1
|
Reinhardt CR, Manetsch MT, Li WL, Román-Leshkov Y, Head-Gordon T, Kulik HJ. Computational Screening of Putative Catalyst Transition Metal Complexes as Guests in a Ga 4L 612- Nanocage. Inorg Chem 2024; 63:14609-14622. [PMID: 39049593 DOI: 10.1021/acs.inorgchem.4c02113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Metal-organic cages form well-defined microenvironments that can enhance the catalytic proficiency of encapsulated transition metal complexes (TMCs). We introduce a screening protocol to efficiently identify TMCs that are promising candidates for encapsulation in the Ga4L612- nanocage. We obtain TMCs from the Cambridge Structural Database with geometric and electronic characteristics amenable to encapsulation and mine the text of associated manuscripts to curate TMCs with documented catalytic functionality. By docking candidate TMCs inside the nanocage cavity and carrying out electronic structure calculations, we identify a subset of successfully optimized candidates (TMC-34) and observe that encapsulated guests occupy an average of 60% of the cavity volume, in line with previous observations. Notably, some guests occupy as much as 72% of the cavity as a result of linker rotation. Encapsulation has a universal effect on the electrostatic potential (ESP), systematically decreasing the ESP at the metal center of each TMC in the TMC-34 data set, while minimally altering TMC metal partial charges. Collectively these observations support geometry-based screening of potential guests and suggest that encapsulation in Ga4L612- cages could electrostatically stabilize diverse cationic or electropositive intermediates. We highlight candidate guests with associated known reactivity and solubility most amenable for encapsulation in experimental follow-up studies.
Collapse
Affiliation(s)
- Clorice R Reinhardt
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Melissa T Manetsch
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Wan-Lu Li
- Kenneth S. Pitzer Center for Theoretical Chemistry, Berkeley, California 94720, United States
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Yuriy Román-Leshkov
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Teresa Head-Gordon
- Kenneth S. Pitzer Center for Theoretical Chemistry, Berkeley, California 94720, United States
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
- Department of Bioengineering, University of California, Berkeley, California 94720, United States
| | - Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
2
|
Linnebank PR, Kluwer AM, Reek JNH. Substrate scope driven optimization of an encapsulated hydroformylation catalyst. Catal Sci Technol 2024; 14:1837-1847. [PMID: 38571547 PMCID: PMC10987017 DOI: 10.1039/d4cy00051j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 02/16/2024] [Indexed: 04/05/2024]
Abstract
Caged complexes can provide impressive selective catalysts. Due to the complex shapes of such caged catalysts, however, the level of selectivity control of a single substrate cannot be extrapolated to other substrates. Herein, the substrate scope using 41 terminal alkene substrates is investigated in the hydroformylation reaction with an encapsulated rhodium catalyst [Rh(H)(CO)3(P(mPy3(ZnTPP)3))] (CAT1). For all substrates, the amount of branched products formed was higher with CAT1 than with the unencapsulated reference catalyst [Rh(H)(CO)2(P(mPy3))2] (CAT2) (linear/branched ratio between 2.14 and 0.12 for CAT1 and linear/branched ratio between 6.22 and 0.59 for CAT2). Interestingly, the level of cage induced selectivity depends strongly on the substrate structure that is converted. Analysis of the substrate scope combined with DFT calculations suggests that noncovalent interactions between the substrate moieties and cage walls play a key role in controlling the regioselectivity. Consequently, these supramolecular interactions were further optimized by replacing the ZnTPP building block with a zinc porphyrin analog that contained OiPr substituents on the meta position of the aryl rings. The resulting caged catalyst, CAT4, converted substrates with even higher branched selectivity.
Collapse
Affiliation(s)
- Pim R Linnebank
- Homogeneous, Supramolecular and Bio-Inspired Catalysis, Van't Hoff Institute for Molecular Sciences University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | | | - Joost N H Reek
- Homogeneous, Supramolecular and Bio-Inspired Catalysis, Van't Hoff Institute for Molecular Sciences University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
- InCatT B.V Science Park 904 1098 XH Amsterdam The Netherlands
| |
Collapse
|
3
|
James CC, de Bruin B, Reek JNH. Transition Metal Catalysis in Living Cells: Progress, Challenges, and Novel Supramolecular Solutions. Angew Chem Int Ed Engl 2023; 62:e202306645. [PMID: 37339103 DOI: 10.1002/anie.202306645] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/20/2023] [Accepted: 06/20/2023] [Indexed: 06/22/2023]
Abstract
The importance of transition metal catalysis is exemplified by its wide range of applications, for example in the synthesis of chemicals, natural products, and pharmaceuticals. However, one relatively new application is for carrying out new-to-nature reactions inside living cells. The complex environment of a living cell is not welcoming to transition metal catalysts, as a diverse range of biological components have the potential to inhibit or deactivate the catalyst. Here we review the current progress in the field of transition metal catalysis, and evaluation of catalysis efficiency in living cells and under biological (relevant) conditions. Catalyst poisoning is a ubiquitous problem in this field, and we propose that future research into the development of physical and kinetic protection strategies may provide a route to improve the reactivity of catalysts in cells.
Collapse
Affiliation(s)
- Catriona C James
- van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Bas de Bruin
- van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Joost N H Reek
- van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Linnebank PR, Poole DA, Kluwer AM, Reek JNH. A substrate descriptor based approach for the prediction and understanding of the regioselectivity in caged catalyzed hydroformylation. Faraday Discuss 2023; 244:169-185. [PMID: 37139675 PMCID: PMC10416704 DOI: 10.1039/d3fd00023k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 02/08/2023] [Indexed: 02/11/2023]
Abstract
The use of data driven tools to predict the selectivity of homogeneous catalysts has received considerable attention in the past years. In these studies often the catalyst structure is varied, but the use of substrate descriptors to rationalize the catalytic outcome is relatively unexplored. To study whether this may be an effective tool, we investigated both an encapsulated and a non-encapsulated rhodium based catalyst in the hydroformylation reaction of 41 terminal alkenes. For the non-encapsulated catalyst, CAT2, the regioselectivity of the acquired substrate scope could be predicted with high accuracy using the Δ13C NMR shift of the alkene carbon atoms as a descriptor (R2 = 0.74) and when combined with a computed intensity of the CC stretch vibration (ICC stretch) the accuracy increased further (R2 = 0.86). In contrast, a substrate descriptor approach with an encapsulated catalyst, CAT1, appeared more challenging indicating a confined space effect. We investigated Sterimol parameters of the substrates as well as computer-aided drug design descriptors of the substrates, but these parameters did not result in a predictive formula. The most accurate substrate descriptor based prediction was made with the Δ13C NMR shift and ICC stretch (R2 = 0.52), suggestive of the involvement of CH-π interactions. To further understand the confined space effect of CAT1, we focused on the subset of 21 allylbenzene derivatives to investigate predictive parameters unique for this subset. These results showed the inclusion of a charge parameter of the aryl ring improved the regioselectivity predictions, which is in agreement with our assessment that noncovalent interactions between the phenyl ring of the cage and the aryl ring of the substrate are relevant for the regioselectivity outcome. However, the correlation is still weak (R2 = 0.36) and as such we are investigating novel parameters that should improve the overall regioselectivity outcome.
Collapse
Affiliation(s)
- Pim R Linnebank
- Homogeneous, Supramolecular and Bio-Inspired Catalysis, Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands.
| | - David A Poole
- Homogeneous, Supramolecular and Bio-Inspired Catalysis, Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands.
| | | | - Joost N H Reek
- Homogeneous, Supramolecular and Bio-Inspired Catalysis, Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands.
- InCatT B.V., Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
5
|
Wang J, Avram L, Diskin-Posner Y, Białek MJ, Stawski W, Feller M, Klajn R. Altering the Properties of Spiropyran Switches Using Coordination Cages with Different Symmetries. J Am Chem Soc 2022; 144:21244-21254. [DOI: 10.1021/jacs.2c08901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Jinhua Wang
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Liat Avram
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yael Diskin-Posner
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Michał J. Białek
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
- Department of Chemistry, University of Wrocław, 14 F. Joliot-Curie Street, 50383 Wrocław, Poland
| | - Wojciech Stawski
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Moran Feller
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Rafal Klajn
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
6
|
Norjmaa G, Himo F, Maréchal J, Ujaque G. Catalysis by [Ga 4 L 6 ] 12- Metallocage on the Nazarov Cyclization: The Basicity of Complexed Alcohol is Key. Chemistry 2022; 28:e202201792. [PMID: 35859038 PMCID: PMC9804567 DOI: 10.1002/chem.202201792] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Indexed: 01/05/2023]
Abstract
The Nazarov cyclization is investigated in solution and within K12 [Ga4 L6 ] supramolecular organometallic cage by means of computational methods. The reaction needs acidic condition in solution but works at neutral pH in the presence of the metallocage. The reaction steps for the process are analogous in both media: (a) protonation of the alcohol group, (b) water loss and (c) cyclization. The relative Gibbs energies of all the steps are affected by changing the environment from solvent to the metallocage. The first step in the mechanism, the alcohol protonation, turns out to be the most critical one for the acceleration of the reaction inside the metallocage. In order to calculate the relative stability of protonated alcohol inside the cavity, we propose a computational scheme for the calculation of basicity for species inside cavities and can be of general use. These results are in excellent agreement with the experiments, identifying key steps of catalysis and providing an in-depth understanding of the impact of the metallocage on all the reaction steps.
Collapse
Affiliation(s)
- Gantulga Norjmaa
- Departament de Química and Centro de Innovación en Química Avanzada (ORFEO-CINQA)Universitat Autònoma de Barcelona08193Cerdanyola del VallesBarcelona, CataloniaSpain
| | - Fahmi Himo
- Department of Organic ChemistryArrhenius LaboratoryStockholm University10691StockholmSweden
| | - Jean‐Didier Maréchal
- Departament de Química and Centro de Innovación en Química Avanzada (ORFEO-CINQA)Universitat Autònoma de Barcelona08193Cerdanyola del VallesBarcelona, CataloniaSpain
| | - Gregori Ujaque
- Departament de Química and Centro de Innovación en Química Avanzada (ORFEO-CINQA)Universitat Autònoma de Barcelona08193Cerdanyola del VallesBarcelona, CataloniaSpain
| |
Collapse
|
7
|
Tabuchi R, Takezawa H, Fujita M. Selective Confinement of Rare‐Earth‐Metal Hydrates by a Capped Metallo‐Cage under Aqueous Conditions. Angew Chem Int Ed Engl 2022; 61:e202208866. [DOI: 10.1002/anie.202208866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Ryosuke Tabuchi
- Department of Applied Chemistry School of Engineering The University of Tokyo Mitsui Link Lab Kashiwanoha 1, FS CREATION 6-6-2 Kashiwanoha Kashiwa Chiba 227-0882 Japan
| | - Hiroki Takezawa
- Department of Applied Chemistry School of Engineering The University of Tokyo Mitsui Link Lab Kashiwanoha 1, FS CREATION 6-6-2 Kashiwanoha Kashiwa Chiba 227-0882 Japan
| | - Makoto Fujita
- Department of Applied Chemistry School of Engineering The University of Tokyo Mitsui Link Lab Kashiwanoha 1, FS CREATION 6-6-2 Kashiwanoha Kashiwa Chiba 227-0882 Japan
- Division of Advanced Molecular Science Institute for Molecular Science (IMS) 5-1 Higashiyama, Myodaiji Okazaki Aichi 444-8787 Japan
| |
Collapse
|
8
|
Tabuchi R, Takezawa H, Fujita M. Selective Confinement of Rare‐Earth‐Metal Hydrates by a Capped Metallo‐Cage under Aqueous Conditions. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ryosuke Tabuchi
- The University of Tokyo Graduate School of Engineering Faculty of Engineering: Tokyo Daigaku Daigakuin Kogakukei Kenkyuka Kogakubu Applied Chemistry JAPAN
| | - Hiroki Takezawa
- The University of Tokyo Graduate School of Engineering Faculty of Engineering: Tokyo Daigaku Daigakuin Kogakukei Kenkyuka Kogakubu Applied Chemistry Mitsui Link Lab Kashiwanoha 1, FS CREATION,6-6-2 Kashiwanoha, Kashiwa 227-0882 Chiba JAPAN
| | - Makoto Fujita
- The University of Tokyo Graduate School of Engineering 7-3-1 Hongo, Bunkyo-kuDepartment of Applied Chemistry 113-8656 Tokyo JAPAN
| |
Collapse
|
9
|
Bisht R, Haldar C, Hassan MMM, Hoque ME, Chaturvedi J, Chattopadhyay B. Metal-catalysed C-H bond activation and borylation. Chem Soc Rev 2022; 51:5042-5100. [PMID: 35635434 DOI: 10.1039/d1cs01012c] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Transition metal-catalysed direct borylation of hydrocarbons via C-H bond activation has received a remarkable level of attention as a popular reaction in the synthesis of organoboron compounds owing to their synthetic versatility. While controlling the site-selectivity was one of the most challenging issues in these C-H borylation reactions, enormous efforts of several research groups proved instrumental in dealing with selectivity issues that presently reached an impressive level for both proximal and distal C-H bond borylation reactions. For example, in the case of ortho C-H bond borylation reactions, innovative methodologies have been developed either by the modification of the directing groups attached with the substrates or by creating new catalytic systems via the design of new ligand frameworks. Whereas meta and para selective C-H borylations remained a formidable challenge, numerous innovative concepts have been developed within a very short period of time by the development of new catalytic systems with the employment of various noncovalent interactions. Moreover, significant advancements have occurred for aliphatic C(sp3)-H borylations as well as enantioselective borylations. In this review article, we aim to discuss and summarize the different approaches and findings related to the development of directed proximal ortho, distal meta/para, aliphatic (racemic and enantioselective) borylation reactions since 2014. Additionally, considering the C-H borylation reaction as one of the most important mainstream reactions, various applications of this C-H borylation reaction toward the synthesis of natural products, therapeutics, and applications in materials chemistry will be summarized in the last part of this review article.
Collapse
Affiliation(s)
- Ranjana Bisht
- Center of Bio-Medical Research, Division of Molecular Synthesis & Drug Discovery, SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India.
| | - Chabush Haldar
- Center of Bio-Medical Research, Division of Molecular Synthesis & Drug Discovery, SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India.
| | - Mirja Md Mahamudul Hassan
- Center of Bio-Medical Research, Division of Molecular Synthesis & Drug Discovery, SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India.
| | - Md Emdadul Hoque
- Center of Bio-Medical Research, Division of Molecular Synthesis & Drug Discovery, SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India.
| | - Jagriti Chaturvedi
- Center of Bio-Medical Research, Division of Molecular Synthesis & Drug Discovery, SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India.
| | - Buddhadeb Chattopadhyay
- Center of Bio-Medical Research, Division of Molecular Synthesis & Drug Discovery, SGPGIMS Campus, Raebareli Road, Lucknow 226014, Uttar Pradesh, India.
| |
Collapse
|
10
|
Norjmaa G, Maréchal J, Ujaque G. Origin of the Rate Acceleration in the C-C Reductive Elimination from Pt(IV)-complex in a [Ga 4 L 6 ] 12- Supramolecular Metallocage. Chemistry 2021; 27:15973-15980. [PMID: 34545974 PMCID: PMC9293218 DOI: 10.1002/chem.202102250] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Indexed: 12/29/2022]
Abstract
The reductive elimination on [(Me3 P)2 Pt(MeOH)(CH3 )3 ]+ , 2P, complex performed in MeOH solution and inside a [Ga4 L6 ]12- metallocage are computationally analysed by mean of QM and MD simulations and compared with the mechanism of gold parent systems previously reported [Et3 PAu(MeOH)(CH3 )2 ]+ , 2Au. The comparative analysis between the encapsulated Au(III) and Pt(IV)-counterparts shows that there are no additional solvent MeOH molecules inside the cavity of the metallocage for both systems. The Gibbs energy barriers for the 2P reductive elimination calculated at DFT level are in good agreement with the experimental values for both environments. The effect of microsolvation and encapsulation on the rate acceleration are evaluated and shows that the latter is far more relevant, conversely to 2Au. Energy decomposition analysis indicates that the encapsulation is the main responsible for most of the energy barrier reduction. Microsolvation and encapsulation effects are not equally contributing for both metal systems and consequently, the reasons of the rate acceleration are not the same for both metallic systems despite the similarity between them.
Collapse
Affiliation(s)
- Gantulga Norjmaa
- Departament de Química and Centro de Innovación en Química Avanzada (ORFEO-CINQA)Universitat Autònoma de Barcelona08193Cerdanyola del VallesBarcelonaCataloniaSpain
| | - Jean‐Didier Maréchal
- Departament de Química and Centro de Innovación en Química Avanzada (ORFEO-CINQA)Universitat Autònoma de Barcelona08193Cerdanyola del VallesBarcelonaCataloniaSpain
| | - Gregori Ujaque
- Departament de Química and Centro de Innovación en Química Avanzada (ORFEO-CINQA)Universitat Autònoma de Barcelona08193Cerdanyola del VallesBarcelonaCataloniaSpain
| |
Collapse
|
11
|
Xu J, Zhang Y, Zhang J, Li Y, Li B, Qiu H, Zhang P, Yin S. Constructing a triangular metallacycle with salen-Al and its application to a catalytic cyanosilylation reaction. Chem Commun (Camb) 2021; 57:10399-10402. [PMID: 34542548 DOI: 10.1039/d1cc04577f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A triangular metallosalen-based metallacycle was constructed in quantitative yield by the self-assembly of a 180° bis(pyridyl)salen-Al complex and a 60° diplatinum(II) acceptor in a 1 : 1 stoichiometric ratio. This metallacycle was then successfully used to cyanosilylate a wide range of benzaldehydes with trimethylsilyl cyanide.
Collapse
Affiliation(s)
- Jun Xu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China.
| | - Yueyue Zhang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China.
| | - Jinjin Zhang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China.
| | - Yang Li
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China.
| | - Bo Li
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China.
| | - Huayu Qiu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China.
| | - Pengfei Zhang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China.
| | - Shouchun Yin
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China.
| |
Collapse
|
12
|
|
13
|
Matt D, Harrowfield J. Phosphines and other P(III)‐derivatives with Cavity‐shaped Subunits: Valuable Ligands for Supramolecular Metal Catalysis, Metal Confinement and Subtle Steric Control. ChemCatChem 2021. [DOI: 10.1002/cctc.202001242] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Dominique Matt
- Laboratoire de Chimie Inorganique Moléculaire et Catalyse UMR 7177 CNRS Université de Strasbourg 4, rue Blaise Pascal 67008 Strasbourg Cedex France
| | - Jack Harrowfield
- ISIS UMR 7606 CNRS Université de Strasbourg 8, allée Gaspard Monge 67083 Strasbourg Cedex France
| |
Collapse
|
14
|
Development of metallosupramolecular phosphatases based on the combinatorial self-assembly of metal complexes and organic building blocks for the catalytic hydrolysis of phosphate monoesters. RESULTS IN CHEMISTRY 2021. [DOI: 10.1016/j.rechem.2021.100133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
15
|
Percástegui E, Ronson TK, Nitschke JR. Design and Applications of Water-Soluble Coordination Cages. Chem Rev 2020; 120:13480-13544. [PMID: 33238092 PMCID: PMC7760102 DOI: 10.1021/acs.chemrev.0c00672] [Citation(s) in RCA: 256] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Indexed: 12/23/2022]
Abstract
Compartmentalization of the aqueous space within a cell is necessary for life. In similar fashion to the nanometer-scale compartments in living systems, synthetic water-soluble coordination cages (WSCCs) can isolate guest molecules and host chemical transformations. Such cages thus show promise in biological, medical, environmental, and industrial domains. This review highlights examples of three-dimensional synthetic WSCCs, offering perspectives so as to enhance their design and applications. Strategies are presented that address key challenges for the preparation of coordination cages that are soluble and stable in water. The peculiarities of guest binding in aqueous media are examined, highlighting amplified binding in water, changing guest properties, and the recognition of specific molecular targets. The properties of WSCC hosts associated with biomedical applications, and their use as vessels to carry out chemical reactions in water, are also presented. These examples sketch a blueprint for the preparation of new metal-organic containers for use in aqueous solution, as well as guidelines for the engineering of new applications in water.
Collapse
Affiliation(s)
- Edmundo
G. Percástegui
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
- Instituto
de Química, Ciudad UniversitariaUniversidad
Nacional Autónoma de México, Ciudad de México 04510, México
- Centro
Conjunto de Investigación en Química Sustentable, UAEM-UNAM, Carretera Toluca-Atlacomulco Km 14.5, Toluca, 50200 Estado de México, México
| | - Tanya K. Ronson
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
| | - Jonathan R. Nitschke
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
| |
Collapse
|
16
|
Norjmaa G, Maréchal J, Ujaque G. Reaction Rate Inside the Cavity of [Ga
4
L
6
]
12−
Supramolecular Metallocage is Regulated by the Encapsulated Solvent. Chemistry 2020; 26:6988-6992. [PMID: 32125031 DOI: 10.1002/chem.201905608] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Indexed: 11/05/2022]
Affiliation(s)
- Gantulga Norjmaa
- Departament de Química Universitat Autònoma de Barcelona 08193 Cerdanyola del Valles, Barcelona Catalonia, and Centro de Innovaciónen Química Avanzada (ORFEO-CINQA Spain
| | - Jean‐Didier Maréchal
- Departament de Química Universitat Autònoma de Barcelona 08193 Cerdanyola del Valles, Barcelona Catalonia, and Centro de Innovaciónen Química Avanzada (ORFEO-CINQA Spain
| | - Gregori Ujaque
- Departament de Química Universitat Autònoma de Barcelona 08193 Cerdanyola del Valles, Barcelona Catalonia, and Centro de Innovaciónen Química Avanzada (ORFEO-CINQA Spain
| |
Collapse
|
17
|
Nijamudheen A, Datta A. Gold-Catalyzed Cross-Coupling Reactions: An Overview of Design Strategies, Mechanistic Studies, and Applications. Chemistry 2019; 26:1442-1487. [PMID: 31657487 DOI: 10.1002/chem.201903377] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/28/2019] [Indexed: 12/14/2022]
Abstract
Transition-metal-catalyzed cross-coupling reactions are central to many organic synthesis methodologies. Traditionally, Pd, Ni, Cu, and Fe catalysts are used to promote these reactions. Recently, many studies have showed that both homogeneous and heterogeneous Au catalysts can be used for activating selective cross-coupling reactions. Here, an overview of the past studies, current trends, and future directions in the field of gold-catalyzed coupling reactions is presented. Design strategies to accomplish selective homocoupling and cross-coupling reactions under both homogeneous and heterogeneous conditions, computational and experimental mechanistic studies, and their applications in diverse fields are critically reviewed. Specific topics covered are: oxidant-assisted and oxidant-free reactions; strain-assisted reactions; dual Au and photoredox catalysis; bimetallic synergistic reactions; mechanisms of reductive elimination processes; enzyme-mimicking Au chemistry; cluster and surface reactions; and plasmonic catalysis. In the relevant sections, theoretical and computational studies of AuI /AuIII chemistry are discussed and the predictions from the calculations are compared with the experimental observations to derive useful design strategies.
Collapse
Affiliation(s)
- A Nijamudheen
- School of Chemical Sciences, Indian Association for the, Cultivation of Sciences, 2A & 2B Raja S C Mullick Road, Kolkata, 700032, India.,Department of Chemical & Biomedical Engineering, Florida A&M University-Florida State University, Joint College of Engineering, 2525 Pottsdamer Street, Tallahassee, FL, 32310, USA
| | - Ayan Datta
- School of Chemical Sciences, Indian Association for the, Cultivation of Sciences, 2A & 2B Raja S C Mullick Road, Kolkata, 700032, India
| |
Collapse
|
18
|
Elaieb F, Sameni S, Awada M, Jeunesse C, Matt D, Toupet L, Harrowfield J, Takeuchi D, Takano S. Metallated Container Molecules: A Capsular Nickel Catalyst for Enhanced Butadiene Polymerisation. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201901074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Fethi Elaieb
- Laboratoire de Chimie Inorganique Moléculaire et Catalyse UMR 7177 CNRS Université de Strasbourg 4, rue Blaise Pascal 67008 Strasbourg Cedex France
| | - Soheila Sameni
- Laboratoire de Chimie Inorganique Moléculaire et Catalyse UMR 7177 CNRS Université de Strasbourg 4, rue Blaise Pascal 67008 Strasbourg Cedex France
| | - Mouhamad Awada
- Laboratoire de Chimie Inorganique Moléculaire et Catalyse UMR 7177 CNRS Université de Strasbourg 4, rue Blaise Pascal 67008 Strasbourg Cedex France
| | - Catherine Jeunesse
- Laboratoire de Chimie Inorganique Moléculaire et Catalyse UMR 7177 CNRS Université de Strasbourg 4, rue Blaise Pascal 67008 Strasbourg Cedex France
| | - Dominique Matt
- Laboratoire de Chimie Inorganique Moléculaire et Catalyse UMR 7177 CNRS Université de Strasbourg 4, rue Blaise Pascal 67008 Strasbourg Cedex France
| | - Loic Toupet
- UMR 7177 CNRS Université de Rennes 1 Campus de Beaulieu 35042 Rennes Cedex France
| | - Jack Harrowfield
- ISIS, UMR 7606 CNRS UMR 7177 CNRS Université de Strasbourg 8, rue Gaspard Monge 67083 Strasbourg Cedex France
| | - Daisuke Takeuchi
- Department of Frontier Materials Chemistry Graduate School of Science and Technology Hirosaki University 3 Bunkyo‐cho 036‐8561 Hirosaki Aomori Japan
| | - Shigenaga Takano
- Laboratory for Chemistry and Life Science Graduate School of Science and Technology Tokyo Institute of Technology 4259 Nagatsuda 226‐8503 Yokohama Japan
| |
Collapse
|
19
|
Norjmaa G, Maréchal JD, Ujaque G. Microsolvation and Encapsulation Effects on Supramolecular Catalysis: C-C Reductive Elimination inside [Ga 4L 6] 12- Metallocage. J Am Chem Soc 2019; 141:13114-13123. [PMID: 31390202 DOI: 10.1021/jacs.9b04909] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The host effect of the supramolecular [Ga4L6]12- tetrahedral metallocage on reductive elimination of substrate by encapsulated Au(III) complexes is investigated by means of computational methods. The behavior of the reactants in solution and within the metallocage is initially evaluated by means of classical molecular dynamics simulations. These results guided the selection of proper computational models to describe the reaction in solution and inside the metallocage at the DFT level. The calculated Gibbs energy barriers are in very good agreement with experiment both in solution and inside the metallocage. The analysis in solution revealed that microsolvation around the Au(III) complex increases the Gibbs energy barrier. The analysis within the metallocage shows that its encapsulation favors the reaction. The process can be formally described as removing explicit microsolvation around the gold complex and encapsulating the metal complex inside the metallocage. Both processes are important for the reaction, but the removal of the solvent molecules surrounding the Au(III) metal complex is fundamental for the reduction of the reaction barrier. The energy decomposition analysis of the barrier among strain, interaction, and thermal terms shows that strain term is very low whereas the contribution of thermal (entropic) effects is moderate. Interestingly, the key term responsible for reducing the Gibbs energy barrier is the interaction. This term can be mainly associated with electrostatic interactions in agreement with previous examples in the literature.
Collapse
Affiliation(s)
- Gantulga Norjmaa
- Departament de Química and Centro de Innovación en Química Avanzada (ORFEO-CINQA) , Universitat Autònoma de Barcelona , Cerdanyola del Valles , 08193 Barcelona , Catalonia , Spain
| | - Jean-Didier Maréchal
- Departament de Química and Centro de Innovación en Química Avanzada (ORFEO-CINQA) , Universitat Autònoma de Barcelona , Cerdanyola del Valles , 08193 Barcelona , Catalonia , Spain
| | - Gregori Ujaque
- Departament de Química and Centro de Innovación en Química Avanzada (ORFEO-CINQA) , Universitat Autònoma de Barcelona , Cerdanyola del Valles , 08193 Barcelona , Catalonia , Spain
| |
Collapse
|
20
|
Rahman AB, Imafuku H, Miyazawa Y, Kafle A, Sakai H, Saga Y, Aoki S. Catalytic Hydrolysis of Phosphate Monoester by Supramolecular Phosphatases Formed from a Monoalkylated Dizinc(II) Complex, Cyclic Diimide Units, and Copper(II) in Two-Phase Solvent System. Inorg Chem 2019; 58:5603-5616. [PMID: 30969761 DOI: 10.1021/acs.inorgchem.8b03586] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Design and synthesis of enzyme mimic with programmed molecular interaction among several building blocks including metal complexes and metal chelators is of intellectual and practical significance. The preparation of artificial enzymes that mimic the natural enzymes such as hydrolases, phosphatases, etc. remains a great challenge in the field of supramolecular chemistry. Herein we report on the design and synthesis of asymmetric (nonsymmetric) supermolecules by the 2:2:2 self-assembly of an amphiphilic zinc(II)-cyclen complex containing a 2,2'-bipyridyl linker and one long alkyl chain (Zn2L3), barbital analogues, and Cu2+ as model compounds of an enzyme alkaline phosphatase that catalyzes the hydrolysis of phosphate monoesters such as mono(4-nitrophenyl)phosphate at neutral pH in two-phase solvent system (H2O/CHCl3) in pH 7.4 and 37 °C. Hydrolytic activity of these complexes was found to be catalytic, and their catalytic turnover numbers are 3-4. The mechanistic studies based on the UV/vis and emission spectra of the H2O and CHCl3 phases of the reaction mixtures suggest that the hydrophilicity/hydrophobicity balance of the supramolecular catalysts is an important factor for catalytic activity.
Collapse
|
21
|
Gonell S, Caumes X, Orth N, Ivanović-Burmazović I, Reek JNH. Self-assembled M 12L 24 nanospheres as a reaction vessel to facilitate a dinuclear Cu(i) catalyzed cyclization reaction. Chem Sci 2019; 10:1316-1321. [PMID: 30809346 PMCID: PMC6354833 DOI: 10.1039/c8sc03767a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 11/12/2018] [Indexed: 11/21/2022] Open
Abstract
The application of large M12L24 nanospheres allows the pre-concentration of catalysts to reach high local concentrations, facilitating reactions that proceed through dinuclear mechanisms. The mechanism of the copper(i)-catalyzed cyclization of 4-pentynoic acid has been elucidated by means of a detailed mechanistic study. The kinetics of the reaction show a higher order in copper, indicating the formation of a bis-Cu intermediate as the key rate determining step of the reaction. This intermediate was further identified during catalysis by CIS-HRMS analysis of the reaction mixture. Based on the mechanistic findings, an M12L24 nanosphere was applied that can bind up to 12 copper catalysts by hydrogen bonding. This pre-organization of copper catalysts in the nanosphere results in a high local concentration of copper leading to higher reaction rates and turnover numbers as the dinuclear pathway is favored.
Collapse
Affiliation(s)
- Sergio Gonell
- Homogeneous, Supramolecular and Bio-Inspired Catalysis , Van 't Hoff Institute for Molecular Sciences , University of Amsterdam , Science Park 904 , Amsterdam 1098XH , The Netherlands .
| | - Xavier Caumes
- Homogeneous, Supramolecular and Bio-Inspired Catalysis , Van 't Hoff Institute for Molecular Sciences , University of Amsterdam , Science Park 904 , Amsterdam 1098XH , The Netherlands .
| | - Nicole Orth
- Lehrstuhl für Bioanorganische Chemie , Department Chemie und Pharmazie Friedrich-Alexander-Universität Erlangen , Egerlandstrasse 3 , Erlangen 91058 , Germany
| | - Ivana Ivanović-Burmazović
- Lehrstuhl für Bioanorganische Chemie , Department Chemie und Pharmazie Friedrich-Alexander-Universität Erlangen , Egerlandstrasse 3 , Erlangen 91058 , Germany
| | - Joost N H Reek
- Homogeneous, Supramolecular and Bio-Inspired Catalysis , Van 't Hoff Institute for Molecular Sciences , University of Amsterdam , Science Park 904 , Amsterdam 1098XH , The Netherlands .
| |
Collapse
|
22
|
Nurttila SS, Brenner W, Mosquera J, van Vliet KM, Nitschke JR, Reek JNH. Size-Selective Hydroformylation by a Rhodium Catalyst Confined in a Supramolecular Cage. Chemistry 2019; 25:609-620. [PMID: 30351486 PMCID: PMC6391983 DOI: 10.1002/chem.201804333] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 10/19/2018] [Indexed: 12/28/2022]
Abstract
Size-selective hydroformylation of terminal alkenes was attained upon embedding a rhodium bisphosphine complex in a supramolecular metal-organic cage that was formed by subcomponent self-assembly. The catalyst was bound in the cage by a ligand-template approach, in which pyridyl-zinc(II) porphyrin interactions led to high association constants (>105 m-1 ) for the binding of the ligands and the corresponding rhodium complex. DFT calculations confirm that the second coordination sphere forces the encapsulated active species to adopt the ee coordination geometry (i.e., both phosphine ligands in equatorial positions), in line with in situ high-pressure IR studies of the host-guest complex. The window aperture of the cage decreases slightly upon binding the catalyst. As a result, the diffusion of larger substrates into the cage is slower compared to that of smaller substrates. Consequently, the encapsulated rhodium catalyst displays substrate selectivity, converting smaller substrates faster to the corresponding aldehydes. This selectivity bears a resemblance to an effect observed in nature, where enzymes are able to discriminate between substrates based on shape and size by embedding the active site deep inside the hydrophobic pocket of a bulky protein structure.
Collapse
Affiliation(s)
- Sandra S. Nurttila
- Van't Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098XHAmsterdamThe Netherlands
| | - Wolfgang Brenner
- Department of ChemistryUniversity of CambridgeLensfield RoadCB2 1EWCambridgeUK
| | - Jesús Mosquera
- Department of ChemistryUniversity of CambridgeLensfield RoadCB2 1EWCambridgeUK
| | - Kaj M. van Vliet
- Van't Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098XHAmsterdamThe Netherlands
| | | | - Joost N. H. Reek
- Van't Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098XHAmsterdamThe Netherlands
| |
Collapse
|
23
|
Fang Y, Powell JA, Li E, Wang Q, Perry Z, Kirchon A, Yang X, Xiao Z, Zhu C, Zhang L, Huang F, Zhou HC. Catalytic reactions within the cavity of coordination cages. Chem Soc Rev 2019; 48:4707-4730. [PMID: 31339148 DOI: 10.1039/c9cs00091g] [Citation(s) in RCA: 260] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Natural enzymes catalyze reactions in their substrate-binding cavities, exhibiting high specificity and efficiency. In an effort to mimic the structure and functionality of enzymes, discrete coordination cages were designed and synthesized. These self-assembled systems have a variety of confined cavities, which have been applied to accelerate conventional reactions, perform substrate-specific reactions, and manipulate regio- and enantio-selectivity. Many coordination cages or cage-catalyst composites have achieved unprecedented results, outperforming their counterparts in different catalytic reactions. This tutorial review summarizes recent developments of coordination cages across three key approaches to coordination cage catalysis: (1) cavity promoted reactions, (2) embedding of active sites in the structure of the cage, and (3) encapsulation of catalysts within the cage. Special emphasis of the review involves (1) introduction of the structure and property of the coordination cage, (2) discussion of the catalytic pathway mediated by the cage, (3) elucidation of the structure-property relationship between the cage and the designated reaction. This work will summarize the recent progress in supramolecular catalysis and attract more researchers to pursue cavity-promoted reactions using discrete coordination cages.
Collapse
Affiliation(s)
- Yu Fang
- Department of Chemistry, Texas A&M University, College Station, Texas 77842-3012, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Tan C, Chu D, Tang X, Liu Y, Xuan W, Cui Y. Supramolecular Coordination Cages for Asymmetric Catalysis. Chemistry 2018; 25:662-672. [DOI: 10.1002/chem.201802817] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Indexed: 01/24/2023]
Affiliation(s)
- Chunxia Tan
- School of Chemistry and Chemical Engineering and State Key Laboratory, of Metal, Matrix CompositesShanghai Jiao Tong University Shanghai 200240 P.R. China
| | - Dandan Chu
- School of Chemistry and Chemical Engineering and State Key Laboratory, of Metal, Matrix CompositesShanghai Jiao Tong University Shanghai 200240 P.R. China
| | - Xianhui Tang
- School of Chemistry and Chemical Engineering and State Key Laboratory, of Metal, Matrix CompositesShanghai Jiao Tong University Shanghai 200240 P.R. China
| | - Yan Liu
- School of Chemistry and Chemical Engineering and State Key Laboratory, of Metal, Matrix CompositesShanghai Jiao Tong University Shanghai 200240 P.R. China
| | - Weimin Xuan
- School of Chemistry and Chemical Engineering and State Key Laboratory, of Metal, Matrix CompositesShanghai Jiao Tong University Shanghai 200240 P.R. China
| | - Yong Cui
- School of Chemistry and Chemical Engineering and State Key Laboratory, of Metal, Matrix CompositesShanghai Jiao Tong University Shanghai 200240 P.R. China
- Collaborative Innovation Center of Chemical Science and Engineering Tianjin 300072 P.R. China
| |
Collapse
|
25
|
Dana S, Chowdhury D, Mandal A, Chipem FAS, Baidya M. Ruthenium(II) Catalysis/Noncovalent Interaction Synergy for Cross-Dehydrogenative Coupling of Arene Carboxylic Acids. ACS Catal 2018. [DOI: 10.1021/acscatal.8b03392] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Suman Dana
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Deepan Chowdhury
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Anup Mandal
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | | | - Mahiuddin Baidya
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
26
|
Holloway LR, Bogie PM, Lyon Y, Ngai C, Miller TF, Julian RR, Hooley RJ. Tandem Reactivity of a Self-Assembled Cage Catalyst with Endohedral Acid Groups. J Am Chem Soc 2018; 140:8078-8081. [DOI: 10.1021/jacs.8b03984] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lauren R. Holloway
- Department of Chemistry, University of California−Riverside, Riverside, California 92521, United States
| | - Paul M. Bogie
- Department of Chemistry, University of California−Riverside, Riverside, California 92521, United States
| | - Yana Lyon
- Department of Chemistry, University of California−Riverside, Riverside, California 92521, United States
| | - Courtney Ngai
- Department of Chemistry, University of California−Riverside, Riverside, California 92521, United States
| | - Tabitha F. Miller
- Department of Chemistry, University of California−Riverside, Riverside, California 92521, United States
| | - Ryan R. Julian
- Department of Chemistry, University of California−Riverside, Riverside, California 92521, United States
| | - Richard J. Hooley
- Department of Chemistry, University of California−Riverside, Riverside, California 92521, United States
| |
Collapse
|
27
|
Haldar C, Emdadul Hoque M, Bisht R, Chattopadhyay B. Concept of Ir-catalyzed C H bond activation/borylation by noncovalent interaction. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.01.098] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
28
|
Abstract
Over the past few decades, supramolecular chirality in discrete metallosupramolecular architectures has received considerable attention. In this review, a comprehensive summary of discrete, chiral coordination-driven structures, including helices, metallacycles, metallocages, etc., is presented. Although chirality can be introduced prior to, during or even after the coordination self-assembly process, this review puts major emphasis on the more recent development of metallosupramolecular architectures from chiral components, where chirality arises from the enantiopure or racemic scaffolds (bridging or auxiliary ligand). Special attention will be paid to homochiral metallo-assemblies using achiral components where chirality is obtained as a consequence of the twisting of the ligands. Additionally, the potential applications of homochiral metallosupramolecular architectures are also discussed. We hope that this review will be of interest to researchers attempting to design new elaborate homochiral metallosupramolecular architectures with even greater complexity and potential for functions such as chiral recognition, enantiomer separation, asymmetric catalysis, nonlinear sensors, and devices.
Collapse
Affiliation(s)
- Li-Jun Chen
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, East China Normal University, Shanghai 200062, P. R. China.
| | | | | |
Collapse
|
29
|
Rajasekar P, Pandey S, Paithankar H, Chugh J, Steiner A, Boomishankar R. Imido-P(v) trianion supported enantiopure neutral tetrahedral Pd(ii) cages. Chem Commun (Camb) 2018; 54:1873-1876. [PMID: 29389000 DOI: 10.1039/c8cc00207j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Charge-neutral chiral hosts are attractive due to their ability to recognize a wide range of guest functionalities and support enantioselective processes. However, reports on such charge-neutral cages are very scarce in the literature. Here, we report an enantiomeric pair of tetrahedral Pd(ii) cages built from chiral tris(imido)phosphate trianions and oxalate linkers, which exhibit enantioselective separation capabilities for epichlorohydrin, β-butyrolactone, and 3-methyl- and 3-ethyl cyclopentanone.
Collapse
Affiliation(s)
- Prabhakaran Rajasekar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr HomiBhabha Road, Pune - 411008, India.
| | | | | | | | | | | |
Collapse
|
30
|
Chen ZM, Cui Y, Jiang XF, Tong J, Yu SY. Programmable self-assembly of water-soluble organo-heterometallic cages [M 12M' 4L 12] using 3-(3,5-dimethyl-1H-pyrazol-4-yl)pentane-2,4-dione (H 2L). Chem Commun (Camb) 2018; 53:4238-4241. [PMID: 28361135 DOI: 10.1039/c7cc00425g] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A bifunctional ligand H2L featuring primary (pyrazole) and secondary (acetylacetone) coordination sites was preferentially reacted with dimetallic [M2(NO3)2](NO3)2 linkers at the pyrazolyl end of H2L, giving rise to dimetallic corners. Subsequently, the corners serve as the secondary site with M' to form water-soluble organo-heterometallic [M12M'4L12] cages in a stepwise mode.
Collapse
Affiliation(s)
- Zi-Man Chen
- Laboratory for Self-Assembly Chemistry, Department of Chemistry and Chemical Industry, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China.
| | | | | | | | | |
Collapse
|
31
|
Colomban C, Martin-Diaconescu V, Parella T, Goeb S, García-Simón C, Lloret-Fillol J, Costas M, Ribas X. Design of Zn-, Cu-, and Fe-Coordination Complexes Confined in a Self-Assembled Nanocage. Inorg Chem 2018; 57:3529-3539. [PMID: 29293325 DOI: 10.1021/acs.inorgchem.7b02852] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The encapsulation of coordination complexes in a tetragonal prismatic nanocage (1·(BArF)8) built from Zn-porphyrin and macrocyclic Pd-clip-based synthons is described. The functional duality of the guest ligand L1 allows for its encapsulation inside the cage 1·(BArF)8, along with the simultaneous coordination of ZnII, CuII, or FeIII metal ions. Remarkably, the coordination chemistry inside the host-guest adduct L1⊂1·(BArF)8 occurs in both solution solution and solid state. The resulting confined metallocomplexes have been characterized by means of UV-vis, ESI-HRMS, NMR, and EPR techniques. Furthermore, the emission of the Zn-porphyrin fluorophores of 1·(BArF)8 is strongly quenched by the encapsulation of paramagnetic complexes, representing a remarkable example of guest-dependent tuning of the host fluorescence.
Collapse
Affiliation(s)
- Cédric Colomban
- Institut de Química Computacional i Catàlisi , Universitat de Girona, Campus Montilivi , 17003 Girona , Catalonia , Spain
| | - Vlad Martin-Diaconescu
- Institute of Chemical Research of Catalonia (ICIQ) , The Barcelona Institute of Science and Technology , Avinguda Paisos Catalans 16 , 43007 Tarragona , Catalonia , Spain
| | - Teodor Parella
- Servei de RMN, Facultat de Ciències , Universitat Autònoma de Barcelona, Campus UAB , E-08193 Bellaterra , Catalonia , Spain
| | - Sébastien Goeb
- Université d'Angers, CNRS UMR 6200 , Laboratoire MOLTECH-Anjou , 2 bd Lavoisier , 49045 Angers Cedex , France
| | - Cristina García-Simón
- Institut de Química Computacional i Catàlisi , Universitat de Girona, Campus Montilivi , 17003 Girona , Catalonia , Spain
| | - Julio Lloret-Fillol
- Institute of Chemical Research of Catalonia (ICIQ) , The Barcelona Institute of Science and Technology , Avinguda Paisos Catalans 16 , 43007 Tarragona , Catalonia , Spain
| | - Miquel Costas
- Institut de Química Computacional i Catàlisi , Universitat de Girona, Campus Montilivi , 17003 Girona , Catalonia , Spain
| | - Xavi Ribas
- Institut de Química Computacional i Catàlisi , Universitat de Girona, Campus Montilivi , 17003 Girona , Catalonia , Spain
| |
Collapse
|
32
|
|
33
|
Das P, Kumar A, Howlader P, Mukherjee PS. A Self-Assembled Trigonal Prismatic Molecular Vessel for Catalytic Dehydration Reactions in Water. Chemistry 2017. [DOI: 10.1002/chem.201702263] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Paramita Das
- Inorganic and Physical Chemistry Department; Indian Institute of Science; Bangalore 560012 India
| | - Atul Kumar
- Inorganic and Physical Chemistry Department; Indian Institute of Science; Bangalore 560012 India
| | - Prodip Howlader
- Inorganic and Physical Chemistry Department; Indian Institute of Science; Bangalore 560012 India
| | - Partha Sarathi Mukherjee
- Inorganic and Physical Chemistry Department; Indian Institute of Science; Bangalore 560012 India
| |
Collapse
|
34
|
Jiang J, Ouyang G, Zhang L, Liu M. Self‐Assembled Chiral Nanostructures as Scaffolds for Asymmetric Reactions. Chemistry 2017; 23:9439-9450. [DOI: 10.1002/chem.201700727] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Jian Jiang
- Key Laboratory of Nanosystem and Hierarchical FabricationCAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology No. 11 ZhongGuanCun BeiYiTiao 100190 Beijing P. R. China
| | - Guanghui Ouyang
- Key Laboratory of Colloid, Interface and Chemical ThermodynamicsInstitute of Chemistry, Chinese Academy of ScienceBeijing National Laboratory for Molecular Science (BNLMS) Zhongguancun North First Street 2 100190 Beijing P. R. China
| | - Li Zhang
- Key Laboratory of Colloid, Interface and Chemical ThermodynamicsInstitute of Chemistry, Chinese Academy of ScienceBeijing National Laboratory for Molecular Science (BNLMS) Zhongguancun North First Street 2 100190 Beijing P. R. China
| | - Minghua Liu
- Key Laboratory of Nanosystem and Hierarchical FabricationCAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology No. 11 ZhongGuanCun BeiYiTiao 100190 Beijing P. R. China
- Key Laboratory of Colloid, Interface and Chemical ThermodynamicsInstitute of Chemistry, Chinese Academy of ScienceBeijing National Laboratory for Molecular Science (BNLMS) Zhongguancun North First Street 2 100190 Beijing P. R. China
| |
Collapse
|
35
|
Hoque ME, Bisht R, Haldar C, Chattopadhyay B. Noncovalent Interactions in Ir-Catalyzed C-H Activation: L-Shaped Ligand for Para-Selective Borylation of Aromatic Esters. J Am Chem Soc 2017; 139:7745-7748. [PMID: 28537744 DOI: 10.1021/jacs.7b04490] [Citation(s) in RCA: 176] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
An efficient strategy for the para-selective borylation of aromatic esters is described. For achieving high para-selectivity, a new catalytic system has been developed modifying the core structure of the bipyridine. It has been proposed that the L-shaped ligand is essential to recognize the functionality of the oxygen atom of the ester carbonyl group via noncovalent interaction, which provides an unprecedented controlling factor for para-selective C-H activation/borylation.
Collapse
Affiliation(s)
- Md Emdadul Hoque
- Center of Bio-Medical Research, Division of Molecular Synthesis & Drug Discovery, SGPGIMS Campus , Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| | - Ranjana Bisht
- Center of Bio-Medical Research, Division of Molecular Synthesis & Drug Discovery, SGPGIMS Campus , Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| | - Chabush Haldar
- Center of Bio-Medical Research, Division of Molecular Synthesis & Drug Discovery, SGPGIMS Campus , Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| | - Buddhadeb Chattopadhyay
- Center of Bio-Medical Research, Division of Molecular Synthesis & Drug Discovery, SGPGIMS Campus , Raebareli Road, Lucknow 226014, Uttar Pradesh, India
| |
Collapse
|
36
|
Chattopadhyay B, Dannatt JE, Andujar-De Sanctis IL, Gore KA, Maleczka RE, Singleton DA, Smith MR. Ir-Catalyzed ortho-Borylation of Phenols Directed by Substrate-Ligand Electrostatic Interactions: A Combined Experimental/in Silico Strategy for Optimizing Weak Interactions. J Am Chem Soc 2017; 139:7864-7871. [PMID: 28453268 DOI: 10.1021/jacs.7b02232] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A strategy for affecting ortho versus meta/para selectivity in Ir-catalyzed C-H borylations (CHBs) of phenols is described. From selectivity observations with ArylOBpin (pin = pinacolate), it is hypothesized that an electrostatic interaction between the partial negatively charged OBpin group and the partial positively charged bipyridine ligand of the catalyst favors ortho selectivity. Experimental and computational studies designed to test this hypothesis support it. From further computational work a second generation, in silico designed catalyst emerged, where replacing Bpin with Beg (eg = ethylene glycolate) was predicted to significantly improve ortho selectivity. Experimentally, reactions employing B2eg2 gave ortho selectivities > 99%. Adding triethylamine significantly improved conversions. This ligand-substrate electrostatic interaction provides a unique control element for selective C-H functionalization.
Collapse
Affiliation(s)
- Buddhadeb Chattopadhyay
- Department of Chemistry, Michigan State University , 578 South Shaw Lane, East Lansing, Michigan 48824-1322 United States.,Center of Bio-Medical Research, Division of Molecular Synthesis & Drug Discovery, Sanjay Gandhi Post Graduate Institute of Medical Sciences , Raebareli Road, Lucknow, Uttar Pradesh 226014, India
| | - Jonathan E Dannatt
- Department of Chemistry, Michigan State University , 578 South Shaw Lane, East Lansing, Michigan 48824-1322 United States
| | | | - Kristin A Gore
- Department of Chemistry, Michigan State University , 578 South Shaw Lane, East Lansing, Michigan 48824-1322 United States
| | - Robert E Maleczka
- Department of Chemistry, Michigan State University , 578 South Shaw Lane, East Lansing, Michigan 48824-1322 United States
| | - Daniel A Singleton
- Department of Chemistry, Texas A&M University , PO Box 30012, College Station, Texas 77842, United States
| | - Milton R Smith
- Department of Chemistry, Michigan State University , 578 South Shaw Lane, East Lansing, Michigan 48824-1322 United States
| |
Collapse
|
37
|
Koyanagi K, Takashima Y, Nakamura T, Yamaguchi H, Harada A. Radical polymerization by a supramolecular catalyst: cyclodextrin with a RAFT reagent. Beilstein J Org Chem 2016; 12:2495-2502. [PMID: 28144318 PMCID: PMC5238571 DOI: 10.3762/bjoc.12.244] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 11/08/2016] [Indexed: 11/23/2022] Open
Abstract
Supramolecular catalysts have received a great deal of attention because they improve the selectivity and efficiency of reactions. Catalysts with host molecules exhibit specific reaction properties and recognize substrates via host-guest interactions. Here, we examined radical polymerization reactions with a chain transfer agent (CTA) that has α-cyclodextrin (α-CD) as a host molecule (α-CD-CTA). Prior to the polymerization of N,N-dimethylacrylamide (DMA), we investigated the complex formation of α-CD with DMA. Single X-ray analysis demonstrated that α-CD includes DMA inside its cavity. When DMA was polymerized in the presence of α-CD-CTA using 2,2'-azobis[2-(2-imidazolin-2-yl)propane dihydrochloride (VA-044) as an initiator in an aqueous solution, poly(DMA) was obtained in good yield and with narrow molecular weight distribution. In contrast, the polymerization of DMA without α-CD-CTA produced more widely distributed polymers. In the presence of 1,6-hexanediol (C6 diol) which works as a competitive molecule by being included in the α-CD cavity, the reaction yield was lower than that without C6 diol.
Collapse
Affiliation(s)
- Kohei Koyanagi
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Yoshinori Takashima
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Takashi Nakamura
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Hiroyasu Yamaguchi
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Akira Harada
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
- JST-ImPACT, Chiyoda-ku, Tokyo 100-8914, Japan
| |
Collapse
|
38
|
Affiliation(s)
- Matthias Otte
- Organic Chemistry & Catalysis, Debye Institute for Nanomaterials Science, Universiteit Utrecht, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
39
|
Levin MD, Kaphan DM, Hong CM, Bergman RG, Raymond KN, Toste FD. Scope and Mechanism of Cooperativity at the Intersection of Organometallic and Supramolecular Catalysis. J Am Chem Soc 2016; 138:9682-93. [PMID: 27458778 DOI: 10.1021/jacs.6b05442] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The scope and mechanism of the microenvironment-catalyzed C(sp(3))-C(sp(3)) reductive elimination from transition metal complexes [Au(III), Pt(IV)] is explored. Experiments detailing the effect of structural perturbation of neutral and anionic spectator ligands, reactive alkyl ligands, solvent, and catalyst structure are disclosed. Indirect evidence for a coordinatively unsaturated encapsulated cationic intermediate is garnered via observation of several inactive donor-arrested inclusion complexes, including a crystallographically characterized encapsulated Au(III) cation. Finally, based on stoichiometric experiments under catalytically relevant conditions, a detailed mechanism is outlined for the dual supramolecular and platinum-catalyzed C-C coupling between methyl iodide and tetramethyltin. Determination of major platinum species present under catalytic conditions and subsequent investigation of their chemistry reveals an unexpected interplay between cis-trans isomerism and the supramolecular catalyst in a Pt(II)/Pt(IV) cycle, as well as several off-cycle reactions.
Collapse
Affiliation(s)
- Mark D Levin
- Chemical Sciences Division, Lawrence Berkeley National Laboratory and Department of Chemistry, University of California , Berkeley, California 94720, United States
| | - David M Kaphan
- Chemical Sciences Division, Lawrence Berkeley National Laboratory and Department of Chemistry, University of California , Berkeley, California 94720, United States
| | - Cynthia M Hong
- Chemical Sciences Division, Lawrence Berkeley National Laboratory and Department of Chemistry, University of California , Berkeley, California 94720, United States
| | - Robert G Bergman
- Chemical Sciences Division, Lawrence Berkeley National Laboratory and Department of Chemistry, University of California , Berkeley, California 94720, United States
| | - Kenneth N Raymond
- Chemical Sciences Division, Lawrence Berkeley National Laboratory and Department of Chemistry, University of California , Berkeley, California 94720, United States
| | - F Dean Toste
- Chemical Sciences Division, Lawrence Berkeley National Laboratory and Department of Chemistry, University of California , Berkeley, California 94720, United States
| |
Collapse
|
40
|
Kuijpers PF, Otte M, Dürr M, Ivanović-Burmazović I, Reek JNH, de Bruin B. A Self-Assembled Molecular Cage for Substrate-Selective Epoxidation Reactions in Aqueous Media. ACS Catal 2016. [DOI: 10.1021/acscatal.6b00283] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Petrus F. Kuijpers
- Homogeneous,
Supramolecular and Bio-inspired Catalysis group, Van ‘t Hoff
Institute for Molecular Science (HIMS), University of Amsterdam (UvA), Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Matthias Otte
- Organic
Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Maximilian Dürr
- Lehrstuhl
für Bioanorganische Chemie, Department Chemie und Pharmazie, Friedrich-Alexander-Universität Erlangen, Egerlandstraβe 3, 91058 Erlangen, Germany
| | - Ivana Ivanović-Burmazović
- Lehrstuhl
für Bioanorganische Chemie, Department Chemie und Pharmazie, Friedrich-Alexander-Universität Erlangen, Egerlandstraβe 3, 91058 Erlangen, Germany
| | - Joost N. H. Reek
- Homogeneous,
Supramolecular and Bio-inspired Catalysis group, Van ‘t Hoff
Institute for Molecular Science (HIMS), University of Amsterdam (UvA), Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Bas de Bruin
- Homogeneous,
Supramolecular and Bio-inspired Catalysis group, Van ‘t Hoff
Institute for Molecular Science (HIMS), University of Amsterdam (UvA), Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
41
|
Korom S, Martin E, Serapian SA, Bo C, Ballester P. Molecular Motion and Conformational Interconversion of Ir(I)·COD Included in Rebek's Self-Folding Octaamide Cavitand. J Am Chem Soc 2016; 138:2273-9. [PMID: 26812619 DOI: 10.1021/jacs.5b12646] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report experimental and theoretical evidence of restrained axial rotation for heteroleptic L2·Ir(I)·1,5-cyclooctadiene (COD) complexes included in the aromatic cavity of Rebek's self-folding octaamide cavitand. At 298 K, the axial spinning motion of the included organometallic guests was slow on the (1)H NMR time scale and produced a proton spectrum for the bound host indicative of C2 symmetry. Signals corresponding to aromatic protons of the bound host coalesced at 323 K, indicating that the spinning process of the included guest became fast on the (1)H NMR time scale and that the complex approached C4 symmetry. Surprisingly, lowering the temperature of the solution to 193 K induced an additional splitting of the proton signals observed at room temperature for both the bound host and the included guest. We propose the emergence of a new element of chirality in the complexes, which was associated with a slow interconversion, on the (1)H NMR time scale between the two chiral twisted-boat conformers of the chelated COD included in the already chiral cavity of the container. This leads to the inclusion complexes existing in solution as pairs of two racemic diastereomers. We estimated that the racemization barrier for the two cyclochiral conformers of the Ir(I) chelated COD was 5 kcal mol(-1) higher as an included organometallic complex than as free in solution. Furthermore, we performed a van't Hoff plot and determined that the inclusion of the organometallic complex in the cavitand was endothermic and exclusively driven by entropy (ΔH = 5.9 kcal mol(-1) and ΔS = 33.9 cal mol(-1) K(-1)).
Collapse
Affiliation(s)
- Saša Korom
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology , Avgda. Països Catalans 16, 43007 Tarragona, Spain
| | - Eddy Martin
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology , Avgda. Països Catalans 16, 43007 Tarragona, Spain
| | - Stefano A Serapian
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology , Avgda. Països Catalans 16, 43007 Tarragona, Spain
| | - Carles Bo
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology , Avgda. Països Catalans 16, 43007 Tarragona, Spain
| | - Pablo Ballester
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology , Avgda. Països Catalans 16, 43007 Tarragona, Spain.,Catalan Institution for Research and Advanced Studies (ICREA) , Passeig Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
42
|
Brown CJ, Kokai A, Miller GM, Bergman RG, Raymond KN. Improved scope and diastereoselectivity of C–H activation in an expanded supramolecular host. Supramol Chem 2016. [DOI: 10.1080/10610278.2015.1122196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Casey J. Brown
- Department of Chemistry, University of California, Berkeley, CA, USA
- Division of Chemical Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Akos Kokai
- Department of Chemistry, University of California, Berkeley, CA, USA
- Division of Chemical Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Gregory M. Miller
- Department of Chemistry, University of California, Berkeley, CA, USA
- Division of Chemical Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Robert G. Bergman
- Department of Chemistry, University of California, Berkeley, CA, USA
- Division of Chemical Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Kenneth N. Raymond
- Department of Chemistry, University of California, Berkeley, CA, USA
- Division of Chemical Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
43
|
Bisht R, Chattopadhyay B. Formal Ir-Catalyzed Ligand-Enabled Ortho and Meta Borylation of Aromatic Aldehydes via in Situ-Generated Imines. J Am Chem Soc 2015; 138:84-7. [DOI: 10.1021/jacs.5b11683] [Citation(s) in RCA: 185] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Ranjana Bisht
- Center of Bio-Medical Research, Division of Molecular Synthesis & Drug Discovery, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Raebareli Road, Lucknow, Uttar Pradesh 226014, India
| | - Buddhadeb Chattopadhyay
- Center of Bio-Medical Research, Division of Molecular Synthesis & Drug Discovery, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Raebareli Road, Lucknow, Uttar Pradesh 226014, India
| |
Collapse
|
44
|
Zhang YY, Zhang L, Lin YJ, Jin GX. Mixed-Metal Coordination Cages Constructed with Pyridyl-Functionalized β-Diketonate Metalloligands: Syntheses, Structures and Host-Guest Properties. Chemistry 2015; 21:14893-900. [DOI: 10.1002/chem.201502194] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Indexed: 11/07/2022]
|
45
|
Brown CJ, Toste FD, Bergman RG, Raymond KN. Supramolecular catalysis in metal-ligand cluster hosts. Chem Rev 2015; 115:3012-35. [PMID: 25898212 DOI: 10.1021/cr4001226] [Citation(s) in RCA: 902] [Impact Index Per Article: 100.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Casey J Brown
- †Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
| | - F Dean Toste
- †Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
| | - Robert G Bergman
- †Department of Chemistry, University of California, Berkeley, California 94720-1460, United States.,‡Division of Chemical Sciences, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Kenneth N Raymond
- †Department of Chemistry, University of California, Berkeley, California 94720-1460, United States.,‡Division of Chemical Sciences, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
46
|
Gangemi CMA, Pappalardo A, Trusso Sfrazzetto G. Applications of supramolecular capsules derived from resorcin[4]arenes, calix[n]arenes and metallo-ligands: from biology to catalysis. RSC Adv 2015. [DOI: 10.1039/c5ra09364c] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This review summarizes supramolecular capsules based on resorcin[4]arenes, calix[n]arenes and metal–ligands, having concrete applications in biomedical field, catalysis and material science.
Collapse
Affiliation(s)
| | - Andrea Pappalardo
- Department of Chemical Sciences
- University of Catania
- 95125 Catania
- Italy
- I.N.S.T.M. UdR of Catania
| | | |
Collapse
|
47
|
Li Y, Yu D, Dai Z, Zhang J, Shao Y, Tang N, Wu J. Bulky metallocavitands with a chiral cavity constructed by aluminum and magnesium atrane-likes: enantioselective recognition and separation of racemic alcohols. Dalton Trans 2015; 44:5692-702. [DOI: 10.1039/c4dt03848g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel tetranuclear metallocavitands with a chiral cavity were synthesized via self-assembly of aluminum/magnesium atrane-likes and were successfully applied to the chiral resolution of 2-butanol.
Collapse
Affiliation(s)
- Yingguo Li
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
| | - Dawei Yu
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
| | - Zhongran Dai
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
| | - Jinjin Zhang
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
| | - Yongliang Shao
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
| | - Ning Tang
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
| | - Jincai Wu
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
| |
Collapse
|
48
|
Zhao C, Toste FD, Raymond KN, Bergman RG. Nucleophilic Substitution Catalyzed by a Supramolecular Cavity Proceeds with Retention of Absolute Stereochemistry. J Am Chem Soc 2014; 136:14409-12. [DOI: 10.1021/ja508799p] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Chen Zhao
- Chemical Sciences Division,
Lawrence Berkeley National Laboratory, and Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - F. Dean Toste
- Chemical Sciences Division,
Lawrence Berkeley National Laboratory, and Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Kenneth N. Raymond
- Chemical Sciences Division,
Lawrence Berkeley National Laboratory, and Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Robert G. Bergman
- Chemical Sciences Division,
Lawrence Berkeley National Laboratory, and Department of Chemistry, University of California, Berkeley, California 94720, United States
| |
Collapse
|
49
|
Control of Silver(I)-Dialkyl Chalcogenide Coordination by a Synthetic Cavity. Angew Chem Int Ed Engl 2014; 53:11510-3. [DOI: 10.1002/anie.201406224] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 07/25/2014] [Indexed: 11/07/2022]
|
50
|
Kohyama Y, Murase T, Fujita M. Control of Silver(I)-Dialkyl Chalcogenide Coordination by a Synthetic Cavity. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201406224] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|