1
|
Guo HB, Varaljay VA, Kedziora G, Taylor K, Farajollahi S, Lombardo N, Harper E, Hung C, Gross M, Perminov A, Dennis P, Kelley-Loughnane N, Berry R. Accurate prediction by AlphaFold2 for ligand binding in a reductive dehalogenase and implications for PFAS (per- and polyfluoroalkyl substance) biodegradation. Sci Rep 2023; 13:4082. [PMID: 36906658 PMCID: PMC10008544 DOI: 10.1038/s41598-023-30310-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 02/21/2023] [Indexed: 03/13/2023] Open
Abstract
Despite the success of AlphaFold2 (AF2), it is unclear how AF2 models accommodate for ligand binding. Here, we start with a protein sequence from Acidimicrobiaceae TMED77 (T7RdhA) with potential for catalyzing the degradation of per- and polyfluoroalkyl substances (PFASs). AF2 models and experiments identified T7RdhA as a corrinoid iron-sulfur protein (CoFeSP) which uses a norpseudo-cobalamin (BVQ) cofactor and two Fe4S4 iron-sulfur clusters for catalysis. Docking and molecular dynamics simulations suggest that T7RdhA uses perfluorooctanoic acetate (PFOA) as a substrate, supporting the reported defluorination activity of its homolog, A6RdhA. We showed that AF2 provides processual (dynamic) predictions for the binding pockets of ligands (cofactors and/or substrates). Because the pLDDT scores provided by AF2 reflect the protein native states in complex with ligands as the evolutionary constraints, the Evoformer network of AF2 predicts protein structures and residue flexibility in complex with the ligands, i.e., in their native states. Therefore, an apo-protein predicted by AF2 is actually a holo-protein awaiting ligands.
Collapse
Affiliation(s)
- Hao-Bo Guo
- Material and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, OH, 45433, USA
- UES Inc., Dayton, OH, 45432, USA
| | - Vanessa A Varaljay
- Material and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, OH, 45433, USA
| | - Gary Kedziora
- GDIT Inc., Wright-Patterson Air Force Base, Dayton, OH, 45433, USA
| | - Kimberly Taylor
- Material and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, OH, 45433, USA
- UES Inc., Dayton, OH, 45432, USA
| | - Sanaz Farajollahi
- Material and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, OH, 45433, USA
- UES Inc., Dayton, OH, 45432, USA
| | - Nina Lombardo
- Material and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, OH, 45433, USA
- UES Inc., Dayton, OH, 45432, USA
| | - Eric Harper
- Material and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, OH, 45433, USA
| | - Chia Hung
- Material and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, OH, 45433, USA
| | - Marie Gross
- Material and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, OH, 45433, USA
- University of Dayton, Dayton, OH, 45469, USA
| | - Alexander Perminov
- Material and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, OH, 45433, USA
- Miami University, Oxford, OH, 45056, USA
| | - Patrick Dennis
- Material and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, OH, 45433, USA
| | - Nancy Kelley-Loughnane
- Material and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, OH, 45433, USA.
| | - Rajiv Berry
- Material and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, OH, 45433, USA.
| |
Collapse
|
2
|
Oda K, Dunn BM, Wlodawer A. Serine-Carboxyl Peptidases, Sedolisins: From Discovery to Evolution. Biochemistry 2022; 61:1643-1664. [PMID: 35862020 DOI: 10.1021/acs.biochem.2c00239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Sedolisin is a proteolytic enzyme, listed in the peptidase database MEROPS as a founding member of clan SB, family S53. This enzyme, although active at low pH, was originally shown not to be inhibited by an aspartic peptidase specific inhibitor, S-PI (pepstatin Ac). In this Perspective, the S53 family is described from the moment of original identification to evolution. The representative enzymes of the family are sedolisin, kumamolisin, and TPP-1. They exhibit the following unique features. (1) The fold of the molecule is similar to that of subtilisin, but the catalytic residues consist of a triad, Ser/Glu/Asp, that is unlike the Ser/His/Asp triad of subtilisin. (2) The molecule is expressed as a pro-form composed of the amino-terminal prosegment and the active domain. Additionally, some members of this family have an additional, carboxy-terminal prosegment. (3) Their optimum pH for activity is in the acidic region, not in the neutral to alkaline region where subtilisin is active. (4) Their distribution in nature is very broad across the three kingdoms of life. (5) Some of these enzymes from fungi and bacteria are pathogens to plants. (6) Some of them have significant potential applications for industry. (7) The lack of a TPP-1 gene in human brain is the cause of incurable juvenile neuronal ceroid lipofuscinosis (Batten's disease).
Collapse
Affiliation(s)
- Kohei Oda
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Ben M Dunn
- Department of Biochemistry & Molecular Biology, University of Florida College of Medicine, Gainesville, Florida 32610-0245, United States
| | - Alexander Wlodawer
- Center for Structural Biology, National Cancer Institute, Frederick, Maryland 21702, United States
| |
Collapse
|
3
|
Elsässer B, Goettig P. Mechanisms of Proteolytic Enzymes and Their Inhibition in QM/MM Studies. Int J Mol Sci 2021; 22:3232. [PMID: 33810118 PMCID: PMC8004986 DOI: 10.3390/ijms22063232] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 12/11/2022] Open
Abstract
Experimental evidence for enzymatic mechanisms is often scarce, and in many cases inadvertently biased by the employed methods. Thus, apparently contradictory model mechanisms can result in decade long discussions about the correct interpretation of data and the true theory behind it. However, often such opposing views turn out to be special cases of a more comprehensive and superior concept. Molecular dynamics (MD) and the more advanced molecular mechanical and quantum mechanical approach (QM/MM) provide a relatively consistent framework to treat enzymatic mechanisms, in particular, the activity of proteolytic enzymes. In line with this, computational chemistry based on experimental structures came up with studies on all major protease classes in recent years; examples of aspartic, metallo-, cysteine, serine, and threonine protease mechanisms are well founded on corresponding standards. In addition, experimental evidence from enzyme kinetics, structural research, and various other methods supports the described calculated mechanisms. One step beyond is the application of this information to the design of new and powerful inhibitors of disease-related enzymes, such as the HIV protease. In this overview, a few examples demonstrate the high potential of the QM/MM approach for sophisticated pharmaceutical compound design and supporting functions in the analysis of biomolecular structures.
Collapse
Affiliation(s)
| | - Peter Goettig
- Structural Biology Group, Department of Biosciences, University of Salzburg, Billrothstrasse 11, 5020 Salzburg, Austria;
| |
Collapse
|
4
|
Tripathi S, Islam S, Seth SK, Bauzá A, Frontera A, Mukhopadhyay S. Supramolecular assemblies involving salt bridges: DFT and X-ray evidence of bipolarity. CrystEngComm 2020. [DOI: 10.1039/d0ce01356k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Three new aminopyridinium/4,4′-oxydibenzoate salts have been synthesized and structurally characterized. A common feature of these compounds is the formation of antiparallel π-stacked salt bridges.
Collapse
Affiliation(s)
- Suparna Tripathi
- Department of Physics
- Jadavpur University
- Kolkata-700032
- India
- Department of Chemistry
| | - Samiul Islam
- Department of Physics
- Jadavpur University
- Kolkata-700032
- India
| | | | - Antonio Bauzá
- Department of Chemistry
- Universitat de les Illes Balears
- 07122 Palma de Mallorca
- Spain
| | - Antonio Frontera
- Department of Chemistry
- Universitat de les Illes Balears
- 07122 Palma de Mallorca
- Spain
| | | |
Collapse
|
5
|
Qian P, Guo H, Wang L, Guo H. QM/MM Investigation of Substrate and Product Specificities of Suv4-20h2: How Does This Enzyme Generate Dimethylated H4K20 from Monomethylated Substrate? J Chem Theory Comput 2017; 13:2977-2986. [PMID: 28489369 DOI: 10.1021/acs.jctc.7b00069] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protein lysine methyltransferases (PKMTs) catalyze the methylation of lysine residues on histone proteins in the regulation of chromatin structure and gene expression. In contrast to many other PKMTs for which unmodified lysine is the methylation target, the enzymes in the Suv4-20 family are able to generate dimethylated product (H4K20me2) based exclusively on the monomethylated H4K20 substrate (H4K20me1). The origin of such substrate/product specificity is still not clear. Here, molecular dynamics (MD) and free energy (potential of mean force) simulations are undertaken using quantum mechanical/molecular mechanical (QM/MM) potentials to understand the substrate/product specificities of Suv4-20h2, a member of the Suv4-20 family. The free energy barriers for mono-, di-, and trimethylation in Suv4-20h2 obtained from the simulations are found to be well correlated with the specificities observed experimentally with the allowed dimethylation based on the H4K20me1 substrate and prohibited monomethylation and trimethylation based on H4K20 and H4K20me2, respectively. It is demonstrated that the reason for the relatively efficient dimethylation is an effective transition state (TS) stabilization through strengthening the CH···O interactions as well as the presence of a cation-π interaction at the transition state. The simulations also show that the failures of Suv4-20h2 to catalyze monomethylation and trimethylation are due, respectively, to a less effective TS stabilization and inability of the reactant complex containing H4K20me2 to adopt a reactive (near attack) configuration for methyl transfer. The results suggest that care must be exercised in the prediction of the substrate specificity based only on the existence of near attack configurations in substrate complexes.
Collapse
Affiliation(s)
- Ping Qian
- Chemistry and Material Science Faculty, Shandong Agricultural University , Tai'an 271018, Shandong, Peoples Republic of China
| | - Haobo Guo
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee , Knoxville, Tennessee 37996, United States
| | - Liang Wang
- Chemistry and Material Science Faculty, Shandong Agricultural University , Tai'an 271018, Shandong, Peoples Republic of China
| | - Hong Guo
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee , Knoxville, Tennessee 37996, United States.,UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37830, United States
| |
Collapse
|
6
|
Yao J, Luo H, Wang X. Understanding the Catalytic Mechanism and the Substrate Specificity of an Engineered Gluten Hydrolase by QM/MM Molecular Dynamics and Free Energy Simulations. J Chem Inf Model 2017; 57:1179-1186. [DOI: 10.1021/acs.jcim.7b00167] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Jianzhuang Yao
- School
of Biological Science and Technology, University of Jinan, Jinan 250022, P. R. China
| | - Haixia Luo
- Key
Laboratory of Ministry of Education for Conservation and Utilization
of Special Biological Resources in the Western China, Life Science
School, Ningxia University, Yinchuan 750021, P. R. China
| | - Xia Wang
- School
of Biological Science and Technology, University of Jinan, Jinan 250022, P. R. China
| |
Collapse
|
7
|
Duff MR, Chopra S, Strader MB, Agarwal PK, Howell EE. Tales of Dihydrofolate Binding to R67 Dihydrofolate Reductase. Biochemistry 2015; 55:133-45. [PMID: 26637016 PMCID: PMC5147970 DOI: 10.1021/acs.biochem.5b00981] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Homotetrameric R67 dihydrofolate reductase possesses 222 symmetry and a single active site pore. This situation results in a promiscuous binding site that accommodates either the substrate, dihydrofolate (DHF), or the cofactor, NADPH. NADPH interacts more directly with the protein as it is larger than the substrate. In contrast, the p-aminobenzoyl-glutamate tail of DHF, as monitored by nuclear magnetic resonance and crystallography, is disordered when bound. To explore whether smaller active site volumes (which should decrease the level of tail disorder by confinement effects) alter steady state rates, asymmetric mutations that decreased the half-pore volume by ∼35% were constructed. Only minor effects on k(cat) were observed. To continue exploring the role of tail disorder in catalysis, 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide-mediated cross-linking between R67 DHFR and folate was performed. A two-folate, one-tetramer complex results in the loss of enzyme activity where two symmetry-related K32 residues in the protein are cross-linked to the carboxylates of two bound folates. The tethered folate could be reduced, although with a ≤30-fold decreased rate, suggesting decreased dynamics and/or suboptimal positioning of the cross-linked folate for catalysis. Computer simulations that restrain the dihydrofolate tail near K32 indicate that cross-linking still allows movement of the p-aminobenzoyl ring, which allows the reaction to occur. Finally, a bis-ethylene-diamine-α,γ-amide folate adduct was synthesized; both negatively charged carboxylates in the glutamate tail were replaced with positively charged amines. The K(i) for this adduct was ∼9-fold higher than for folate. These various results indicate a balance between folate tail disorder, which helps the enzyme bind substrate while dynamics facilitates catalysis.
Collapse
Affiliation(s)
- Michael R Duff
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee , Knoxville, Tennessee 37996-0840, United States
| | - Shaileja Chopra
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee , Knoxville, Tennessee 37996-0840, United States
| | - Michael Brad Strader
- Laboratory of Biochemistry and Vascular Biology, Center for Biologics Evaluation and Research, Food and Drug Administration , Silver Spring, Maryland 20993, United States
| | - Pratul K Agarwal
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee , Knoxville, Tennessee 37996-0840, United States.,Computer Science and Mathematics Division, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States
| | - Elizabeth E Howell
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee , Knoxville, Tennessee 37996-0840, United States
| |
Collapse
|
8
|
Yao J, Guo H, Chaiprasongsuk M, Zhao N, Chen F, Yang X, Guo H. Substrate-Assisted Catalysis in the Reaction Catalyzed by Salicylic Acid Binding Protein 2 (SABP2), a Potential Mechanism of Substrate Discrimination for Some Promiscuous Enzymes. Biochemistry 2015; 54:5366-75. [PMID: 26244568 DOI: 10.1021/acs.biochem.5b00638] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Although one of an enzyme's hallmarks is the high specificity for their natural substrates, substrate promiscuity has been reported more frequently. It is known that promiscuous enzymes generally show different catalytic efficiencies to different substrates, but our understanding of the origin of such differences is still lacking. Here we report the results of quantum mechanical/molecular mechanical simulations and an experimental study of salicylic acid binding protein 2 (SABP2). SABP2 has promiscuous esterase activity toward a series of substrates but shows a high activity toward its natural substrate, methyl salicylate (MeSA). Our results demonstrate that this enzyme may use substrate-assisted catalysis involving the hydroxyl group from MeSA to enhance the activity and achieve substrate discrimination.
Collapse
Affiliation(s)
- Jianzhuang Yao
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee , Knoxville, Tennessee 37996, United States
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37830, United States
| | - Haobo Guo
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee , Knoxville, Tennessee 37996, United States
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37830, United States
| | - Minta Chaiprasongsuk
- Department of Plant Sciences, University of Tennessee , Knoxville, Tennessee 37996, United States
| | - Nan Zhao
- Department of Plant Sciences, University of Tennessee , Knoxville, Tennessee 37996, United States
| | - Feng Chen
- Department of Plant Sciences, University of Tennessee , Knoxville, Tennessee 37996, United States
| | - Xiaohan Yang
- Biosciences Division, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States
| | - Hong Guo
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee , Knoxville, Tennessee 37996, United States
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37830, United States
| |
Collapse
|
9
|
Chu Y, Guo H. QM/MM MD and Free Energy Simulation Study of Methyl Transfer Processes Catalyzed by PKMTs and PRMTs. Interdiscip Sci 2015; 7:309-18. [PMID: 26267708 DOI: 10.1007/s12539-015-0280-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 09/19/2014] [Accepted: 10/17/2014] [Indexed: 11/27/2022]
Abstract
Methyl transfer processes catalyzed by protein lysine methyltransferases (PKMTs) and protein arginine methyltransferases (PRMTs) control important biological events including transcriptional regulation and cell signaling. One important property of these enzymes is that different PKMTs and PRMTs catalyze the formation of different methylated product (product specificity). These different methylation states lead to different biological outcomes. Here, we review the results of quantum mechanics/molecular mechanics molecular dynamics and free energy simulations that have been performed to study the reaction mechanism of PKMTs and PRMTs and the mechanism underlying the product specificity of the methyl transfer processes.
Collapse
Affiliation(s)
- Yuzhuo Chu
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China.
| | - Hong Guo
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, 37996, USA
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6164, USA
| |
Collapse
|
10
|
Chu Y, Guo H. QM/MM MD and free energy simulation study of methyl transfer processes catalyzed by PKMTs and PRMTs. Interdiscip Sci 2015. [PMID: 25595588 DOI: 10.1007/s12539-014-0228-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 09/19/2014] [Accepted: 10/17/2014] [Indexed: 09/29/2022]
Abstract
Methyl transfer processes catalyzed by protein lysine methyltransferases (PKMTs) and protein arginine methyltransferases (PRMTs) control important biological events including transcriptional regulation and cell signaling. One important property of these enzymes is that different PKMTs and PRMTs catalyze the formation of different methylated product (product specificity). These different methylation states lead to different biological outcomes. Here we review the results of quantum mechanics/molecular mechanics (QM/MM) molecular dynamics (MD) and free energy simulations that have been performed to study the reaction mechanism of PKMTs and PRMTs and the mechanism underlying the product specificity of the methyl transfer processes.
Collapse
Affiliation(s)
- Yuzhuo Chu
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China,
| | | |
Collapse
|
11
|
da Cruz CHB, Seabra GM. QM/MM simulations of amyloid-β 42 degradation by IDE in the presence and absence of ATP. J Chem Inf Model 2015; 55:72-83. [PMID: 25539133 DOI: 10.1021/ci500544c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The ability of the insulin-degrading enzyme (IDE) to degrade amyloid-β 42 (Aβ42), a process regulated by ATP, has been studied as an alternative path in the development of drugs against Alzheimer's disease. In this study, we calculated the potential of mean force for the degradation of Aβ42 by IDE in the presence and absence of ATP by umbrella sampling with hybrid quantum mechanics and molecular mechanics (QM/MM) calculations, using the SCC-DFTB QM Hamiltonian and Amber ff99SB force field. Results indicate that the reaction occurs in two steps: The first step is characterized by the formation of the intermediate. The second step is characterized by breaking the peptide bond of the substrate, the latter being the rate-determining step. In our simulations, the activation energy barrier in the absence of ATP is 15 ± 2 kcal mol(-1), which is 7 kcal mol(-1) lower than in the presence of ATP, indicating that the presence of the nucleotide decreases the reaction rate by about 10(5) times.
Collapse
Affiliation(s)
- Carlos H B da Cruz
- Departamento de Química Fundamental, Universidade Federal de Pernambuco , Av. Jornalista Aníbal Fernandes, s/n, Cidade Universitária, Recife-PE, Brazil , 50.740-560
| | | |
Collapse
|
12
|
Brancatelli G, Pappalardo S, Gattuso G, Notti A, Pisagatti I, Parisi MF, Geremia S. Hydrogen bond-assisted solid-state formation of a salt-bridged calix[5]arene pseudo-dimer. CrystEngComm 2014. [DOI: 10.1039/c3ce41667d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Yao J, Wlodawer A, Guo H. Understanding the autocatalytic process of pro-kumamolisin activation from molecular dynamics and quantum mechanical/molecular mechanical (QM/MM) free-energy simulations. Chemistry 2013; 19:10849-52. [PMID: 23821374 DOI: 10.1002/chem.201301310] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Revised: 05/30/2013] [Indexed: 11/12/2022]
Affiliation(s)
- Jianzhuang Yao
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | | | | |
Collapse
|
14
|
Yao J, Xu Q, Guo H. QM/MM and free-energy simulations of deacylation reaction catalysed by sedolisin, a serine-carboxyl peptidase. MOLECULAR SIMULATION 2013. [DOI: 10.1080/08927022.2012.714467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
15
|
Xu Q, Yao J, Wlodawer A, Guo H. Clarification of the mechanism of acylation reaction and origin of substrate specificity of the serine-carboxyl peptidase sedolisin through QM/MM free energy simulations. J Phys Chem B 2011; 115:2470-6. [PMID: 21332137 DOI: 10.1021/jp1122294] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Quantum mechanical/molecular mechanical (QM/MM) free energy simulations are applied for understanding the mechanism of the acylation reaction catalyzed by sedolisin, a representative serine-carboxyl peptidase, leading to the acyl-enzyme (AE) and first product from the enzyme-catalyzed reaction. One of the interesting questions to be addressed in this work is the origin of the substrate specificity of sedolisin that shows a relatively high activity on the substrates with Glu at P(1) site. It is shown that the bond making and breaking events of the acylation reaction involving a peptide substrate (LLE*FL) seem to be accompanied by local conformational changes, proton transfers as well as the formation of alternative hydrogen bonds. The results of the simulations indicate that the conformational change of Glu at P(1) site and its formation of a low barrier hydrogen bond with Asp-170 (along with the transient proton transfer) during the acylation reaction might play a role in the relatively high specificity for the substrate with Glu at P(1) site. The role of some key residues in the catalysis is confirmed through free energy simulations. Glu-80 is found to act as a general base to accept a proton from Ser-287 during the nucleophilic attack and then as a general acid to protonate the leaving group (N-H of P(1')-Phe) during the cleavage of the scissile peptide bond. Another acidic residue, Asp-170, acts as a general acid catalyst to protonate the carbonyl of P(1)-Glu during the formation of the tetrahedral intermediate and as a general base for the formation of the acyl-enzyme. The energetic results from the free energy simulations support the importance of proton transfer from Asp-170 to the carbonyl of P(1)-Glu in the stabilization of the tetrahedral intermediate and the formation of a low-barrier hydrogen bond between the carboxyl group of P(1)-Glu and Asp-170 in the lowering of the free energy barrier for the cleavage of the peptide bond. Detailed analyses of the proton transfers during acylation are also given.
Collapse
Affiliation(s)
- Qin Xu
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 3799, USA
| | | | | | | |
Collapse
|
16
|
Xu Q, Li L, Guo H. Understanding the mechanism of deacylation reaction catalyzed by the serine carboxyl peptidase kumamolisin-As: insights from QM/MM free energy simulations. J Phys Chem B 2010; 114:10594-600. [PMID: 20734497 DOI: 10.1021/jp102785s] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Quantum mechanical/molecular mechanical (QM/MM) molecular dynamics and free energy simulations are performed to study the process of the deacylation reaction catalyzed by kumamolisin-As, a serine-carboxyl peptidase, and to elucidate the catalytic mechanism. The results given here suggest that Asp-164 acts as a general acid/base catalyst not only for the acylation reaction but also for the deacylation reaction. It is shown that the electrostatic oxyanion hole interactions may be less effective in transition state stabilization for the kumamolisin-As catalyzed reaction compared to the general acid/base mechanism involving the proton transfer from or to Asp-164. The dynamic substrate-assisted catalysis (DSAC) involving His at the P1 site of the substrate is found to be less important for the deacylation reaction than for the acylation reaction in the kumamolisin-As catalyzed reaction. The proton transfer processes during the enzyme-catalyzed process are examined and their role in the catalysis is discussed.
Collapse
Affiliation(s)
- Qin Xu
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, USA
| | | | | |
Collapse
|
17
|
Abstract
Combined quantum-mechanics/molecular-mechanics (QM/MM) approaches have become the method of choice for modeling reactions in biomolecular systems. Quantum-mechanical (QM) methods are required for describing chemical reactions and other electronic processes, such as charge transfer or electronic excitation. However, QM methods are restricted to systems of up to a few hundred atoms. However, the size and conformational complexity of biopolymers calls for methods capable of treating up to several 100,000 atoms and allowing for simulations over time scales of tens of nanoseconds. This is achieved by highly efficient, force-field-based molecular mechanics (MM) methods. Thus to model large biomolecules the logical approach is to combine the two techniques and to use a QM method for the chemically active region (e.g., substrates and co-factors in an enzymatic reaction) and an MM treatment for the surroundings (e.g., protein and solvent). The resulting schemes are commonly referred to as combined or hybrid QM/MM methods. They enable the modeling of reactive biomolecular systems at a reasonable computational effort while providing the necessary accuracy.
Collapse
Affiliation(s)
- Hans Martin Senn
- Department of Chemistry, WestCHEM and University of Glasgow, Glasgow G12 8QQ, UK.
| | | |
Collapse
|
18
|
|
19
|
Weaver DS, Zuiderweg ERP. Eta(z)/kappa: a transverse relaxation optimized spectroscopy NMR experiment measuring longitudinal relaxation interference. J Chem Phys 2008; 128:155103. [PMID: 18433284 DOI: 10.1063/1.2889923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
NMR spin relaxation experiments provide a powerful tool for the measurement of global and local biomolecular rotational dynamics at subnanosecond time scales. Technical limitations restrict most spin relaxation studies to biomolecules weighing less than 10 kDa, considerably smaller than the average protein molecular weight of 30 kDa. In particular, experiments measuring eta(z), the longitudinal (1)H(N)-(15)N dipole-dipole (DD)/(15)N chemical shift anisotropy (CSA) cross-correlated relaxation rate, are among those least suitable for use with larger biosystems. This is unfortunate because these experiments yield valuable insight into the variability of the (15)N CSA tensor over the polypeptide backbone, and this knowledge is critical to the correct interpretation of most (15)N-NMR backbone relaxation experiments, including R(2) and R(1). In order to remedy this situation, we present a new (1)H(N)-(15)N transverse relaxation optimized spectroscopy experiment measuring eta(z) suitable for applications with larger proteins (up to at least 30 kDa). The presented experiment also yields kappa, the site-specific rate of longitudinal (1)H(N)-(1)H(') DD cross relaxation. We describe the eta(z)/kappa experiment's performance in protonated human ubiquitin at 30.0 degrees C and in protonated calcium-saturated calmodulin/peptide complex at 20.0 degrees C, and demonstrate preliminary experimental results for a deuterated E. coli DnaK ATPase domain construct at 34 degrees C.
Collapse
Affiliation(s)
- Daniel S Weaver
- Biophysics and Department of Biological Chemistry, The University of Michigan, Ann Arbor, MI 48109-1055, USA
| | | |
Collapse
|
20
|
Krahn JM, Jackson MR, DeRose EF, Howell EE, London RE. Crystal structure of a type II dihydrofolate reductase catalytic ternary complex. Biochemistry 2007; 46:14878-88. [PMID: 18052202 PMCID: PMC3743094 DOI: 10.1021/bi701532r] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Type II dihydrofolate reductase (DHFR) is a plasmid-encoded enzyme that confers resistance to bacterial DHFR-targeted antifolate drugs. It forms a symmetric homotetramer with a central pore which functions as the active site. Its unusual structure, which results in a promiscuous binding surface that accommodates either the dihydrofolate (DHF) substrate or the NADPH cofactor, has constituted a significant limitation to efforts to understand its substrate specificity and reaction mechanism. We describe here the first structure of a ternary R67 DHFR.DHF.NADP+ catalytic complex, resolved to 1.26 A. This structure provides the first clear picture of how this enzyme, which lacks the active site carboxyl residue that is ubiquitous in Type I DHFRs, is able to function. In the catalytic complex, the polar backbone atoms of two symmetry-related I68 residues provide recognition motifs that interact with the carboxamide on the nicotinamide ring, and the N3-O4 amide function on the pteridine ring. This set of interactions orients the aromatic rings of substrate and cofactor in a relative endo geometry in which the reactive centers are held in close proximity. Additionally, a central, hydrogen-bonded network consisting of two pairs of Y69-Q67-Q67'-Y69' residues provides an unusually tight interface, which appears to serve as a "molecular clamp" holding the substrates in place in an orientation conducive to hydride transfer. In addition to providing the first clear insight regarding how this extremely unusual enzyme is able to function, the structure of the ternary complex provides general insights into how a mutationally challenged enzyme, i.e., an enzyme whose evolution is restricted to four-residues-at-a-time active site mutations, overcomes this fundamental limitation.
Collapse
Affiliation(s)
- Joseph M. Krahn
- Laboratory of Structural Biology, MR-01, National Institute of Environmental Health Sciences, National Institutes of Health, Box 12233, Research Triangle Park, North Carolina 27709
| | - Michael R. Jackson
- Department of Biochemistry, Cellular & Molecular Biology, University of Tennessee, Knoxville, TN 37996-0840
| | - Eugene F. DeRose
- Laboratory of Structural Biology, MR-01, National Institute of Environmental Health Sciences, National Institutes of Health, Box 12233, Research Triangle Park, North Carolina 27709
| | - Elizabeth E. Howell
- Department of Biochemistry, Cellular & Molecular Biology, University of Tennessee, Knoxville, TN 37996-0840
| | - Robert E. London
- Laboratory of Structural Biology, MR-01, National Institute of Environmental Health Sciences, National Institutes of Health, Box 12233, Research Triangle Park, North Carolina 27709
| |
Collapse
|
21
|
Xu Q, Guo HB, Wlodawer A, Nakayama T, Guo H. The QM/MM molecular dynamics and free energy simulations of the acylation reaction catalyzed by the serine-carboxyl peptidase kumamolisin-As. Biochemistry 2007; 46:3784-92. [PMID: 17326662 PMCID: PMC2533263 DOI: 10.1021/bi061737p] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Quantum mechanical/molecular mechanical molecular dynamics and free energy simulations are performed to study the acylation reaction catalyzed by kumamolisin-As, a serine-carboxyl peptidase, and to elucidate the catalytic mechanism and the origin of substrate specificity. It is demonstrated that the nucleophilic attack by the serine residue on the substrate may not be the rate-limiting step for the acylation of the GPH*FF substrate. The present study also confirms the earlier suggestions that Asp164 acts as a general acid during the catalysis and that the electrostatic oxyanion hole interactions may not be sufficient to lead a stable tetrahedral intermediate along the reaction pathway. Moreover, Asp164 is found to act as a general base during the formation of the acyl-enzyme from the tetrahedral intermediate. The role of dynamic substrate assisted catalysis (DSAC) involving His at the P1 site of the substrate is examined for the acylation reaction. It is demonstrated that the bond-breaking and -making events at each stage of the reaction trigger a change of the position for the His side chain and lead to the formation of the alternative hydrogen bonds. The back and forth movements of the His side chain between the C=O group of Pro at P2 and Odelta2 of Asp164 in a ping-pong-like mechanism and the formation of the alternative hydrogen bonds effectively lower the free energy barriers for both the nucleophilic attack and the acyl-enzyme formation and may therefore contribute to the relatively high activity of kumamolisin-As toward the substrates with His at the P1 site.
Collapse
Affiliation(s)
- Qin Xu
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Hao-Bo Guo
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Alexander Wlodawer
- Protein Structure Section, Macromolecular Crystallography Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Toru Nakayama
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, 6-6-11, Aoba-yama, Sendai 980-8579, Japan
| | - Hong Guo
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
- To whom correspondence should be addressed. E-mail: . Telephone: (865)974-3610. Fax: (865)974-6306
| |
Collapse
|