1
|
Wu Z, Ding Y, Qin Z, Sun Z, Wang Z, Cao X. Hemostatic Dressing Immobilized with ε-poly-L-lysine and Alginate Coated Mesoporous Bioactive Glass Prevents Blood Permeation by Pseudo-Dewetting Behavior. Adv Healthc Mater 2024; 13:e2400958. [PMID: 38770831 DOI: 10.1002/adhm.202400958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/07/2024] [Indexed: 05/22/2024]
Abstract
The integration of hemostats with cotton fabrics is recognized as an effective approach to improve the hemostatic performance of dressings. However, concerns regarding the uncontrollable absorption of blood by hydrophilic dressings and the risk of distal thrombosis from shed hemostatic agents are increasingly scrutinized. To address these issues, this work develops an advanced dressing (AQG) with immobilized nano-scale mesoporous bioactive glass (MBG) to safely and durably augment hemostasis. The doubly immobilized MBGs, pre-coated with ε-poly-L-lysine and alginate, demonstrate less than 1% detachment after ultrasonic washing. Notably, this MBG layer significantly promotes the adhesion, aggregation, and activation of red blood cells and platelets, adhered five times more red blood cells and 29 times more platelets than raw dressing, respectively. Specially, with the rapid formation of protein corona and amplification of thrombin, dense fibrin network is built on MBG layer and then blocked blood permeation transversely and longitudinally, showing an autophobic pseudo-dewetting behavior and allowing AQG to concentrate blood in situ and culminate in faster hemostasis with lower blood loss. Furthermore, the potent antibacterial properties of AQG extend its potential for broader application in daily care and clinical setting.
Collapse
Affiliation(s)
- Zilin Wu
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), South China University of Technology, Guangzhou, 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510641, China
| | - Yilin Ding
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), South China University of Technology, Guangzhou, 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510641, China
| | - Zhihao Qin
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), South China University of Technology, Guangzhou, 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510641, China
| | - Zhipeng Sun
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), South China University of Technology, Guangzhou, 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510641, China
| | - Zetao Wang
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), South China University of Technology, Guangzhou, 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510641, China
| | - Xiaodong Cao
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), South China University of Technology, Guangzhou, 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510641, China
| |
Collapse
|
2
|
Huang H, Liao S, Zhang D, Liang W, Xu K, Zhang Y, Lang M. A macromolecular cross-linked alginate aerogel with excellent concentrating effect for rapid hemostasis. Carbohydr Polym 2024; 338:122148. [PMID: 38763731 DOI: 10.1016/j.carbpol.2024.122148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/25/2024] [Accepted: 04/09/2024] [Indexed: 05/21/2024]
Abstract
Alginate-based materials present promising potential for emergency hemostasis due to their excellent properties, such as procoagulant capability, biocompatibility, low immunogenicity, and cost-effectiveness. However, the inherent deficiencies in water solubility and mechanical strength pose a threat to hemostatic efficiency. Here, we innovatively developed a macromolecular cross-linked alginate aerogel based on norbornene- and thiol-functionalized alginates through a combined thiol-ene cross-linking/freeze-drying process. The resulting aerogel features an interconnected macroporous structure with remarkable water-uptake capacity (approximately 9000 % in weight ratio), contributing to efficient blood absorption, while the enhanced mechanical strength of the aerogel ensures stability and durability during the hemostatic process. Comprehensive hemostasis-relevant assays demonstrated that the aerogel possessed outstanding coagulation capability, which is attributed to the synergistic impacts on concentrating effect, platelet enrichment, and intrinsic coagulation pathway. Upon application to in vivo uncontrolled hemorrhage models of tail amputation and hepatic injury, the aerogel demonstrated significantly superior performance compared to commercial alginate hemostatic agent, yielding reductions in clotting time and blood loss of up to 80 % and 85 %, respectively. Collectively, our work illustrated that the alginate porous aerogel overcomes the deficiencies of alginate materials while exhibiting exceptional performance in hemorrhage, rendering it an appealing candidate for rapid hemostasis.
Collapse
Affiliation(s)
- Huanxuan Huang
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Shiyang Liao
- Department of Orthopedics, The First Affiliated Hospital of Anhui University of Science and Technology, 203 Huaibin Hwy, Anhui 232000, PR China
| | - Dong Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Wencheng Liang
- College of chemical and material engineering, Quzhou University, 78 North Jiuhua Road, Zhejiang 324000, PR China
| | - Keqing Xu
- Department of Orthopedics, The First Affiliated Hospital of Anhui University of Science and Technology, 203 Huaibin Hwy, Anhui 232000, PR China.
| | - Yadong Zhang
- Department of Spine, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, 183 West Zhongshan Avenue, Guangzhou 510515, PR China.
| | - Meidong Lang
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China.
| |
Collapse
|
3
|
Nagrath M, Rahimnejad Yazdi A, Marx D, Ni T, Gallant RC, Ni H, Towler MR. In vitro analysis of tantalum-containing mesoporous bioactive glass fibres for haemostasis. J Med Eng Technol 2024; 48:12-24. [PMID: 38857023 DOI: 10.1080/03091902.2024.2356618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/12/2024] [Indexed: 06/11/2024]
Abstract
Haemorrhage is the leading cause of battlefield deaths and second most common cause for civilian mortality worldwide. Biomaterials-based haemostatic agents are used to aid in bleeding stoppage; mesoporous bioactive glasses (MBGs) are candidates for haemostasis. Previously made Tantalum-containing MBG (Ta-MBG) powders' compositions were fabricated as electrospun fibres for haemostatic applications in the present study. The fibres were fabricated to address the challenges associated with the powder form: difficult to compress without gauze, getting washed away in profuse bleeding, generating dust in the surgical environment, and forming thick callus-difficult to remove for surgeons and painful for patients. Ta-MBGs were based on (80-x)SiO2-15CaO-5P2O5-xTa2O5 mol% compositions with x = 0 (0Ta), 0.5 (0.5Ta), 1 (1Ta), and 5 (5Ta) mol%. The present study details the fibres' in vitro analyses, elucidating their cytotoxic effects, and haemostatic capabilities and relating these observations to fibre chemistry and previously fabricated powders of the same glasses. As expected, when Ta addition is increased at the expense of silica, a new FTIR peak (non-bridging oxygen-silicon, Si-NBO) develops and Si-O-Si peaks become wider. Compared to 0Ta and 1Ta fibres, 0.5Ta show Si-O peaks with reduced intensity. The fibres had a weaker intensity of Si-NBO peaks and release fewer ions than powders. A reduced ion profile provides fibres with a stable matrix for clot formation. The ion release profile for 1Ta and 5Ta fibres was significantly lower than 0Ta and 0.5Ta fibres. Ta-MBGs were not found to be cytotoxic to primary rat fibroblasts using a methyl thiazolyl tetrazolium (MTT) assay. Furthermore, a modified activated partial thromboplastin time assay analysing the fibrin absorbance showed that the absorption increases from physiological clotting < 0Ta < 0.5Ta < 5Ta < commercial haemostat, Surgical SNoWTM, Ethicon, USA < 1Ta. Higher absorption signifies a stronger clot. It is concluded that Ta-MBG fibres can provide stable matrix for clot formation and 1Ta can potentially enhance clotting best among other Ta-MBGs.
Collapse
Affiliation(s)
- Malvika Nagrath
- Biomedical Engineering, Faculty of Engineering and Architectural Science (FEAS), Ryerson University, Toronto, Ontario, Canada
- Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | | | - Daniella Marx
- Biomedical Engineering, Faculty of Engineering and Architectural Science (FEAS), Ryerson University, Toronto, Ontario, Canada
- Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Tiffany Ni
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Reid C Gallant
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Heyu Ni
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Canadian Blood Services Centre for Innovation, Toronto, Ontario, Canada
| | - Mark R Towler
- Doshi Professor of Chemical and Biochemical Engineering, Missouri University of Science and Technology, Rolla, MO, USA
| |
Collapse
|
4
|
Edwards JV, Prevost NT, Cintron MS. A Comparison of Hemostatic Activities of Zeolite-Based Formulary Finishes on Cotton Dressings. J Funct Biomater 2023; 14:jfb14050255. [PMID: 37233365 DOI: 10.3390/jfb14050255] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/22/2023] [Accepted: 04/26/2023] [Indexed: 05/27/2023] Open
Abstract
The need for affordable effective prehospital hemostatic dressings to control hemorrhage has led to an increased interest in new dressing design approaches. Here we consider the separate components of fabric, fiber, and procoagulant nonexothermic zeolite-based formulations on design approaches to accelerated hemostasis. The design of the fabric formulations was based on incorporation of zeolite Y as the principal procoagulant, with calcium and pectin to adhere and enhance the activity. Unbleached nonwoven cotton when combined with bleached cotton displays enhanced properties related to hemostasis. Here, we compare sodium zeolite with ammonium zeolite formulated on fabrics utilizing pectin with pad versus spray-dry-cure and varied fiber compositions. Notably, ammonium as a counterion resulted in shorter times to fibrin and clot formation comparable to the procoagulant standard. The time to fibrin formation as measured by thromboelastography was found to be within a range consistent with modulating severe hemorrhage control. The results indicate a correlation between fabric add-on and accelerated clotting as measured by both time to fibrin and clot formation. A comparison between the time to fibrin formation in calcium/pectin formulations and pectin alone revealed an enhanced clotting effect with calcium decreasing by one minute the time to fibrin formation. Infra-red spectra were employed to characterize and quantify the zeolite formulations on the dressings.
Collapse
Affiliation(s)
- J Vincent Edwards
- Southern Regional Research Center, United States Department of Agriculture (USDA), Agricultural Research Service, New Orleans, LA 70124, USA
| | - Nicolette T Prevost
- Southern Regional Research Center, United States Department of Agriculture (USDA), Agricultural Research Service, New Orleans, LA 70124, USA
| | - Michael Santiago Cintron
- Southern Regional Research Center, United States Department of Agriculture (USDA), Agricultural Research Service, New Orleans, LA 70124, USA
| |
Collapse
|
5
|
Shi Y, Fang Y, Liang X, Huang C, Liang Y, Yang Z, Yu J, Wang J, Zhao G. Yeast cell templated porous hollow silica spheres for rapid hemostasis accompanied by antibacterial action. Biomater Sci 2023; 11:3104-3113. [PMID: 36916604 DOI: 10.1039/d2bm01619b] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Uncontrolled haemorrhage is the leading cause in nearly 91% of pre-hospital deaths, which were considered potentially survivable. In particular, severe trauma is susceptible to infection, which further affects the natural healing process and can even lead to life-threatening sepsis. Therefore, we established Ag@HMSN nanocomposites based on a yeast cell template that combines hemostasis with antibiosis and further studied the effects of different calcination temperatures on the hemostatic and antibacterial properties. From the experimental results, Ag@HMSNs/500 shows excellent bactericidal effect on a mouse skin infection model and outstanding hemostatic effect on a mouse liver injury model, which could be used as the next-generation hemostatic and antibacterial material.
Collapse
Affiliation(s)
- Yuting Shi
- State Key Laboratory of Applied Organic Chemistry, Institute of Biochemical Engineering & Environmental Technology, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China. .,State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute (LSMRI), Xiamen, 361101, P. R. China
| | - Yu Fang
- State Key Laboratory of Applied Organic Chemistry, Institute of Biochemical Engineering & Environmental Technology, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Xiaoqin Liang
- Department of Pathology, Gansu Provincial Hospital, Lanzhou 730000, P. R. China
| | - Congshu Huang
- State Key Laboratory of Applied Organic Chemistry, Institute of Biochemical Engineering & Environmental Technology, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China. .,State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute (LSMRI), Xiamen, 361101, P. R. China
| | - Yu Liang
- State Key Laboratory of Applied Organic Chemistry, Institute of Biochemical Engineering & Environmental Technology, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China. .,State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute (LSMRI), Xiamen, 361101, P. R. China
| | - Zheng Yang
- State Key Laboratory of Applied Organic Chemistry, Institute of Biochemical Engineering & Environmental Technology, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Jianping Yu
- Gansu Provincial Maternity and Child-care Hospital, Lanzhou 730050, P. R. China.
| | - Jianrong Wang
- Gansu Provincial Maternity and Child-care Hospital, Lanzhou 730050, P. R. China.
| | - Guanghui Zhao
- State Key Laboratory of Applied Organic Chemistry, Institute of Biochemical Engineering & Environmental Technology, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| |
Collapse
|
6
|
Biazar E, Heidari Keshel S, Niazi V, Vazifeh Shiran N, Saljooghi R, Jarrahi M, Mehdipour Arbastan A. Morphological, cytotoxicity, and coagulation assessments of perlite as a new hemostatic biomaterial. RSC Adv 2023; 13:6171-6180. [PMID: 36825295 PMCID: PMC9941756 DOI: 10.1039/d2ra07795g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/13/2023] [Indexed: 02/23/2023] Open
Abstract
Hemorrhage control is vital for clinical outcomes after surgical treatment and pre-hospital trauma injuries. Numerous biomaterials have been investigated to control surgical and traumatic bleeding. In this study, for the first time, perlite was introduced as an aluminosilicate biomaterial and compared with other ceramics such as kaolin and bentonite in terms of morphology, cytotoxicity, mutagenicity, and hemostatic evaluations. Cellular studies showed that perlite has excellent viability, good cell adhesion, and high anti-mutagenicity. Coagulation results demonstrated that the shortest clotting time (140 seconds with a concentration of 50 mg mL-1) was obtained for perlite samples compared to other samples. Therefore, perlite seems most efficient as a biocompatible ceramic for hemorrhage control and other biomaterial designs.
Collapse
Affiliation(s)
- Esmaeil Biazar
- Biomaterials and Tissue Engineering Group, Department of Biomedical Engineering, Islamic Azad University Tonekabon Branch Tonekabon Iran +981154271105 +981154271105
| | - Saeid Heidari Keshel
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences Tehran Iran +989125870517 +989125870517.,Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Vahid Niazi
- Stem Cell Research Center, Golestan University of Medical ScienceGorganIran,Department of Molecular Medicine, Faculty of Advanced Medical Technologies, Golestan University of Medical ScienceGorganIran
| | - Nader Vazifeh Shiran
- Department of Hematology and Blood Banking, Faculty of Medical Sciences, Tarbiat Modares UniversityTehranIran
| | - Roxana Saljooghi
- Biomaterials and Tissue Engineering Group, Department of Biomedical Engineering, Islamic Azad University Tonekabon Branch Tonekabon Iran +981154271105 +981154271105
| | - Mina Jarrahi
- Biomaterials and Tissue Engineering Group, Department of Biomedical Engineering, Islamic Azad University Tonekabon Branch Tonekabon Iran +981154271105 +981154271105
| | - Ahmad Mehdipour Arbastan
- School of Medicine, Faculty of Medical Sciences, Islamic Azad UniversityTonekabon BranchTonekabonIran
| |
Collapse
|
7
|
Wang Y, luo M, Li T, Xie C, Li S, Lei B. Multi-layer-structured bioactive glass nanopowder for multistage-stimulated hemostasis and wound repair. Bioact Mater 2023; 25:319-332. [PMID: 36844363 PMCID: PMC9946820 DOI: 10.1016/j.bioactmat.2023.01.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 02/13/2023] Open
Abstract
Current treatments for full-thickness skin injuries are still unsatisfactory due to the lack of hierarchically stimulated dressings that can integrate the rapid hemostasis, inflammation regulation, and skin tissue remodeling into the one system instead of single-stage boosting. In this work, a multilayer-structured bioactive glass nanopowder (BGN@PTE) is developed by coating the poly-tannic acid and ε-polylysine onto the BGN via facile layer-by-layer assembly as an integrative and multilevel dressing for the sequential management of wounds. In comparison to BGN and poly-tannic acid coated BGN, BGN@PTE exhibited the better hemostatic performance because of its multiple dependent approaches to induce the platelet adhesion/activation, red blood cells (RBCs) aggregation and fibrin network formation. Simultaneously, the bioactive ions from BGN facilitate the regulation of the inflammatory response while the poly-tannic acid and antibacterial ε-polylysine prevent the wound infection, promoting the wound healing during the inflammatory stage. In addition, BGN@PTE can serve as a reactive oxygen species scavenger, alleviate the oxidation stress in wound injury, induce the cell migration and angiogenesis, and promote the proliferation stage of wound repair. Therefore, BGN@PTE demonstrated the significantly higher wound repair capacity than the commercial bioglass dressing Dermlin™. This multifunctional BGN@PTE is a potentially valuable dressing for full-thickness wound management and may be expected to extend to the other wounds therapy.
Collapse
Affiliation(s)
- Yidan Wang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China,Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Meng luo
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China,Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Ting Li
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China,Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Chenxi Xie
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China,Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Sihua Li
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China,Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Bo Lei
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China,Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710054, China,State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710054, China,Instrument Analysis Center, Xi'an Jiaotong University, Xi'an, 710054, China,Corresponding author. Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China.
| |
Collapse
|
8
|
Li XF, Lu P, Jia HR, Li G, Zhu B, Wang X, Wu FG. Emerging materials for hemostasis. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
9
|
Zheng Y, Wu J, Zhu Y, Wu C. Inorganic-based biomaterials for rapid hemostasis and wound healing. Chem Sci 2022; 14:29-53. [PMID: 36605747 PMCID: PMC9769395 DOI: 10.1039/d2sc04962g] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/07/2022] [Indexed: 12/02/2022] Open
Abstract
The challenge for the treatment of severe traumas poses an urgent clinical need for the development of biomaterials to achieve rapid hemostasis and wound healing. In the past few decades, active inorganic components and their derived composites have become potential clinical products owing to their excellent performances in the process of hemorrhage control and tissue repair. In this review, we provide a current overview of the development of inorganic-based biomaterials used for hemostasis and wound healing. We highlight the methods and strategies for the design of inorganic-based biomaterials, including 3D printing, freeze-drying, electrospinning and vacuum filtration. Importantly, inorganic-based biomaterials for rapid hemostasis and wound healing are presented, and we divide them into several categories according to different chemistry and forms and further discuss their properties, therapeutic mechanisms and applications. Finally, the conclusions and future prospects are suggested for the development of novel inorganic-based biomaterials in the field of rapid hemostasis and wound healing.
Collapse
Affiliation(s)
- Yi Zheng
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences No. 1295 Dingxi Road Shanghai 200050 People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences No. 19(A) Yuquan Road Beijing 100049 People's Republic of China
| | - Jinfu Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences No. 1295 Dingxi Road Shanghai 200050 People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences No. 19(A) Yuquan Road Beijing 100049 People's Republic of China
| | - Yufang Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences No. 1295 Dingxi Road Shanghai 200050 People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences No. 19(A) Yuquan Road Beijing 100049 People's Republic of China
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences No. 1295 Dingxi Road Shanghai 200050 People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences No. 19(A) Yuquan Road Beijing 100049 People's Republic of China
| |
Collapse
|
10
|
Nagrath M, Bince D, Rowsell C, Polintan D, Rezende-Neto J, Towler M. Porcine liver injury model to assess tantalum-containing bioactive glass powders for hemostasis. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2022; 33:53. [PMID: 35670885 PMCID: PMC9174136 DOI: 10.1007/s10856-022-06674-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
This study evaluates compositions of tantalum-containing mesoporous bioactive glass (Ta-MBG) powders using a porcine fatal liver injury model. The powders based on (80-x)SiO2-15CaO-5P2O5-xTa2O5 compositions with x = 0 (0Ta/Ta-free), 1 (1Ta), and 5 (5Ta) mol% were made using a sol-gel process. A class IV hemorrhage condition was simulated on the animals; hemodynamic data and biochemical analysis confirmed the life-threatening condition. Ta-MBGs were able to stop the bleeding within 10 min of their application while the bleeds in the absence of any intervention or in the presence of a commercial agent, AristaTM (Bard Davol Inc., Rhode Island, USA) continued for up to 45 min. Scanning electron microscopy (SEM) imaging of the blood clots showed that the presence of Ta-MBGs did not affect clot morphology. Rather, the connections seen between fibrin fibers of the blood clot and Ta-MBG powders point towards the powders' surfaces embracing fibrin. Histopathological analysis of the liver tissue showed 5Ta as the only composition reducing parenchymal hemorrhage and necrosis extent of the tissue after their application. Additionally, 5Ta was also able to form an adherent clot in worst-case scenario bleeding where no adherent clot was seen before the powder was applied. In vivo results from the present study agree with in vitro results of the previous study that 5Ta was the best Ta-MBG composition for hemostatic purposes. Graphical abstract.
Collapse
Affiliation(s)
- Malvika Nagrath
- Biomedical Engineering, Faculty of Engineering and Architectural Science (FEAS), Ryerson University, Toronto, M5B 2K3, ON, Canada.
- Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, M5B 1W8, ON, Canada.
| | - Danielle Bince
- Research Vivarium, St. Michael's Hospital, Toronto, M5B 1W8, ON, Canada
| | - Corwyn Rowsell
- Department of Laboratory Medicine, St. Michael's Hospital, Toronto, M5B 1W8, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, M5S 1A1, ON, Canada
| | - Deanna Polintan
- Biomedical Engineering, Faculty of Engineering and Architectural Science (FEAS), Ryerson University, Toronto, M5B 2K3, ON, Canada
| | - Joao Rezende-Neto
- Trauma and Acute Care, General Surgery, St. Michael's Hospital, Toronto, M5B 1W8, ON, Canada
- Department of Surgery, University of Toronto, Toronto, M5S 1A1, ON, Canada
| | - Mark Towler
- Biomedical Engineering, Faculty of Engineering and Architectural Science (FEAS), Ryerson University, Toronto, M5B 2K3, ON, Canada
- Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, M5B 1W8, ON, Canada
- Department of Mechanical and Industrial Engineering, FEAS, Ryerson University, Toronto, M5B 2K3, ON, Canada
| |
Collapse
|
11
|
Yuan S, Sun X, Shen Y, Li Z. Bioactive Poly(4-hydroxybutyrate)/Poly(ethylene glycol) Fibrous Dressings Incorporated with Zinc Oxide Nanoparticles for Efficient Antibacterial Therapy and Rapid Clotting. Macromol Biosci 2022; 22:e2100524. [PMID: 35358371 DOI: 10.1002/mabi.202100524] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/09/2022] [Indexed: 11/08/2022]
Abstract
Antibacterial and hemostatic. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Shuaishuai Yuan
- Key Lab of Biobased Polymer Materials of Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P.R. China.,National Engineering Laboratory of Medical Implantable Devices & Key Laboratory for Medical Implantable Devices of Shandong Province, WEGO Holding Company Limited, Weihai, 264210, P. R. China
| | - Xiuxia Sun
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P.R. China
| | - Yong Shen
- Key Lab of Biobased Polymer Materials of Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P.R. China.,College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P.R. China
| | - Zhibo Li
- Key Lab of Biobased Polymer Materials of Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P.R. China.,College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P.R. China
| |
Collapse
|
12
|
Liu J, Zhou X, Zhang Y, Wang A, Zhu W, Xu M, Zhuang S. Rapid hemostasis and high bioactivity cerium-containing mesoporous bioglass for hemostatic materials. J Biomed Mater Res B Appl Biomater 2021; 110:1255-1264. [PMID: 34910359 DOI: 10.1002/jbm.b.34996] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/25/2021] [Accepted: 12/05/2021] [Indexed: 11/05/2022]
Abstract
A two-step-acid-catalyzed-self-assembly method was used to prepare cerium-containing mesoporous bioactive glass with P123 as a template. The results showed that MBG without cerium and MBG with cerium slightly affected its surface area, and its water absorption rate was significantly higher. In vitro coagulation experiments showed that Ce-MBG significantly reduces prothrombin time (PT) and activated partial thromboplastin time (APTT), indicating that MBG containing Ce could promote coagulation and platelet adhesion compared with MBG. These suggested that Ce-MBG may be a good dressing with hemostatic properties, which could shorten the bleeding time of the wound and control the bleeding.
Collapse
Affiliation(s)
- Jiaxi Liu
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, China
| | - Xiang Zhou
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, China
| | - Yin Zhang
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, China.,Nanjing Haoqi Advanced Materials Co., Ltd., Nanjing, China
| | - Anping Wang
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, China
| | - Wei Zhu
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, China
| | - Meijia Xu
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, China
| | - Shuxian Zhuang
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, China
| |
Collapse
|
13
|
Cui Y, Huang Z, Lei L, Li Q, Jiang J, Zeng Q, Tang A, Yang H, Zhang Y. Robust hemostatic bandages based on nanoclay electrospun membranes. Nat Commun 2021; 12:5922. [PMID: 34635666 PMCID: PMC8505635 DOI: 10.1038/s41467-021-26237-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 09/14/2021] [Indexed: 11/18/2022] Open
Abstract
Death from acute hemorrhage is a major problem in military conflicts, traffic accidents, and surgical procedures, et al. Achieving rapid effective hemostasis for pre-hospital care is essential to save lives in massive bleeding. An ideal hemostasis material should have those features such as safe, efficient, convenient, economical, which remains challenging and most of them cannot be achieved at the same time. In this work, we report a rapid effective nanoclay-based hemostatic membranes with nanoclay particles incorporate into polyvinylpyrrolidone (PVP) electrospun fibers. The nanoclay electrospun membrane (NEM) with 60 wt% kaolinite (KEM1.5) shows better and faster hemostatic performance in vitro and in vivo with good biocompatibility compared with most other NEMs and clay-based hemostats, benefiting from its enriched hemostatic functional sites, robust fluffy framework, and hydrophilic surface. The robust hemostatic bandages based on nanoclay electrospun membrane is an effective candidate hemostat in practical application. Rapid, easy and effective haemostasis is needed to reduce the loss of life from traumatic haemorrhage. Here, the authors report on the creation of polymer-nanoclay electrospun membranes and demonstrate haemostatic effects showing superior effects to other clay based haemostats.
Collapse
Affiliation(s)
- Yan Cui
- Department of Inorganic Materials, School of Minerals Processing and Bioengineering, Central South University, 410083, Changsha, China.,College of Chemistry and Chemical Engineering, Central South University, 410083, Changsha, China
| | - Zongwang Huang
- Department of Inorganic Materials, School of Minerals Processing and Bioengineering, Central South University, 410083, Changsha, China
| | - Li Lei
- Department of Dermatology, the Third Xiangya Hospital, Central South University, 410013, Changsha, China
| | - Qinglin Li
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China.,Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Jinlong Jiang
- Jiangsu Provincial Key Laboratory of Palygorskite Science and Applied Technology, Huaiyin Institute of Technology, 223003, Huaian, China
| | - Qinghai Zeng
- Department of Dermatology, the Third Xiangya Hospital, Central South University, 410013, Changsha, China
| | - Aidong Tang
- College of Chemistry and Chemical Engineering, Central South University, 410083, Changsha, China
| | - Huaming Yang
- Department of Inorganic Materials, School of Minerals Processing and Bioengineering, Central South University, 410083, Changsha, China
| | - Yi Zhang
- Department of Inorganic Materials, School of Minerals Processing and Bioengineering, Central South University, 410083, Changsha, China.
| |
Collapse
|
14
|
Chang WC, Tai AZ, Tsai NY, Li YCE. An Injectable Hybrid Gelatin Methacryloyl (GelMA)/Phenyl Isothiocyanate-Modified Gelatin (Gel-Phe) Bioadhesive for Oral/Dental Hemostasis Applications. Polymers (Basel) 2021; 13:2386. [PMID: 34301143 PMCID: PMC8309571 DOI: 10.3390/polym13142386] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/16/2021] [Accepted: 07/16/2021] [Indexed: 12/26/2022] Open
Abstract
Biomaterials are widely used for effectively controlling bleeding in oral/dental surgical procedures. Here, gelatin methacryloyl (GelMA) was synthesized by grafting methacrylic anhydride on gelatin backbone, and phenyl isothiocyanate-modified gelatin (Gel-Phe) was synthesized by conjugating different gelatin/phenyl isothiocyanate molar ratios (G/P ratios) (i.e., 1:1, 1:5, 1:10, 1:15, 1:25, 1:50, 1:100, and 1:150) with gelatin polymer chains. Afterward, we combined GelMA and Gel-Phe as an injectable and photo-crosslinkable bioadhesive. This hybrid material system combines photo-crosslinking chemistry and supramolecular interactions for the design of bioadhesives exhibiting a highly porous structure, injectability, and regulable mechanical properties. By simply regulating the G/P ratio (1:1-1:15) and UV exposure times (15-60 s), it was possible to modulate the injectability and mechanical properties of the GelMA/Gel-Phe bioadhesive. Moreover, we demonstrated that the GelMA/Gel-Phe bioadhesive showed low cytotoxicity, a highly porous network, and the phenyl-isothiourea and amine residues on Gel-Phe and GelMA polymers with synergized hemostatic properties towards fast blood absorption and rapid clotting effect. An in vitro porcine skin bleeding and an in vitro dental bleeding model confirmed that the bioadhesive could be directly extruded into the bleeding site, rapidly photo-crosslinked, and reduced blood clotting time by 45%. Moreover, the in situ crosslinked bioadhesive could be easily removed from the bleeding site after clotting, avoiding secondary wound injury. Overall, this injectable GelMA/Gel-Phe bioadhesive stands as a promising hemostatic material in oral/dental surgical procedures.
Collapse
Affiliation(s)
- Wan-Chun Chang
- Department of Chemical Engineering, Feng Chia University, Taichung 40724, Taiwan; (W.-C.C.); (N.-Y.T.)
| | - Au-Zou Tai
- Ph.D. Program of Mechanical and Aeronautical Engineering, Feng Chia University, Taichung 40724, Taiwan;
| | - Nian-Yun Tsai
- Department of Chemical Engineering, Feng Chia University, Taichung 40724, Taiwan; (W.-C.C.); (N.-Y.T.)
| | - Yi-Chen Ethan Li
- Department of Chemical Engineering, Feng Chia University, Taichung 40724, Taiwan; (W.-C.C.); (N.-Y.T.)
| |
Collapse
|
15
|
Wang JH, Tsai CW, Tsai NY, Chiang CY, Lin RS, Pereira RF, Li YCE. An injectable, dual crosslinkable hybrid pectin methacrylate (PECMA)/gelatin methacryloyl (GelMA) hydrogel for skin hemostasis applications. Int J Biol Macromol 2021; 185:441-450. [PMID: 34197849 DOI: 10.1016/j.ijbiomac.2021.06.162] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/18/2021] [Accepted: 06/24/2021] [Indexed: 12/14/2022]
Abstract
Biomaterials for effective hemorrhage control are urgently needed in clinics as uncontrolled bleeding is associated with high mortality. Herein, we developed an injectable and in situ photo-crosslinkable hybrid hemostatic hydrogel by combining pectin methacrylate (PECMA) and gelatin methacryloyl (GelMA). This modular material system combines ionic- and photo-crosslinking chemistries to design interpenetrating networks (IPN) exhibiting tunable rheology, highly porous structure, and controllable swelling and mechanical properties. By simply changing the calcium (0-15 mM) and polymer (1.5-7%) content used for the sequential crosslinking of hydrogels via calcium gelation and UV-photopolymerization, it was possible to precisely modulate the injectability, degradation, and swelling ratio. Moreover, it is demonstrated that PECMA/GelMA hydrogels present good cytocompatibility and uniquely synergize the hemostatic properties of calcium ions on PECMA, the amine residues on GelMA, and the highly porous network toward rapid blood absorption and fast coagulation effect. An in vitro porcine skin bleeding model confirmed that the hydrogel could be directly injected into the wound and rapidly photo-crosslinked, circumventing the bleeding and decreasing the coagulation time by 39%. Importantly, the crosslinked hydrogel could be easily removed to prevent secondary wound injury. Overall, this injectable hybrid PECMA/GelMA hydrogel stands as a promising hemostatic material.
Collapse
Affiliation(s)
- Jing-Han Wang
- Department of Chemical Engineering, Feng Chia University, Taichung, Taiwan
| | - Ching-Wen Tsai
- Taiwan Instrument Research Institute, National Applied Research Laboratories, Hsinchu, Taiwan
| | - Nian-Yun Tsai
- Department of Chemical Engineering, Feng Chia University, Taichung, Taiwan
| | - Chao-Ying Chiang
- Department of Chemical Engineering, Feng Chia University, Taichung, Taiwan
| | - Ru-Sin Lin
- Department of Chemical Engineering, Feng Chia University, Taichung, Taiwan
| | - Rúben F Pereira
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Yi-Chen Ethan Li
- Department of Chemical Engineering, Feng Chia University, Taichung, Taiwan.
| |
Collapse
|
16
|
Wang L, Pan K, Zhang L, Zhou C, Li Y, Zhu B, Han J. Tentative identification of key factors determining the hemostatic efficiency of diatom frustule. Biomater Sci 2021; 9:2162-2173. [PMID: 33496686 DOI: 10.1039/d0bm02002h] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
It is increasingly essential to develop excellent materials for rapid hemorrhage control. Our previous study showed that centric diatoms such as frustules were superior to QuikClot® in hemostasis, however, related studies in pennate diatoms are still scarce. The morphological and physicochemical properties of pennate diatoms are quite different from those of centric diatoms, meaning that significant differences may also be observed from their hemostatic effects. Thus, the hemostasis effects of four pennate diatom frustules (Cocconeiopsis orthoneoides, Navicula avium, Navicula sp., and Pleurosigma indicum) were investigated in this study. Herein, all diatom frustules demonstrated outstanding hemostasis performance. For example, the in vitro coagulation time of C. orthoneoides (100.33 ± 9.5 s) was 32.4% lower than that of QuikClot®. Meanwhile, the hemostatic times of C. orthoneoides in the rat tail amputation and femoral artery models were 82 s and 180 s, respectively, only around one-half and one-third of the QuikClot® values. Moreover, the blood loss amounts of C. orthoneoides in the rat tail amputation and femoral artery model were 73.4% and 61% less than that of QuikClot®. Besides that, diatom frustules also exhibited favorable biocompatibility (hemolysis ratio <5%, MEFs cell viabilities >80%, and no inflammation). To find out the key factors underlying the hemostatic effect of frustules, Pearson correlation analysis was further performed in this study. The results demonstrated that the coagulation reaction time (R) was negatively correlated with the specific surface area and liquid absorbability but positively with the diatom pore diameter. The angle α, indicating the clot formation rate, was negative to the diatom size and pore diameter. Additionally, MA also showed a negative correlation with the BET value. This study can enrich our knowledge about the application potential of diatoms in the field of bleeding control and is helpful in deepening our understanding about the hemostatic mechanism of frustules.
Collapse
Affiliation(s)
- Lulu Wang
- Key Laboratory of Mariculture, Ocean University of China, Ministry of Education, Qingdao 266003, China
| | | | | | | | | | | | | |
Collapse
|
17
|
Wang Y, Liu G, Wu L, Qu H, Song D, Huang H, Wu C, Xu M. Rational design of porous starch/hyaluronic acid composites for hemostasis. Int J Biol Macromol 2020; 158:S0141-8130(20)33164-0. [PMID: 32387600 DOI: 10.1016/j.ijbiomac.2020.05.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/27/2020] [Accepted: 05/03/2020] [Indexed: 11/16/2022]
Abstract
Effective hemorrhage control is pivotal for decreasing the trauma death both in civilian and military but has proven to be dauntingly challenging, especially for solid viscera and artery trauma. Here we report the fabrication of a novel starch-based hemostat, sodium trimethaphosphate (STMP)-crosslinked starch/hyaluronic acid (HA) (ScSH) porous composites. Aiming at hemostatic potential, physicochemical properties, cytocompatibility, hemocompatibility, histocompatibility and hemostatic performance of ScSH composites have been studied. As it turned out, the incorporation of HA greatly improved the water absorption capacity and hemostatic performance of ScSH composites. In addition, the composites with a non-toxic crosslinker exhibited non-cytotoxicity, low hemolysis ratio (0.97%) and favorable histocompatibility. Meanwhile, the composites performed exceptionally well in blood clotting of superficial injury, solid viscera and artery trauma and displayed similar hemostatic efficacy to commercialized hemostat (Quickclean® particles). Unambiguously, these encouraging results highlighted potential of our materials to be used as hemostats and made the approach, constructing porous starch/HA composites, a promising strategy to accelerate further development of hemostatic agents applied both in vivo and in vitro.
Collapse
Affiliation(s)
- Yanling Wang
- School of Physics and Materials Science, Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200062, PR China; Suzhou Novovita Bio-products Co., Ltd., Suzhou 215347, PR China
| | - Guangwan Liu
- Suzhou Novovita Bio-products Co., Ltd., Suzhou 215347, PR China.
| | - Lijuan Wu
- School of Physics and Materials Science, Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200062, PR China; Suzhou Novovita Bio-products Co., Ltd., Suzhou 215347, PR China
| | - Hongyuan Qu
- Suzhou Novovita Bio-products Co., Ltd., Suzhou 215347, PR China
| | - Deli Song
- Suzhou Novovita Bio-products Co., Ltd., Suzhou 215347, PR China
| | - Hailong Huang
- School of Physics and Materials Science, Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200062, PR China
| | - Changlin Wu
- School of Physics and Materials Science, Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200062, PR China; Suzhou Novovita Bio-products Co., Ltd., Suzhou 215347, PR China.
| | - Min Xu
- School of Physics and Materials Science, Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai 200062, PR China.
| |
Collapse
|
18
|
Chen X, Li S, Yan Y, Su J, Wang D, Zhao J, Wang S, Zhang X. Absorbable nanocomposites composed of mesoporous bioglass nanoparticles and polyelectrolyte complexes for surgical hemorrhage control. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 109:110556. [PMID: 32228979 DOI: 10.1016/j.msec.2019.110556] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 11/04/2019] [Accepted: 12/12/2019] [Indexed: 01/24/2023]
Abstract
Absorbable polyelectrolyte complexes-based hemostats are promising for controlling hemorrhage in iatrogenic injuries during surgery, whereas their hemostatic efficacy and other performances require further improvement for clinical application. Herein, spherical mesoporous bioglass nanoparticles (mBGN) were fabricated, and mBGN-polyelectrolyte complexes (composed of carboxymethyl starch and chitosan oligosaccharide) nanocomposites (BGN/PEC) with different mBGN contents were prepared via in situ coprecipitation followed by lyophilization. The effect of various mBGN content (10 and 20 wt%) on morphology, zeta potential, water absorption, degradation behavior and ion release were systematically evaluated. The in vitro degradability was dramatically promoted and a more neutral environment was achieved with the incorporation of mBGN, which is preferable for surgical applications. The in vitro coagulation test with whole blood demonstrated that the incorporation of mBGN facilitated blood clotting process. The plasma coagulation evaluation indicated that BGN/PEC had increased capability to accelerate coagulation cascade via the intrinsic pathway than that of the PEC, while have inapparent influence on the extrinsic and common pathway. The in vivo hemostatic evaluation in a rabbit hepatic hemorrhage model revealed that BGN/PEC with 10 wt% mBGN (10BGN/PEC) treatment group had the lowest blood loss, although its hemostatic time is close to that of 20BGN/PEC treatment group. The cytocompatibility evaluation with MC3T3-L1 fibroblasts indicated that 10BGN/PEC induced a ~25% increase of cell viability compared to the PEC at days 4 and 7, indicating improved biocompatibility. These findings support the promising application of absorbable BGN/PEC with optimized mBGN content as internal hemostats and present a platform for further development of PEC-based hemostats.
Collapse
Affiliation(s)
- Xingtao Chen
- Department of Orthopaedics, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Shuyang Li
- College of Physical Science and Technology, Sichuan University, Chengdu 610064, China
| | - Yonggang Yan
- College of Physical Science and Technology, Sichuan University, Chengdu 610064, China.
| | - Jiacan Su
- Department of Orthopaedics Trauma, Changhai Hospital, Second Military Medical University, Shanghai 200433, China.
| | - Dongliang Wang
- Shanghai Jiao Tong Univ, Sch Med, Xinhua Hosp, Dept Orthoped Surg, 1665 Kongjiang Rd, Shanghai 200092, PR China
| | - Jun Zhao
- Shanghai Jiao Tong Univ, Shanghai Peoples Hosp, 9, Dept Orthodont, Sch Med, Shanghai, China
| | - Sicheng Wang
- Department of Orthopaedics, Zhongye Hospital, Shanghai 200941, China
| | - Xin Zhang
- Department of Orthopaedics, Zhongye Hospital, Shanghai 200941, China
| |
Collapse
|
19
|
Sundaram MN, Amirthalingam S, Mony U, Varma PK, Jayakumar R. Injectable chitosan-nano bioglass composite hemostatic hydrogel for effective bleeding control. Int J Biol Macromol 2019; 129:936-943. [DOI: 10.1016/j.ijbiomac.2019.01.220] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 12/31/2018] [Accepted: 01/16/2019] [Indexed: 01/27/2023]
|
20
|
Sun X, Fang Y, Tang Z, Wang Z, Liu X, Liu H. Mesoporous silica nanoparticles carried on chitosan microspheres for traumatic bleeding control. Int J Biol Macromol 2019; 127:311-319. [PMID: 30639594 DOI: 10.1016/j.ijbiomac.2019.01.039] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/03/2019] [Accepted: 01/08/2019] [Indexed: 12/22/2022]
Abstract
Chitosan has been made into various hemostats, but their hemostatic efficiency for controlling severe traumatic bleeding is still inadequate. The aim of this work is to make quick hemostats by incorporating mesoporous silica nanoparticles into chitosan. Porous chitosan-silica composite microspheres (CSMS-S) with high hemostatic efficacy were fabricated through a combination of the microemulsion, thermally induced phase separation, and surfactant templating method. A large number of mesoporous silica nanoparticles were formed on and within the CSMS-S microspheres, which had abundant surface and inner macropores. The synergetic two hemostatic mechanisms from chitosan and mesoporous silica nanoparticles let CSMS-S composite microspheres with proper amount of silica displayed better hemostatic potential than the single component porous chitosan microspheres (CSMS). Within a same time interval, the whole blood clotting kinetics showed that CSMS-S could form larger blood clots than CSMS. The hemostatic time of CSMS-S was down to 97 s from 114 s of CSMS in the rat liver laceration model. The cytotoxicity and histological analysis proved that CSMS-S was a safe hemostatic agent without noticeable adverse effects on tissues around the wound. Our results demonstrate that CSMS-K is a promising quick hemostatic agent for traumatic hemorrhaging control.
Collapse
Affiliation(s)
- Xun Sun
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fujian 350007, China
| | - Yan Fang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fujian 350007, China.
| | - Zonghao Tang
- College of Life Science, Fujian Normal University, Fujian 350007, China
| | - Zhengchao Wang
- College of Life Science, Fujian Normal University, Fujian 350007, China
| | - Xinqing Liu
- People's Hospital of Jiangxi Province, Nanchang 330006, China.
| | - Haiqing Liu
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fujian 350007, China.
| |
Collapse
|
21
|
Pourshahrestani S, Kadri NA, Zeimaran E, Towler MR. Well-ordered mesoporous silica and bioactive glasses: promise for improved hemostasis. Biomater Sci 2019; 7:31-50. [DOI: 10.1039/c8bm01041b] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mesoporous silica and bioactive glasses with unique textural properties are new generations of inorganic hemostats with efficient hemostatic ability.
Collapse
Affiliation(s)
- Sara Pourshahrestani
- Department of Biomedical Engineering
- Faculty of Engineering
- University of Malaya
- Kuala Lumpur 50603
- Malaysia
| | - Nahrizul Adib Kadri
- Department of Biomedical Engineering
- Faculty of Engineering
- University of Malaya
- Kuala Lumpur 50603
- Malaysia
| | - Ehsan Zeimaran
- School of Engineering
- Monash University
- 47500 Bandar Sunway
- Malaysia
| | - Mark R. Towler
- Department of Mechanical & Industrial Engineering
- Ryerson University
- Toronto M5B 2K3
- Canada
| |
Collapse
|
22
|
Pourshahrestani S, Kadri NA, Zeimaran E, Gargiulo N, Samuel S, Naveen SV, Hasikin K, Kamarul T, Towler MR. Comparative efficacy of hemorrhage control of a novel mesoporous bioactive glass versus two commercial hemostats. Biomed Mater 2018; 13:025020. [DOI: 10.1088/1748-605x/aa9b3e] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
23
|
Chen X, Yan Y, Li H, Wang X, Tang S, Li Q, Wei J, Su J. Evaluation of absorbable hemostatic agents of polyelectrolyte complexes using carboxymethyl starch and chitosan oligosaccharide both in vitro and in vivo. Biomater Sci 2018; 6:3332-3344. [PMID: 30357165 DOI: 10.1039/c8bm00628h] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
CMS/COS PECs with a suitable COS content were promising absorbable hemostatic agents for internal use.
Collapse
Affiliation(s)
- Xingtao Chen
- College of Physical Science and Technology
- Sichuan University
- Chengdu 610064
- China
| | - Yonggang Yan
- College of Physical Science and Technology
- Sichuan University
- Chengdu 610064
- China
| | - Hong Li
- College of Physical Science and Technology
- Sichuan University
- Chengdu 610064
- China
| | - Xuehong Wang
- Key Laboratory for Ultrafine Materials of Ministry of Education
- East China University of Science and Technology
- 200237 Shanghai
- China
| | - Songchao Tang
- Key Laboratory for Ultrafine Materials of Ministry of Education
- East China University of Science and Technology
- 200237 Shanghai
- China
| | - Quan Li
- Department of Orthopaedics Trauma
- Changhai Hospital
- Second Military Medical University
- Shanghai 200433
- China
| | - Jie Wei
- Key Laboratory for Ultrafine Materials of Ministry of Education
- East China University of Science and Technology
- 200237 Shanghai
- China
| | - Jiacan Su
- Department of Orthopaedics Trauma
- Changhai Hospital
- Second Military Medical University
- Shanghai 200433
- China
| |
Collapse
|
24
|
Wang C, Zhou H, Niu H, Ma X, Yuan Y, Hong H, Liu C. Tannic acid-loaded mesoporous silica for rapid hemostasis and antibacterial activity. Biomater Sci 2018; 6:3318-3331. [DOI: 10.1039/c8bm00837j] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The as-prepared tannic acid (TA)-load mesoporous silica via electrostatic adsorption (TMS) exhibited excellent hemorrhage control by both TA-induced faster blood contact and plasma protein crosslinking, and MS-initiated water absorption, blood components concentration and coagulation factors activation, and good antibacterial properties.
Collapse
Affiliation(s)
- Chengwei Wang
- Key Laboratory for Ultrafine Materials of Ministry of Education
- East China University of Science and Technology
- Shanghai 200237
- PR China
- Engineering Research Center for Biomedical Materials of Ministry of Education
| | - Huayi Zhou
- Key Laboratory for Ultrafine Materials of Ministry of Education
- East China University of Science and Technology
- Shanghai 200237
- PR China
- Engineering Research Center for Biomedical Materials of Ministry of Education
| | - Haoyi Niu
- Key Laboratory for Ultrafine Materials of Ministry of Education
- East China University of Science and Technology
- Shanghai 200237
- PR China
- Engineering Research Center for Biomedical Materials of Ministry of Education
| | - Xiaoyu Ma
- Key Laboratory for Ultrafine Materials of Ministry of Education
- East China University of Science and Technology
- Shanghai 200237
- PR China
- Engineering Research Center for Biomedical Materials of Ministry of Education
| | - Yuan Yuan
- Key Laboratory for Ultrafine Materials of Ministry of Education
- East China University of Science and Technology
- Shanghai 200237
- PR China
- Shanghai Wego Biological Technology Co
| | - Hua Hong
- Key Laboratory for Ultrafine Materials of Ministry of Education
- East China University of Science and Technology
- Shanghai 200237
- PR China
- Shanghai Wego Biological Technology Co
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education
- East China University of Science and Technology
- Shanghai 200237
- PR China
- Engineering Research Center for Biomedical Materials of Ministry of Education
| |
Collapse
|
25
|
Wang C, Zhu F, Cui Y, Ren H, Xie Y, Li A, Ji L, Qu X, Qiu D, Yang Z. An easy-to-use wound dressing gelatin-bioactive nanoparticle gel and its preliminary in vivo study. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2017; 28:10. [PMID: 27915402 DOI: 10.1007/s10856-016-5823-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 11/28/2016] [Indexed: 06/06/2023]
Abstract
Beyond promoting hard tissue repairing, bioactive glasses (BGs) have also been proved to be beneficial for wound healing. Nano-scale BGs prepared by sol-gel method were found to have a better performance as they have a larger specific surface area. In this work, bioactive nanoparticles (nBPs) with mean diameter of 12 nm (BP-12) instead of conventional BGs were mixed with gelatin to form an easy-to-use hydrogel as a dressing for skin wound. It was found that the composite of BP-12 and gelatin could form a hydrogel (BP-12/Gel) under 25 °C, which showed pronounced thixotropy at a practically accessible shear rate, therefore become easy to be used for wound cover. In vitro, the composite hydrogel of BP-12 and gelatin had good biocompatibility with the fibroblast cells. In vivo, rapid cutaneous-tissue regeneration and tissue-structure formation within 7 days was observed in the wound-healing experiment performed in rats. This hydrogel is thus a promising easy-to-use wound dressing material.
Collapse
Affiliation(s)
- Chen Wang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Feiyan Zhu
- University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Yang Cui
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Huihui Ren
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Yue Xie
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Ailing Li
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Lijun Ji
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Xiaozhong Qu
- University of Chinese Academy of Sciences, Beijing, 100190, China.
| | - Dong Qiu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
- University of Chinese Academy of Sciences, Beijing, 100190, China.
| | - Zhenzhong Yang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| |
Collapse
|
26
|
Naseri S, Lepry WC, Nazhat SN. Bioactive glasses in wound healing: hope or hype? J Mater Chem B 2017; 5:6167-6174. [DOI: 10.1039/c7tb01221g] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Bioactive glasses have long been investigated in mineralized tissue regeneration, but recently their potential applications in soft tissue repair, and in particular wound healing, have demonstrated great promise.
Collapse
Affiliation(s)
- Shiva Naseri
- Department of Mining and Materials Engineering
- McGill University
- Montreal
- Canada
| | - William C. Lepry
- Department of Mining and Materials Engineering
- McGill University
- Montreal
- Canada
| | - Showan N. Nazhat
- Department of Mining and Materials Engineering
- McGill University
- Montreal
- Canada
| |
Collapse
|
27
|
Pourshahrestani S, Zeimaran E, Adib Kadri N, Gargiulo N, Samuel S, Naveen SV, Kamarul T, Towler MR. Gallium-containing mesoporous bioactive glass with potent hemostatic activity and antibacterial efficacy. J Mater Chem B 2016; 4:71-86. [DOI: 10.1039/c5tb02062j] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Gallium-containing mesoporous bioactive glass can be considered as an efficient hemostatic material due to its merits of increased platelet adhesion and thrombin formation as well as antibacterial properties.
Collapse
Affiliation(s)
- Sara Pourshahrestani
- Department of Biomedical Engineering
- Faculty of Engineering
- University of Malaya
- Kuala Lumpur 50603
- Malaysia
| | - Ehsan Zeimaran
- Department of Biomedical Engineering
- Faculty of Engineering
- University of Malaya
- Kuala Lumpur 50603
- Malaysia
| | - Nahrizul Adib Kadri
- Department of Biomedical Engineering
- Faculty of Engineering
- University of Malaya
- Kuala Lumpur 50603
- Malaysia
| | - Nicola Gargiulo
- Laboratori di Chimica Applicata
- Dipartimento di Ingegneria Chimica
- dei Materiali e della Produzione Industriale
- Università Federico II
- 80125 Napoli
| | - Shani Samuel
- Tissue Engineering Group (TEG)
- Department of Orthopedic Surgery
- NOCERAL
- Faculty of Medicine
- University of Malaya
| | | | - Tunku Kamarul
- Tissue Engineering Group (TEG)
- Department of Orthopedic Surgery
- NOCERAL
- Faculty of Medicine
- University of Malaya
| | - Mark R. Towler
- Department of Biomedical Engineering
- Faculty of Engineering
- University of Malaya
- Kuala Lumpur 50603
- Malaysia
| |
Collapse
|
28
|
Chen Z, Li F, Liu C, Guan J, Hu X, Du G, Yao X, Wu J, Tian F. Blood clot initiation by mesoporous silica nanoparticles: dependence on pore size or particle size? J Mater Chem B 2016; 4:7146-7154. [DOI: 10.1039/c6tb01946c] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The hemostatic efficiency of mesoporous silica nanoparticles depends on pore size more than particle size, and biocompatibility is more related to particle size.
Collapse
Affiliation(s)
- Zihao Chen
- Institute of Medical Equipment
- Academy of Military Medical Sciences
- Tianjin 300161
- China
| | - Fan Li
- Institute of Medical Equipment
- Academy of Military Medical Sciences
- Tianjin 300161
- China
| | - Changjun Liu
- Institute of Medical Equipment
- Academy of Military Medical Sciences
- Tianjin 300161
- China
| | - Jing Guan
- Institute of Medical Equipment
- Academy of Military Medical Sciences
- Tianjin 300161
- China
| | - Xiao Hu
- Tianjin Key Laboratory for Prevention and Control of Occupational and Environmental Hazard
- Logistics College of People's Armed Police Force
- Tianjin 300000
- China
| | - Ge Du
- Oncology Department
- Beijing Ditang Hospital (Shunyi Campus)
- Capital Medical University
- Beijing 100015
- China
| | - Xinpei Yao
- Institute of Medical Equipment
- Academy of Military Medical Sciences
- Tianjin 300161
- China
| | - Jimin Wu
- Institute of Medical Equipment
- Academy of Military Medical Sciences
- Tianjin 300161
- China
| | - Feng Tian
- Institute of Medical Equipment
- Academy of Military Medical Sciences
- Tianjin 300161
- China
| |
Collapse
|
29
|
Gaharwar AK, Avery RK, Assmann A, Paul A, McKinley GH, Khademhosseini A, Olsen BD. Shear-thinning nanocomposite hydrogels for the treatment of hemorrhage. ACS NANO 2014; 8:9833-42. [PMID: 25221894 PMCID: PMC4212795 DOI: 10.1021/nn503719n] [Citation(s) in RCA: 260] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 09/15/2014] [Indexed: 05/19/2023]
Abstract
Internal hemorrhaging is a leading cause of death after traumatic injury on the battlefield. Although several surgical approaches such as the use of fibrin glue and tissue adhesive have been commercialized to achieve hemostasis, these approaches are difficult to employ on the battlefield and cannot be used for incompressible wounds. Here, we present shear-thinning nanocomposite hydrogels composed of synthetic silicate nanoplatelets and gelatin as injectable hemostatic agents. These materials are demonstrated to decrease in vitro blood clotting times by 77%, and to form stable clot-gel systems. In vivo tests indicated that the nanocomposites are biocompatible and capable of promoting hemostasis in an otherwise lethal liver laceration. The combination of injectability, rapid mechanical recovery, physiological stability, and the ability to promote coagulation result in a hemostat for treating incompressible wounds in out-of-hospital, emergency conditions.
Collapse
Affiliation(s)
- Akhilesh K. Gaharwar
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, United States
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Reginald K. Avery
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, United States
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Alexander Assmann
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, United States
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Cardiovascular Surgery, Heinrich Heine University, Medical Faculty, 40225 Duesseldorf, Germany
| | - Arghya Paul
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, United States
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Gareth H. McKinley
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Ali Khademhosseini
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, United States
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Address correspondence to ,
| | - Bradley D. Olsen
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Address correspondence to ,
| |
Collapse
|
30
|
Yildirim A, Ozgur E, Bayindir M. Impact of mesoporous silica nanoparticle surface functionality on hemolytic activity, thrombogenicity and non-specific protein adsorption. J Mater Chem B 2013; 1:1909-1920. [DOI: 10.1039/c3tb20139b] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
31
|
Thrombin production and human neutrophil elastase sequestration by modified cellulosic dressings and their electrokinetic analysis. J Funct Biomater 2011; 2:391-413. [PMID: 24956451 PMCID: PMC4030916 DOI: 10.3390/jfb2040391] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 12/03/2011] [Accepted: 12/07/2011] [Indexed: 01/01/2023] Open
Abstract
Wound healing is a complex series of biochemical and cellular events. Optimally, functional material design addresses the overlapping acute and inflammatory stages of wound healing based on molecular, cellular, and bio-compatibility issues. In this paper the issues addressed are uncontrolled hemostasis and inflammation which can interfere with the orderly flow of wound healing. In this regard, we review the serine proteases thrombin and elastase relative to dressing functionality that improves wound healing and examine the effects of charge in cotton/cellulosic dressing design on thrombin production and elastase sequestration (uptake by the wound dressing). Thrombin is central to the initiation and propagation of coagulation, and elastase is released from neutrophils that can function detrimentally in a stalled inflammatory phase characteristic of chronic wounds. Electrokinetic fiber surface properties of the biomaterials of this study were determined to correlate material charge and polarity with function relative to thrombin production and elastase sequestration. Human neutrophil elastase sequestration was assessed with an assay representative of chronic wound concentration with cotton gauze cross-linked with three types of polycarboxylic acids and one phosphorylation finish; thrombin production, which was assessed in a plasma-based assay via a fluorogenic peptide substrate, was determined for cotton, cotton-grafted chitosan, chitosan, rayon/polyester, and two kaolin-treated materials including a commercial hemorrhage control dressing (QuickClot Combat Gauze). A correlation in thrombin production to zeta potential was found. Two polycarboxylic acid cross linked and a phosphorylated cotton dressing gave high elastase sequestration.
Collapse
|
32
|
Hong Z, Luz GM, Hampel PJ, Jin M, Liu A, Chen X, Mano JF. Mono-dispersed bioactive glass nanospheres: Preparation and effects on biomechanics of mammalian cells. J Biomed Mater Res A 2010; 95:747-54. [DOI: 10.1002/jbm.a.32898] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
33
|
He Q, Zhang J, Chen F, Guo L, Zhu Z, Shi J. An anti-ROS/hepatic fibrosis drug delivery system based on salvianolic acid B loaded mesoporous silica nanoparticles. Biomaterials 2010; 31:7785-96. [PMID: 20674009 DOI: 10.1016/j.biomaterials.2010.07.008] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Accepted: 07/01/2010] [Indexed: 01/04/2023]
Abstract
The rhodamine B (RhB) covalently grafted SBA-15-structured mesoporous silica nanoparticles (MSNs-RhB) of high surface area (750 m(2) g(-1)), large pore volume (0.7 cm(3) g(-1)), uniform particle size (about 400 nm) and positively charged surface (29.6 +/- 5.0 mV), has been developed as a drug delivery system (SAB@MSNs-RhB) for anti-ROS (reactive oxygen species)/hepatic fibrosis by loading a negatively charged drug salvianolic acid B (SAB). The dosage formulation SAB@MSNs-RhB effectively protected the loaded drug SAB from decomposition. The multi-release experimental results showed that SAB@MSNs-RhB exhibited an outstanding SAB sustained-release property, and relatively high SAB release rates and concentrations in a long term after the consumption of previously released SAB as compared to SAB loaded MSNs (SAB@MSNs) of negatively charged surface (-31.1 +/- 2.6 mV). The influences of the drug concentration, incubation time, drug formula and drug carrier on the ROS level, proliferative activity and cytotoxicity of LX-2 cells were evaluated. The results showed that the inhibiting effect of SAB@MSNs-RhB on the ROS level and proliferative activity of LX-2 cells was more remarkable than free SAB in a long term (72 h), and became more intensive with the increase of the sample concentration and the incubation time. SAB@MSNs-RhB enhanced the cellular drug uptake, the drug bioaccessability and efficacy for anti-ROS/hepatic fibrosis via the nanoparticles-mediated endocytosis and the sustained release of the drug. There was no visible cytotoxicity of free SAB, MSNs-RhB and SAB@MSNs-RhB against LX-2 cells in a broad concentration range (0.5-100 microm) and incubation time periods up to 72 h. The blood compatibility of the carrier MSNs-RhB was evaluated by investigating the hemolysis and coagulation behaviors in a broad concentration range (50-500 microg mL(-1)) under in vitro conditions. The results suggested that MSNs-RhB possessed good blood compatibility.
Collapse
Affiliation(s)
- Qianjun He
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | | | |
Collapse
|
34
|
Wu X, Wei J, Lu X, Lv Y, Chen F, Zhang Y, Liu C. Chemical characteristics and hemostatic performances of ordered mesoporous calcium-doped silica xerogels. Biomed Mater 2010; 5:35006. [DOI: 10.1088/1748-6041/5/3/035006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
35
|
|
36
|
Hong Y, Chen X, Jing X, Fan H, Guo B, Gu Z, Zhang X. Preparation, bioactivity, and drug release of hierarchical nanoporous bioactive glass ultrathin fibers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2010; 22:754-758. [PMID: 20217784 DOI: 10.1002/adma.200901656] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Affiliation(s)
- Youliang Hong
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu, PR China.
| | | | | | | | | | | | | |
Collapse
|
37
|
Baker SE, Sawvel AM, Fan J, Shi Q, Strandwitz N, Stucky GD. Blood clot initiation by mesocellular foams: dependence on nanopore size and enzyme immobilization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:14254-14260. [PMID: 19053630 DOI: 10.1021/la802804z] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Porous silica materials are attractive for hemorrhage control because of their blood clot promoting surface chemistry, the wide variety of surface topologies and porous structures that can be created, and the potential ability to achieve high loading of therapeutic proteins within the silica support. We show that silica cell-window size variation in the nanometers to tens of nanometers range greatly affects the rate at which blood clots are formed in human plasma, indicating that window sizes in this size range directly impact the accessibility and diffusion of clotting-promoting proteins to and from the interior surfaces and pore volume of mesocellular foams (MCFs). These studies point toward a critical window size at which the clotting speed is minimized and serve as a model for the design of more effective wound-dressing materials. We demonstrate that the clotting times of plasma exposed to MCF materials are dramatically reduced by immobilizing thrombin in the pores of the MCF, validating the utility of enzyme-immobilized mesoporous silicas in biomedical applications.
Collapse
Affiliation(s)
- Sarah E Baker
- Department of Chemistry, University of California, Santa Barbara, California 93106, USA
| | | | | | | | | | | |
Collapse
|
38
|
Nanotechnology, nanotoxicology, and neuroscience. Prog Neurobiol 2008; 87:133-70. [PMID: 18926873 DOI: 10.1016/j.pneurobio.2008.09.009] [Citation(s) in RCA: 200] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Revised: 07/02/2008] [Accepted: 09/18/2008] [Indexed: 12/19/2022]
Abstract
Nanotechnology, which deals with features as small as a 1 billionth of a meter, began to enter into mainstream physical sciences and engineering some 20 years ago. Recent applications of nanoscience include the use of nanoscale materials in electronics, catalysis, and biomedical research. Among these applications, strong interest has been shown to biological processes such as blood coagulation control and multimodal bioimaging, which has brought about a new and exciting research field called nanobiotechnology. Biotechnology, which itself also dates back approximately 30 years, involves the manipulation of macroscopic biological systems such as cells and mice in order to understand why and how molecular level mechanisms affect specific biological functions, e.g., the role of APP (amyloid precursor protein) in Alzheimer's disease (AD). This review aims (1) to introduce key concepts and materials from nanotechnology to a non-physical sciences community; (2) to introduce several state-of-the-art examples of current nanotechnology that were either constructed for use in biological systems or that can, in time, be utilized for biomedical research; (3) to provide recent excerpts in nanotoxicology and multifunctional nanoparticle systems (MFNPSs); and (4) to propose areas in neuroscience that may benefit from research at the interface of neurobiologically important systems and nanostructured materials.
Collapse
|
39
|
Ostomel TA, Shi Q, Stoimenov PK, Stucky GD. Metal oxide surface charge mediated hemostasis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2007; 23:11233-8. [PMID: 17892311 DOI: 10.1021/la701281t] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Blood coagulates faster upon contact with polar glasslike surfaces than on nonpolar plastic surfaces; this phenomenon is commonly termed the glass effect. However, the variable hemostatic response that we report here for contact-activated coagulation by different metal oxides, all of which are polar substrates, requires a refinement of this simple polarity model of how inorganic metal oxides activate the intrinsic pathway of blood coagulation. To our knowledge, the role of metal oxide surface charge as determined at the physiological pH and Ca2+ concentration of blood has not been previously investigated. We find that basic oxides with an isoelectric point above the pH of blood are anticoagulant while acidic oxides with an isoelectric point below the pH of blood are procoagulant. Using a thromboelastograph, we find that the onset time for coagulation and rate of coagulation post-initiation depend on both the sign and the magnitude of the initial surface charge density of the metal oxide. This work presents a useful strategy based on a quantifiable material parameter to select metal oxides to elicit a predictable and tunable biological response when they are in contact with blood.
Collapse
Affiliation(s)
- Todd A Ostomel
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA
| | | | | | | |
Collapse
|
40
|
Boettcher SW, Fan J, Tsung CK, Shi Q, Stucky GD. Harnessing the sol-gel process for the assembly of non-silicate mesostructured oxide materials. Acc Chem Res 2007; 40:784-92. [PMID: 17461540 DOI: 10.1021/ar6000389] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mesostructured non-silicate oxides, with well-defined organization on the 2-50 nm size scale, may play a pivotal role in advancing vital disciplines such as catalysis, energy conversion, and biotechnology. Herein, we present selected methodologies for utilizing the sol-gel process, in conjunction with organic-directed assembly, to synthesize a variety of mesostructured oxides. The nature of the inorganic precursor is critical for this process. We discuss the development of general routes for yielding stable, nanoscopic, hydrophilic, inorganic precursors compatible with organic co-assembly. In particular, we highlight the use and characterization of organic-acid-modified transition metal oxide sol-gel precursors that allow for the synthesis and processing of designer mesostructured oxides such as titania hybrids for optical applications and porous multicomponent metal oxides useful for catalysis.
Collapse
Affiliation(s)
- Shannon W Boettcher
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA.
| | | | | | | | | |
Collapse
|
41
|
Ostomel TA, Shi Q, Tsung CK, Liang H, Stucky GD. Spherical bioactive glass with enhanced rates of hydroxyapatite deposition and hemostatic activity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2006; 2:1261-5. [PMID: 17192971 DOI: 10.1002/smll.200600177] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Affiliation(s)
- Todd A Ostomel
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA
| | | | | | | | | |
Collapse
|