1
|
Guo F, Tian Y, Ji S, Min H, Ding W, Yu H, Li Y, Ji L. Environmental biotransformation mechanisms by flavin-dependent monooxygenase: A computational study. CHEMOSPHERE 2023; 325:138403. [PMID: 36921778 DOI: 10.1016/j.chemosphere.2023.138403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/01/2023] [Accepted: 03/12/2023] [Indexed: 06/18/2023]
Abstract
The enzyme-catalyzed metabolic biotransformation of xenobiotics plays a significant role in toxicology evolution and subsequently environmental health risk assessment. Recent studies noted that the phase I human flavin-dependent monooxygenase (e.g., FMO3) can catalyze xenobiotics into more toxic metabolites. However, details of the metabolic mechanisms are insufficient. To fill the mechanism in the gaps, the systemic density functional theory calculations were performed to elucidate diverse FMO-catalyzed oxidation reactions toward environmental pollutants, including denitrification (e.g., nitrophenol), N-oxidation (e.g., nicotine), desulfurization (e.g., fonofos), and dehalogenation (e.g., pentachlorophenol). Similar to the active center compound 0 of cytochrome P450, FMO mainly catalyzed reactions with the structure of the tricyclic isoalloxazine C-4a-hydroperoxide (FADHOOH). As will be shown, FMO-catalyzed pathways are more favorable with a concerted than stepwise mechanism; Deprotonation is necessary to initiate the oxidation reactions for phenolic substrates; The regioselectivity of nicotine by FMO prefers the N-oxidation other than N-demethylation pathway; Formation of the P-S-O triangle ring is the key step for desulfurization of fonofos by FMO. We envision that these fundamental mechanisms catalyzed by FMO with a computational method can be extended to other xenobiotics of similar structures, which may aid the high-throughput screening and provide theoretical predictions in the future.
Collapse
Affiliation(s)
- Fangjie Guo
- Quality and Safety Engineering Institute of Food and Drug, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Yilin Tian
- College of Environmental and Resource Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
| | - Shujing Ji
- College of Environmental and Resource Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
| | - Hao Min
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Daxue Road 1, Xuzhou 221116, China
| | - Wen Ding
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Daxue Road 1, Xuzhou 221116, China
| | - Haiying Yu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Yingqi Li
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, International Campus, Zhejiang University, 718 East Haizhou Road, Haining 314400, China
| | - Li Ji
- College of Environmental and Resource Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China; School of Environment Science and Spatial Informatics, China University of Mining and Technology, Daxue Road 1, Xuzhou 221116, China.
| |
Collapse
|
2
|
Podgorski MN, Coleman T, Churchman LR, Bruning JB, De Voss JJ, Bell SG. Investigating the Active Oxidants Involved in Cytochrome P450 Catalyzed Sulfoxidation Reactions. Chemistry 2022; 28:e202202428. [PMID: 36169207 PMCID: PMC10100219 DOI: 10.1002/chem.202202428] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Indexed: 12/30/2022]
Abstract
Cytochrome P450 (CYP) heme-thiolate monooxygenases catalyze the hydroxylation of the C-H bonds of organic molecules. This reaction is initiated by a ferryl-oxo heme radical cation (Cpd I). These enzymes can also catalyze sulfoxidation reactions and the ferric-hydroperoxy complex (Cpd 0) and the Fe(III)-H2 O2 complex have been proposed as alternative oxidants for this transformation. To investigate this, the oxidation of 4-alkylthiobenzoic acids and 4-methoxybenzoic acid by the CYP199A4 enzyme from Rhodopseudomonas palustris HaA2 was compared using both monooxygenase and peroxygenase pathways. By examining mutants at the mechanistically important, conserved acid alcohol-pair (D251N, T252A and T252E) the relative amounts of the reactive intermediates that would form in these reactions were disturbed. Substrate binding and X-ray crystal structures helped to understand changes in the activity and enabled an attempt to evaluate whether multiple oxidants can participate in these reactions. In peroxygenase reactions the T252E mutant had higher activity towards sulfoxidation than O-demethylation but in the monooxygenase reactions with the WT enzyme the activity of both reactions was similar. The peroxygenase activity of the T252A mutant was greater for sulfoxidation reactions than the WT enzyme, which is the reverse of the activity changes observed for O-demethylation. The monooxygenase activity and coupling efficiency of sulfoxidation and oxidative demethylation were reduced by similar degrees with the T252A mutant. These observations infer that while Cpd I is required for O-dealkylation, another oxidant may contribute to sulfoxidation. Based on the activity of the CYP199A4 mutants it is proposed that this is the Fe(III)-H2 O2 complex which would be more abundant in the peroxide-driven reactions.
Collapse
Affiliation(s)
- Matthew N Podgorski
- Department of Chemistry, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Tom Coleman
- Department of Chemistry, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Luke R Churchman
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Qld, 4072, Australia
| | - John B Bruning
- School of Biological Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
| | - James J De Voss
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Qld, 4072, Australia
| | - Stephen G Bell
- Department of Chemistry, University of Adelaide, Adelaide, SA, 5005, Australia
| |
Collapse
|
3
|
Wang B, Zhang X, Fang W, Rovira C, Shaik S. How Do Metalloproteins Tame the Fenton Reaction and Utilize •OH Radicals in Constructive Manners? Acc Chem Res 2022; 55:2280-2290. [PMID: 35926175 DOI: 10.1021/acs.accounts.2c00304] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
This Account describes the manner whereby nature controls the Fenton-type reaction of O-O homolysis of hydrogen peroxide and harnesses it to carry out various useful oxidative transformations in metalloenzymes. H2O2 acts as the cosubstrate for the heme-dependent peroxidases, P450BM3, P450SPα, P450BSβ, and the P450 decarboxylase OleT, as well as the nonheme enzymes HppE and the copper-dependent lytic polysaccharide monooxygenases (LPMOs). Whereas heme peroxidases use the Poulos-Kraut heterolytic mechanism for H2O2 activation, some heme enzymes prefer the alternative Fenton-type mechanism, which produces •OH radical intermediates. The fate of the •OH radical is controlled by the protein environment, using tight H-bonding networks around H2O2. The so-generated •OH radical is constrained by the surrounding H-bonding interactions, the orientation of which is targeted to perform H-abstraction from the Fe(III)-OH group and thereby leading to the formation of the active species, called Compound I (Cpd I), Por+•Fe(IV)═O, which performs oxidation of the substrate. Alternatively, for the nonheme HppE enzyme, the O-O homolysis catalyzed by the resting state Fe(II) generates an Fe(III)-OH species that effectively constrains the •OH radical species by a tight H-bonding network. The so-formed H-bonded •OH radical acts directly as the oxidant, since it is oriented to perform H-abstraction from the C-H bond of the substrate (S)-2-HPP. The Fenton-type H2O2 activation is strongly suggested by computations to occur also in copper-dependent LPMOs and pMMO. In LPMOs, the Cu(I)-catalyzed O-O homolysis of the H2O2 cosubstrate generates an •OH radical that abstracts a hydrogen atom from Cu(II)-OH and forms thereby the active species of the enzyme, Cu(II)-O•. Such Fenton-type O-O activation can be shared by both the O2-dependent activations of LPMOs and pMMOs, in which the O2 cosubstrate may be reduced to H2O2 by external reductants. Our studies show that, generally, the H2O2 activation is highly dependent on the protein environment, as well as on the presence/absence of substrates. Since H2O2 is a highly flexible and hydrophilic molecule, the absence of suitable substrates may lead to unproductive binding or even to the release of H2O2 from the active site, as has been suggested in P450cam and LPMOs, whereas the presence of the substrate seems to play a role in steering a Fenton-type H2O2 activation. In the absence of a substrate, the hydrophilic active site of P450BM3 disfavors the binding and activation of H2O2 and protects thereby the enzyme from the damage by the Fenton reaction. Due to the distinct coordination and reaction environment, the Fenton-type H2O2 activation mechanism by enzymes differs from the reaction in synthetic systems. In nonenzymatic reactions, the H-bonding networks are quite dynamic and flexible and the reactivity of H2O2 is not strategically constrained as in the enzymatic environment. As such, our Account describes the controlled Fenton-type mechanism in metalloenzymes, and the role of the protein environment in constraining the •OH radical against oxidative damage, while directing it to perform useful oxidative transformations.
Collapse
Affiliation(s)
- Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Xuan Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Wenhan Fang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Carme Rovira
- Departament de Química Inorgànica i Orgànica & IQTCUB, Universitat de Barcelona, 08028 Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), 08020 Barcelona, Spain
| | - Sason Shaik
- Institute of Chemistry, The Hebrew University of Jerusalem, Givat Ram Campus, 91904 Jerusalem, Israel
| |
Collapse
|
4
|
Zhang X, Jiang Y, Chen Q, Dong S, Feng Y, Cong Z, Shaik S, Wang B. H-Bonding Networks Dictate the Molecular Mechanism of H2O2 Activation by P450. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02068] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xuan Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| | - Yiping Jiang
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, People’s Republic of China
| | - Qianqian Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| | - Sheng Dong
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, People’s Republic of China
| | - Yingang Feng
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, People’s Republic of China
| | - Zhiqi Cong
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, People’s Republic of China
| | - Sason Shaik
- Institute of Chemistry, The Hebrew University of Jerusalem, 9190407 Jerusalem, Israel
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| |
Collapse
|
5
|
Jin L, Wang Q, Chen X, Liu N, Fang X, Yang YF, She YB. Computational Studies on the Mechanism and Origin of the Different Regioselectivities of Manganese Porphyrin-Catalyzed C-H Bond Hydroxylation and Amidation of Equilenin Acetate. J Org Chem 2020; 85:14879-14889. [PMID: 33225704 DOI: 10.1021/acs.joc.0c01444] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The manganese porphyrin-catalyzed C-H bond hydroxylation and amidation of equilenin acetate developed by Breslow and his co-worker have been investigated with density functional theory (DFT) calculations. The hydroxylation of C(sp2)-H bond of equilenin acetate leading to the 6-hydroxylated product is more favorable than the hydroxylation of C(sp3)-H bond of equilenin acetate, leading to the 11β-hydroxylation product. The computational results suggest that the C(sp2)-H bond hydroxylation of equilenin acetate undergoes an oxygen-atom-transfer mechanism, which is more favorable than the C(sp3)-H bond hydroxylation undergoing the hydrogen-atom-abstraction/oxygen-rebound (HAA/OR) mechanism by 1.6 kcal/mol. That is why, the 6-hydroxylated product is the major product and the 11β-hydroxylated product is the minor product. In contrast, the 11β-amidated product is the only observed product in manganese porphyrin-catalyzed amidation reaction. The benzylic amidation undergoes a hydrogen-atom-abstraction/nitrogen-rebound (HAA/NR) mechanism, in which hydrogen atom abstraction is followed by nitrogen rebound, leading to the 11β-amidated product. The benzylic C(sp3)-H bond amidation at the C-11 position is more favorable than aromatic amidation at the C-6 position by 4.9 kcal/mol. Therefore, the DFT computational results are consistent with the experiments that manganese porphyrin-catalyzed C-H bond hydroxylation and amidation of equilenin acetate have different regioselectivities.
Collapse
Affiliation(s)
- Liyuan Jin
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Qunmin Wang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Xiahe Chen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Ning Liu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Xiaoli Fang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Yun-Fang Yang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Yuan-Bin She
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| |
Collapse
|
6
|
Mukherjee M, Dey A. A heterogeneous bio-inspired peroxide shunt for catalytic oxidation of organic molecules. Chem Commun (Camb) 2020; 56:11593-11596. [PMID: 32852503 DOI: 10.1039/d0cc03468a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Heme enzymes are capable of catalytically oxidising organic substrates using peroxide via the formation of a high-valent intermediate. Iron porphyrins with three different axial ligands are created on self-assembled monolayer-modified gold electrodes, which can oxidize C-H bonds and epoxidize alkenes efficiently. The kinetic isotope effects suggest that the hydrogen atom transfer reaction by a highly reactive oxidant is likely to be the rate-determining step. Effect of different axial ligands and different secondary structures of the iron porphyrin confirms that the thiolate axial ligand with a hydrophobic distal pocket is the most efficient for this oxidation chemistry.
Collapse
Affiliation(s)
- Manjistha Mukherjee
- School of Chemical Science, Indian Association for the Cultivation of Science, Kolkata, India.
| | | |
Collapse
|
7
|
Environmentally benign benzyl alcohol oxidation and C-C coupling catalysed by amide functionalized 3D Co(II) and Zn(II) metal organic frameworks. J Catal 2020. [DOI: 10.1016/j.jcat.2020.03.035] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
8
|
Chai L, Ji S, Zhang S, Yu H, Zhao M, Ji L. Biotransformation Mechanism of Pesticides by Cytochrome P450: A DFT Study on Dieldrin. Chem Res Toxicol 2020; 33:1442-1448. [DOI: 10.1021/acs.chemrestox.0c00013] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lihong Chai
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
| | - Shujing Ji
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
| | - Shubin Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Haiying Yu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Yingbin Avenue 688, Jinhua 321004, China
| | - Meirong Zhao
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Li Ji
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
9
|
Liu M, Wang H, Zhu P, Wang J, Tan H, Zheng Z. Tuning the oxidation state of copper in CuMgAl hydrotalcite using partially oxidized MoS2 for efficient hydroxylation of phenol. CATAL COMMUN 2019. [DOI: 10.1016/j.catcom.2019.105752] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
10
|
Erdogan H. One small step for cytochrome P450 in its catalytic cycle, one giant leap for enzymology. J PORPHYR PHTHALOCYA 2019. [DOI: 10.1142/s1088424619300040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The intermediates operating in the cytochrome P450 catalytic cycle have been investigated for more than half a century, fascinating many enzymologists. Each intermediate has its unique role to carry out diverse oxidations. Natural time course of the catalytic cycle is quite fast, hence, not all of the reactive intermediates could be isolated during physiological catalysis. Different high-valent iron intermediates have been proposed as primary oxidants: the candidates are compound 0 (Cpd 0, [FeOOH][Formula: see text]P450) and compound I (Cpd I, Fe(IV)[Formula: see text]O por[Formula: see text]P450). Among them, the role of Cpd I in hydroxylation is fairly well understood due the discovery of the peroxide shunt. This review endeavors to put the outstanding research efforts conducted to isolate and characterize the intermediates together. In addition to spectral features of each intermediate in the catalytic cycle, the oxidizing powers of Cpd 0 and Cpd I will be discussed along with most recent scientific findings.
Collapse
Affiliation(s)
- Huriye Erdogan
- Department of Chemistry, Gebze Technical University, Gebze, 41400, Kocaeli, Turkey
| |
Collapse
|
11
|
Iron(III)–salen ion catalyzed s-oxidation of l-cysteine and s-alkyl-l-cysteines by H2O2: Spectral, kinetic and electrochemical study. Polyhedron 2019. [DOI: 10.1016/j.poly.2018.11.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Wang C, Chen H. Convergent Theoretical Prediction of Reactive Oxidant Structures in Diiron Arylamine Oxygenases AurF and CmlI: Peroxo or Hydroperoxo? J Am Chem Soc 2017; 139:13038-13046. [DOI: 10.1021/jacs.7b06343] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Chao Wang
- Beijing
National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory
of Photochemistry, CAS Research/Education Center for Excellence in
Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hui Chen
- Beijing
National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory
of Photochemistry, CAS Research/Education Center for Excellence in
Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
13
|
Wang B, Lee YM, Seo MS, Nam W. Mononuclear Nonheme Iron(III)-Iodosylarene and High-Valent Iron-Oxo Complexes in Olefin Epoxidation Reactions. Angew Chem Int Ed Engl 2015; 54:11740-4. [PMID: 26273792 DOI: 10.1002/anie.201505796] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Indexed: 11/06/2022]
Abstract
High-spin iron(III)-iodosylarene complexes are highly reactive in the epoxidation of olefins, in which epoxides are formed as the major products with high stereospecificity and enantioselectivity. The reactivity of the iron(III)-iodosylarene intermediates is much greater than that of the corresponding iron(IV)-oxo complex in these reactions. The iron(III)-iodosylarene species-not high-valent iron(IV)-oxo and iron(V)-oxo species-are also shown to be the active oxidants in catalytic olefin epoxidation reactions. The present results are discussed in light of the long-standing controversy on the one oxidant versus multiple oxidants hypothesis in oxidation reactions.
Collapse
Affiliation(s)
- Bin Wang
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 120-750 (Korea)
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 120-750 (Korea)
| | - Mi Sook Seo
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 120-750 (Korea)
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 120-750 (Korea).
| |
Collapse
|
14
|
Wang B, Lee YM, Seo MS, Nam W. Mononuclear Nonheme Iron(III)-Iodosylarene and High-Valent Iron-Oxo Complexes in Olefin Epoxidation Reactions. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201505796] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
15
|
Rocha BGM, Kuznetsov ML, Kozlov YN, Pombeiro AJL, Shul'pin GB. Simple soluble Bi(iii) salts as efficient catalysts for the oxidation of alkanes with H2O2. Catal Sci Technol 2015. [DOI: 10.1039/c4cy01651c] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Simple soluble Bi(iii) salts exhibit pronounced catalytic activity in the oxidation of inert alkanes with H2O2via a radical mechanism with participation of the HO˙ radicals.
Collapse
Affiliation(s)
- Bruno G. M. Rocha
- Centro de Química Estrutural
- Instituto Superior Técnico
- Universidade de Lisboa
- 1049-001 Lisbon
- Portugal
| | - Maxim L. Kuznetsov
- Centro de Química Estrutural
- Instituto Superior Técnico
- Universidade de Lisboa
- 1049-001 Lisbon
- Portugal
| | - Yuriy N. Kozlov
- Semenov Institute of Chemical Physics
- Russian Academy of Sciences
- Moscow 119991
- Russia
| | - Armando J. L. Pombeiro
- Centro de Química Estrutural
- Instituto Superior Técnico
- Universidade de Lisboa
- 1049-001 Lisbon
- Portugal
| | - Georgiy B. Shul'pin
- Semenov Institute of Chemical Physics
- Russian Academy of Sciences
- Moscow 119991
- Russia
| |
Collapse
|
16
|
Structure and bonding analysis of intermediate model heme-imidazole and heme-thiolate enzymes complexed with formate, acetate and nitrate: A theoretical study. COMPUT THEOR CHEM 2015. [DOI: 10.1016/j.comptc.2014.11.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Ray K, Pfaff FF, Wang B, Nam W. Status of Reactive Non-Heme Metal–Oxygen Intermediates in Chemical and Enzymatic Reactions. J Am Chem Soc 2014; 136:13942-58. [DOI: 10.1021/ja507807v] [Citation(s) in RCA: 351] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Kallol Ray
- Department
of Chemistry, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
| | - Florian Felix Pfaff
- Department
of Chemistry, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
| | - Bin Wang
- Department
of Chemistry and Nano Science, Ewha Womans University, Seoul 120-750, Korea
| | - Wonwoo Nam
- Department
of Chemistry and Nano Science, Ewha Womans University, Seoul 120-750, Korea
| |
Collapse
|
18
|
Davydov R, Laryukhin M, Ledbetter-Rogers A, Sono M, Dawson JH, Hoffman BM. Electron paramagnetic resonance and electron-nuclear double resonance studies of the reactions of cryogenerated hydroperoxoferric-hemoprotein intermediates. Biochemistry 2014; 53:4894-903. [PMID: 25046203 PMCID: PMC4144713 DOI: 10.1021/bi500296d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
![]()
The fleeting ferric peroxo and hydroperoxo
intermediates of dioxygen
activation by hemoproteins can be readily trapped and characterized
during cryoradiolytic reduction of ferrous hemoprotein–O2 complexes at 77 K. Previous cryoannealing studies suggested
that the relaxation of cryogenerated hydroperoxoferric intermediates
of myoglobin (Mb), hemoglobin, and horseradish peroxidase (HRP), either
trapped directly at 77 K or generated by cryoannealing of a trapped
peroxo-ferric state, proceeds through dissociation of bound H2O2 and formation of the ferric heme without formation
of the ferryl porphyrin π-cation radical intermediate, compound
I (Cpd I). Herein we have reinvestigated the mechanism of decays of
the cryogenerated hydroperoxyferric intermediates of α- and
β-chains of human hemoglobin, HRP, and chloroperoxidase (CPO).
The latter two proteins are well-known to form spectroscopically detectable
quasistable Cpds I. Peroxoferric intermediates are trapped during
77 K cryoreduction of oxy Mb, α-chains, and β-chains of
human hemoglobin and CPO. They convert into hydroperoxoferric intermediates
during annealing at temperatures above 160 K. The hydroperoxoferric
intermediate of HRP is trapped directly at 77 K. All studied hydroperoxoferric
intermediates decay with measurable rates at temperatures above 170
K with appreciable solvent kinetic isotope effects. The hydroperoxoferric
intermediate of β-chains converts to the S =
3/2 Cpd I, which in turn decays to an electron paramagnetic resonance
(EPR)-silent product at temperature above 220 K. For all the other
hemoproteins studied, cryoannealing of the hydroperoxo intermediate
directly yields an EPR-silent majority product. In each case, a second
follow-up 77 K γ-irradiation of the annealed samples yields
low-spin EPR signals characteristic of cryoreduced ferrylheme (compound
II, Cpd II). This indicates that in general the hydroperoxoferric
intermediates relax to Cpd I during cryoanealing at low temperatures,
but when this state is not captured by reaction with a bound substrate,
it is reduced to Cpd II by redox-active products of radiolysis.
Collapse
Affiliation(s)
- Roman Davydov
- Department of Chemistry, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | | | | | | | | | | |
Collapse
|
19
|
Radical decomposition of hydrogen peroxide catalyzed by aqua complexes [M(H2O)n]2+ (M=Be, Zn, Cd). J Catal 2014. [DOI: 10.1016/j.jcat.2014.03.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
20
|
Hirao H, Thellamurege N, Zhang X. Applications of density functional theory to iron-containing molecules of bioinorganic interest. Front Chem 2014; 2:14. [PMID: 24809043 PMCID: PMC4010748 DOI: 10.3389/fchem.2014.00014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 03/10/2014] [Indexed: 12/29/2022] Open
Abstract
The past decades have seen an explosive growth in the application of density functional theory (DFT) methods to molecular systems that are of interest in a variety of scientific fields. Owing to its balanced accuracy and efficiency, DFT plays particularly useful roles in the theoretical investigation of large molecules. Even for biological molecules such as proteins, DFT finds application in the form of, e.g., hybrid quantum mechanics and molecular mechanics (QM/MM), in which DFT may be used as a QM method to describe a higher prioritized region in the system, while a MM force field may be used to describe remaining atoms. Iron-containing molecules are particularly important targets of DFT calculations. From the viewpoint of chemistry, this is mainly because iron is abundant on earth, iron plays powerful (and often enigmatic) roles in enzyme catalysis, and iron thus has the great potential for biomimetic catalysis of chemically difficult transformations. In this paper, we present a brief overview of several recent applications of DFT to iron-containing non-heme synthetic complexes, heme-type cytochrome P450 enzymes, and non-heme iron enzymes, all of which are of particular interest in the field of bioinorganic chemistry. Emphasis will be placed on our own work.
Collapse
Affiliation(s)
- Hajime Hirao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological UniversitySingapore, Singapore
| | | | | |
Collapse
|
21
|
Geronimo I, Paneth P. A DFT and ONIOM study of C–H hydroxylation catalyzed by nitrobenzene 1,2-dioxygenase. Phys Chem Chem Phys 2014; 16:13889-99. [DOI: 10.1039/c4cp01030b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The DFT and ONIOM calculations show that C–H hydroxylation by nitrobenzene 1,2-dioxygenase proceeds through a HO–FeVO intermediate.
Collapse
Affiliation(s)
- Inacrist Geronimo
- Institute of Applied Radiation Chemistry
- Lodz University of Technology
- 90-924 Łódź, Poland
| | - Piotr Paneth
- Institute of Applied Radiation Chemistry
- Lodz University of Technology
- 90-924 Łódź, Poland
| |
Collapse
|
22
|
Ueda T, Kitagishi H, Kano K. Intramolecular Direct Oxygen Transfer from Oxoferryl Porphyrin to a Sulfide Bond. Inorg Chem 2013; 53:543-51. [DOI: 10.1021/ic4026393] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Takunori Ueda
- Department of Molecular Chemistry and Biochemistry, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan
| | - Hiroaki Kitagishi
- Department of Molecular Chemistry and Biochemistry, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan
| | - Koji Kano
- Department of Molecular Chemistry and Biochemistry, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan
| |
Collapse
|
23
|
Lian P, Li J, Wang DQ, Wei DQ. Car–Parrinello Molecular Dynamics/Molecular Mechanics (CPMD/MM) Simulation Study of Coupling and Uncoupling Mechanisms of Cytochrome P450cam. J Phys Chem B 2013; 117:7849-56. [DOI: 10.1021/jp312107r] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Peng Lian
- State Key
Laboratory of Microbial
Metabolism, and College of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China 200240
| | - Jue Li
- State Key
Laboratory of Microbial
Metabolism, and College of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China 200240
| | - Dong-Qi Wang
- Laboratory of Physical Chemistry, Swiss Federal Institute of Technology, ETH, CH-8093
Zurich, Switzerland
| | - Dong-Qing Wei
- State Key
Laboratory of Microbial
Metabolism, and College of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China 200240
| |
Collapse
|
24
|
Kim YM, Cho KB, Cho J, Wang B, Li C, Shaik S, Nam W. A mononuclear non-heme high-spin iron(III)-hydroperoxo complex as an active oxidant in sulfoxidation reactions. J Am Chem Soc 2013; 135:8838-41. [PMID: 23721290 DOI: 10.1021/ja404152q] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report the first direct experimental evidence showing that a high-spin iron(III)-hydroperoxo complex bearing an N-methylated cyclam ligand can oxidize thioanisoles. DFT calculations showed that the reaction pathway involves heterolytic O-O bond cleavage and that the choice of the heterolytic pathway versus the homolytic pathway is dependent on the spin state and the number of electrons in the d(xz) orbital of the Fe(III)-OOH species.
Collapse
Affiliation(s)
- Yun Mi Kim
- Department of Bioinspired Science, Ewha Womans University, Seoul 120-750, Korea
| | | | | | | | | | | | | |
Collapse
|
25
|
Wang B, Li C, Cho KB, Nam W, Shaik S. The FeIII(H2O2) Complex as a Highly Efficient Oxidant in Sulfoxidation Reactions: Revival of an Underrated Oxidant in Cytochrome P450. J Chem Theory Comput 2013; 9:2519-25. [DOI: 10.1021/ct400190f] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Binju Wang
- Institute of Chemistry and the
Lise Meitner-Minerva Center for Computational Quantum Chemistry, The
Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | - Chunsen Li
- Institute of Chemistry and the
Lise Meitner-Minerva Center for Computational Quantum Chemistry, The
Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | - Kyung-Bin Cho
- Department of Bioinspired Science,
Ewha Womans University, Seoul 120-750, Korea
| | - Wonwoo Nam
- Department of Bioinspired Science,
Ewha Womans University, Seoul 120-750, Korea
| | - Sason Shaik
- Institute of Chemistry and the
Lise Meitner-Minerva Center for Computational Quantum Chemistry, The
Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| |
Collapse
|
26
|
Direct observation of intermediates formed during steady-state electrocatalytic O2 reduction by iron porphyrins. Proc Natl Acad Sci U S A 2013; 110:8431-6. [PMID: 23650367 DOI: 10.1073/pnas.1300808110] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Heme/porphyrin-based electrocatalysts (both synthetic and natural) have been known to catalyze electrochemical O2, H(+), and CO2 reduction for more than five decades. So far, no direct spectroscopic investigations of intermediates formed on the electrodes during these processes have been reported; and this has limited detailed understanding of the mechanism of these catalysts, which is key to their development. Rotating disk electrochemistry coupled to resonance Raman spectroscopy is reported for iron porphyrin electrocatalysts that reduce O2 in buffered aqueous solutions. Unlike conventional single-turnover intermediate trapping experiments, these experiments probe the system while it is under steady state. A combination of oxidation and spin-state marker bands and metal ligand vibrations (identified using isotopically enriched substrates) allow in situ identification of O2-derived intermediates formed on the electrode surface. This approach, combining dynamic electrochemistry with resonance Raman spectroscopy, may be routinely used to investigate a plethora of metalloporphyrin complexes and heme enzymes used as electrocatalysts for small-molecule activation.
Collapse
|
27
|
Novikov AS, Kuznetsov ML, Pombeiro AJL, Bokach NA, Shul’pin GB. Generation of HO• Radical from Hydrogen Peroxide Catalyzed by Aqua Complexes of the Group III Metals [M(H2O)n]3+ (M = Ga, In, Sc, Y, or La): A Theoretical Study. ACS Catal 2013. [DOI: 10.1021/cs400155q] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Alexander S. Novikov
- Centro de Química Estrutural, Complexo I, Instituto Superior
Técnico, Technical University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Department of Chemistry, Moscow State Pedagogical University, 3 Nesvizhskiy per., 119021
Moscow, Russian Federation
| | - Maxim L. Kuznetsov
- Centro de Química Estrutural, Complexo I, Instituto Superior
Técnico, Technical University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Department of Chemistry, Saint Petersburg State University, Universitetsky Pr., 26, 198504 Stary Petergof, Russian Federation
| | - Armando J. L. Pombeiro
- Centro de Química Estrutural, Complexo I, Instituto Superior
Técnico, Technical University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Nadezhda A. Bokach
- Department of Chemistry, Saint Petersburg State University, Universitetsky Pr., 26, 198504 Stary Petergof, Russian Federation
| | - Georgiy B. Shul’pin
- Semenov Institute of Chemical
Physics, Russian Academy of Science, Ulitsa
Kosygina, dom 4, 119991 Moscow, Russian Federation
| |
Collapse
|
28
|
Ansari A, Kaushik A, Rajaraman G. Mechanistic Insights on the ortho-Hydroxylation of Aromatic Compounds by Non-heme Iron Complex: A Computational Case Study on the Comparative Oxidative Ability of Ferric-Hydroperoxo and High-Valent FeIV═O and FeV═O Intermediates. J Am Chem Soc 2013; 135:4235-49. [DOI: 10.1021/ja307077f] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Azaj Ansari
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Abhishek Kaushik
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Gopalan Rajaraman
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
29
|
Miłaczewska A, Broclawik E, Borowski T. On the Catalytic Mechanism of (S)-2-Hydroxypropylphosphonic Acid Epoxidase (HppE): A Hybrid DFT Study. Chemistry 2012; 19:771-81. [DOI: 10.1002/chem.201202825] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Indexed: 11/10/2022]
|
30
|
Thibon A, Jollet V, Ribal C, Sénéchal-David K, Billon L, Sorokin AB, Banse F. Hydroxylation of Aromatics with the Help of a Non-Haem FeOOH: A Mechanistic Study under Single-Turnover and Catalytic Conditions. Chemistry 2012; 18:2715-24. [DOI: 10.1002/chem.201102252] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Indexed: 11/12/2022]
|
31
|
Kumar D, Sastry GN, de Visser SP. Axial Ligand Effect On The Rate Constant of Aromatic Hydroxylation By Iron(IV)–Oxo Complexes Mimicking Cytochrome P450 Enzymes. J Phys Chem B 2011; 116:718-30. [DOI: 10.1021/jp2113522] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Devesh Kumar
- Department of Applied Physics, School for Physical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Rae Bareilly Road, Lucknow 226 025, India
- Molecular Modelling Group, Indian Institute of Chemical Technology, Hyderabad 500-607, India
| | - G. Narahari Sastry
- Molecular Modelling Group, Indian Institute of Chemical Technology, Hyderabad 500-607, India
| | - Sam P. de Visser
- Manchester Interdisciplinary Biocenter and School of Chemical Engineering and Analytical Science, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| |
Collapse
|
32
|
Hirao H, Li F, Que L, Morokuma K. Theoretical study of the mechanism of oxoiron(IV) formation from H2O2 and a nonheme iron(II) complex: O-O cleavage involving proton-coupled electron transfer. Inorg Chem 2011; 50:6637-48. [PMID: 21678930 PMCID: PMC3136038 DOI: 10.1021/ic200522r] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
It has recently been shown that the nonheme oxoiron(IV) species supported by the 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane ligand (TMC) can be generated in near-quantitative yield by reacting [Fe(II)(TMC)(OTf)(2)] with a stoichiometric amount of H(2)O(2) in CH(3)CN in the presence of 2,6-lutidine (Li, F.; England, J.; Que, L., Jr. J. Am. Chem. Soc. 2010, 132, 2134-2135). This finding has major implications for O-O bond cleavage events in both Fenton chemistry and nonheme iron enzymes. To understand the mechanism of this process, especially the intimate details of the O-O bond cleavage step, a series of density functional theory (DFT) calculations and analyses have been carried out. Two distinct reaction paths (A and B) were identified. Path A consists of two principal steps: (1) coordination of H(2)O(2) to Fe(II) and (2) a combination of partial homolytic O-O bond cleavage and proton-coupled electron transfer (PCET). The latter combination renders the rate-limiting O-O cleavage effectively a heterolytic process. Path B proceeds via a simultaneous homolytic O-O bond cleavage of H(2)O(2) and Fe-O bond formation. This is followed by H abstraction from the resultant Fe(III)-OH species by an •OH radical. Calculations suggest that path B is plausible in the absence of base. However, once 2,6-lutidine is added to the reacting system, the reaction barrier is lowered and more importantly the mechanistic path switches to path A, where 2,6-lutidine plays an essential role as an acid-base catalyst in a manner similar to how the distal histidine or glutamate residue assists in compound I formation in heme peroxidases. The reaction was found to proceed predominantly on the quintet spin state surface, and a transition to the triplet state, the experimentally known ground state for the TMC-oxoiron(IV) species, occurs in the last stage of the oxoiron(IV) formation process.
Collapse
Affiliation(s)
- Hajime Hirao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
- Fukui Institute for Fundamental Chemistry, Kyoto University, 34-4 Takano Nishihiraki-cho, Sakyo, Kyoto 606-8103, Japan
| | - Feifei Li
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, 207 Pleasant Street SE, Minneapolis, MN 55455, USA
| | - Lawrence Que
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, 207 Pleasant Street SE, Minneapolis, MN 55455, USA
| | - Keiji Morokuma
- Fukui Institute for Fundamental Chemistry, Kyoto University, 34-4 Takano Nishihiraki-cho, Sakyo, Kyoto 606-8103, Japan
| |
Collapse
|
33
|
Kuznetsov ML, Kozlov YN, Mandelli D, Pombeiro AJL, Shul’pin GB. Mechanism of Al3+-Catalyzed Oxidations of Hydrocarbons: Dramatic Activation of H2O2 toward O−O Homolysis in Complex [Al(H2O)4(OOH)(H2O2)]2+ Explains the Formation of HO• Radicals. Inorg Chem 2011; 50:3996-4005. [DOI: 10.1021/ic102476x] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Maxim L. Kuznetsov
- Centro de Química Estrutural, Complexo I, Instituto Superior Técnico, TU Lisbon, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Yuriy N. Kozlov
- Semenov Institute of Chemical Physics, Russian Academy of Science, Ulitsa Kosigina, dom 4, 119991 Moscow, Russia
| | - Dalmo Mandelli
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Rua Santa Adélia, 166, Santo André - SP, 09210-170, Brazil
| | - Armando J. L. Pombeiro
- Centro de Química Estrutural, Complexo I, Instituto Superior Técnico, TU Lisbon, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Georgiy B. Shul’pin
- Semenov Institute of Chemical Physics, Russian Academy of Science, Ulitsa Kosigina, dom 4, 119991 Moscow, Russia
| |
Collapse
|
34
|
Shaik S, Cohen S, Wang Y, Chen H, Kumar D, Thiel W. P450 Enzymes: Their Structure, Reactivity, and Selectivity—Modeled by QM/MM Calculations. Chem Rev 2009; 110:949-1017. [DOI: 10.1021/cr900121s] [Citation(s) in RCA: 791] [Impact Index Per Article: 52.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sason Shaik
- Institute of Chemistry and the Lise-Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel, and Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Shimrit Cohen
- Institute of Chemistry and the Lise-Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel, and Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Yong Wang
- Institute of Chemistry and the Lise-Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel, and Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Hui Chen
- Institute of Chemistry and the Lise-Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel, and Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Devesh Kumar
- Institute of Chemistry and the Lise-Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel, and Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Walter Thiel
- Institute of Chemistry and the Lise-Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel, and Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
35
|
Dey A, Jiang Y, Ortiz de Montellano P, Hodgson KO, Hedman B, Solomon EI. S K-edge XAS and DFT calculations on cytochrome P450: covalent and ionic contributions to the cysteine-Fe bond and their contribution to reactivity. J Am Chem Soc 2009; 131:7869-78. [PMID: 19438234 DOI: 10.1021/ja901868q] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Experimental covalencies of the Fe-S bond for the resting low-spin and substrate-bound high-spin active site of cytochrome P450 are reported. DFT calculations on the active site indicate that one H-bonding interaction from the protein backbone is needed to reproduce the experimental values. The H-bonding to the thiolate from the backbone decreases the anisotropic pi covalency of the Fe-S bond lowering the barrier of free rotation of the exchangeable axial ligand, which is important for reactivity. The anionic axial thiolate ligand is calculated to lower the Fe(III/II) reduction potential of the active site by more than 1 V compared to a neutral imidazole ligand. About half of this derives from its covalent bonding and half from its electrostatic interaction with the oxidized Fe. This axial thiolate ligand increases the pK(a) of compound 0 (Fe(III)-hydroperoxo) favoring its protonation which promotes O-O bond heterolysis forming compound I. The reactivity of compound I is calculated to be relatively insensitive to the nature of the axial ligand due to opposing reduction potential and proton affinity contributions to the H-atom abstraction energy.
Collapse
Affiliation(s)
- Abhishek Dey
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | | | | | | | | | | |
Collapse
|
36
|
Yanai T, Mori S. Density Functional Studies on Isomerization of Prostaglandin H2to Prostacyclin Catalyzed by Cytochrome P450. Chemistry 2009; 15:4464-73. [DOI: 10.1002/chem.200802550] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
37
|
Porro CS, Kumar D, de Visser SP. Electronic properties of pentacoordinated heme complexes in cytochrome P450 enzymes: search for an Fe(i) oxidation state. Phys Chem Chem Phys 2009; 11:10219-26. [DOI: 10.1039/b911966c] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
38
|
Rebelo SL, Pereira MM, Monsanto PV, Burrows HD. Catalytic oxidative degradation of s-triazine and phenoxyalkanoic acid based herbicides with metalloporphyrins and hydrogen peroxide: Identification of two distinct reaction schemes. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/j.molcata.2008.09.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
39
|
Groenhof AR, Ehlers AW, Lammertsma K. Alkane Hydroxylation by Peroxy Acids: A Comparison with the Cytochrome P450 Hydroxylation. J Phys Chem A 2008; 112:12855-61. [DOI: 10.1021/jp801720s] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- André R. Groenhof
- Vrije Universiteit, FEW, Department of Chemistry, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Andreas W. Ehlers
- Vrije Universiteit, FEW, Department of Chemistry, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Koop Lammertsma
- Vrije Universiteit, FEW, Department of Chemistry, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
40
|
Chen H, Hirao H, Derat E, Schlichting I, Shaik S. Quantum Mechanical/Molecular Mechanical Study on the Mechanisms of Compound I Formation in the Catalytic Cycle of Chloroperoxidase: An Overview on Heme Enzymes. J Phys Chem B 2008; 112:9490-500. [DOI: 10.1021/jp803010f] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hui Chen
- Institute of Chemistry and The Lise Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, Givat Ram Campus, 91904 Jerusalem, Israel, and Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Hajime Hirao
- Institute of Chemistry and The Lise Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, Givat Ram Campus, 91904 Jerusalem, Israel, and Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Etienne Derat
- Institute of Chemistry and The Lise Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, Givat Ram Campus, 91904 Jerusalem, Israel, and Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Ilme Schlichting
- Institute of Chemistry and The Lise Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, Givat Ram Campus, 91904 Jerusalem, Israel, and Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | - Sason Shaik
- Institute of Chemistry and The Lise Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, Givat Ram Campus, 91904 Jerusalem, Israel, and Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| |
Collapse
|
41
|
The Radical Versus Non-radical Reactive Intermediates in the Iron(III) Porphyrin Catalyzed Oxidation Reactions by Hydroperoxides, Hydrogen Peroxide and Iodosylarene. Catal Letters 2008. [DOI: 10.1007/s10562-008-9502-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
42
|
The porphyrin complex catalyzed dioxygen activation in presence of solid inorganic phosphates and small quantities of t-BuOOH. Polyhedron 2008. [DOI: 10.1016/j.poly.2008.01.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
43
|
Matsumura H, Wakatabi M, Omi S, Ohtaki A, Nakamura N, Yohda M, Ohno H. Modulation of redox potential and alteration in reactivity via the peroxide shunt pathway by mutation of cytochrome P450 around the proximal heme ligand. Biochemistry 2008; 47:4834-42. [PMID: 18363338 DOI: 10.1021/bi800142v] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the thermophilic cytochrome P450 from the thermoacidophilic crenarchaeon Sulfolobus tokodaii strain 7 (P450st), a phenylalanine residue at position 310 and an alanine residue at position 320 are located close to the heme thiolate ligand, Cys317. Single site-directed mutants F310A and A320Q and double mutant F310A/A320Q have been constructed. All mutant enzymes as well as wild-type (WT) P450st were expressed at high levels. The substitution of F310 with Ala and of A320 with Gln induced shifts in redox potential and blue shifts in Soret absorption of ferrous-CO forms, while spectral characterization showed that in the resting state, the mutants almost retained the structural integrity of the active site. The redox potential of the heme varied as follows: -481 mV (WT), -477 mV (A320Q), -453 mV (F310A), and -450 mV (F310A/A320Q). The trend in the Soret band of the ferrous-CO form was as follows: 450 nm (WT) < 449 nm (A320Q) < 446 nm (F310A) < 444 nm (F310A/A320Q). These results established that the reduction potential and electron density on the heme iron are modulated by the Phe310 and Ala320 residues in P450st. The electron density on the heme decreases in the following order: WT > A320Q > F310A > F310A/A320Q. The electron density on the heme iron infers an essential role in P450 activity. The decrease in electron density interferes with the formation of a high-valent oxo-ferryl species called Compound I. However, steady-state turnover rates of styrene epoxidation with H2O2 show the following trend: WT approximately equal to A320Q < F310A approximately equal to F310A/A320Q. The shunt pathway which can provide the two electrons and oxygen required for a P450 reaction instead of NAD(P)H and dioxygen can rule out the first and second heme reduction in the catalytic process. Because the electron density on the heme iron might be deeply involved in the k cat values in this system, the intermediate Compound 0 which is the precursor species of Compound I mainly appears to participate dominantly in epoxidation with H2O2.
Collapse
Affiliation(s)
- Hirotoshi Matsumura
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | | | | | | | | | | | | |
Collapse
|
44
|
Li C, Zhang L, Zhang C, Hirao H, Wu W, Shaik S. Which Oxidant Is Really Responsible for Sulfur Oxidation by Cytochrome P450? Angew Chem Int Ed Engl 2007; 46:8168-70. [PMID: 17886330 DOI: 10.1002/anie.200702867] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Chunsen Li
- The State Key Laboratory of Physical Chemistry of Solid Surfaces, Center for Theoretical Chemistry, and Department of Chemistry, Xiamen University, Xiamen 361005, China
| | | | | | | | | | | |
Collapse
|
45
|
Li C, Zhang L, Zhang C, Hirao H, Wu W, Shaik S. Which Oxidant Is Really Responsible for Sulfur Oxidation by Cytochrome P450? Angew Chem Int Ed Engl 2007. [DOI: 10.1002/ange.200702867] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
46
|
Stephenson NA, Bell AT. Mechanistic insights into iron porphyrin-catalyzed olefin epoxidation by hydrogen peroxide: Factors controlling activity and selectivity. ACTA ACUST UNITED AC 2007. [DOI: 10.1016/j.molcata.2007.05.005] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
47
|
Watanabe Y, Nakajima H, Ueno T. Reactivities of oxo and peroxo intermediates studied by hemoprotein mutants. Acc Chem Res 2007; 40:554-62. [PMID: 17567089 DOI: 10.1021/ar600046a] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A series of myoglobin mutants, in which distal sites are modified by site-directed mutagenesis, are able to catalyze peroxidase, catalase, and P450 reactions even though their proximal histidine ligands are intact. More importantly, reactions of P450, catalase, and peroxidase substrates and compound I of myoglobin mutants can be observed spectroscopically. Thus, detailed oxidation mechanisms were examined. On the basis of these results, we suggest that the different reactivities of P450, catalase, and peroxidase are mainly caused by their active site structures, but not the axial ligand. We have also prepared compound 0 under physiological conditions by employing a mutant of cytochrome c 552. Compound 0 is not able to oxidize ascorbic acid.
Collapse
Affiliation(s)
- Yoshihito Watanabe
- Research Center for Materials Science and Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | | | | |
Collapse
|
48
|
Shaik S, Hirao H, Kumar D. Reactivity patterns of cytochrome P450 enzymes: multifunctionality of the active species, and the two states-two oxidants conundrum. Nat Prod Rep 2007; 24:533-52. [PMID: 17534529 DOI: 10.1039/b604192m] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Sason Shaik
- Department of Organic Chemistry and The Lise Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, Givat Ram, 91904 Jerusalem, Israel.
| | | | | |
Collapse
|
49
|
Seo M, Kamachi T, Kouno T, Murata K, Park M, Yoshizawa K, Nam W. Experimental and Theoretical Evidence for Nonheme Iron(III) Alkylperoxo Species as Sluggish Oxidants in Oxygenation Reactions. Angew Chem Int Ed Engl 2007. [DOI: 10.1002/ange.200604219] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
50
|
Seo MS, Kamachi T, Kouno T, Murata K, Park MJ, Yoshizawa K, Nam W. Experimental and Theoretical Evidence for Nonheme Iron(III) Alkylperoxo Species as Sluggish Oxidants in Oxygenation Reactions. Angew Chem Int Ed Engl 2007; 46:2291-4. [PMID: 17304600 DOI: 10.1002/anie.200604219] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mi Sook Seo
- Department of Chemistry, Division of Nano Sciences and Center for Biomimetic Systems, Ewha Womans University, Seoul 120-750, Korea.
| | | | | | | | | | | | | |
Collapse
|