1
|
Alkhzem A, Woodman TJ, Blagbrough IS. Multinuclear Nuclear Magnetic Resonance Spectroscopy Is Used to Determine Rapidly and Accurately the Individual p K a Values of 2-Deoxystreptamine, Neamine, Neomycin, Paromomycin, and Streptomycin. ACS OMEGA 2021; 6:2824-2835. [PMID: 33553900 PMCID: PMC7860104 DOI: 10.1021/acsomega.0c05138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/21/2020] [Indexed: 05/13/2023]
Abstract
Unambiguous assignments have been made for each individual pK a value of the amino group and guanidine substituents on 2-deoxystreptamine, neamine, neomycin, paromomycin, and streptomycin by pH-titration evaluation of their 1H, 13C, and 15N (by 1H-15N heteronuclear multiple-bond correlation (HMBC) spectra) NMR chemical shifts (δXs) as the reporter nuclei. These data require minor revisions of the literature data in terms of the assignment order for neomycin and paromomycin. In situ titrations and NMR spectroscopy are shown to be a powerful combination for rapidly (minutes) obtaining each distinct pK a value of the similar amine and guanidine functional groups, which decorate aminoglycoside antibiotics.
Collapse
|
2
|
Alekseeva MG, Rudakova NN, Zakharevich NV, Mavletova DA, Boyko KM, Nikolaeva AY, Korzhenevskiy DA, Danilenko VN. New Gene of Aminoglycoside Phosphotransferase aph(3'')-Id from Streptomyces rimosus ATCC10970, Encoding Streptomycin Resistance. RUSS J GENET+ 2018. [DOI: 10.1134/s1022795418100034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Thamban Chandrika N, Garneau-Tsodikova S. Comprehensive review of chemical strategies for the preparation of new aminoglycosides and their biological activities. Chem Soc Rev 2018; 47:1189-1249. [PMID: 29296992 PMCID: PMC5818290 DOI: 10.1039/c7cs00407a] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A systematic analysis of all synthetic and chemoenzymatic methodologies for the preparation of aminoglycosides for a variety of applications (therapeutic and agricultural) reported in the scientific literature up to 2017 is presented. This comprehensive analysis of derivatization/generation of novel aminoglycosides and their conjugates is divided based on the types of modifications used to make the new derivatives. Both the chemical strategies utilized and the biological results observed are covered. Structure-activity relationships based on different synthetic modifications along with their implications for activity and ability to avoid resistance against different microorganisms are also presented.
Collapse
Affiliation(s)
- Nishad Thamban Chandrika
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0596, USA.
| | | |
Collapse
|
4
|
Jing X, Evangelista Falcon W, Baudry J, Serpersu EH. Thermophilic Enzyme or Mesophilic Enzyme with Enhanced Thermostability: Can We Draw a Line? J Phys Chem B 2017; 121:7086-7094. [DOI: 10.1021/acs.jpcb.7b04519] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Wilfredo Evangelista Falcon
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Jerome Baudry
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | | |
Collapse
|
5
|
Kumar P, Serpersu EH. Thermodynamics of an aminoglycoside modifying enzyme with low substrate promiscuity: The aminoglycoside N3 acetyltransferase-VIa. Proteins 2017; 85:1258-1265. [PMID: 28316100 DOI: 10.1002/prot.25286] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 03/08/2017] [Accepted: 03/09/2017] [Indexed: 11/07/2022]
Abstract
Kinetic, thermodynamic, and structural properties of the aminoglycoside N3-acetyltransferase-VIa (AAC-VIa) are determined. Among the aminoglycoside N3-acetyltransferases, AAC-VIa has one of the most limited substrate profiles. Kinetic studies showed that only five aminoglycosides are substrates for this enzyme with a range of fourfold difference in kcat values. Larger differences in KM (∼40-fold) resulted in ∼30-fold variation in kcat /KM . Binding of aminoglycosides to AAC-VIa was enthalpically favored and entropically disfavored with a net result of favorable Gibbs energy (ΔG < 0). A net deprotonation of the enzyme, ligand, or both accompanied the formation of binary and ternary complexes. This is opposite of what was observed with several other aminoglycoside N3-acetyltransferases, where ligand binding causes more protonation. The change in heat capacity (ΔCp) was different in H2 O and D2 O for the binary enzyme-sisomicin complex but remained the same in both solvents for the ternary enzyme-CoASH-sisomicin complex. Unlike, most other aminoglycoside-modifying enzymes, the values of ΔCp were within the expected range of protein-carbohydrate interactions. Solution behavior of AAC-VIa was also different from the more promiscuous aminoglycoside N3-acetyltransferases and showed a monomer-dimer equilibrium as detected by analytical ultracentrifugation (AUC). Binding of ligands shifted the enzyme to monomeric state. Data also showed that polar interactions were the most dominant factor in dimer formation. Overall, thermodynamics of ligand-protein interactions and differences in protein behavior in solution provide few clues on the limited substrate profile of this enzyme despite its >55% sequence similarity to the highly promiscuous aminoglycoside N3-acetyltransferase. Proteins 2017; 85:1258-1265. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Prashasti Kumar
- Graduate School of Genome Science and Technology, The University of Tennessee and Oak Ridge National Laboratory, Knoxville, Tennessee, 37996
| | - Engin H Serpersu
- Graduate School of Genome Science and Technology, The University of Tennessee and Oak Ridge National Laboratory, Knoxville, Tennessee, 37996
- Department of Biochemistry, Cellular and Molecular Biology, The University of Tennessee, Knoxville, Tennessee, 37996
- National Science Foundation, Arlington, Virgina 22230
| |
Collapse
|
6
|
Kaplan E, Guichou JF, Chaloin L, Kunzelmann S, Leban N, Serpersu EH, Lionne C. Aminoglycoside binding and catalysis specificity of aminoglycoside 2″-phosphotransferase IVa: A thermodynamic, structural and kinetic study. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1860:802-13. [PMID: 26802312 PMCID: PMC4769084 DOI: 10.1016/j.bbagen.2016.01.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 12/08/2015] [Accepted: 01/12/2016] [Indexed: 12/29/2022]
Abstract
BACKGROUND Aminoglycoside O-phosphotransferases make up a large class of bacterial enzymes that is widely distributed among pathogens and confer a high resistance to several clinically used aminoglycoside antibiotics. Aminoglycoside 2″-phosphotransferase IVa, APH(2″)-IVa, is an important member of this class, but there is little information on the thermodynamics of aminoglycoside binding and on the nature of its rate-limiting step. METHODS We used isothermal titration calorimetry, electrostatic potential calculations, molecular dynamics simulations and X-ray crystallography to study the interactions between the enzyme and different aminoglycosides. We determined the rate-limiting step of the reaction by the means of transient kinetic measurements. RESULTS For the first time, Kd values were determined directly for APH(2″)-IVa and different aminoglycosides. The affinity of the enzyme seems to anti-correlate with the molecular weight of the ligand, suggesting a limited degree of freedom in the binding site. The main interactions are electrostatic bonds between the positively charged amino groups of aminoglycosides and Glu or Asp residues of APH. In spite of the significantly different ratio Kd/Km, there is no large difference in the transient kinetics obtained with the different aminoglycosides. We show that a product release step is rate-limiting for the overall reaction. CONCLUSIONS APH(2″)-IVa has a higher affinity for aminoglycosides carrying an amino group in 2' and 6', but tighter bindings do not correlate with higher catalytic efficiencies. As with APH(3')-IIIa, an intermediate containing product is preponderant during the steady state. GENERAL SIGNIFICANCE This intermediate may constitute a good target for future drug design.
Collapse
Affiliation(s)
- Elise Kaplan
- CNRS, FRE3689 - Université de Montpellier, Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé, F-34293 Montpellier, France
| | - Jean-François Guichou
- CNRS, UMR5048 - Université de Montpellier, Centre de Biochimie Structurale, F-34090 Montpellier, France; INSERM, U1054, F-34090 Montpellier, France
| | - Laurent Chaloin
- CNRS, FRE3689 - Université de Montpellier, Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé, F-34293 Montpellier, France
| | | | - Nadia Leban
- CNRS, FRE3689 - Université de Montpellier, Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé, F-34293 Montpellier, France
| | - Engin H Serpersu
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Corinne Lionne
- CNRS, FRE3689 - Université de Montpellier, Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé, F-34293 Montpellier, France.
| |
Collapse
|
7
|
Jing X, Serpersu EH. Solvent Reorganization Plays a Temperature-Dependent Role in Antibiotic Selection by a Thermostable Aminoglycoside Nucleotidyltransferase-4′. Biochemistry 2014; 53:5544-50. [DOI: 10.1021/bi5006283] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiaomin Jing
- Department
of Biochemistry and Cellular and Molecular Biology, The University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Engin H. Serpersu
- Graduate
School of Genome Science and Technology, The University of Tennessee and Oak Ridge National Laboratories, Knoxville, Tennessee 37996, United States
| |
Collapse
|
8
|
Norris AL, Serpersu EH. Ligand promiscuity through the eyes of the aminoglycoside N3 acetyltransferase IIa. Protein Sci 2014; 22:916-28. [PMID: 23640799 DOI: 10.1002/pro.2273] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 04/23/2013] [Accepted: 04/24/2013] [Indexed: 11/08/2022]
Abstract
Aminoglycoside-modifying enzymes (AGMEs) are expressed in many pathogenic bacteria and cause resistance to aminoglycoside (AG) antibiotics. Remarkably, the substrate promiscuity of AGMEs is quite variable. The molecular basis for such ligand promiscuity is largely unknown as there is not an obvious link between amino acid sequence or structure and the antibiotic profiles of AGMEs. To address this issue, this article presents the first kinetic and thermodynamic characterization of one of the least promiscuous AGMEs, the AG N3 acetyltransferase-IIa (AAC-IIa) and its comparison to two highly promiscuous AGMEs, the AG N3-acetyltransferase-IIIb (AAC-IIIb) and the AG phosphotransferase(3')-IIIa (APH). Despite having similar antibiotic selectivities, AAC-IIIb and APH catalyze different reactions and share no homology to one another. AAC-IIa and AAC-IIIb catalyze the same reaction and are very similar in both amino acid sequence and structure. However, they demonstrate strong differences in their substrate profiles and kinetic and thermodynamic properties. AAC-IIa and APH are also polar opposites in terms of ligand promiscuity but share no sequence or apparent structural homology. However, they both are highly dynamic and may even contain disordered segments and both adopt well-defined conformations when AGs are bound. Contrary to this AAC-IIIb maintains a well-defined structure even in apo form. Data presented herein suggest that the antibiotic promiscuity of AGMEs may be determined neither by the flexibility of the protein nor the size of the active site cavity alone but strongly modulated or controlled by the effects of the cosubstrate on the dynamic and thermodynamic properties of the enzyme.
Collapse
Affiliation(s)
- Adrianne L Norris
- Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee, Knoxville, Tennessee 37996, USA
| | | |
Collapse
|
9
|
Norris AL, Nickels J, Sokolov AP, Serpersu EH. Protein dynamics are influenced by the order of ligand binding to an antibiotic resistance enzyme. Biochemistry 2013; 53:30-8. [PMID: 24320996 DOI: 10.1021/bi401635r] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The aminoglycoside N3 acetyltransferase-IIIb (AAC) is responsible for conferring bacterial resistance to a variety of aminoglycoside antibiotics. Nuclear magnetic resonance spectroscopy and dynamic light scattering analyses revealed a surprising result; the dynamics of the ternary complex between AAC and its two ligands, an antibiotic and coenzyme A, are dependent upon the order in which the ligands are bound. Additionally, two structurally similar aminoglycosides, neomycin and paromomycin, induce strikingly different dynamic properties when they are in their ternary complexes. To the best of our knowledge, this is the first example of a system in which two identically productive pathways of forming a simple ternary complex yield significant differences in dynamic properties. These observations emphasize the importance of the sequence of events in achieving optimal protein-ligand interactions and demonstrate that even a minor difference in molecular structure can have a profound effect on biochemical processes.
Collapse
Affiliation(s)
- Adrianne L Norris
- Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee , Knoxville, Tennessee 37996, United States
| | | | | | | |
Collapse
|
10
|
Serpersu EH, Norris AL. Effect of protein dynamics and solvent in ligand recognition by promiscuous aminoglycoside-modifying enzymes. Adv Carbohydr Chem Biochem 2012; 67:221-48. [PMID: 22794185 DOI: 10.1016/b978-0-12-396527-1.00005-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Engin H Serpersu
- Department of Biochemistry, Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN, USA
| | | |
Collapse
|
11
|
Jing X, Wright E, Bible AN, Peterson CB, Alexandre G, Bruce BD, Serpersu EH. Thermodynamic characterization of a thermostable antibiotic resistance enzyme, the aminoglycoside nucleotidyltransferase (4'). Biochemistry 2012; 51:9147-55. [PMID: 23066871 DOI: 10.1021/bi301126g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The aminoglycoside nucleotidyltransferase (4') (ANT) is an aminoglycoside-modifying enzyme that detoxifies antibiotics by nucleotidylating at the C4'-OH site. Previous crystallographic studies show that the enzyme is a homodimer and each subunit binds one kanamycin and one Mg-AMPCPP, where the transfer of the nucleotidyl group occurs between the substrates bound to different subunits. In this work, sedimentation velocity analysis of ANT by analytical ultracentrifugation showed the enzyme exists as a mixture of a monomer and a dimer in solution and that dimer formation is driven by hydrophobic interactions between the subunits. The binding of aminoglycosides shifts the equilibrium toward dimer formation, while the binding of the cosubstrate, Mg-ATP, has no effect on the monomer-dimer equilibrium. Surprisingly, binding of several divalent cations, including Mg(2+), Mn(2+), and Ca(2+), to the enzyme also shifted the equilibrium in favor of dimer formation. Binding studies, performed by electron paramagnetic resonance spectroscopy, showed that divalent cations bind to the aminoglycoside binding site in the absence of substrates with a stoichiometry of 2:1. Energetic aspects of binding of all aminoglycosides to ANT were determined by isothermal titration calorimetry to be enthalpically favored and entropically disfavored with an overall favorable Gibbs energy. Aminoglycosides in the neomycin class each bind to the enzyme with significantly different enthalpic and entropic contributions, while those of the kanamycin class bind with similar thermodynamic parameters.
Collapse
Affiliation(s)
- Xiaomin Jing
- Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee, 1414 Cumberland Avenue, Knoxville, Tennessee 37996, United States
| | | | | | | | | | | | | |
Collapse
|
12
|
Matesanz R, Diaz JF, Corzana F, Santana AG, Bastida A, Asensio JL. Multiple keys for a single lock: the unusual structural plasticity of the nucleotidyltransferase (4')/kanamycin complex. Chemistry 2012; 18:2875-89. [PMID: 22298309 DOI: 10.1002/chem.201101888] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 12/05/2011] [Indexed: 11/09/2022]
Abstract
The most common mode of bacterial resistance to aminoglycoside antibiotics is the enzyme-catalysed chemical modification of the drug. Over the last two decades, significant efforts in medicinal chemistry have been focused on the design of non- inactivable antibiotics. Unfortunately, this strategy has met with limited success on account of the remarkably wide substrate specificity of aminoglycoside-modifying enzymes. To understand the mechanisms behind substrate promiscuity, we have performed a comprehensive experimental and theoretical analysis of the molecular-recognition processes that lead to antibiotic inactivation by Staphylococcus aureus nucleotidyltransferase 4'(ANT(4')), a clinically relevant protein. According to our results, the ability of this enzyme to inactivate structurally diverse polycationic molecules relies on three specific features of the catalytic region. First, the dominant role of electrostatics in aminoglycoside recognition, in combination with the significant extension of the enzyme anionic regions, confers to the protein/antibiotic complex a highly dynamic character. The motion deduced for the bound antibiotic seem to be essential for the enzyme action and probably provide a mechanism to explore alternative drug inactivation modes. Second, the nucleotide recognition is exclusively mediated by the inorganic fragment. In fact, even inorganic triphosphate can be employed as a substrate. Third, ANT(4') seems to be equipped with a duplicated basic catalyst that is able to promote drug inactivation through different reactive geometries. This particular combination of features explains the enzyme versatility and renders the design of non-inactivable derivatives a challenging task.
Collapse
Affiliation(s)
- Ruth Matesanz
- Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
13
|
Norris AL, Serpersu EH. Antibiotic selection by the promiscuous aminoglycoside acetyltransferase-(3)-IIIb is thermodynamically achieved through the control of solvent rearrangement. Biochemistry 2011; 50:9309-17. [PMID: 21958034 DOI: 10.1021/bi2011916] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The results presented here show the first known observation of opposite signs of change in heat capacity (ΔC(p)) of two structurally similar ligands binding to the same protein site. Neomycin and paromomycin are aminoglycoside antibiotics that are substrates for the resistance-conferring enzyme, the aminoglycoside acetyltransferase-(3)-IIIb (AAC). These antibiotics are identical to one another except at the 6' position where neomycin has an amine and paromomycin has a hydroxyl. The opposite trends in ΔC(p) of binding of these two drugs to AAC suggest a differential exposure of nonpolar amino acid side chains. Nuclear magnetic resonance experiments further demonstrate significantly different changes in AAC upon interaction with neomycin and paromomycin. Experiments in H(2)O and D(2)O reveal the first observed temperature dependence of solvent and vibrational contributions to ΔC(p). Coenzyme A significantly influences these effects. Together, the data suggest that AAC exploits solvent properties to facilitate favorable thermodynamic selection of antibiotics.
Collapse
Affiliation(s)
- Adrianne L Norris
- Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee, Knoxville, Tennessee 37996, United States
| | | |
Collapse
|
14
|
Norris AL, Serpersu EH. Interactions of coenzyme A with the aminoglycoside acetyltransferase (3)-IIIb and thermodynamics of a ternary system. Biochemistry 2010; 49:4036-42. [PMID: 20387904 DOI: 10.1021/bi1001568] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this work, the binding of coenzyme A (CoASH) to the aminoglycoside acetyltransferase (3)-IIIb (AAC) is studied by several experimental techniques. These data represent the first thermodynamic and kinetic characterization of interaction of a cofactor with an enzyme that modifies the 2-deoxystreptamine ring (2-DOS) common to all aminoglycoside antibiotics. Acetyl coenzyme A (AcCoA) was the preferred substrate, but propionyl and malonyl CoA were also substrates. CoASH associates with two different sites on AAC as confirmed by ITC, NMR, and fluorescence experiments: one with a high-affinity, catalytic site and a secondary, low-affinity site that overlaps with the antibiotic binding pocket. The binding of CoASH to the high-affinity site occurs with a small, unfavorable enthalpy and a favorable entropy. Binding to the second site is highly exothermic and is accompanied by an unfavorable entropic contribution. The presence of an aminoglycoside alters the binding of CoASH to AAC dramatically such that the binding occurs with a favorable enthalpy (DeltaH < 0) and an unfavorable entropy (TDeltaS < 0). This is irrespective of which aminoglycoside is the cosubstrate and occurs without a significant change in the affinity of CoASH for AAC. Also, antibiotics eliminate binding of CoASH to the second site. These data allowed the enthalpies of all six equilibria present in a ternary system (AAC-antibiotic-coenzyme) to be determined for the first time for an aminoglycoside-modifying enzyme. NMR experiments also shed light on the dynamic nature of AAC as fast, slow, and intermediary exchanges between apoenzyme- and coenzyme-bound forms were observed.
Collapse
Affiliation(s)
- Adrianne L Norris
- Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee, Knoxville, Tennessee 37996, USA
| | | |
Collapse
|
15
|
Revuelta J, Corzana F, Bastida A, Asensio J. The Unusual Nucleotide Recognition Properties of the Resistance Enzyme ANT(4′): Inorganic Tri/Polyphosphate as a Substrate for Aminoglycoside Inactivation. Chemistry 2010; 16:8635-40. [DOI: 10.1002/chem.201000641] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
16
|
Norris AL, Özen C, Serpersu EH. Thermodynamics and Kinetics of Association of Antibiotics with the Aminoglycoside Acetyltransferase (3)-IIIb, a Resistance-Causing Enzyme. Biochemistry 2010; 49:4027-35. [DOI: 10.1021/bi100155j] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Adrianne L. Norris
- Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee, Knoxville, Tennessee 37996
| | - Can Özen
- Department of Biotechnology and Central Laboratory Molecular Biology and Biotechnology R&D Center, Middle East Technical University, Ankara, Turkey
| | - Engin H. Serpersu
- Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee, Knoxville, Tennessee 37996
- Graduate School of Genome Science and Technology, The University of Tennessee and Oak Ridge National Laboratories, Knoxville, Tennessee 37996, and Bioscience Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
| |
Collapse
|
17
|
Serpersu EH, Ozen C, Norris AL, Steren C, Whittemore N. Backbone resonance assignments of a promiscuous aminoglycoside antibiotic resistance enzyme; the aminoglycoside phosphotransferase(3')-IIIa. BIOMOLECULAR NMR ASSIGNMENTS 2010; 4:9-12. [PMID: 19898995 DOI: 10.1007/s12104-009-9195-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Accepted: 10/27/2009] [Indexed: 05/28/2023]
Abstract
The aminoglycoside phosphotransferase(3')-IIIa (APH) is a promiscuous enzyme and renders a large number of structurally diverse aminoglycoside antibiotics useless against infectious bacteria. A remarkable property of this approximately 31 kDa enzyme is in its unusual dynamic behavior in solution; the apo-form of the enzyme exchanges all of its backbone amide protons within 15 h of exposure to D ( 2 ) O while aminoglycoside-bound forms retain approximately 40% of the amide protons even after >90 h of exposure. Moreover, the number of observable peaks and their dispersion in HSQC spectra varies with each aminoglycoside, rendering the resonance assignments very challenging. Therefore, the binary APH-tobramycin complex, which shows the largest number of well-resolved peaks, was used for the backbone resonance assignments (Calpha, C, N, H, and some Cbeta) of this protein (BMRB-16337).
Collapse
Affiliation(s)
- Engin H Serpersu
- Department of Biochemistry Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN 37996, USA.
| | | | | | | | | |
Collapse
|
18
|
Wu L, Serpersu EH. Deciphering interactions of the aminoglycoside phosphotransferase(3')-IIIa with its ligands. Biopolymers 2009; 91:801-9. [PMID: 19437437 DOI: 10.1002/bip.21251] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Aminoglycoside phosphotransferase(3')-IIIa (APH) is the enzyme with broadest substrate range among the phosphotransferases that cause resistance to aminoglycoside antibiotics. In this study, the thermodynamic characterization of interactions of APH with its ligands are done by determining dissociation constants of enzyme-substrate complexes using electron paramagnetic resonance and fluorescence spectroscopy. Metal binding studies showed that three divalent cations bind to the apo-enzyme with low affinity. In the presence of AMPPCP, binding of the divalent cations occurs with 7-to-37-fold higher affinity to three additional sites dependent on the presence and absence of different aminoglycosides. Surprisingly, when both ligands, AMPPCP and aminoglycoside, are present, the number of high affinity metal binding sites is reduced to two with a 2-fold increase in binding affinity. The presence of divalent cations, with or without aminoglycoside present, shows only a small effect (<3-fold) on binding affinity of the nucleotide to the enzyme. The presence of metal-nucleotide, but not nucleotide alone, increases the binding affinity of aminoglycosides to APH. Replacement of magnesium (II) with manganese (II) lowered the catalytic rates significantly while affecting the substrate selectivity of the enzyme such that the aminoglycosides with 2'-NH(2) become better substrates (higher V(max)) than those with 2'-OH.
Collapse
Affiliation(s)
- Lingzhi Wu
- Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee, Knoxville 37996, TN, USA
| | | |
Collapse
|
19
|
Norris AL, Serpersu EH. NMR detected hydrogen-deuterium exchange reveals differential dynamics of antibiotic- and nucleotide-bound aminoglycoside phosphotransferase 3'-IIIa. J Am Chem Soc 2009; 131:8587-94. [PMID: 19463004 DOI: 10.1021/ja901685h] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this work, hydrogen-deuterium exchange detected by NMR spectroscopy is used to determine the dynamic properties of the aminoglycoside phosphotransferase 3'-IIIa (APH), a protein of intense interest due to its involvement in conferring antibiotic resistance to both gram negative and gram positive microorganisms. This represents the first characterization of dynamic properties of an aminoglycoside-modifying enzyme. Herein we describe in vitro dynamics of apo, binary, and ternary complexes of APH with kanamycin A, neomycin B, and metal-nucleotide. Regions of APH in different complexes that are superimposable in crystal structures show remarkably different dynamic behavior. A complete exchange of backbone amides is observed within the first 15 h of exposure to D(2)O in the apo form of this 31 kDa protein. Binding of aminoglycosides to the enzyme induces significant protection against exchange, and approximately 30% of the amides remain unexchanged up to 95 h after exposure to D(2)O. Our data also indicate that neomycin creates greater solvent protection and overall enhanced structural stability to APH than kanamycin. Surprisingly, nucleotide binding to the enzyme-aminoglycoside complex increases solvent accessibility of a number of amides and is responsible for destabilization of a nearby beta-sheet, thus providing a rational explanation for previously observed global thermodynamic parameters. Our data also provide a molecular basis for broad substrate selectivity of APH.
Collapse
Affiliation(s)
- Adrianne L Norris
- Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee, Knoxville, Tennessee, 37996, USA
| | | |
Collapse
|
20
|
Revuelta J, Vacas T, Torrado M, Corzana F, Gonzalez C, Jiménez-Barbero J, Menendez M, Bastida A, Asensio JL. NMR-based analysis of aminoglycoside recognition by the resistance enzyme ANT(4'): the pattern of OH/NH3(+) substitution determines the preferred antibiotic binding mode and is critical for drug inactivation. J Am Chem Soc 2008; 130:5086-103. [PMID: 18366171 DOI: 10.1021/ja076835s] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The most significant mechanism of bacterial resistance to aminoglycosides is the enzymatic inactivation of the drug. Herein, we analyze several key aspects of the aminoglycoside recognition by the resistance enzyme ANT(4') from Staphylococcus aureus, employing NMR complemented with site-directed mutagenesis experiments and measurements of the enzymatic activity on newly synthesized kanamycin derivatives. From a methodological perspective, this analysis provides the first example reported for the use of transferred NOE (trNOE) experiments in the analysis of complex molecular recognition processes, characterized by the existence of simultaneous binding events of the ligand to different regions of a protein receptor. The obtained results show that, in favorable cases, these overlapping binding processes can be isolated employing site-directed mutagenesis and then independently analyzed. From a molecular recognition perspective, this work conclusively shows that the enzyme ANT(4') displays a wide tolerance to conformational variations in the drug. Thus, according to the NMR data, kanamycin-A I/II linkage exhibits an unusual anti-Psi orientation in the ternary complex, which is in qualitative agreement with the previously reported crystallographic complex. In contrast, closely related, kanamycin-B is recognized by the enzyme in the syn-type arrangement for both glycosidic bonds. This observation together with the enzymatic activity displayed by ANT(4') against several synthetic kanamycin derivatives strongly suggests that the spatial distribution of positive charges within the aminoglycoside scaffold is the key feature that governs its preferred binding mode to the protein catalytic region and also the regioselectivity of the adenylation reaction. In contrast, the global shape of the antibiotic does not seem to be a critical factor. This feature represents a qualitative difference between the target A-site RNA and the resistance enzyme ANT(4') as aminoglycoside receptors.
Collapse
Affiliation(s)
- Julia Revuelta
- Instituto de Química Orgánica General (CSIC), Madrid 28006, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Studies of Enzymes That Cause Resistance to Aminoglycosides Antibiotics. METHODS IN MOLECULAR MEDICINE™ 2008; 142:261-71. [DOI: 10.1007/978-1-59745-246-5_20] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
22
|
Okhrimenko O, Jelesarov I. A survey of the year 2006 literature on applications of isothermal titration calorimetry. J Mol Recognit 2008; 21:1-19. [DOI: 10.1002/jmr.859] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
23
|
Ozen C, Norris AL, Land ML, Tjioe E, Serpersu EH. Detection of specific solvent rearrangement regions of an enzyme: NMR and ITC studies with aminoglycoside phosphotransferase(3')-IIIa. Biochemistry 2007; 47:40-9. [PMID: 18067326 DOI: 10.1021/bi701711j] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This work describes differential effects of solvent in complexes of the aminoglycoside phosphotransferase(3')-IIIa (APH) with different aminoglycosides and the detection of change in solvent structure at specific sites away from substrates. Binding of kanamycins to APH occurs with a larger negative DeltaH in H2O relative to D2O (DeltaDeltaH(H2O-D2O) < 0), while the reverse is true for neomycins. Unusually large negative DeltaCp values were observed for binding of aminoglycosides to APH. DeltaCp for the APH-neomycin complex was -1.6 kcal x mol(-1) x deg(-1). A break at 30 degrees C was observed in the APH-kanamycin complex yielding DeltaCp values of -0.7 kcal x mol(-1) x deg(-1) and -3.8 kcal x mol(-1) x deg(-1) below and above 30 degrees C, respectively. Neither the change in accessible surface area (DeltaASA) nor contributions from heats of ionization were sufficient to explain the large negative DeltaCp values. Most significantly, 15N-1H HSQC experiments showed that temperature-dependent shifts of the backbone amide protons of Leu 88, Ser 91, Cys 98, and Leu143 revealed a break at 30 degrees C only in the APH-kanamycin complex in spectra collected between 21 degrees C and 38 degrees C. These amino acids represent solvent reorganization sites that experience a change in solvent structure in their immediate environment as structurally different ligands bind to the enzyme. These residues were away from the substrate binding site and distributed in three hydrophobic patches in APH. Overall, our results show that a large number of factors affect DeltaCp and binding of structurally different ligand groups cause different solvent structure in the active site as well as differentially affecting specific sites away from the ligand binding site.
Collapse
Affiliation(s)
- Can Ozen
- Graduate School of Genome Science and Technology, University of Tennessee and Oak Ridge National Laboratories, Knoxville, Tennessee 37996-0840, USA
| | | | | | | | | |
Collapse
|