the lactose repressor topology as a guide. To direct systems of engineered transcription factors we employ parallel and series genetic (DNA) architectures and confer fundamental and combinatorial logical control over gene expression. Here we achieve AND, OR, NOT, and NOR logical controls in addition to two non-canonical half-AND operations. The basic logical operations and corresponding parallel and series genetic architectures represent the building blocks for subsequent combinatorial programs, which display both digital and analog performance. Successful approaches for controlling gene expression modulate mRNA synthesis by coupling it to inducible transcription effectors. Here the authors design 27 non-natural and non-synonymous transcription factors.
Collapse
Affiliation(s)
- Ronald E Rondon
- Georgia Institute of Technology, School of Chemical & Biomolecular Engineering, Atlanta, GA, USA
| | - Thomas M Groseclose
- Georgia Institute of Technology, School of Chemical & Biomolecular Engineering, Atlanta, GA, USA
| | - Andrew E Short
- Georgia Institute of Technology, School of Chemical & Biomolecular Engineering, Atlanta, GA, USA
| | - Corey J Wilson
- Georgia Institute of Technology, School of Chemical & Biomolecular Engineering, Atlanta, GA, USA.
| |
Collapse
|
8
|
Engineered ribosomes with tethered subunits for expanding biological function. Nat Commun 2019; 10:3920. [PMID: 31477696 PMCID: PMC6718428 DOI: 10.1038/s41467-019-11427-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 07/10/2019] [Indexed: 01/01/2023] Open
Abstract
Ribo-T is a ribosome with covalently tethered subunits where core 16S and 23S ribosomal RNAs form a single chimeric molecule. Ribo-T makes possible a functionally orthogonal ribosome-mRNA system in cells. Unfortunately, use of Ribo-T has been limited because of low activity of its original version. Here, to overcome this limitation, we use an evolutionary approach to select new tether designs that are capable of supporting faster cell growth and increased protein expression. Further, we evolve new orthogonal Ribo-T/mRNA pairs that function in parallel with, but independent of, natural ribosomes and mRNAs, increasing the efficiency of orthogonal protein expression. The Ribo-T with optimized designs is able to synthesize a diverse set of proteins, and can also incorporate multiple non-canonical amino acids into synthesized polypeptides. The enhanced Ribo-T designs should be useful for exploring poorly understood functions of the ribosome and engineering ribosomes with altered catalytic properties.
Collapse
|
9
|
Wang W, Li Y, Wang Y, Shi C, Li C, Li Q, Linhardt RJ. Bacteriophage T7 transcription system: an enabling tool in synthetic biology. Biotechnol Adv 2018; 36:2129-2137. [DOI: 10.1016/j.biotechadv.2018.10.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 09/30/2018] [Accepted: 10/01/2018] [Indexed: 10/28/2022]
|
10
|
d'Aquino AE, Kim DS, Jewett MC. Engineered Ribosomes for Basic Science and Synthetic Biology. Annu Rev Chem Biomol Eng 2018; 9:311-340. [DOI: 10.1146/annurev-chembioeng-060817-084129] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The ribosome is the cell's factory for protein synthesis. With protein synthesis rates of up to 20 amino acids per second and at an accuracy of 99.99%, the extraordinary catalytic capacity of the bacterial translation machinery has attracted extensive efforts to engineer, reconstruct, and repurpose it for biochemical studies and novel functions. Despite these efforts, the potential for harnessing the translation apparatus to manufacture bio-based products beyond natural limits remains underexploited, and fundamental constraints on the chemistry that the ribosome's RNA-based active site can carry out are unknown. This review aims to cover the past and present advances in ribosome design and engineering to understand the fundamental biology of the ribosome to facilitate the construction of synthetic manufacturing machines. The prospects for the development of engineered, or designer, ribosomes for novel polymer synthesis are reviewed, future challenges are considered, and promising advances in a variety of applications are discussed.
Collapse
Affiliation(s)
- Anne E. d'Aquino
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, Illinois 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, USA
| | - Do Soon Kim
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, USA
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | - Michael C. Jewett
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, Illinois 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, USA
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, USA
| |
Collapse
|
11
|
Abstract
Biocontainment systems are crucial for preventing genetically modified organisms from escaping into natural ecosystems. Here, we describe the orthogonal ribosome biofirewall, which consists of an activation circuit and a degradation circuit. The activation circuit is a genetic AND gate based on activation of the encrypted pathway by the orthogonal ribosome in response to specific environmental signals. The degradation circuit is a genetic NOT gate with an output of I-SceI homing endonuclease, which conditionally degrades the orthogonal ribosome genes. We demonstrate that the activation circuit can be flexibly incorporated into genetic circuits and metabolic pathways for encryption. The plasmid-based encryption of the deoxychromoviridans pathway and the genome-based encryption of lacZ are tightly regulated and can decrease the expression to 7.3% and 7.8%, respectively. We validated the ability of the degradation circuit to decrease the expression levels of the target plasmids and the orthogonal rRNA (O-rRNA) plasmids to 0.8% in lab medium and 0.76% in nonsterile soil medium, respectively. Our orthogonal ribosome biofirewall is a versatile platform that can be useful in biosafety research and in the biotechnology industry.
Collapse
Affiliation(s)
- Bin Jia
- Key
Laboratory of Systems Bioengineering (Ministry of Education), School
of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
- SynBio
Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, PR China
| | - Hao Qi
- Key
Laboratory of Systems Bioengineering (Ministry of Education), School
of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
- SynBio
Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, PR China
| | - Bing-Zhi Li
- Key
Laboratory of Systems Bioengineering (Ministry of Education), School
of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
- SynBio
Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, PR China
| | - Shuo Pan
- Key
Laboratory of Systems Bioengineering (Ministry of Education), School
of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
- SynBio
Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, PR China
| | - Duo Liu
- Key
Laboratory of Systems Bioengineering (Ministry of Education), School
of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
- SynBio
Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, PR China
| | - Hong Liu
- Key
Laboratory of Systems Bioengineering (Ministry of Education), School
of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
- SynBio
Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, PR China
| | - Yizhi Cai
- School
of Biological Sciences, University of Edinburgh, Daniel Rutherford Building G.24,
The King’s Buildings, Edinburgh EH9 3BF, United Kingdom
| | - Ying-Jin Yuan
- Key
Laboratory of Systems Bioengineering (Ministry of Education), School
of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
- SynBio
Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, PR China
| |
Collapse
|
12
|
Perez JG, Stark JC, Jewett MC. Cell-Free Synthetic Biology: Engineering Beyond the Cell. Cold Spring Harb Perspect Biol 2016; 8:cshperspect.a023853. [PMID: 27742731 DOI: 10.1101/cshperspect.a023853] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cell-free protein synthesis (CFPS) technologies have enabled inexpensive and rapid recombinant protein expression. Numerous highly active CFPS platforms are now available and have recently been used for synthetic biology applications. In this review, we focus on the ability of CFPS to expand our understanding of biological systems and its applications in the synthetic biology field. First, we outline a variety of CFPS platforms that provide alternative and complementary methods for expressing proteins from different organisms, compared with in vivo approaches. Next, we review the types of proteins, protein complexes, and protein modifications that have been achieved using CFPS systems. Finally, we introduce recent work on genetic networks in cell-free systems and the use of cell-free systems for rapid prototyping of in vivo networks. Given the flexibility of cell-free systems, CFPS holds promise to be a powerful tool for synthetic biology as well as a protein production technology in years to come.
Collapse
Affiliation(s)
- Jessica G Perez
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208-3120.,Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208-3120
| | - Jessica C Stark
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208-3120.,Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208-3120
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208-3120.,Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208-3120.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611-3068.,Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611-2875
| |
Collapse
|
13
|
Sun J, Alper H. Synthetic Biology: An Emerging Approach for Strain Engineering. Ind Biotechnol (New Rochelle N Y) 2016. [DOI: 10.1002/9783527807796.ch2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Jie Sun
- Department of Chemical Engineering; The University of Texas at Austin; 200 E Dean Keeton Street Stop C0400, Austin TX 78712 USA
| | - Hal Alper
- Department of Chemical Engineering; The University of Texas at Austin; 200 E Dean Keeton Street Stop C0400, Austin TX 78712 USA
| |
Collapse
|
14
|
Ma KC, Perli SD, Lu TK. Foundations and Emerging Paradigms for Computing in Living Cells. J Mol Biol 2016; 428:893-915. [DOI: 10.1016/j.jmb.2016.02.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 02/13/2016] [Accepted: 02/15/2016] [Indexed: 01/11/2023]
|
15
|
Glasscock C, Lucks J, DeLisa M. Engineered Protein Machines: Emergent Tools for Synthetic Biology. Cell Chem Biol 2016; 23:45-56. [DOI: 10.1016/j.chembiol.2015.12.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 12/01/2015] [Accepted: 12/01/2015] [Indexed: 11/25/2022]
|
16
|
Ling J, Naren G, Kelly J, Moody TS, de Silva AP. Building pH Sensors into Paper-Based Small-Molecular Logic Systems for Very Simple Detection of Edges of Objects. J Am Chem Soc 2015; 137:3763-6. [DOI: 10.1021/jacs.5b00665] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Jue Ling
- School of Chemistry and Chemical
Engineering, Queen’s University, Belfast BT9 5AG, Northern Ireland
| | - Gaowa Naren
- School of Chemistry and Chemical
Engineering, Queen’s University, Belfast BT9 5AG, Northern Ireland
| | - Jessica Kelly
- School of Chemistry and Chemical
Engineering, Queen’s University, Belfast BT9 5AG, Northern Ireland
| | - Thomas S. Moody
- School of Chemistry and Chemical
Engineering, Queen’s University, Belfast BT9 5AG, Northern Ireland
| | - A. Prasanna de Silva
- School of Chemistry and Chemical
Engineering, Queen’s University, Belfast BT9 5AG, Northern Ireland
| |
Collapse
|
17
|
Kong W, Celik V, Liao C, Hua Q, Lu T. Programming the group behaviors of bacterial communities with synthetic cellular communication. BIORESOUR BIOPROCESS 2014. [DOI: 10.1186/s40643-014-0024-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Synthetic biology is a newly emerged research discipline that focuses on the engineering of novel cellular behaviors and functionalities through the creation of artificial gene circuits. One important class of synthetic circuits currently under active development concerns the programming of bacterial cellular communication and collective population-scale behaviors. Because of the ubiquity of cell-cell interactions within bacterial communities, having an ability of engineering these circuits is vital to programming robust cellular behaviors. Here, we highlight recent advances in communication-based synthetic gene circuits by first discussing natural communication systems and then surveying various functional engineered circuits, including those for population density control, temporal synchronization, spatial organization, and ecosystem formation. We conclude by summarizing recent advances, outlining existing challenges, and discussing potential applications and future opportunities.
Collapse
|
18
|
Purcell O, Lu TK. Synthetic analog and digital circuits for cellular computation and memory. Curr Opin Biotechnol 2014; 29:146-55. [PMID: 24794536 PMCID: PMC4237220 DOI: 10.1016/j.copbio.2014.04.009] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 04/04/2014] [Accepted: 04/08/2014] [Indexed: 01/06/2023]
Abstract
Biological computation is a major area of focus in synthetic biology because it has the potential to enable a wide range of applications. Synthetic biologists have applied engineering concepts to biological systems in order to construct progressively more complex gene circuits capable of processing information in living cells. Here, we review the current state of computational genetic circuits and describe artificial gene circuits that perform digital and analog computation. We then discuss recent progress in designing gene networks that exhibit memory, and how memory and computation have been integrated to yield more complex systems that can both process and record information. Finally, we suggest new directions for engineering biological circuits capable of computation.
Collapse
Affiliation(s)
- Oliver Purcell
- MIT Synthetic Biology Center, 500 Technology Square, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Timothy K Lu
- MIT Synthetic Biology Center, 500 Technology Square, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
| |
Collapse
|
19
|
Zeng Y, Wang W, Liu WR. Towards reassigning the rare AGG codon in Escherichia coli. Chembiochem 2014; 15:1750-4. [PMID: 25044341 DOI: 10.1002/cbic.201400075] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Indexed: 11/09/2022]
Abstract
The rare AGG codon in Escherichia coli has been reassigned to code non-canonical amino acids (ncAAs) by using the PylRS-tRNA(Pyl)(CCU) pair. When N(ε) -alloc-lysine was used as a PylRS substrate, almost quantitative occupancy of N(ε) -alloc-lysine at an AGG codon site was achieved in minimal medium. ncAAs can be potentially incorporated at the AGG codon with varying efficiencies, depending on their activities towards corresponding enzymes. As AGG is a sense codon, the approach reported here resolves the typical low ncAA incorporation issue that has been associated with ncAA mutagenesis and therefore allows bulk preparation of proteins with site-selectively incorporated ncAAs for applications such as therapeutic protein production.
Collapse
Affiliation(s)
- Yu Zeng
- Department of Chemistry, Texas A&M University, College Station, TX 77843 (USA)
| | | | | |
Collapse
|
20
|
Abstract
Genetic code expansion and reprogramming enable the site-specific incorporation of diverse designer amino acids into proteins produced in cells and animals. Recent advances are enhancing the efficiency of unnatural amino acid incorporation by creating and evolving orthogonal ribosomes and manipulating the genome. Increasing the number of distinct amino acids that can be site-specifically encoded has been facilitated by the evolution of orthogonal quadruplet decoding ribosomes and the discovery of mutually orthogonal synthetase/tRNA pairs. Rapid progress in moving genetic code expansion from bacteria to eukaryotic cells and animals (C. elegans and D. melanogaster) and the incorporation of useful unnatural amino acids has been aided by the development and application of the pyrrolysyl-transfer RNA (tRNA) synthetase/tRNA pair for unnatural amino acid incorporation. Combining chemoselective reactions with encoded amino acids has facilitated the installation of posttranslational modifications, as well as rapid derivatization with diverse fluorophores for imaging.
Collapse
Affiliation(s)
- Jason W Chin
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 OQH, United Kingdom;
| |
Collapse
|
21
|
Ang J, Harris E, Hussey BJ, Kil R, McMillen DR. Tuning response curves for synthetic biology. ACS Synth Biol 2013; 2:547-67. [PMID: 23905721 PMCID: PMC3805330 DOI: 10.1021/sb4000564] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Indexed: 01/07/2023]
Abstract
Synthetic biology may be viewed as an effort to establish, formalize, and develop an engineering discipline in the context of biological systems. The ability to tune the properties of individual components is central to the process of system design in all fields of engineering, and synthetic biology is no exception. A large and growing number of approaches have been developed for tuning the responses of cellular systems, and here we address specifically the issue of tuning the rate of response of a system: given a system where an input affects the rate of change of an output, how can the shape of the response curve be altered experimentally? This affects a system's dynamics as well as its steady-state properties, both of which are critical in the design of systems in synthetic biology, particularly those with multiple components. We begin by reviewing a mathematical formulation that captures a broad class of biological response curves and use this to define a standard set of varieties of tuning: vertical shifting, horizontal scaling, and the like. We then survey the experimental literature, classifying the results into our defined categories, and organizing them by regulatory level: transcriptional, post-transcriptional, and post-translational.
Collapse
Affiliation(s)
- Jordan Ang
- Department of Chemical and Physical Sciences and Institute
for Optical Sciences, University of Toronto, Mississauga, Ontario, Canada L5L 1C6
| | - Edouard Harris
- Department of Chemical and Physical Sciences and Institute
for Optical Sciences, University of Toronto, Mississauga, Ontario, Canada L5L 1C6
| | - Brendan J. Hussey
- Department of Chemical and Physical Sciences and Institute
for Optical Sciences, University of Toronto, Mississauga, Ontario, Canada L5L 1C6
| | - Richard Kil
- Department of Chemical and Physical Sciences and Institute
for Optical Sciences, University of Toronto, Mississauga, Ontario, Canada L5L 1C6
| | - David R. McMillen
- Department of Chemical and Physical Sciences and Institute
for Optical Sciences, University of Toronto, Mississauga, Ontario, Canada L5L 1C6
| |
Collapse
|
22
|
Moe-Behrens GH. The biological microprocessor, or how to build a computer with biological parts. Comput Struct Biotechnol J 2013; 7:e201304003. [PMID: 24688733 PMCID: PMC3962179 DOI: 10.5936/csbj.201304003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 06/17/2013] [Accepted: 06/20/2013] [Indexed: 01/21/2023] Open
Abstract
Systemics, a revolutionary paradigm shift in scientific thinking, with applications in systems biology, and synthetic biology, have led to the idea of using silicon computers and their engineering principles as a blueprint for the engineering of a similar machine made from biological parts. Here we describe these building blocks and how they can be assembled to a general purpose computer system, a biological microprocessor. Such a system consists of biological parts building an input / output device, an arithmetic logic unit, a control unit, memory, and wires (busses) to interconnect these components. A biocomputer can be used to monitor and control a biological system.
Collapse
|
23
|
Specialization from synthesis: How ribosome diversity can customize protein function. FEBS Lett 2013; 587:1189-97. [DOI: 10.1016/j.febslet.2013.02.032] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 02/14/2013] [Accepted: 02/18/2013] [Indexed: 11/20/2022]
|
24
|
Abstract
One fascinating recent avenue of study in the field of synthetic biology is the creation of biomolecule-based computers. The main components of a computing device consist of an arithmetic logic unit, the control unit, memory, and the input and output devices. Boolean logic gates are at the core of the operational machinery of these parts, and hence to make biocomputers a reality, biomolecular logic gates become a necessity. Indeed, with the advent of more sophisticated biological tools, both nucleic acid- and protein-based logic systems have been generated. These devices function in the context of either test tubes or living cells and yield highly specific outputs given a set of inputs. In this review, we discuss various types of biomolecular logic gates that have been synthesized, with particular emphasis on recent developments that promise increased complexity of logic gate circuitry, improved computational speed, and potential clinical applications.
Collapse
Affiliation(s)
- Takafumi Miyamoto
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University, Baltimore, MD, 21205
| | - Shiva Razavi
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University, Baltimore, MD, 21205
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205
| | - Robert DeRose
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University, Baltimore, MD, 21205
| | - Takanari Inoue
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University, Baltimore, MD, 21205
- PRESTO Investigator, JST, 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
25
|
Suresh M, Mandal AK, Suresh E, Das A. First demonstration of two-step FRET in a synthetic supramolecular assembly. Chem Sci 2013. [DOI: 10.1039/c3sc50282a] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
26
|
Design and Application of Synthetic Biology Devices for Therapy. Synth Biol (Oxf) 2013. [DOI: 10.1016/b978-0-12-394430-6.00009-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
27
|
Wang B, Buck M. Customizing cell signaling using engineered genetic logic circuits. Trends Microbiol 2012; 20:376-84. [DOI: 10.1016/j.tim.2012.05.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 04/30/2012] [Accepted: 05/03/2012] [Indexed: 11/28/2022]
|
28
|
Synthetic biology with RNA: progress report. Curr Opin Chem Biol 2012; 16:278-84. [DOI: 10.1016/j.cbpa.2012.05.192] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 05/09/2012] [Accepted: 05/14/2012] [Indexed: 11/20/2022]
|
29
|
Temme K, Hill R, Segall-Shapiro TH, Moser F, Voigt CA. Modular control of multiple pathways using engineered orthogonal T7 polymerases. Nucleic Acids Res 2012; 40:8773-81. [PMID: 22743271 PMCID: PMC3458549 DOI: 10.1093/nar/gks597] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Synthetic genetic sensors and circuits enable programmable control over the timing and conditions of gene expression. They are being increasingly incorporated into the control of complex, multigene pathways and cellular functions. Here, we propose a design strategy to genetically separate the sensing/circuitry functions from the pathway to be controlled. This separation is achieved by having the output of the circuit drive the expression of a polymerase, which then activates the pathway from polymerase-specific promoters. The sensors, circuits and polymerase are encoded together on a 'controller' plasmid. Variants of T7 RNA polymerase that reduce toxicity were constructed and used as scaffolds for the construction of four orthogonal polymerases identified via part mining that bind to unique promoter sequences. This set is highly orthogonal and induces cognate promoters by 8- to 75-fold more than off-target promoters. These orthogonal polymerases enable four independent channels linking the outputs of circuits to the control of different cellular functions. As a demonstration, we constructed a controller plasmid that integrates two inducible systems, implements an AND logic operation and toggles between metabolic pathways that change Escherichia coli green (deoxychromoviridans) and red (lycopene). The advantages of this organization are that (i) the regulation of the pathway can be changed simply by introducing a different controller plasmid, (ii) transcription is orthogonal to host machinery and (iii) the pathway genes are not transcribed in the absence of a controller and are thus more easily carried without invoking evolutionary pressure.
Collapse
Affiliation(s)
- Karsten Temme
- UCB/UCSF Joint Graduate Group in Bioengineering, MC2540, Department of Pharmaceutical Chemistry, School of Pharmacy, University of California, San Francisco, 1700 4th Street, San Francisco, CA 94158, USA
| | | | | | | | | |
Collapse
|
30
|
Burman LG, Mauro VP. Analysis of rRNA processing and translation in mammalian cells using a synthetic 18S rRNA expression system. Nucleic Acids Res 2012; 40:8085-98. [PMID: 22718970 PMCID: PMC3439915 DOI: 10.1093/nar/gks530] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Analysis of processing, assembly, and function of higher eukaryotic ribosomal RNA (rRNA) has been hindered by the lack of an expression system that enables rRNA to be modified and then examined functionally. Given the potential usefulness of such a system, we have developed one for mammalian 18S rRNA. We inserted a sequence tag into expansion segment 3 of mouse 18S rRNA to monitor expression and cleavage by hybridization. Mutations were identified that confer resistance to pactamycin, allowing functional analysis of 40S ribosomal subunits containing synthetic 18S rRNAs by selectively blocking translation from endogenous (pactamycin-sensitive) subunits. rRNA constructs were suitably expressed in transfected cells, shown to process correctly, incorporate into ≈ 15% of 40S subunits, and function normally based on various criteria. After rigorous analysis, the system was used to investigate the importance of sequences that flank 18S rRNA in precursor transcripts. Although deletion analysis supported the requirement of binding sites for the U3 snoRNA, it showed that a large segment of the 5' external transcribed spacer and the entire first internal transcribed spacer, both of which flank 18S rRNA, are not required. The success of this approach opens the possibility of functional analyses of ribosomes, with applications in basic research and synthetic biology.
Collapse
Affiliation(s)
- Luke G Burman
- Department of Neurobiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | |
Collapse
|
31
|
Benenson Y. Biomolecular computing systems: principles, progress and potential. Nat Rev Genet 2012; 13:455-68. [PMID: 22688678 DOI: 10.1038/nrg3197] [Citation(s) in RCA: 219] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The task of information processing, or computation, can be performed by natural and man-made 'devices'. Man-made computers are made from silicon chips, whereas natural 'computers', such as the brain, use cells and molecules. Computation also occurs on a much smaller scale in regulatory and signalling pathways in individual cells and even within single biomolecules. Indeed, much of what we recognize as life results from the remarkable capacity of biological building blocks to compute in highly sophisticated ways. Rational design and engineering of biological computing systems can greatly enhance our ability to study and to control biological systems. Potential applications include tissue engineering and regeneration and medical treatments. This Review introduces key concepts and discusses recent progress that has been made in biomolecular computing.
Collapse
Affiliation(s)
- Yaakov Benenson
- Department of Biosystems Science and Engineering, Swiss Federal Institute of Technology (ETH Zurich), Mattenstrasse 26, 4058 Basel, Switzerland.
| |
Collapse
|
32
|
Distributed computation: the new wave of synthetic biology devices. Trends Biotechnol 2012; 30:342-9. [DOI: 10.1016/j.tibtech.2012.03.006] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 03/10/2012] [Accepted: 03/14/2012] [Indexed: 12/23/2022]
|
33
|
Abstract
Over the past decade, synthetic biology has emerged as an engineering discipline for biological systems. Compared with other substrates, biology poses a unique set of engineering challenges resulting from an incomplete understanding of natural biological systems and tools for manipulating them. To address these challenges, synthetic biology is advancing from developing proof-of-concept designs to focusing on core platforms for rational and high-throughput biological engineering. These platforms span the entire biological design cycle, including DNA construction, parts libraries, computational design tools, and interfaces for manipulating and probing synthetic circuits. The development of these enabling technologies requires an engineering mindset to be applied to biology, with an emphasis on generalizable techniques in addition to application-specific designs. This review aims to discuss the progress and challenges in synthetic biology and to illustrate areas where synthetic biology may impact biomedical engineering and human health.
Collapse
Affiliation(s)
- Allen A Cheng
- Synthetic Biology Group, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | |
Collapse
|
34
|
Rapid and orthogonal logic gating with a gibberellin-induced dimerization system. Nat Chem Biol 2012; 8:465-70. [PMID: 22446836 DOI: 10.1038/nchembio.922] [Citation(s) in RCA: 160] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 02/02/2012] [Indexed: 12/19/2022]
Abstract
Using a newly synthesized gibberellin analog containing an acetoxymethyl group (GA(3)-AM) and its binding proteins, we developed an efficient chemically inducible dimerization (CID) system that is completely orthogonal to existing rapamycin-mediated protein dimerization. Combining the two systems should allow applications that have been difficult or impossible with only one CID system. By using both chemical inputs (rapamycin and GA(3)-AM), we designed and synthesized Boolean logic gates in living mammalian cells. These gates produced output signals such as fluorescence and membrane ruffling on a timescale of seconds, substantially faster than earlier intracellular logic gates. The use of two orthogonal dimerization systems in the same cell also allows for finer modulation of protein perturbations than is possible with a single dimerizer.
Collapse
|
35
|
Bower AG, McClintock MK, Fong SS. Synthetic biology: a foundation for multi-scale molecular biology. Bioeng Bugs 2012; 1:309-12. [PMID: 21326830 DOI: 10.4161/bbug.1.5.12391] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 05/17/2010] [Accepted: 05/18/2010] [Indexed: 11/19/2022] Open
Abstract
The field of synthetic biology has made rapid progress in a number of areas including method development, novel applications and community building. In seeking to make biology "engineerable," synthetic biology is increasing the accessibility of biological research to researchers of all experience levels and backgrounds. One of the underlying strengths of synthetic biology is that it may establish the framework for a rigorous bottom-up approach to studying biology starting at the DNA level. Building upon the existing framework established largely by the Registry of Standard Biological Parts, careful consideration of future goals may lead to integrated multi- scale approaches to biology. Here we describe some of the current challenges that need to be addressed or considered in detail to continue the development of synthetic biology. Specifically, discussion on the areas of elucidating biological principles, computational methods and experimental construction methodologies are presented.
Collapse
Affiliation(s)
- Adam G Bower
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | | | | |
Collapse
|
36
|
Wang K, Schmied WH, Chin JW. Reprogramming the genetic code: from triplet to quadruplet codes. Angew Chem Int Ed Engl 2012; 51:2288-97. [PMID: 22262408 DOI: 10.1002/anie.201105016] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Indexed: 11/10/2022]
Abstract
The genetic code of cells is near-universally triplet, and since many ribosomal mutations are lethal, changing the cellular ribosome to read nontriplet codes is challenging. Herein we review work on the incorporation of unnatural amino acids into proteins in response to quadruplet codons, and the creation of an orthogonal translation system in the cell that uses an evolved orthogonal ribosome to efficiently direct the incorporation of unnatural amino acids in response to quadruplet codons. Using this system multiple distinct unnatural amino acids have been incorporated and used to genetically program emergent properties into recombinant proteins. Extension of approaches to incorporate multiple unnatural amino acids may allow the combinatorial biosynthesis of materials and therapeutics, and drive investigations into whether life with additional genetically encoded polymers can evolve to perform functions that natural biological systems cannot.
Collapse
Affiliation(s)
- Kaihang Wang
- Medical Research Council Laboratory of Molecular Biology, Hills Rd, Cambridge, CB2 0QH UK
| | | | | |
Collapse
|
37
|
Wang K, Schmied WH, Chin JW. Die Umprogrammierung des genetischen Codes: vom Triplett- zum Quadruplettcode. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201105016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
38
|
|
39
|
Chin JW. Reprogramming the genetic code. EMBO J 2011; 30:2312-24. [PMID: 21602790 PMCID: PMC3116288 DOI: 10.1038/emboj.2011.160] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Accepted: 04/27/2011] [Indexed: 11/09/2022] Open
Affiliation(s)
- Jason W Chin
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.
| |
Collapse
|
40
|
Abstract
Here, we describe a route orthogonal gene expression which combines orthogonal transcription and translation using library-based selections. We show how orthogonal gene expression can be used to create a minimal orthogonal ribosome and describe how to create orthogonal transcription-translation feed forward loops that introduce tailored information processing delays into gene expression.
Collapse
Affiliation(s)
- Wenlin An
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge, United Kingdom
| | | |
Collapse
|
41
|
Shu W, Liu M, Chen H, Bo X, Wang S. ARDesigner: A web-based system for allosteric RNA design. J Biotechnol 2010; 150:466-73. [DOI: 10.1016/j.jbiotec.2010.10.067] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2010] [Revised: 10/11/2010] [Accepted: 10/12/2010] [Indexed: 12/19/2022]
|
42
|
Fritz BR, Timmerman LE, Daringer NM, Leonard JN, Jewett MC. Biology by design: from top to bottom and back. J Biomed Biotechnol 2010; 2010:232016. [PMID: 21052559 PMCID: PMC2971569 DOI: 10.1155/2010/232016] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Accepted: 09/22/2010] [Indexed: 12/12/2022] Open
Abstract
Synthetic biology is a nascent technical discipline that seeks to enable the design and construction of novel biological systems to meet pressing societal needs. However, engineering biology still requires much trial and error because we lack effective approaches for connecting basic "parts" into higher-order networks that behave as predicted. Developing strategies for improving the performance and sophistication of our designs is informed by two overarching perspectives: "bottom-up" and "top-down" considerations. Using this framework, we describe a conceptual model for developing novel biological systems that function and interact with existing biological components in a predictable fashion. We discuss this model in the context of three topical areas: biochemical transformations, cellular devices and therapeutics, and approaches that expand the chemistry of life. Ten years after the construction of synthetic biology's first devices, the drive to look beyond what does exist to what can exist is ushering in an era of biology by design.
Collapse
Affiliation(s)
- Brian R. Fritz
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, 2170 Campus Drive, Evanston, IL 60208, USA
| | - Laura E. Timmerman
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, 2170 Campus Drive, Evanston, IL 60208, USA
| | - Nichole M. Daringer
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Joshua N. Leonard
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
- Member, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Michael C. Jewett
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, 2170 Campus Drive, Evanston, IL 60208, USA
- Member, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| |
Collapse
|
43
|
Chen Z, Wilmanns M, Zeng AP. Structural synthetic biotechnology: from molecular structure to predictable design for industrial strain development. Trends Biotechnol 2010; 28:534-42. [PMID: 20727604 DOI: 10.1016/j.tibtech.2010.07.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Revised: 07/14/2010] [Accepted: 07/15/2010] [Indexed: 10/19/2022]
Abstract
The future of industrial biotechnology requires efficient development of highly productive and robust strains of microorganisms. Present praxis of strain development cannot adequately fulfill this requirement, primarily owing to the inability to control reactions precisely at a molecular level, or to predict reliably the behavior of cells upon perturbation. Recent developments in two areas of biology are changing the situation rapidly: structural biology has revealed details about enzymes and associated bioreactions at an atomic level; and synthetic biology has provided tools to design and assemble precisely controllable modules for re-programming cellular metabolic circuitry. However, because of different emphases, to date, these two areas have developed separately. A linkage between them is desirable to harness their concerted potential. We therefore propose structural synthetic biotechnology as a new field in biotechnology, specifically for application to the development of industrial microbial strains.
Collapse
Affiliation(s)
- Zhen Chen
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Denickestrasse 15, D-21073 Hamburg, Germany
| | | | | |
Collapse
|
44
|
Affiliation(s)
- Tamar Ratner
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Technion City, Haifa 32000, Israel
| | | |
Collapse
|
45
|
Abstract
Early synthetic biology designs, namely the genetic toggle switch and repressilator, showed that regulatory components can be characterized and assembled to bring about complex, electronics-inspired behaviours in living systems (for example, memory storage and timekeeping). Through the characterization and assembly of genetic parts and biological building blocks, many more devices have been constructed, including switches, memory elements, oscillators, pulse generators, digital logic gates, filters and communication modules. Advances in the field are now allowing expansion beyond small gene networks to the realm of larger biological programs, which hold promise for a wide range of applications, including biosensing, therapeutics and the production of biofuels, pharmaceuticals and biomaterials. Synthetic biosensing circuits consist of sensitive elements that bind analytes and transducer modules that mobilize cellular responses. Balancing these two modules involves engineering modularity and specificity into the various circuits. Biosensor sensitive elements include environment-responsive promoters (transcriptional), RNA aptamers (translational) and protein receptors (post-translational). Biosensor transducer modules include engineered gene networks (transcriptional), non-coding regulatory RNAs (translational) and protein signal-transduction circuits (post-translational). The contributions of synthetic biology to therapeutics include: engineered networks and organisms for disease-mechanism elucidation, drug-target identification, drug-discovery platforms, therapeutic treatment, therapeutic delivery, and drug production and access. In the microbial production of biofuels and pharmaceuticals, synthetic biology has supplemented traditional genetic and metabolic engineering efforts by aiding the construction of optimized biosynthetic pathways. Optimizing metabolic flux through biosynthetic pathways is traditionally accomplished by driving the expression of pathway enzymes with strong, inducible promoters. New synthetic approaches include the rapid diversification of various pathway components, the rational and model-guided assembly of pathway components, and hybrid solutions.
Advances in the synthetic biology field are allowing an expansion beyond small gene networks towards larger biological programs that hold promise for a wide range of applications, including biosensing, therapeutics and the production of biofuels, pharmaceuticals and biomaterials. Synthetic biology is bringing together engineers and biologists to design and build novel biomolecular components, networks and pathways, and to use these constructs to rewire and reprogram organisms. These re-engineered organisms will change our lives over the coming years, leading to cheaper drugs, 'green' means to fuel our cars and targeted therapies for attacking 'superbugs' and diseases, such as cancer. The de novo engineering of genetic circuits, biological modules and synthetic pathways is beginning to address these crucial problems and is being used in related practical applications.
Collapse
Affiliation(s)
- Ahmad S Khalil
- Howard Hughes Medical Institute, Department of Biomedical Engineering, Center for BioDynamics and Center for Advanced Biotechnology, Boston University, Boston, Massachusetts 02215, USA
| | | |
Collapse
|
46
|
Barrett OPT, Chin JW. Evolved orthogonal ribosome purification for in vitro characterization. Nucleic Acids Res 2010; 38:2682-91. [PMID: 20185573 PMCID: PMC2860124 DOI: 10.1093/nar/gkq120] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We developed orthogonal ribosome−mRNA pairs in which the orthogonal ribosome (O-ribosome) specifically translates the orthogonal mRNA and the orthogonal mRNA is not a substrate for cellular ribosomes. O-ribosomes have been used to create new cellular circuits to control gene expression in new ways, they have been used to provide new information about the ribosome, and they form a crucial part of foundational technologies for genetic code expansion and encoded and evolvable polymer synthesis in cells. The production of O-ribosomes in the cell makes it challenging to study the properties of O-ribosomes in vitro, because no method exists to purify functional O-ribosomes from cellular ribosomes and other cellular components. Here we present a method for the affinity purification of O-ribosomes, via tagging of the orthogonal 16S ribosomal RNA. We demonstrate that the purified O-ribosomes are pure by primer extension assays, and structurally homogenous by gel electrophoresis and sucrose gradients. We demonstrate the utility of this purification method by providing a preliminary in vitro characterization of Ribo-X, an O-ribosome previously evolved for enhanced unnatural amino acid incorporation in response to amber codons. Our data suggest that the basis of Ribo-X’s in vivo activity is a decreased affinity for RF1.
Collapse
Affiliation(s)
- Oliver P T Barrett
- Medical Research Council Laboratory of Molecular Biology, Hills Roads, Cambridge, CB2 OQH, England, UK
| | | |
Collapse
|
47
|
Voloshchuk N, Montclare JK. Incorporation of unnatural amino acids for synthetic biology. ACTA ACUST UNITED AC 2010; 6:65-80. [DOI: 10.1039/b909200p] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
48
|
Toward engineering synthetic microbial metabolism. J Biomed Biotechnol 2009; 2010:459760. [PMID: 20037734 PMCID: PMC2796345 DOI: 10.1155/2010/459760] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2009] [Accepted: 10/09/2009] [Indexed: 11/18/2022] Open
Abstract
The generation of well-characterized parts and the formulation of biological design principles in synthetic biology are laying the foundation for more complex and advanced microbial metabolic engineering. Improvements in de novo DNA synthesis and codon-optimization alone are already contributing to the manufacturing of pathway enzymes with improved or novel function. Further development of analytical and computer-aided design tools should accelerate the forward engineering of precisely regulated synthetic pathways by providing a standard framework for the predictable design of biological systems from well-characterized parts. In this review we discuss the current state of synthetic biology within a four-stage framework (design, modeling, synthesis, analysis) and highlight areas requiring further advancement to facilitate true engineering of synthetic microbial metabolism.
Collapse
|
49
|
Ramalingam KI, Tomshine JR, Maynard JA, Kaznessis YN. Forward engineering of synthetic bio-logical AND gates. Biochem Eng J 2009. [DOI: 10.1016/j.bej.2009.06.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
50
|
The second wave of synthetic biology: from modules to systems. Nat Rev Mol Cell Biol 2009; 10:410-22. [PMID: 19461664 DOI: 10.1038/nrm2698] [Citation(s) in RCA: 681] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Synthetic biology is a research field that combines the investigative nature of biology with the constructive nature of engineering. Efforts in synthetic biology have largely focused on the creation and perfection of genetic devices and small modules that are constructed from these devices. But to view cells as true 'programmable' entities, it is now essential to develop effective strategies for assembling devices and modules into intricate, customizable larger scale systems. The ability to create such systems will result in innovative approaches to a wide range of applications, such as bioremediation, sustainable energy production and biomedical therapies.
Collapse
|