1
|
Chatterjee S, Nochebuena J, Cisneros GA. Impact of an Ionic Liquid Solution on Horseradish Peroxidase Activity. J Am Chem Soc 2024; 146:13247-13257. [PMID: 38701006 DOI: 10.1021/jacs.4c01100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Horseradish peroxidase (HRP) is an enzyme that oxidizes pollutants from wastewater. A previous report indicated that peroxidases can have an enhancement in initial enzymatic activity in an aqueous solution of 0.26 M 1-ethyl-3-methylimidazolium ethyl sulfate ([EMIm][EtSO4]) at neutral pH. However, the atomistic details remain elusive. In the enzymatic landscape of HRP, compound II (Cpd II) plays a key role and involves a histidine (H42) residue. Cpd II exists as oxoferryl (2a) or hydroxoferryl (2b(FeIV)) forms, where 2a is the predominantly observed form in experimental studies. Intriguingly, the ferric 2b(FeIII) form seen in synthetic complexes has not been observed in HRP. Here, we have investigated the structure and dynamics of HRP in pure water and aqueous [EMIm][EtSO4] (0.26 M), as well as the reaction mechanism of 2a to 2b conversion using polarizable molecular dynamics (MD) simulations and quantum mechanics/molecular mechanics (QM/MM) calculations. When HRP is solvated in aq [EMIm][EtSO4], the catalytic water displaces, and H42 directly orients over the ferryl moiety, allowing a direct proton transfer (PT) with a significant energy barrier reduction. Conversely, in neat water, the reaction of 2a to 2b follows the previously reported mechanism. We further investigated the deprotonated form of H42. Analysis of the electric fields at the active site indicates that the aq [EMIm][EtSO4] medium facilitates the reaction by providing a more favorable environment compared with the system solvated in neat water. Overall, the atomic level supports the previous experimental observations and underscores the importance of favorable electric fields in the active site to promote catalysis.
Collapse
Affiliation(s)
- Shubham Chatterjee
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Jorge Nochebuena
- Department of Physics, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - G Andrés Cisneros
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas 75080, United States
- Department of Physics, University of Texas at Dallas, Richardson, Texas 75080, United States
| |
Collapse
|
2
|
Abstract
Ferric heme b (= ferric protoporphyrin IX = hemin) is an important prosthetic group of different types of enzymes, including the intensively investigated and widely applied horseradish peroxidase (HRP). In HRP, hemin is present in monomeric form in a hydrophobic pocket containing among other amino acid side chains the two imidazoyl groups of His170 and His42. Both amino acids are important for the peroxidase activity of HRP as an axial ligand of hemin (proximal His170) and as an acid/base catalyst (distal His42). A key feature of the peroxidase mechanism of HRP is the initial formation of compound I under heterolytic cleavage of added hydrogen peroxide as a terminal oxidant. Investigations of free hemin dispersed in aqueous solution showed that different types of hemin dimers can form, depending on the experimental conditions, possibly resulting in hemin crystallization. Although it has been recognized already in the 1970s that hemin aggregation can be prevented in aqueous solution by using micelle-forming amphiphiles, it remains a challenge to prepare hemin-containing micellar and vesicular systems with peroxidase-like activities. Such systems are of interest as cheap HRP-mimicking catalysts for analytical and synthetic applications. Some of the key concepts on which research in this fascinating and interdisciplinary field is based are summarized, along with major accomplishments and possible directions for further improvement. A systematic analysis of the physico-chemical properties of hemin in aqueous micellar solutions and vesicular dispersions must be combined with a reliable evaluation of its catalytic activity. Future studies should show how well the molecular complexity around hemin in HRP can be mimicked by using micelles or vesicles. Because of the importance of heme b in virtually all biological systems and the fact that porphyrins and hemes can be obtained under potentially prebiotic conditions, ideas exist about the possible role of heme-containing micellar and vesicular systems in prebiotic times.
Collapse
|
3
|
Ansari M, Rajaraman G. Comparative oxidative ability of mononuclear and dinuclear high-valent iron-oxo species towards the activation of methane: does the axial/bridge atom modulate the reactivity? Dalton Trans 2023; 52:308-325. [PMID: 36504243 DOI: 10.1039/d2dt02559k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Over the years, mononuclear FeIVO species have been extensively studied, but the presence of dinuclear FeIVO species in soluble methane monooxygenase (sMMO) has inspired the development of biomimic models that could activate inert substrates such as methane. There are some successful attempts; particularly the [(Por)(m-CBA) FeIV(μ-N)FeIV(O)(Por˙+)]- species has been reported to activate methane and yield decent catalytic turnover numbers and therefore regarded as the closest to the sMMO enzyme functional model, as no mononuclear FeIVO analogues could achieve this feat. In this work, we have studied a series of mono and dinuclear models using DFT and ab initio DLPNO-CCSD(T) calculations to probe the importance of nuclearity in enhancing the reactivity. We have probed the catalytic activities of four complexes: [(HO)FeIV(O)(Por)]- (1), [(HO)FeIV(O)(Por˙+)] (2), μ-oxo dinuclear iron species [(Por)(m-CBA)FeIV(μ-O)FeIV(O) (Por˙+)]- (3) and N-bridged dinuclear iron species [(Por)(m-CBA)FeIV(μ-N)FeIV(O)(Por˙+)]- (4) towards the activation of methane. Additionally, calculations were performed on the mononuclear models [(X)FeIV(O)(Por˙+)]n {X = N 4a (n = -2), NH 4b (n = -1) and NH24c (n = 0)} to understand the role of nuclearity in the reactivity. DFT calculations performed on species 1-4 suggest an interesting variation among them, with species 1-3 possessing an intermediate spin (S = 1) as a ground state and species 4 possessing a high-spin (S = 2) as a ground state. Furthermore, the two FeIV centres in species 3 and 4 are antiferromagnetically coupled, yielding a singlet state with a distinct difference in their electronic structure. On the other hand, species 2 exhibits a ferromagnetic coupling between the FeIV and the Por˙+ moiety. Our calculations suggest that the higher barriers for the C-H bond activation of methane and the rebound step for species 1 and 3 are very high in energy, rendering them unreactive towards methane, while species 2 and 4 have lower barriers, suggesting their reactivity towards methane. Studies on the system reveal that model 4a has multiple FeN bonds facilitating greater reactivity, whereas the other two models have longer Fe-N bonds and less radical character with steeper barriers. Strong electronic cooperativity is found to be facilitated by the bridging nitride atom, and this cooperativity is suppressed by substituents such as oxygen, rendering them inactive. Thus, our study unravels that apart from enhancing the nuclearity, bridging atoms that facilitate strong cooperation between the metals are required to activate very inert substrates such as methane, and our results are broadly in agreement with earlier experimental findings.
Collapse
Affiliation(s)
- Mursaleem Ansari
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India.
| | - Gopalan Rajaraman
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India.
| |
Collapse
|
4
|
Wu C, Wu Y, He X, Hong R, Lee H, Feng K, Ping‐Yu Chen P. Modeling Heme Peroxidase: Heme Saddling Facilitates Reactions with Hyperperoxides To Form High‐Valent Fe
IV
‐Oxo Species. Chemistry 2022; 28:e202201139. [DOI: 10.1002/chem.202201139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Chang‐Quan Wu
- Department of Chemistry National Chung Hsing University 145 Xingda Rd., South Dist. Taichung City 402 Taiwan (R.O.C
| | - Yi‐Wen Wu
- Department of Chemistry National Chung Hsing University 145 Xingda Rd., South Dist. Taichung City 402 Taiwan (R.O.C
| | - Xuan‐Han He
- Department of Chemistry National Chung Hsing University 145 Xingda Rd., South Dist. Taichung City 402 Taiwan (R.O.C
| | - Ruo‐Ting Hong
- Department of Chemistry National Chung Hsing University 145 Xingda Rd., South Dist. Taichung City 402 Taiwan (R.O.C
| | - Hao‐Chien Lee
- Department of Chemistry National Chung Hsing University 145 Xingda Rd., South Dist. Taichung City 402 Taiwan (R.O.C
| | - Kang‐Yen Feng
- Department of Chemistry National Chung Hsing University 145 Xingda Rd., South Dist. Taichung City 402 Taiwan (R.O.C
| | - Peter Ping‐Yu Chen
- Department of Chemistry National Chung Hsing University 145 Xingda Rd., South Dist. Taichung City 402 Taiwan (R.O.C
| |
Collapse
|
5
|
Cvjetan N, Kissner R, Bajuk-Bogdanović D, Ćirić-Marjanović G, Walde P. Hemin-catalyzed oxidative oligomerization of p-aminodiphenylamine (PADPA) in the presence of aqueous sodium dodecylbenzenesulfonate (SDBS) micelles. RSC Adv 2022; 12:13154-13167. [PMID: 35520130 PMCID: PMC9063397 DOI: 10.1039/d2ra02198f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 04/18/2022] [Indexed: 11/23/2022] Open
Abstract
In a previous report on the enzymatic synthesis of the conductive emeraldine salt form of polyaniline (PANI-ES) in aqueous solution using PADPA (p-aminodiphenylamine) as monomer, horseradish peroxidase isoenzyme C (HRPC) was applied as a catalyst at pH = 4.3 with H2O2 as a terminal oxidant. In that work, anionic vesicles were added to the reaction mixture for (i) guiding the reaction to obtain poly(PADPA) products that resemble PANI-ES, and for (ii) preventing product precipitation (known as the “template effect”). In the work now presented, instead of native HRPC, only its prosthetic group ferric heme b (= hemin) was utilized as a catalyst, and micelles formed from SDBS (sodium dodecylbenzenesulfonate) served as templates. For the elaborated optimal reaction conditions, complementary UV/vis/NIR, EPR, and Raman spectroscopy measurements clearly showed that the reaction mixture obtained after completion of the reaction contained PANI-ES-like products as dominating species, very similar to the products formed with HRPC as catalyst. HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonate) was found to have a positive effect on the reaction rate as compared to dihydrogenphosphate. This work is the first on the template-assisted formation of PANI-ES type products under mild, environmentally friendly conditions using hemin as a cost-effective catalyst. Polyaniline emeraldine salt-type products were synthesized under mild, environmentally friendly conditions using hemin as a cost-effective catalyst, p-aminodiphenylamine (PADPA) as a monomer, and micelles formed from SDBS as templates.![]()
Collapse
Affiliation(s)
- Nemanja Cvjetan
- Department of Materials, Laboratory for Multifunctional Materials, ETH Zürich Vladimir-Prelog-Weg 5 8093 Zürich Switzerland
| | - Reinhard Kissner
- Department of Chemistry and Applied Biosciences, Laboratory of Inorganic Chemistry Vladimir-Prelog-Weg 2 8093 Zürich Switzerland
| | - Danica Bajuk-Bogdanović
- Faculty of Physical Chemistry, University of Belgrade Studentski trg 12-16 11158 Belgrade Serbia
| | - Gordana Ćirić-Marjanović
- Faculty of Physical Chemistry, University of Belgrade Studentski trg 12-16 11158 Belgrade Serbia
| | - Peter Walde
- Department of Materials, Laboratory for Multifunctional Materials, ETH Zürich Vladimir-Prelog-Weg 5 8093 Zürich Switzerland
| |
Collapse
|
6
|
Lewis TWR, Mastin EM, Theis ZC, Gutierrez MG, Bellert DJ. Measurement of time dependent product branching ratios indicates two-state reactivity in metal mediated chemical reactions. Phys Chem Chem Phys 2022; 24:2300-2308. [PMID: 35015007 DOI: 10.1039/d1cp05473b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
For several decades, the influence of Two State Reactivity (TSR) has been implicated in a host of reactions, but has lacked a stand-alone, definitive experimental kinetic signature identifying its occurrence. Here, we demonstrate that the measurement of a temporally dependent product branching ratio is indicative of spin inversion and is a kinetic signature of TSR. This is caused by products exiting different hypersurfaces with different rates and relative exothermicities. The composite measurement of product intensities with the same mass but with different multiplicities yield biexponential temporal dependences with the sampled product ratio changing in time. These measurements are made using the single photon initiated dissociative rearrangement reaction (SPIDRR) technique which identifies TSR but further determines the kinetic parameters for reaction along the original ground electronic surface in competition with spin inversion and its consequent TSR.
Collapse
Affiliation(s)
- Tucker W R Lewis
- Department of Chemistry and Biochemistry, Baylor University, Darrin Bellert, One Bear Place #97348, Waco, TX 76798, USA
| | - Evan M Mastin
- Department of Chemistry and Biochemistry, Baylor University, Darrin Bellert, One Bear Place #97348, Waco, TX 76798, USA
| | - Zachry C Theis
- Department of Chemistry and Biochemistry, Baylor University, Darrin Bellert, One Bear Place #97348, Waco, TX 76798, USA
| | - Michael G Gutierrez
- Department of Chemistry and Biochemistry, Baylor University, Darrin Bellert, One Bear Place #97348, Waco, TX 76798, USA
| | - Darrin J Bellert
- Department of Chemistry and Biochemistry, Baylor University, Darrin Bellert, One Bear Place #97348, Waco, TX 76798, USA
| |
Collapse
|
7
|
Roos G, Harvey JN. Histidine versus Cysteine-Bearing Heme-Dependent Halogen Peroxidases: Parallels and Differences for Cl - Oxidation. J Phys Chem B 2021; 125:74-85. [PMID: 33350832 DOI: 10.1021/acs.jpcb.0c09409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The homodimeric myeloperoxidase (MPO) features a histidine as a proximal ligand and a sulfonium linkage covalently attaching the heme porphyrin ring to the protein. MPO is able to catalyze Cl- oxidation with about the same efficiency as chloroperoxidase at pH 7.0. In this study, we seek to explore the parallels and differences between the histidine and cysteine heme-dependent halogen peroxidases. Transition states, reaction barriers, and relevant thermodynamic properties are calculated on protein models. Together with electronic structure calculations, it gives an overview of the reaction mechanisms and of the factors that determine the selectivity between one- and two-electron paths. Conclusions point to the innate oxidizing nature of MPO with the ester and sulfonium linkages hiking up the reactivity to enable chloride oxidation. The installation of a deprotonated imidazolate as a proximal ligand does not shift the equilibrium from one- to two-electron events without influencing the chemistry of the oxidation reaction.
Collapse
Affiliation(s)
- Goedele Roos
- UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, University of Lille, CNRS, UMR 8576, F-59000 Lille, France
| | - Jeremy N Harvey
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| |
Collapse
|
8
|
Ludwig S, Helmdach K, Hüttenschmidt M, Oberem E, Rabeah J, Villinger A, Ludwig R, Seidel WW. Metal/Metal Redox Isomerism Governed by Configuration. Chemistry 2020; 26:16811-16817. [PMID: 32648996 PMCID: PMC7756430 DOI: 10.1002/chem.202003120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Indexed: 12/05/2022]
Abstract
A pair of diastereomeric dinuclear complexes, [Tp′(CO)BrW{μ‐η2‐C,C′‐κ2‐S,P‐C2(PPh2)S}Ru(η5‐C5H5)(PPh3)], in which W and Ru are bridged by a phosphinyl(thiolato)alkyne in a side‐on carbon P,S‐chelate coordination mode, were synthesized, separated and fully characterized. Even though the isomers are similar in their spectroscopic properties and redox potentials, the like‐isomer is oxidized at W while the unlike‐isomer is oxidized at Ru, which is proven by IR, NIR and EPR‐spectroscopy supported by spectro‐electrochemistry and computational methods. The second oxidation of the complexes was shown to take place at the metal left unaffected in the first redox step. Finally, the tipping point could be realized in the unlike isomer of the electronically tuned thiophenolate congener [Tp′(CO)(PhS)W{μ‐η2‐C,C′‐κ2‐S,P‐C2(PPh2)S}Ru(η5‐C5H5)‐(PPh3)], in which valence trapped WIII/RuII and WII/RuIII cationic species are at equilibrium.
Collapse
Affiliation(s)
- Stephan Ludwig
- Institut für Chemie, Universität Rostock, Albert-Einstein-Straße 3a, 18059, Rostock, Germany
| | - Kai Helmdach
- Institut für Chemie, Universität Rostock, Albert-Einstein-Straße 3a, 18059, Rostock, Germany
| | - Mareike Hüttenschmidt
- Institut für Chemie, Universität Rostock, Albert-Einstein-Straße 3a, 18059, Rostock, Germany
| | - Elisabeth Oberem
- Department Life, Light & Matter, Universität Rostock, Albert-Einstein-Straße 25, 18059, Rostock, Germany
| | - Jabor Rabeah
- Leibniz-Institut für Katalyse an der Universität Rostock e.V., Albert-Einstein-Strasse 29a, 18059, Rostock, Germany
| | - Alexander Villinger
- Institut für Chemie, Universität Rostock, Albert-Einstein-Straße 3a, 18059, Rostock, Germany
| | - Ralf Ludwig
- Department Life, Light & Matter, Universität Rostock, Albert-Einstein-Straße 25, 18059, Rostock, Germany
| | - Wolfram W Seidel
- Institut für Chemie, Universität Rostock, Albert-Einstein-Straße 3a, 18059, Rostock, Germany
| |
Collapse
|
9
|
Jin L, Wang Q, Chen X, Liu N, Fang X, Yang YF, She YB. Computational Studies on the Mechanism and Origin of the Different Regioselectivities of Manganese Porphyrin-Catalyzed C-H Bond Hydroxylation and Amidation of Equilenin Acetate. J Org Chem 2020; 85:14879-14889. [PMID: 33225704 DOI: 10.1021/acs.joc.0c01444] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The manganese porphyrin-catalyzed C-H bond hydroxylation and amidation of equilenin acetate developed by Breslow and his co-worker have been investigated with density functional theory (DFT) calculations. The hydroxylation of C(sp2)-H bond of equilenin acetate leading to the 6-hydroxylated product is more favorable than the hydroxylation of C(sp3)-H bond of equilenin acetate, leading to the 11β-hydroxylation product. The computational results suggest that the C(sp2)-H bond hydroxylation of equilenin acetate undergoes an oxygen-atom-transfer mechanism, which is more favorable than the C(sp3)-H bond hydroxylation undergoing the hydrogen-atom-abstraction/oxygen-rebound (HAA/OR) mechanism by 1.6 kcal/mol. That is why, the 6-hydroxylated product is the major product and the 11β-hydroxylated product is the minor product. In contrast, the 11β-amidated product is the only observed product in manganese porphyrin-catalyzed amidation reaction. The benzylic amidation undergoes a hydrogen-atom-abstraction/nitrogen-rebound (HAA/NR) mechanism, in which hydrogen atom abstraction is followed by nitrogen rebound, leading to the 11β-amidated product. The benzylic C(sp3)-H bond amidation at the C-11 position is more favorable than aromatic amidation at the C-6 position by 4.9 kcal/mol. Therefore, the DFT computational results are consistent with the experiments that manganese porphyrin-catalyzed C-H bond hydroxylation and amidation of equilenin acetate have different regioselectivities.
Collapse
Affiliation(s)
- Liyuan Jin
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Qunmin Wang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Xiahe Chen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Ning Liu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Xiaoli Fang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Yun-Fang Yang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Yuan-Bin She
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| |
Collapse
|
10
|
Lee CWZ, Mubarak MQE, Green AP, de Visser SP. How Does Replacement of the Axial Histidine Ligand in Cytochrome c Peroxidase by N δ-Methyl Histidine Affect Its Properties and Functions? A Computational Study. Int J Mol Sci 2020; 21:ijms21197133. [PMID: 32992593 PMCID: PMC7583937 DOI: 10.3390/ijms21197133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 12/27/2022] Open
Abstract
Heme peroxidases have important functions in nature related to the detoxification of H2O2. They generally undergo a catalytic cycle where, in the first stage, the iron(III)-heme-H2O2 complex is converted into an iron(IV)-oxo-heme cation radical species called Compound I. Cytochrome c peroxidase Compound I has a unique electronic configuration among heme enzymes where a metal-based biradical is coupled to a protein radical on a nearby Trp residue. Recent work using the engineered Nδ-methyl histidine-ligated cytochrome c peroxidase highlighted changes in spectroscopic and catalytic properties upon axial ligand substitution. To understand the axial ligand effect on structure and reactivity of peroxidases and their axially Nδ-methyl histidine engineered forms, we did a computational study. We created active site cluster models of various sizes as mimics of horseradish peroxidase and cytochrome c peroxidase Compound I. Subsequently, we performed density functional theory studies on the structure and reactivity of these complexes with a model substrate (styrene). Thus, the work shows that the Nδ-methyl histidine group has little effect on the electronic configuration and structure of Compound I and little changes in bond lengths and the same orbital occupation is obtained. However, the Nδ-methyl histidine modification impacts electron transfer processes due to a change in the reduction potential and thereby influences reactivity patterns for oxygen atom transfer. As such, the substitution of the axial histidine by Nδ-methyl histidine in peroxidases slows down oxygen atom transfer to substrates and makes Compound I a weaker oxidant. These studies are in line with experimental work on Nδ-methyl histidine-ligated cytochrome c peroxidases and highlight how the hydrogen bonding network in the second coordination sphere has a major impact on the function and properties of the enzyme.
Collapse
Affiliation(s)
- Calvin W. Z. Lee
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK; (C.W.Z.L.); (M.Q.E.M.); (A.P.G.)
- Department of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - M. Qadri E. Mubarak
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK; (C.W.Z.L.); (M.Q.E.M.); (A.P.G.)
- Department of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Anthony P. Green
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK; (C.W.Z.L.); (M.Q.E.M.); (A.P.G.)
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Sam P. de Visser
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK; (C.W.Z.L.); (M.Q.E.M.); (A.P.G.)
- Department of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
- Correspondence: ; Tel.: +44-161-306-4882
| |
Collapse
|
11
|
Mubarak MQE, Visser SP. Computational Study on the Catalytic Reaction Mechanism of Heme Haloperoxidase Enzymes. Isr J Chem 2019. [DOI: 10.1002/ijch.201900099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- M. Qadri E. Mubarak
- Manchester Institute of Biotechnology and Department of Chemical Engineering and Analytical Science The University of Manchester 131 Princess Street Manchester M1 7DN United Kingdom
| | - Sam P. Visser
- Manchester Institute of Biotechnology and Department of Chemical Engineering and Analytical Science The University of Manchester 131 Princess Street Manchester M1 7DN United Kingdom
| |
Collapse
|
12
|
Laurynėnas A, Butkevičius M, Dagys M, Shleev S, Kulys J. Consecutive Marcus Electron and Proton Transfer in Heme Peroxidase Compound II-Catalysed Oxidation Revealed by Arrhenius Plots. Sci Rep 2019; 9:14092. [PMID: 31575893 PMCID: PMC6773748 DOI: 10.1038/s41598-019-50466-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 09/12/2019] [Indexed: 11/16/2022] Open
Abstract
Electron and proton transfer reactions in enzymes are enigmatic and have attracted a great deal of theoretical, experimental, and practical attention. The oxidoreductases provide model systems for testing theoretical predictions, applying experimental techniques to gain insight into catalytic mechanisms, and creating industrially important bio(electro)conversion processes. Most previous and ongoing research on enzymatic electron transfer has exploited a theoretically and practically sound but limited approach that uses a series of structurally similar ("homologous") substrates, measures reaction rate constants and Gibbs free energies of reactions, and analyses trends predicted by electron transfer theory. This approach, proposed half a century ago, is based on a hitherto unproved hypothesis that pre-exponential factors of rate constants are similar for homologous substrates. Here, we propose a novel approach to investigating electron and proton transfer catalysed by oxidoreductases. We demonstrate the validity of this new approach for elucidating the kinetics of oxidation of "non-homologous" substrates catalysed by compound II of Coprinopsis cinerea and Armoracia rusticana peroxidases. This study - using the Marcus theory - demonstrates that reactions are not only limited by electron transfer, but a proton is transferred after the electron transfer event and thus both events control the reaction rate of peroxidase-catalysed oxidation of substrates.
Collapse
Affiliation(s)
- Audrius Laurynėnas
- Life Sciences Center, Vilnius University, Saulėtekio al. 7, LT-10257, Vilnius, Lithuania.
| | - Marius Butkevičius
- Life Sciences Center, Vilnius University, Saulėtekio al. 7, LT-10257, Vilnius, Lithuania
| | - Marius Dagys
- Life Sciences Center, Vilnius University, Saulėtekio al. 7, LT-10257, Vilnius, Lithuania
| | - Sergey Shleev
- Malmö University, Jan Waldenströmsgata 25, SE-214 28, Malmö, Sweden
| | - Juozas Kulys
- Life Sciences Center, Vilnius University, Saulėtekio al. 7, LT-10257, Vilnius, Lithuania
| |
Collapse
|
13
|
Sajadimehr Y, Moosavi‐Movahedi Z, Haghighi MG, Miyardan AB, Nourisefat M, Moosavi‐Movahedi AA. Iron‐Porphyrin/Cysteine/PEG as Pseudo‐Chloroperoxidase Nanozyme. ChemistrySelect 2019. [DOI: 10.1002/slct.201901649] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Yazdan Sajadimehr
- Chemistry and Chemical Engineering Research Center of Iran Tehran Iran
| | | | | | | | - Maryam Nourisefat
- Institute of Biochemistry and BiophysicsUniversity of Tehran Tehran Iran
| | | |
Collapse
|
14
|
Kathuria D, Gupta P, Chourasiya SS, Sahoo SC, Beifuss U, Chakraborti AK, Bharatam PV. An unprecedented intramolecular to intermolecular mechanistic switch in 1,1-diaminoazines leading to differential product formation during the I2-induced tandem oxidative transformation. Org Biomol Chem 2019; 17:4129-4138. [DOI: 10.1039/c9ob00610a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Intermolecular cyclization of 1,1-diaminoazine.
Collapse
Affiliation(s)
- Deepika Kathuria
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education and Research (NIPER)
- S.A.S. Nagar – 160 062
- India
| | - Pankaj Gupta
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education and Research (NIPER)
- S.A.S. Nagar – 160 062
- India
| | - Sumit S. Chourasiya
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education and Research (NIPER)
- S.A.S. Nagar – 160 062
- India
| | - Subash C. Sahoo
- Department of Chemistry
- Panjab University
- Chandigarh – 160014
- India
| | - Uwe Beifuss
- Bioorganische Chemie
- Institut für Chemie
- Universität
- D-70599 Stuttgart
- Germany
| | - Asit K. Chakraborti
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education and Research (NIPER)
- S.A.S. Nagar – 160 062
- India
| | - Prasad V. Bharatam
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education and Research (NIPER)
- S.A.S. Nagar – 160 062
- India
| |
Collapse
|
15
|
Liu J, Lai J, Qi L, Liu X, Zhang L, Li Y. Theoretical Study on the Catalytic Oxidation of
p
‐Iodophenol by Horseradish Peroxidase in a Chemiluminescent System. ChemistrySelect 2018. [DOI: 10.1002/slct.201802123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jian Liu
- School of Control Science and EngineeringShandong University 17923 Jingshi Road, Jinan, Shandong, P.R. China
| | - Jiahui Lai
- School of Control Science and EngineeringShandong University 17923 Jingshi Road, Jinan, Shandong, P.R. China
| | - Liguo Qi
- Taian City Central Hospital 29 Longtan Road, Taian Shandong, P.R. China
| | - Xiumei Liu
- School of Pharmaceutical SciencesShandong University 44 Wenhua West Road Jinan, Shandong, P.R. China
| | - Lili Zhang
- School of Mechanical and Automotive EngineeringQilu University of Technology 3501 Daxue Road, Jinan Shandong, P.R. China
| | - Yibin Li
- School of Control Science and EngineeringShandong University 17923 Jingshi Road, Jinan, Shandong, P.R. China
| |
Collapse
|
16
|
N-(acridin-9-yl)arenesulfonamides: Synthesis, quantum chemical studies and crystal structure analysis to establish the tautomeric preferences. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.05.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
17
|
Kumar R, Ansari A, Rajaraman G. Axial vs. Equatorial Ligand Rivalry in Controlling the Reactivity of Iron(IV)-Oxo Species: Single-State vs. Two-State Reactivity. Chemistry 2018; 24:6818-6827. [DOI: 10.1002/chem.201800380] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Ravi Kumar
- Department of Chemistry; Indian Institute of Technology Bombay; Powai, Mumbai 400076 India
| | - Azaj Ansari
- Department of Chemistry; Central University of Haryana; Haryana 123031 India
| | - Gopalan Rajaraman
- Department of Chemistry; Indian Institute of Technology Bombay; Powai, Mumbai 400076 India
| |
Collapse
|
18
|
Kepp KP. Heme isomers substantially affect heme's electronic structure and function. Phys Chem Chem Phys 2018; 19:22355-22362. [PMID: 28805222 DOI: 10.1039/c7cp03285d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Inspection of heme protein structures in the protein data bank reveals four isomers of heme characterized by different relative orientations of the vinyl side chains; remarkably, all these have been reported in multiple protein structures. Density functional theory computations explain this as due to similar energy of the isomers but with a sizable (25 kJ mol-1) barrier to interconversion arising from restricted rotation around the conjugated bonds. The four isomers, EE, EZ, ZE, and ZZ, were then investigated as 4-coordinate hemes, as 5-coordinate deoxyhemes, in 6-coordinate O2-adducts of globins and as compound I intermediates typical of heme peroxidases. Substantial differences were observed in electronic properties relevant to heme function: notably, the spin state energy gap of O2-heme adducts, important for fast reversible binding of O2, depends on the isomer state, and O2-binding enthalpies change by up to 16 kJ mol-1; redox potentials change by up to 0.2 V depending on the isomer, and the doublet-quartet energy splitting of compound I, central to "two-state" reactivity, is affected by up to ∼15 kJ mol-1. These effects are consistently seen with three distinct density functionals, i.e. the effects are not method-dependent. Thus, the nature of the isomer state is an important but overlooked feature of heme chemistry and function, and previous and future studies of hemes may be reconsidered in this new context.
Collapse
Affiliation(s)
- Kasper P Kepp
- Technical University of Denmark, DTU Chemistry, Building 206, 2800 Kgs. Lyngby, DK, Denmark.
| |
Collapse
|
19
|
Wang WJ, Wei WJ, Liao RZ. Deciphering the chemoselectivity of nickel-dependent quercetin 2,4-dioxygenase. Phys Chem Chem Phys 2018; 20:15784-15794. [DOI: 10.1039/c8cp02683a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
QM/MM calculations were performed to elucidate the reaction mechanism and chemoselectivity of 2,4-QueD. The protonation state of the first-shell ligand Glu74 plays an important role in dictating the selectivity.
Collapse
Affiliation(s)
- Wen-Juan Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage
- Ministry of Education
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica
- Hubei Key Laboratory of Materials Chemistry and Service Failure
- School of Chemistry and Chemical Engineering
| | - Wen-Jie Wei
- Key Laboratory of Material Chemistry for Energy Conversion and Storage
- Ministry of Education
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica
- Hubei Key Laboratory of Materials Chemistry and Service Failure
- School of Chemistry and Chemical Engineering
| | - Rong-Zhen Liao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage
- Ministry of Education
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica
- Hubei Key Laboratory of Materials Chemistry and Service Failure
- School of Chemistry and Chemical Engineering
| |
Collapse
|
20
|
Mallick D, Shaik S. Kinetic Isotope Effect Probes the Reactive Spin State, As Well As the Geometric Feature and Constitution of the Transition State during H-Abstraction by Heme Compound II Complexes. J Am Chem Soc 2017; 139:11451-11459. [PMID: 28737390 DOI: 10.1021/jacs.7b04247] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
What do experimentally measured kinetic isotope effects (KIEs) tell us about H-abstraction reactions with multispin-state reactivity options? Using DFT calculations with tunneling corrections for experimentally studied H-abstraction reactions of porphyrin-Compound II species (Chem.-Eur. J. 2014, 20, 14437; Angew. Chem., Int. Ed. 2008, 47, 7321) with cyclohexane, dihydroanthracene (DHA), and xanthene (Xan), we show here that KIE is a selective probe that identifies the experimentally reactive spin state. At the same time, comparison of calculated and experimental KIE values permits us to determine the structural orientation of the transition states, as well as the presence/absence of an axial ligand, and the effect of porphyrin substituents. The studied compound II (Cpd II) species involve porphine, and porphyrin ligands with different meso-substituents, TPFPP (tetrakis(pentafluorophenyl)porphyrin dianion) and TMP (tetramesitylporphyrin dianion), with and without imidazole axial ligands. The DFT calculations reveal three potential pathways: quintet and triplet σ-pathways (5Hσ and 3Hσ) that possess linear transition state (TS) structures, and a triplet π -pathway (3Hπ) having a bent TS structure. Without an axial ligand, the 5Hσ pathways for these Cpd II complexes cross below the triplet states. The axial ligand raises the barriers for the quintet and triplet σ-pathways and quenches any chances for two-state reactivity, thus proceeding via the 3Hπ pathway. All of these pathways exhibit characteristic KIE values: very large for 3Hπ (48-200), small for 5Hσ (3-9), and intermediate for 3Hσ (23-51). The calculated KIEs for (TPFPP)FeIV═O without an axial ligand reveal that 3Hσ is the only pathway having a KIE that matches the experimental values, for the reactions with DHA and Xan (Angew. Chem., Int. Ed. 2008, 47, 7321). Indeed, theory shows that tunneling significantly lowers the 3Hσ barrier rendering it the sole reactive state for the reaction. A prediction is made for the reactivity and KIE of (TMP)FeIV═O complex, and a comparison is made with the analogous nonheme complexes.
Collapse
Affiliation(s)
- Dibyendu Mallick
- Institute of Chemistry and the Lise Meitner Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem , Jerusalem 91904, Israel
| | - Sason Shaik
- Institute of Chemistry and the Lise Meitner Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem , Jerusalem 91904, Israel
| |
Collapse
|
21
|
|
22
|
Silva MC, Torres JA, Castro AA, da Cunha EF, Alves de Oliveira LC, Corrêa AD, Ramalho TC. Combined experimental and theoretical study on the removal of pollutant compounds by peroxidases: affinity and reactivity toward a bioremediation catalyst. J Biomol Struct Dyn 2016; 34:1839-48. [DOI: 10.1080/07391102.2015.1063456] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Maria Cristina Silva
- Department of Chemistry, Federal University of Minas Gerais, 31270-901 Belo Horizonte, Brazil
| | | | - Alexandre A. Castro
- Department of Chemistry, Federal University of Lavras, 37200-000 Lavras, Brazil
| | | | | | | | - Teodorico C. Ramalho
- Department of Chemistry, Federal University of Lavras, 37200-000 Lavras, Brazil
- Center for Basic and Applied Research, University Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
23
|
de Visser SP, Stillman MJ. Challenging Density Functional Theory Calculations with Hemes and Porphyrins. Int J Mol Sci 2016; 17:519. [PMID: 27070578 PMCID: PMC4848975 DOI: 10.3390/ijms17040519] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 03/22/2016] [Accepted: 03/23/2016] [Indexed: 01/09/2023] Open
Abstract
In this paper we review recent advances in computational chemistry and specifically focus on the chemical description of heme proteins and synthetic porphyrins that act as both mimics of natural processes and technological uses. These are challenging biochemical systems involved in electron transfer as well as biocatalysis processes. In recent years computational tools have improved considerably and now can reproduce experimental spectroscopic and reactivity studies within a reasonable error margin (several kcal·mol(-1)). This paper gives recent examples from our groups, where we investigated heme and synthetic metal-porphyrin systems. The four case studies highlight how computational modelling can correctly reproduce experimental product distributions, predicted reactivity trends and guide interpretation of electronic structures of complex systems. The case studies focus on the calculations of a variety of spectroscopic features of porphyrins and show how computational modelling gives important insight that explains the experimental spectra and can lead to the design of porphyrins with tuned properties.
Collapse
Affiliation(s)
- Sam P de Visser
- Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science, the University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.
| | - Martin J Stillman
- Department of Chemistry, The University of Western Ontario, London, ON N6A 5B7, Canada.
| |
Collapse
|
24
|
Campomanes P, Rothlisberger U, Alfonso-Prieto M, Rovira C. The Molecular Mechanism of the Catalase-like Activity in Horseradish Peroxidase. J Am Chem Soc 2015; 137:11170-8. [DOI: 10.1021/jacs.5b06796] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Pablo Campomanes
- Laboratory
of Computational Chemistry and Biochemistry, Institute of Chemical
Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Ursula Rothlisberger
- Laboratory
of Computational Chemistry and Biochemistry, Institute of Chemical
Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Mercedes Alfonso-Prieto
- Departament de Química Orgànica & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Martí i Franquès 1, 08208 Barcelona, Spain
| | - Carme Rovira
- Departament de Química Orgànica & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Martí i Franquès 1, 08208 Barcelona, Spain
- Institució
Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys, 23, 08018 Barcelona, Spain
| |
Collapse
|
25
|
Takagi K, Kashima Y, Fujii S, Koumoto K. Enhanced Chromogenic Sensitivity of Horseradish Peroxidase-Catalyzed Oxidative Reactions in the Presence of Betaine-Type Metabolite Analogs. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2015. [DOI: 10.1246/bcsj.20150050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Kotomi Takagi
- Department of Nanobiochemistry, FIRST (Frontiers of Innovative Research in Science and Technology), Konan University
| | | | - Satoshi Fujii
- Department of Nanobiochemistry, FIRST (Frontiers of Innovative Research in Science and Technology), Konan University
| | - Kazuya Koumoto
- Department of Nanobiochemistry, FIRST (Frontiers of Innovative Research in Science and Technology), Konan University
| |
Collapse
|
26
|
Boaz NC, Bell SR, Groves JT. Ferryl protonation in oxoiron(IV) porphyrins and its role in oxygen transfer. J Am Chem Soc 2015; 137:2875-85. [PMID: 25651467 PMCID: PMC4363944 DOI: 10.1021/ja508759t] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Ferryl porphyrins, P-Fe(IV)═O, are central reactive intermediates in the catalytic cycles of numerous heme proteins and a variety of model systems. There has been considerable interest in elucidating factors, such as terminal oxo basicity, that may control ferryl reactivity. Here, the sulfonated, water-soluble ferryl porphyrin complexes tetramesitylporphyrin, oxoFe(IV)TMPS (FeTMPS-II), its 2,6-dichlorophenyl analogue, oxoFe(IV)TDClPS (FeTDClPS-II), and two other analogues are shown to be protonated under turnover conditions to produce the corresponding bis-aqua-iron(III) porphyrin cation radicals. The results reveal a novel internal electromeric equilibrium, P-Fe(IV)═O ⇆ P(+)-Fe(III)(OH2)2. Reversible pKa values in the range of 4-6.3 have been measured for this process by pH-jump, UV-vis spectroscopy. Ferryl protonation has important ramifications for C-H bond cleavage reactions mediated by oxoiron(IV) porphyrin cation radicals in protic media. Both solvent O-H and substrate C-H deuterium kinetic isotope effects are observed for these reactions, indicating that hydrocarbon oxidation by these oxoiron(IV) porphyrin cation radicals occurs via a solvent proton-coupled hydrogen atom transfer from the substrate that has not been previously described. The effective FeO-H bond dissociation energies for FeTMPS-II and FeTDClPS-II were estimated from similar kinetic reactivities of the corresponding oxoFe(IV)TMPS(+) and oxoFe(IV)TDClPS(+) species to be ∼92-94 kcal/mol. Similar values were calculated from the two-proton P(+)-Fe(III)(OH2)2 pKa(obs) and the porphyrin oxidation potentials, despite a 230 mV range for the iron porphyrins examined. Thus, the iron porphyrin with the lower ring oxidation potential has a compensating higher basicity of the ferryl oxygen. The solvent-derived proton adds significantly to the driving force for C-H bond scission.
Collapse
Affiliation(s)
- Nicholas C. Boaz
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Seth R. Bell
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - John T. Groves
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
27
|
Ji L, Franke A, Brindell M, Oszajca M, Zahl A, van Eldik R. Combined experimental and theoretical study on the reactivity of compounds I and II in horseradish peroxidase biomimetics. Chemistry 2014; 20:14437-50. [PMID: 25220399 DOI: 10.1002/chem.201402347] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Indexed: 12/21/2022]
Abstract
For the exploration of the intrinsic reactivity of two key active species in the catalytic cycle of horseradish peroxidase (HRP), Compound I (HRP-I) and Compound II (HRP-II), we generated in situ [Fe(IV) O(TMP(+.) )(2-MeIm)](+) and [Fe(IV) O(TMP)(2-MeIm)](0) (TMP=5,10,15,20-tetramesitylporphyrin; 2-MeIm=2-methylimidazole) as biomimetics for HRP-I and HRP-II, respectively. Their catalytic activities in epoxidation, hydrogen abstraction, and heteroatom oxidation reactions were studied in acetonitrile at -15 °C by utilizing rapid-scan UV/Vis spectroscopy. Comparison of the second-order rate constants measured for the direct reactions of the HRP-I and HRP-II mimics with the selected substrates clearly confirmed the outstanding oxidizing capability of the HRP-I mimic, which is significantly higher than that of HRP-II. The experimental study was supported by computational modeling (DFT calculations) of the oxidation mechanism of the selected substrates with the involvement of quartet and doublet HRP-I mimics ((2,4) Cpd I) and the closed-shell triplet spin HRP-II model ((3) Cpd II) as oxidizing species. The significantly lower activation barriers calculated for the oxidation systems involving (2,4) Cpd I than those found for (3) Cpd II are in line with the much higher oxidizing efficiency of the HRP-I mimic proven in the experimental part of the study. In addition, the DFT calculations show that all three reaction types catalyzed by HRP-I occur on the doublet spin surface in an effectively concerted manner, whereas these reactions may proceed in a stepwise mechanism with the HRP-II mimic as oxidant. However, the high desaturation or oxygen rebound barriers during CH bond activation processes by the HRP-II mimic predict a sufficient lifetime for the substrate radical formed through hydrogen abstraction. Thus, the theoretical calculations suggest that the dissociation of the substrate radical may be a more favorable pathway than desaturation or oxygen rebound processes. Importantly, depending on the electronic nature of the oxidizing species, that is, (2,4) Cpd I or (3) Cpd II, an interesting region-selective conversion phenomenon between sulfoxidation and H-atom abstraction was revealed in the course of the oxidation reaction of dimethylsulfide. The combined experimental and theoretical study on the elucidation of the intrinsic reactivity patterns of the HRP-I and HRP-II mimics provides a valuable tool for evaluating the particular role of the HRP active species in biological systems.
Collapse
Affiliation(s)
- Li Ji
- Inorganic Chemistry, Department of Chemistry and Pharmacy, University of Erlangen-Nuremberg, Egerlandstrasse 1, 91058 Erlangen (Germany); College of Environmental and Resource Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058 (China)
| | | | | | | | | | | |
Collapse
|
28
|
Ma L, Zhang Q, Cheng L, Wu Z, Yang J. DFT studies on the mechanism of veratryl alcohol oxidation catalyzed by Cu–phen complexes. RSC Adv 2014. [DOI: 10.1039/c4ra02896a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Density functional theory (DFT) calculations have been performed to investigate the catalytic mechanism for the oxidation of veratryl alcohol to veratraldehyde by Cu–phen catalyst. In this work, the most favorable mechanism has been predicted and we hope the obtained results could provide useful insights for the reaction process.
Collapse
Affiliation(s)
- Lisha Ma
- Key Laboratory of Industrial Catalysis of the Inner Mongolia Autonomous Region
- Inner Mongolia University of Technology
- Huhehot 010051, China
| | - Qiancheng Zhang
- Key Laboratory of Industrial Catalysis of the Inner Mongolia Autonomous Region
- Inner Mongolia University of Technology
- Huhehot 010051, China
| | - Lin Cheng
- Key Laboratory of Industrial Catalysis of the Inner Mongolia Autonomous Region
- Inner Mongolia University of Technology
- Huhehot 010051, China
| | - Zhijian Wu
- State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022, China
| | - Jucai Yang
- Key Laboratory of Industrial Catalysis of the Inner Mongolia Autonomous Region
- Inner Mongolia University of Technology
- Huhehot 010051, China
| |
Collapse
|
29
|
Sicking W, Somnitz H, Schmuck C. DFT Calculations Suggest a New Type of Self-Protection and Self-Inhibition Mechanism in the Mammalian Heme Enzyme Myeloperoxidase: Nucleophilic Addition of a Functional Water rather than One-Electron Reduction. Chemistry 2012; 18:10937-48. [DOI: 10.1002/chem.201103477] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 05/14/2012] [Indexed: 11/09/2022]
|
30
|
Vidossich P, Alfonso-Prieto M, Rovira C. Catalases versus peroxidases: DFT investigation of H₂O₂ oxidation in models systems and implications for heme protein engineering. J Inorg Biochem 2012; 117:292-7. [PMID: 22883961 DOI: 10.1016/j.jinorgbio.2012.07.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2012] [Revised: 07/01/2012] [Accepted: 07/02/2012] [Indexed: 11/27/2022]
Abstract
Catalases and peroxidases are ubiquitous heme enzymes that catalyze the removal of hydrogen peroxide (H(2)O(2)). Both enzymes use one molecule of hydrogen peroxide to form a high valent iron intermediate named Compound I (Cpd I). However, whereas catalase Cpd I oxidizes a second H(2)O(2) molecule to oxygen, peroxidases use this intermediate to oxidize other substrates rather than H(2)O(2). The origin of the different reactivity of peroxidases and catalases is not known, but it is likely to be related to structural differences between the two heme active sites. Recent modeling studies suggest that the oxidation of H(2)O(2) by catalase Cpd I may take place by two hydrogen atom transfer steps. In this work, we investigate how catalases and peroxidases compare along the same hydrogen transfer steps to give hints into the question why peroxidases cannot efficiently oxidize H(2)O(2). The use of simplified models allows us to probe the direct effect of the proximal ligand (tyrosinate in catalases and histidine in peroxidases) without masking from the protein environment. We show that the nature of the fifth ligand (His in peroxidase and Tyr in catalase) has little effect on the energy barriers of the hydrogen transfer steps. On the contrary, the Cpd I-hydrogen peroxide (O(Fe)-O(peroxide)) distance affects significantly the reaction barriers. We propose that the distal side architecture of peroxidases do not allow to attain short O(Cpd I)-O(peroxide) distances, thus resulting in a lower efficiency towards H(2)O(2) oxidation.
Collapse
Affiliation(s)
- Pietro Vidossich
- Unitat de Química Física, Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | | | | |
Collapse
|
31
|
Lanucara F, Crestoni ME. Biomimetic Oxidation Reactions of a Naked Manganese(V)-Oxo Porphyrin Complex. Chemistry 2011; 17:12092-100. [DOI: 10.1002/chem.201101432] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Indexed: 12/14/2022]
|
32
|
Chen H, Lai W, Shaik S. Multireference and multiconfiguration ab initio methods in heme-related systems: what have we learned so far? J Phys Chem B 2011; 115:1727-42. [PMID: 21344948 DOI: 10.1021/jp110016u] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
This work reviews the recent applications of ab initio multireference/multiconfiguration (MR/MC) electronic structure methods to heme-related systems, involving tetra-, penta-, and hexa-coordinate species, as well as the high-valent iron-oxo species. The current accuracy of these methods in the various systems is discussed, with special attention to potential sources of systematic errors. Thus, the review summarizes and tries to rationalize the key elements of MR/MC calculations, namely, the choice of the employed active space, especially the so-called double-shell effect that has already been recognized to be important in transition-metal-containing systems, and the impact of these elements on the spin-state energetics of heme species, as well as on the bonding mechanism of small molecules to the heme. It is shown that expansion of the MC wave function into one based on localized orbitals provides a compact and insightful view on some otherwise complex electronic structures. The effects of protein environment on the MR/MC results are summarized for the few available quantum mechanical/molecular mechanical (QM/MM) studies. Comparisons with corresponding DFT results are also made wherever available. Potential future directions are proposed.
Collapse
Affiliation(s)
- Hui Chen
- Institute of Chemistry, Hebrew University of Jerusalem, Givat Ram Campus, 91904 Jerusalem, Israel.
| | | | | |
Collapse
|
33
|
Wu Y, Zhou J, Fishkin N, Rittmann BE, Sparrow JR. Enzymatic degradation of A2E, a retinal pigment epithelial lipofuscin bisretinoid. J Am Chem Soc 2011; 133:849-57. [PMID: 21166406 DOI: 10.1021/ja107195u] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Some forms of blinding macular disease are associated with excessive accumulation of bisretinoid lipofuscin in retinal pigment epithelial (RPE) cells of the eye. This material is refractory to lysosomal enzyme degradation. In addition to gene and drug-based therapies, treatments that reverse the accumulation of bisretinoid would be beneficial. Thus, we have examined the feasibility of degrading the bisretinoids by delivery of exogenous enzyme. As proof of principle we report that horseradish peroxidase (HRP) can cleave the RPE bisretinoid A2E. In both cell-free and cell-based assays, A2E levels were decreased in the presence of HRP. HRP-associated cleavage products were detected by ultraperformance liquid chromatography (UPLC) coupled to electrospray ionization mass spectrometry, and the structures of the aldehyde-bearing cleavage products were elucidated by 18O-labeling and 1H NMR spectroscopy and by recording UV−vis absorbance spectra. These findings indicate that RPE bisretinoids such as A2E can be degraded by appropriate enzyme activities.
Collapse
Affiliation(s)
- Yalin Wu
- Department of Ophthalmology, Columbia University, 630 West 168th Street, New York, New York 10032, United States
| | | | | | | | | |
Collapse
|
34
|
Alfonso-Prieto M, Oberhofer H, Klein ML, Rovira C, Blumberger J. Proton Transfer Drives Protein Radical Formation in Helicobacter pylori Catalase but Not in Penicillium vitale Catalase. J Am Chem Soc 2011; 133:4285-98. [DOI: 10.1021/ja1110706] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- M. Alfonso-Prieto
- Computer Simulation & Modeling Laboratory, Parc Científic de Barcelona, Baldiri Reixac 4, 08028 Barcelona, Spain
- Institute for Computational Molecular Science, Temple University, 1900 North 12th Street, Philadelphia, Pennsylvania 19122, United States
| | - H. Oberhofer
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - M. L. Klein
- Institute for Computational Molecular Science, Temple University, 1900 North 12th Street, Philadelphia, Pennsylvania 19122, United States
| | - C. Rovira
- Computer Simulation & Modeling Laboratory, Parc Científic de Barcelona, Baldiri Reixac 4, 08028 Barcelona, Spain
- Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, 08028 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| | - J. Blumberger
- Department of Physics and Astronomy, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
35
|
Cho KB, Lai W, Hamberg M, Raman C, Shaik S. The reaction mechanism of allene oxide synthase: Interplay of theoretical QM/MM calculations and experimental investigations. Arch Biochem Biophys 2011; 507:14-25. [DOI: 10.1016/j.abb.2010.07.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Revised: 06/28/2010] [Accepted: 07/16/2010] [Indexed: 11/28/2022]
|
36
|
Cheng L, Wang J, Wang M, Wu Z. Mechanistic insight into the alcohol oxidation mediated by an efficient green [CuBr(2)(2,2'-bipy)]-TEMPO catalyst by density functional method. Inorg Chem 2011; 49:9392-9. [PMID: 20849129 DOI: 10.1021/ic100996b] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Density functional theory (DFT) calculations have been performed to investigate the alcohol oxidation to acetaldehyde catalyzed by [CuBr(2)(2,2'-bipy)]-TEMPO (TEMPO stands for 2,2,6,6-tetramethylpiperidinyloxy; bipy stands for bipyridine). The total charge for the studied catalytic system is +1. The catalytic cycle consists of two parts, namely, alcohol oxidation and TEMPO regeneration. In alcohol oxidation, the reaction follows the Sheldon's mechanism for the proposed two mechanisms, i.e., Semmelhack's mechanism and Sheldon's mechanism. The water participation plays minor role in the H atom abstraction step. In TEMPO regeneration, the proposed three paths are competitive in energy. By comparing with experimental observation, it is found that the path, in which alcohol provides the proton to TEMPO(-) to produce TEMPOH followed by the oxidation of TEMPOH directly to TEMPO by O(2), is favored. In TEMPO regeneration, CH(3)CN acts as the ligand to stabilize the Cu(I) species during the catalytic cycle.
Collapse
Affiliation(s)
- Lin Cheng
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | | | | | | |
Collapse
|
37
|
Noack H, Georgiev V, Blomberg MRA, Siegbahn PEM, Johansson AJ. Theoretical insights into heme-catalyzed oxidation of cyclohexane to adipic acid. Inorg Chem 2011; 50:1194-202. [PMID: 21268602 DOI: 10.1021/ic101405u] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Adipic acid is a key compound in the chemical industry, where it is mainly used in the production of polymers. The conventional process of its generation requires vast amounts of energy and, moreover, produces environmentally deleterious substances. Thus, there is interest in alternative ways to gain adequate amounts of adipic acid. Experimental reports on a one-pot iron-catalyzed conversion of cyclohexane to adipic acid motivated a theoretical investigation based on density functional theory calculations. The process investigated is interesting because it requires less energy than contemporary methods and does not produce environmentally harmful side products. The aim of the present contribution is to gain insight into the mechanism of the iron-catalyzed cyclohexane conversion to provide a basis for the further development of this process. The rate-limiting step of the process is discussed, but considering the accuracy of the calculations, it is difficult to ensure whether the rate-limiting step is in the substrate oxidation or in the generation of the catalytically active species. It is shown that the slowest step in the substrate oxidation is the conversion of cyclohexanol to cyclohexane-1,2-diol. Hydrogen-atom transfer from one of the OH groups of cyclohexane-1,2-diol makes the intradiol cleavage occur spontaneously.
Collapse
Affiliation(s)
- Holger Noack
- Department of Physics, Albanova, Arrhenius Laboratories, Stockholm University, S-106 91 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
38
|
Chung LW, Li X, Sugimoto H, Shiro Y, Morokuma K. ONIOM Study on a Missing Piece in Our Understanding of Heme Chemistry: Bacterial Tryptophan 2,3-Dioxygenase with Dual Oxidants. J Am Chem Soc 2010; 132:11993-2005. [DOI: 10.1021/ja103530v] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Lung Wa Chung
- Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan, and Biometal Science Laboratory, RIKEN SPring-8 Center, Harima Institute, Hyogo 679-5148, Japan
| | - Xin Li
- Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan, and Biometal Science Laboratory, RIKEN SPring-8 Center, Harima Institute, Hyogo 679-5148, Japan
| | - Hiroshi Sugimoto
- Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan, and Biometal Science Laboratory, RIKEN SPring-8 Center, Harima Institute, Hyogo 679-5148, Japan
| | - Yoshitsugu Shiro
- Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan, and Biometal Science Laboratory, RIKEN SPring-8 Center, Harima Institute, Hyogo 679-5148, Japan
| | - Keiji Morokuma
- Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan, and Biometal Science Laboratory, RIKEN SPring-8 Center, Harima Institute, Hyogo 679-5148, Japan
| |
Collapse
|
39
|
Cheng L, Wang J, Wang M, Wu Z. Mechanistic insight into alcohol oxidation mediated by an efficient green CuII-bipy catalyst with and without TEMPO by density functional methods. Dalton Trans 2010; 39:5377-87. [DOI: 10.1039/b926098f] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
40
|
Cheng L, Wang J, Wang M, Wu Z. Theoretical studies on the reaction mechanism of alcohol oxidation by high-valent iron-oxo complex of non-heme ligand. Phys Chem Chem Phys 2010; 12:4092-103. [DOI: 10.1039/b917906b] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
41
|
Shaik S, Cohen S, Wang Y, Chen H, Kumar D, Thiel W. P450 Enzymes: Their Structure, Reactivity, and Selectivity—Modeled by QM/MM Calculations. Chem Rev 2009; 110:949-1017. [DOI: 10.1021/cr900121s] [Citation(s) in RCA: 791] [Impact Index Per Article: 49.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sason Shaik
- Institute of Chemistry and the Lise-Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel, and Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Shimrit Cohen
- Institute of Chemistry and the Lise-Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel, and Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Yong Wang
- Institute of Chemistry and the Lise-Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel, and Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Hui Chen
- Institute of Chemistry and the Lise-Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel, and Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Devesh Kumar
- Institute of Chemistry and the Lise-Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel, and Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Walter Thiel
- Institute of Chemistry and the Lise-Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel, and Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
42
|
Balding PR, Porro CS, McLean KJ, Sutcliffe MJ, Maréchal JD, Munro AW, de Visser SP. How do azoles inhibit cytochrome P450 enzymes? A density functional study. J Phys Chem A 2009; 112:12911-8. [PMID: 18563875 DOI: 10.1021/jp802087w] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
To examine how azole inhibitors interact with the heme active site of the cytochrome P450 enzymes, we have performed a series of density functional theory studies on azole binding. These are the first density functional studies on azole interactions with a heme center and give fundamental insight into how azoles inhibit the catalytic function of P450 enzymes. Since azoles come in many varieties, we tested three typical azole motifs representing a broad range of azole and azole-type inhibitors: methylimidazolate, methyltriazolate, and pyridine. These structural motifs represent typical azoles, such as econazole, fluconazole, and metyrapone. The calculations show that azole binding is a stepwise mechanism whereby first the water molecule from the resting state of P450 is released from the sixth binding site of the heme to create a pentacoordinated active site followed by coordination of the azole nitrogen to the heme iron. This process leads to the breaking of a hydrogen bond between the resting state water molecule and the approaching inhibitor molecule. Although, formally, the water molecule is released in the first step of the reaction mechanism and a pentacoordinated heme is created, this does not lead to an observed spin state crossing. Thus, we show that release of a water molecule from the resting state of P450 enzymes to create a pentacoordinated heme will lead to a doublet to quartet spin state crossing at an Fe-OH(2) distance of approximately 3.0 A, while the azole substitution process takes place at shorter distances. Azoles bind heme with significantly stronger binding energies than a water molecule, so that these inhibitors block the catalytic cycle of the enzyme and prevent oxygen binding and the catalysis of substrate oxidation. Perturbations within the active site (e.g., a polarized environment) have little effect on the relative energies of azole binding. Studies with an extra hydrogen-bonded ethanol molecule in the model, mimicking the active site of the CYP121 P450, show that the resting state and azole binding structures are close in energy, which may lead to chemical equilibrium between the two structures, as indeed observed with recent protein structural studies that have demonstrated two distinct azole binding mechanisms to P450 heme.
Collapse
Affiliation(s)
- Philip R Balding
- Manchester Interdisciplinary Biocentre, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
43
|
Lai W, Chen H, Shaik S. What Kinds of Ferryl Species Exist for Compound II of Chloroperoxidase? A Dialog of Theory with Experiment. J Phys Chem B 2009; 113:7912-7. [DOI: 10.1021/jp902288q] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Wenzhen Lai
- Institute of Chemistry and The Lise Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, Givat Ram Campus, 91904 Jerusalem, Israel
| | - Hui Chen
- Institute of Chemistry and The Lise Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, Givat Ram Campus, 91904 Jerusalem, Israel
| | - Sason Shaik
- Institute of Chemistry and The Lise Meitner-Minerva Center for Computational Quantum Chemistry, The Hebrew University of Jerusalem, Givat Ram Campus, 91904 Jerusalem, Israel
| |
Collapse
|
44
|
Abstract
Combined quantum-mechanics/molecular-mechanics (QM/MM) approaches have become the method of choice for modeling reactions in biomolecular systems. Quantum-mechanical (QM) methods are required for describing chemical reactions and other electronic processes, such as charge transfer or electronic excitation. However, QM methods are restricted to systems of up to a few hundred atoms. However, the size and conformational complexity of biopolymers calls for methods capable of treating up to several 100,000 atoms and allowing for simulations over time scales of tens of nanoseconds. This is achieved by highly efficient, force-field-based molecular mechanics (MM) methods. Thus to model large biomolecules the logical approach is to combine the two techniques and to use a QM method for the chemically active region (e.g., substrates and co-factors in an enzymatic reaction) and an MM treatment for the surroundings (e.g., protein and solvent). The resulting schemes are commonly referred to as combined or hybrid QM/MM methods. They enable the modeling of reactive biomolecular systems at a reasonable computational effort while providing the necessary accuracy.
Collapse
Affiliation(s)
- Hans Martin Senn
- Department of Chemistry, WestCHEM and University of Glasgow, Glasgow G12 8QQ, UK.
| | | |
Collapse
|
45
|
|
46
|
Hersleth HP, Hsiao YW, Ryde U, Görbitz CH, Andersson KK. The influence of X-rays on the structural studies of peroxide-derived myoglobin intermediates. Chem Biodivers 2008; 5:2067-2089. [PMID: 18972498 DOI: 10.1002/cbdv.200890189] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In recent years, the awareness of potential radiation damage of metal centers in protein crystals during crystallographic data collection has received increasing attention. The radiation damage can lead to radiation-induced changes and reduction of the metal sites. One of the research fields where these concerns have been comprehensively addressed is the study of the reaction intermediates of the heme peroxidase and oxygenase reaction cycles. For both the resting states and the high-valent intermediates, the X-rays used in the structure determination have given undesired side effects through radiation-induced changes to the trapped intermediates. However, X-rays have been used to generate and trap the peroxy/hydroperoxy state in crystals. In this review, the structural work and the influence of X-rays on these intermediates in myoglobin are summarized and viewed in light of analogous studies on similar intermediates in peroxidases and oxygenases.
Collapse
Affiliation(s)
- Hans-Petter Hersleth
- University of Oslo, Department of Molecular Biosciences, P. O. Box 1041 Blindern, N-0316 Oslo
| | | | | | | | | |
Collapse
|
47
|
Balcells D, Raynaud C, Crabtree RH, Eisenstein O. A rational basis for the axial ligand effect in C-H oxidation by [MnO(porphyrin)(X)]+ (X = H2O, OH-, O2-) from a DFT study. Inorg Chem 2008; 47:10090-9. [PMID: 18788735 DOI: 10.1021/ic8013706] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Oxyl radical character in the MnO group of the title system is shown from a density functional theory study to be essential for efficient C-H cleavage, which is a key step in C-H oxidation. Since oxyl species have elongated Mn-O bonds relative to the more usual oxo species of type MnO, the normal expectation would be that high trans-influence ligands X should facilitate oxyl character by elongating the Mn-O bond and thus enhance both oxyl character and reactivity. Contrary to this expectation, but in line with the experimental data (Jin, N.; Ibrahim, M.; Spiro, T. G.; Groves, J. T. J. Am. Chem. Soc. 2007, 129, 12416), we find that reactivity increases along the series X = O(2-) < OH(-) < H2O for the following reasons. The ground-state singlet (S) is unreactive for all X, and only the higher-energy triplet (T) and quintet (Q) states have the oxyl character needed for reactivity, but the higher trans-influence X ligands are also shown to increase the S/T and S/Q gaps, thus making attainment of the needed T and Q states harder. The latter effect is dominant, and high trans-influence X ligands thus disfavor reaction. The higher reactivity in the presence of acid noted by Groves and co-workers is thus rationalized by the preference for having X = H2O over OH(-) or O(2-).
Collapse
Affiliation(s)
- David Balcells
- Institut Charles Gerhardt Montpellier, UMR 5253 CNRS-UM2-ENSCM-UM1, Universite Montpellier 2, cc-1501 Place Eugene Bataillon, 34095, Montpellier, France
| | | | | | | |
Collapse
|
48
|
|
49
|
|
50
|
Robinet JJ, Cho KB, Gauld JW. A density functional theory investigation on the mechanism of the second half-reaction of nitric oxide synthase. J Am Chem Soc 2008; 130:3328-34. [PMID: 18293966 DOI: 10.1021/ja072650+] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Density functional theory methods have been employed to systematically investigate the overall mechanism of the second half-reaction of nitric oxide synthases. The initial heme-bound hydrogen peroxide intermediate previously identified is found to first undergo a simple rotation about its O-O peroxide bond. Then, via a "ping-pong" peroxidase-like mechanism the -O(in)H- proton is transferred back onto the substrate's -NO oxygen then subsequently onto the outer oxygen of the resulting Fe(heme)-OOH species. As a result, O(out) is released as H2O with concomitant formation of a compound I-type (Fe(heme)-O) species. Formation of the final citrulline and NO products can then be achieved in one step via a tetrahedral transition structure resulting from direct attack of the Fe(heme)-O moiety at the substrate's guanidinium carbon center. The possible role of alternative mechanisms involving a protonated compound II-type species or an initial transfer of only the -NH- hydrogen of the =NHOH+ group of N(omega)-hydroxy-L-arginine is also discussed.
Collapse
Affiliation(s)
- Jesse J Robinet
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario N9B 3P4, Canada
| | | | | |
Collapse
|