1
|
Engbers S, van Langevelde PH, Hetterscheid DGH, Klein JEM. Discussing the Terms Biomimetic and Bioinspired within Bioinorganic Chemistry. Inorg Chem 2024; 63:20057-20067. [PMID: 39307983 PMCID: PMC11523218 DOI: 10.1021/acs.inorgchem.4c01070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/13/2024] [Accepted: 09/12/2024] [Indexed: 10/22/2024]
Abstract
The terms biomimetic and bioinspired are very relevant in the field of bioinorganic chemistry and have been widely applied. Although they were defined by the International Organization for Standardization in 2015, these terms have at times been used rather ambiguously in the literature. This may be due to the inherent complexity of bioinorganic systems where, for example, a structural model of an enzyme active site may not replicate its function. Conversely, the function of an enzyme may be reproduced in a system where the structure does not resemble the enzyme's active site. To address this, we suggest definitions for the terms biomimetic and bioinspired wherein structure and function have been decoupled. With the help of some representative case studies we have outlined the challenges that may arise and make suggestions on how to apply terminology with careful intention.
Collapse
Affiliation(s)
- Silène Engbers
- Molecular
Inorganic Chemistry, Stratingh Institute for Chemistry, Faculty of
Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, (The Netherlands)
| | - Phebe H. van Langevelde
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | | | - Johannes E. M.
N. Klein
- Molecular
Inorganic Chemistry, Stratingh Institute for Chemistry, Faculty of
Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, (The Netherlands)
| |
Collapse
|
2
|
Devi T, Dutta K, Deutscher J, Mebs S, Kuhlmann U, Haumann M, Cula B, Dau H, Hildebrandt P, Ray K. A high-spin alkylperoxo-iron(iii) complex with cis-anionic ligands: implications for the superoxide reductase mechanism. Chem Sci 2024; 15:528-533. [PMID: 38179538 PMCID: PMC10762717 DOI: 10.1039/d3sc05603a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/05/2023] [Indexed: 01/06/2024] Open
Abstract
The N3O macrocycle of the 12-TMCO ligand stabilizes a high spin (S = 5/2) [FeIII(12-TMCO)(OOtBu)Cl]+ (3-Cl) species in the reaction of [FeII(12-TMCO)(OTf)2] (1-(OTf)2) with tert-butylhydroperoxide (tBuOOH) in the presence of tetraethylammonium chloride (NEt4Cl) in acetonitrile at -20 °C. In the absence of NEt4Cl the oxo-iron(iv) complex 2 [FeIV(12-TMCO)(O)(CH3CN)]2+ is formed, which can be further converted to 3-Cl by adding NEt4Cl and tBuOOH. The role of the cis-chloride ligand in the stabilization of the FeIII-OOtBu moiety can be extended to other anions including the thiolate ligand relevant to the enzyme superoxide reductase (SOR). The present study underlines the importance of subtle electronic changes and secondary interactions in the stability of the biologically relevant metal-dioxygen intermediates. It also provides some rationale for the dramatically different outcomes of the chemistry of iron(iii)peroxy intermediates formed in the catalytic cycles of SOR (Fe-O cleavage) and cytochrome P450 (O-O bond lysis) in similar N4S coordination environments.
Collapse
Affiliation(s)
- Tarali Devi
- Institut für Chemie, Humboldt-Universitat zu Berlin Brook-Taylor-Straße 2 12489 Berlin Germany
- Department of Inorganic and Physical Chemistry, Indian Institute of Science Bangalore Karnataka-560012 India
| | - Kuheli Dutta
- Institut für Chemie, Humboldt-Universitat zu Berlin Brook-Taylor-Straße 2 12489 Berlin Germany
| | - Jennifer Deutscher
- Institut für Chemie, Humboldt-Universitat zu Berlin Brook-Taylor-Straße 2 12489 Berlin Germany
| | - Stefan Mebs
- Department of Physics, Freie Universität Berlin Arnimallee 14 14195 Berlin Germany
| | - Uwe Kuhlmann
- Institut für Chemie, Technische Universität Berlin Fakultät II, Straße des 17. Juni 135 10623 Berlin Germany
| | - Michael Haumann
- Department of Physics, Freie Universität Berlin Arnimallee 14 14195 Berlin Germany
| | - Beatrice Cula
- Institut für Chemie, Humboldt-Universitat zu Berlin Brook-Taylor-Straße 2 12489 Berlin Germany
| | - Holger Dau
- Department of Physics, Freie Universität Berlin Arnimallee 14 14195 Berlin Germany
| | - Peter Hildebrandt
- Institut für Chemie, Technische Universität Berlin Fakultät II, Straße des 17. Juni 135 10623 Berlin Germany
| | - Kallol Ray
- Institut für Chemie, Humboldt-Universitat zu Berlin Brook-Taylor-Straße 2 12489 Berlin Germany
| |
Collapse
|
3
|
Yokota S, Suzuki Y, Yanagisawa S, Ogura T, Nozawa S, Hada M, Fujii H. How Do the Axial and Equatorial Ligands Modulate the Reactivity of a Metal-Bound Terminal Oxidant? An Answer from the Hypochlorite Adduct of Iron(III) Porphyrin. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sawako Yokota
- Department of Chemistry, Biology, and Environmental Science, Graduate School of Humanities and Sciences, Nara Women’s University, Kitauoyanishi, Nara 630-8506, Japan
| | - Yuna Suzuki
- Department of Chemistry, Biology, and Environmental Science, Graduate School of Humanities and Sciences, Nara Women’s University, Kitauoyanishi, Nara 630-8506, Japan
| | - Sachiko Yanagisawa
- Graduate School of Science, University of Hyogo, Kouto, Kamigori, Ako, Hyogo 678-1297, Japan
| | - Takashi Ogura
- Graduate School of Science, University of Hyogo, Kouto, Kamigori, Ako, Hyogo 678-1297, Japan
| | - Shunsuke Nozawa
- Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
- Department of Materials Structure Science, School of High Energy Accelerator Science, The Graduate University for Advanced Studies, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Masahiko Hada
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minamiosawa, Hachioji 192-0397, Japan
| | - Hiroshi Fujii
- Department of Chemistry, Biology, and Environmental Science, Graduate School of Humanities and Sciences, Nara Women’s University, Kitauoyanishi, Nara 630-8506, Japan
| |
Collapse
|
4
|
Chen Y, Chen G, Man WL. Effect of Alkyl Group on Aerobic Peroxidation of Hydrocarbons Catalyzed by Cobalt(III) Alkylperoxo Complexes. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yunzhou Chen
- Hong Kong Baptist University Chemistry HONG KONG
| | - Gui Chen
- Dongguan University of Technology School of Environment and Civil Engineering HONG KONG
| | - Wai-Lun Man
- Hong Kong Baptist University Chemistry Waterloo RoadKowloong Tong 0000 Hong Kong HONG KONG
| |
Collapse
|
5
|
Liu SL, Chen QW, Zhang ZW, Chen Q, Wei LQ, Lin N. Efficient heterogeneous catalyst of Fe(II)-based coordination complexes for Friedel-Crafts alkylation reaction. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
6
|
Chen H, Xiang H. First low-spin carbodiimide, Fe2(NCN)3, predicted from first-principles investigations. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION B-A JOURNAL OF CHEMICAL SCIENCES 2021. [DOI: 10.1515/znb-2021-0128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The structural stability and physical properties of the Fe(III) carbodiimide Fe2(NCN)3 were studied by use of density functional theory. The results indicate that Fe2(NCN)3 (space group
R
3
‾
c
$R‾{3}c$
) is stable both thermodynamically and mechanically. The electronic structure in combination with the phonon dispersion relations suggest that the title compound should be ferromagnetic and half-metallic, and that the Fe3+ ions are in the low-spin state.
Collapse
Affiliation(s)
- Hao Chen
- School of Materials Science and Engineering, Tongji University , 4800 Cao’an Road , Shanghai 201804 , P. R. China
| | - Hongping Xiang
- School of Materials Science and Engineering, Tongji University , 4800 Cao’an Road , Shanghai 201804 , P. R. China
| |
Collapse
|
7
|
Müller L, Baturin K, Hoof S, Lau C, Herwig C, Limberg C. The Properties of Hydrotris(3‐mesitylpyrazol‐1‐yl) Borate Iron(II) Complexes with Aryl Carboxylate Co‐ligands – Stabilization of an Iron(III) Alkylperoxide. Z Anorg Allg Chem 2021. [DOI: 10.1002/zaac.202000437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Lars Müller
- Humboldt-Universität zu Berlin Brook-Taylor-Str. 2 12489 Berlin Germany
| | - Kirill Baturin
- Humboldt-Universität zu Berlin Brook-Taylor-Str. 2 12489 Berlin Germany
| | - Santina Hoof
- Humboldt-Universität zu Berlin Brook-Taylor-Str. 2 12489 Berlin Germany
| | - Caroline Lau
- Humboldt-Universität zu Berlin Brook-Taylor-Str. 2 12489 Berlin Germany
| | - Christian Herwig
- Humboldt-Universität zu Berlin Brook-Taylor-Str. 2 12489 Berlin Germany
| | - Christian Limberg
- Humboldt-Universität zu Berlin Brook-Taylor-Str. 2 12489 Berlin Germany
| |
Collapse
|
8
|
Ghosh I, Banerjee S, Paul S, Corona T, Paine TK. Highly Selective and Catalytic Oxygenations of C-H and C=C Bonds by a Mononuclear Nonheme High-Spin Iron(III)-Alkylperoxo Species. Angew Chem Int Ed Engl 2019; 58:12534-12539. [PMID: 31246329 DOI: 10.1002/anie.201906978] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Indexed: 10/26/2022]
Abstract
The reactivity of a mononuclear high-spin iron(III)-alkylperoxo intermediate [FeIII (t-BuLUrea )(OOCm)(OH2 )]2+ (2), generated from [FeII (t-BuLUrea )(H2 O)(OTf)](OTf) (1) [t-BuLUrea =1,1'-(((pyridin-2-ylmethyl)azanediyl)bis(ethane-2,1-diyl))bis(3-(tert-butyl)urea), OTf=trifluoromethanesulfonate] with cumyl hydroperoxide (CmOOH), toward the C-H and C=C bonds of hydrocarbons is reported. 2 oxygenates the strong C-H bonds of aliphatic substrates with high chemo- and stereoselectivity in the presence of 2,6-lutidine. While 2 itself is a sluggish oxidant, 2,6-lutidine assists the heterolytic O-O bond cleavage of the metal-bound alkylperoxo, giving rise to a reactive metal-based oxidant. The roles of the urea groups on the supporting ligand, and of the base, in directing the selective and catalytic oxygenation of hydrocarbon substrates by 2 are discussed.
Collapse
Affiliation(s)
- Ivy Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-, 700032, India
| | - Sridhar Banerjee
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-, 700032, India
| | - Satadal Paul
- Darjeeling Polytechnic, Kurseong, Darjeeling, 734203, India
| | - Teresa Corona
- Humboldt-Universität zu Berlin, Department of Chemistry, Brook-Taylor-Strasse 2, 12489, Berlin, Germany
| | - Tapan Kanti Paine
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-, 700032, India
| |
Collapse
|
9
|
Ghosh I, Banerjee S, Paul S, Corona T, Paine TK. Highly Selective and Catalytic Oxygenations of C−H and C=C Bonds by a Mononuclear Nonheme High‐Spin Iron(III)‐Alkylperoxo Species. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906978] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ivy Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science 2A & 2B Raja S. C. Mullick Road Jadavpur, Kolkata- 700032 India
| | - Sridhar Banerjee
- School of Chemical Sciences, Indian Association for the Cultivation of Science 2A & 2B Raja S. C. Mullick Road Jadavpur, Kolkata- 700032 India
| | - Satadal Paul
- Darjeeling Polytechnic Kurseong Darjeeling 734203 India
| | - Teresa Corona
- Humboldt-Universität zu BerlinDepartment of Chemistry Brook-Taylor-Strasse 2 12489 Berlin Germany
| | - Tapan Kanti Paine
- School of Chemical Sciences, Indian Association for the Cultivation of Science 2A & 2B Raja S. C. Mullick Road Jadavpur, Kolkata- 700032 India
| |
Collapse
|
10
|
Wang L, Gennari M, Cantú Reinhard FG, Gutiérrez J, Morozan A, Philouze C, Demeshko S, Artero V, Meyer F, de Visser SP, Duboc C. A Non-Heme Diiron Complex for (Electro)catalytic Reduction of Dioxygen: Tuning the Selectivity through Electron Delivery. J Am Chem Soc 2019; 141:8244-8253. [DOI: 10.1021/jacs.9b02011] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Lianke Wang
- Université Grenoble Alpes, CNRS UMR 5250, DCM, F-38000 Grenoble, France
| | - Marcello Gennari
- Université Grenoble Alpes, CNRS UMR 5250, DCM, F-38000 Grenoble, France
| | - Fabián G. Cantú Reinhard
- Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Javier Gutiérrez
- Université Grenoble Alpes, CNRS UMR 5250, DCM, F-38000 Grenoble, France
| | - Adina Morozan
- Université Grenoble Alpes, CNRS, CEA, Laboratoire de Chimie et
Biologie des Métaux, F-38000 Grenoble, France
| | | | - Serhiy Demeshko
- Institut für Anorganische Chemie, Universität Göttingen, Tammannstrasse 4, D-37077 Göttingen, Germany
| | - Vincent Artero
- Université Grenoble Alpes, CNRS, CEA, Laboratoire de Chimie et
Biologie des Métaux, F-38000 Grenoble, France
| | - Franc Meyer
- Institut für Anorganische Chemie, Universität Göttingen, Tammannstrasse 4, D-37077 Göttingen, Germany
| | - Sam P. de Visser
- Manchester Institute of Biotechnology and School of Chemical Engineering and Analytical Science, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Carole Duboc
- Université Grenoble Alpes, CNRS UMR 5250, DCM, F-38000 Grenoble, France
| |
Collapse
|
11
|
|
12
|
Parham JD, Wijeratne GB, Rice DB, Jackson TA. Spectroscopic and Structural Characterization of Mn(III)-Alkylperoxo Complexes Supported by Pentadentate Amide-Containing Ligands. Inorg Chem 2018; 57:2489-2502. [DOI: 10.1021/acs.inorgchem.7b02793] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Joshua D. Parham
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, University of Kansas, Lawrence, Kansas 66045, United States
| | - Gayan B. Wijeratne
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, University of Kansas, Lawrence, Kansas 66045, United States
| | - Derek B. Rice
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, University of Kansas, Lawrence, Kansas 66045, United States
| | - Timothy A. Jackson
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, University of Kansas, Lawrence, Kansas 66045, United States
| |
Collapse
|
13
|
Geometric effects on O O bond scission of copper(II)-alkylperoxide complexes. J Inorg Biochem 2017; 177:375-383. [DOI: 10.1016/j.jinorgbio.2017.08.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 08/01/2017] [Accepted: 08/21/2017] [Indexed: 11/20/2022]
|
14
|
Kleinlein C, Bendelsmith AJ, Zheng SL, Betley TA. C-H Activation from Iron(II)-Nitroxido Complexes. Angew Chem Int Ed Engl 2017; 56:12197-12201. [PMID: 28766325 PMCID: PMC5672810 DOI: 10.1002/anie.201706594] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 07/31/2017] [Indexed: 11/08/2022]
Abstract
The reaction of nitroxyl radicals TEMPO (2,2',6,6'-tetramethylpiperidinyloxyl) and AZADO (2-azaadamantane-N-oxyl) with an iron(I) synthon affords iron(II)-nitroxido complexes (Ar L)Fe(κ1 -TEMPO) and (Ar L)Fe(κ2 -N,O-AZADO) (Ar L=1,9-(2,4,6-Ph3 C6 H2 )2 -5-mesityldipyrromethene). Both high-spin iron(II)-nitroxido species are stable in the absence of weak C-H bonds, but decay via N-O bond homolysis to ferrous or ferric iron hydroxides in the presence of 1,4-cyclohexadiene. Whereas (Ar L)Fe(κ1 -TEMPO) reacts to give a diferrous hydroxide [(Ar L)Fe]2 (μ-OH)2 , the reaction of four-coordinate (Ar L)Fe(κ2 -N,O-AZADO) with hydrogen atom donors yields ferric hydroxide (Ar L)Fe(OH)(AZAD). Mechanistic experiments reveal saturation behavior in C-H substrate and are consistent with rate-determining hydrogen atom transfer.
Collapse
Affiliation(s)
- Claudia Kleinlein
- Department of Chemistry & Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA, 02138, USA
| | - Andrew J Bendelsmith
- Department of Chemistry & Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA, 02138, USA
| | - Shao-Liang Zheng
- Department of Chemistry & Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA, 02138, USA
| | - Theodore A Betley
- Department of Chemistry & Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA, 02138, USA
| |
Collapse
|
15
|
Kleinlein C, Bendelsmith AJ, Zheng S, Betley TA. C−H Activation from Iron(II)‐Nitroxido Complexes. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201706594] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Claudia Kleinlein
- Department of Chemistry & Chemical Biology Harvard University 12 Oxford Street Cambridge MA 02138 USA
| | - Andrew J. Bendelsmith
- Department of Chemistry & Chemical Biology Harvard University 12 Oxford Street Cambridge MA 02138 USA
| | - Shao‐Liang Zheng
- Department of Chemistry & Chemical Biology Harvard University 12 Oxford Street Cambridge MA 02138 USA
| | - Theodore A. Betley
- Department of Chemistry & Chemical Biology Harvard University 12 Oxford Street Cambridge MA 02138 USA
| |
Collapse
|
16
|
Kim B, Jeong D, Cho J. Nucleophilic reactivity of copper(ii)–alkylperoxo complexes. Chem Commun (Camb) 2017; 53:9328-9331. [DOI: 10.1039/c7cc03965d] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Copper(ii)–alkylperoxo adducts, [Cu(CHDAP)(OOR)]+ (CHDAP = N,N′-dicyclohexyl-2,11-diaza[3,3](2,6)pyridinophane; R = C(CH3)2Ph and tBu), perform aldehyde deformylation (i.e., nucleophilic reactivity) under the stoichiometric reaction conditions.
Collapse
Affiliation(s)
- Bohee Kim
- Department of Emerging Materials Science
- DGIST
- Daegu 42988
- Korea
| | - Donghyun Jeong
- Department of Emerging Materials Science
- DGIST
- Daegu 42988
- Korea
| | - Jaeheung Cho
- Department of Emerging Materials Science
- DGIST
- Daegu 42988
- Korea
| |
Collapse
|
17
|
Gennari M, Brazzolotto D, Pécaut J, Cherrier MV, Pollock CJ, DeBeer S, Retegan M, Pantazis DA, Neese F, Rouzières M, Clérac R, Duboc C. Dioxygen Activation and Catalytic Reduction to Hydrogen Peroxide by a Thiolate-Bridged Dimanganese(II) Complex with a Pendant Thiol. J Am Chem Soc 2015; 137:8644-53. [DOI: 10.1021/jacs.5b04917] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Marcello Gennari
- CNRS
UMR 5250, DCM, Université Grenoble Alpes, F-38000 Grenoble, France
| | | | - Jacques Pécaut
- INAC-SCIB, Université Grenoble Alpes, F-38000 Grenoble, France
- Reconnaissance Ionique et Chimie de Coordination, CEA, INAC-SCIB, F-38000 Grenoble, France
| | - Mickael V. Cherrier
- Metalloproteins
Unit, Institut de Biologie Structurale Jean-Pierre Ebel, CEA, CNRS
UMR 5075, Université Grenoble Alpes, 41 rue Horowitz, 38027 Grenoble Cedex 1, France
- Université de Lyon, F-69622 Lyon, France
- Université Claude Bernard Lyon 1, F-69622 Villeurbanne, France
- CNRS,
UMR 5086 Bases Moléculaires et Structurales de Systèmes
Infectieux, Institut de Biologie et Chimie des Protéines, 7 Passage du Vercors, F-69367 Lyon, France
| | - Christopher J. Pollock
- Max-Planck-Institut für Chemische Energie Konversion, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Serena DeBeer
- Max-Planck-Institut für Chemische Energie Konversion, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
- Department
of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Marius Retegan
- Max-Planck-Institut für Chemische Energie Konversion, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Dimitrios A. Pantazis
- Max-Planck-Institut für Chemische Energie Konversion, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Frank Neese
- Max-Planck-Institut für Chemische Energie Konversion, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Mathieu Rouzières
- CNRS, CRPP, UPR 8641, F-33600 Pessac, France
- CRPP,
UPR 8641, Université Bordeaux, F-33600 Pessac, France
| | - Rodolphe Clérac
- CNRS, CRPP, UPR 8641, F-33600 Pessac, France
- CRPP,
UPR 8641, Université Bordeaux, F-33600 Pessac, France
| | - Carole Duboc
- CNRS
UMR 5250, DCM, Université Grenoble Alpes, F-38000 Grenoble, France
| |
Collapse
|
18
|
Chantarojsiri T, Sun Y, Long JR, Chang CJ. Water-Soluble Iron(IV)-Oxo Complexes Supported by Pentapyridine Ligands: Axial Ligand Effects on Hydrogen Atom and Oxygen Atom Transfer Reactivity. Inorg Chem 2015; 54:5879-87. [PMID: 26039655 DOI: 10.1021/acs.inorgchem.5b00658] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report the photochemical generation and study of a family of water-soluble iron(IV)-oxo complexes supported by pentapyridine PY5Me2-X ligands (PY5Me2 = 2,6-bis(1,1-bis(2-pyridyl)ethyl)pyridine; X = CF3, H, Me, or NMe2), in which the oxidative reactivity of these ferryl species correlates with the electronic properties of the axial pyridine ligand. Synthesis of a systematic series of [Fe(II)(L)(PY5Me2-X)](2+) complexes, where L = CH3CN or H2O, and characterizations by several methods, including X-ray crystallography, cyclic voltammetry, and Mössbauer spectroscopy, show that increasing the electron-donating ability of the axial pyridine ligand tracks with less positive Fe(III)/Fe(II) reduction potentials and quadrupole splitting parameters. The Fe(II) precursors are readily oxidized to their Fe(IV)-oxo counterparts using either chemical outer-sphere oxidants such as CAN (ceric ammonium nitrate) or flash-quench photochemical oxidation with [Ru(bpy)3](2+) as a photosensitizer and K2S2O8 as a quencher. The Fe(IV)-oxo complexes are capable of oxidizing the C-H bonds of alkane (4-ethylbenzenesulfonate) and alcohol (benzyl alcohol) substrates via hydrogen atom transfer (HAT) and an olefin (4-styrenesulfonate) substrate by oxygen atom transfer (OAT). The [Fe(IV)(O)(PY5Me2-X)](2+) derivatives with electron-poor axial ligands show faster rates of HAT and OAT compared to their counterparts supported by electron-rich axial donors, but the magnitudes of these differences are relatively modest.
Collapse
Affiliation(s)
| | - Yujie Sun
- #Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States
| | | | | |
Collapse
|
19
|
|
20
|
Bang S, Park S, Lee YM, Hong S, Cho KB, Nam W. Demonstration of the Heterolytic OO Bond Cleavage of Putative Nonheme Iron(II)OOH(R) Complexes for Fenton and Enzymatic Reactions. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201404556] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
21
|
Bang S, Park S, Lee YM, Hong S, Cho KB, Nam W. Demonstration of the heterolytic O-O bond cleavage of putative nonheme iron(II)-OOH(R) complexes for Fenton and enzymatic reactions. Angew Chem Int Ed Engl 2014; 53:7843-7. [PMID: 24916304 DOI: 10.1002/anie.201404556] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 05/13/2014] [Indexed: 01/06/2023]
Abstract
One-electron reduction of mononuclear nonheme iron(III) hydroperoxo (Fe(III)-OOH) and iron(III) alkylperoxo (Fe(III)-OOR) complexes by ferrocene (Fc) derivatives resulted in the formation of the corresponding iron(IV) oxo complexes. The conversion rates were dependent on the concentration and oxidation potentials of the electron donors, thus indicating that the reduction of the iron(III) (hydro/alkyl)peroxo complexes to their one-electron reduced iron(II) (hydro/alkyl)peroxo species is the rate-determining step, followed by the heterolytic O-O bond cleavage of the putative iron(II) (hydro/alkyl)peroxo species to give the iron(IV) oxo complexes. Product analysis supported the heterolytic O-O bond-cleavage mechanism. The present results provide the first example showing the one-electron reduction of iron(III) (hydro/alkyl)peroxo complexes and the heterolytic O-O bond cleavage of iron(II) (hydro/alkyl)peroxo species to form iron(IV) oxo intermediates which occur in nonheme iron enzymatic and Fenton reactions.
Collapse
Affiliation(s)
- Suhee Bang
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 120-750 (Korea)
| | | | | | | | | | | |
Collapse
|
22
|
Widger LR, Jiang Y, McQuilken AC, Yang T, Siegler MA, Matsumura H, Moënne-Loccoz P, Kumar D, de Visser SP, Goldberg DP. Thioether-ligated iron(II) and iron(III)-hydroperoxo/alkylperoxo complexes with an H-bond donor in the second coordination sphere. Dalton Trans 2014; 43:7522-32. [PMID: 24705907 PMCID: PMC4319814 DOI: 10.1039/c4dt00281d] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The non-heme iron complexes, [Fe(II)(N3PySR)(CH3CN)](BF4)2 () and [Fe(II)(N3Py(amide)SR)](BF4)2 (), afford rare examples of metastable Fe(iii)-OOH and Fe(iii)-OOtBu complexes containing equatorial thioether ligands and a single H-bond donor in the second coordination sphere. These peroxo complexes were characterized by a range of spectroscopic methods and density functional theory studies. The influence of a thioether ligand and of one H-bond donor on the stability and spectroscopic properties of these complexes was investigated.
Collapse
Affiliation(s)
- Leland R Widger
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Hong S, Lee YM, Cho KB, Seo MS, Song D, Yoon J, Garcia-Serres R, Clémancey M, Ogura T, Shin W, Latour JM, Nam W. Conversion of high-spin iron(iii)–alkylperoxo to iron(iv)–oxo species via O–O bond homolysis in nonheme iron models. Chem Sci 2014. [DOI: 10.1039/c3sc52236a] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
24
|
McDonald AR, Van Heuvelen KM, Guo Y, Li F, Bominaar EL, Münck E, Que L. Characterization of a thiolato iron(III) Peroxy dianion complex. Angew Chem Int Ed Engl 2012; 51:9132-6. [PMID: 22888066 PMCID: PMC3448492 DOI: 10.1002/anie.201203602] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 06/19/2012] [Indexed: 11/09/2022]
Abstract
Nucleophilic oxidant: The reaction between a thiolato iron(II) complex 1 and superoxide in aprotic solvent at -90 °C yields a novel thiolato iron(III) peroxide intermediate 2, which exhibits unusually high nucleophilic reactivity. Compound 2 is an isomer of the thiolato iron(II) superoxide intermediate that is invoked in the reaction between superoxide reductase and superoxide.
Collapse
Affiliation(s)
- Aidan R. McDonald
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, MN 55455, USA
| | - Katherine M. Van Heuvelen
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, MN 55455, USA
| | - Yisong Guo
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Feifei Li
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, MN 55455, USA
| | - Emile L. Bominaar
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Eckard Münck
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Lawrence Que
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, MN 55455, USA
| |
Collapse
|
25
|
Tano T, Sugimoto H, Fujieda N, Itoh S. Heterolytic Alkyl Hydroperoxide O-O Bond Cleavage by Copper(I) Complexes. Eur J Inorg Chem 2012. [DOI: 10.1002/ejic.201200555] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
26
|
McDonald AR, Van Heuvelen KM, Guo Y, Li F, Bominaar EL, Münck E, Que L. Characterization of a Thiolato Iron(III) Peroxy Dianion Complex. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201203602] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
27
|
Wächtler M, Guthmuller J, González L, Dietzek B. Analysis and characterization of coordination compounds by resonance Raman spectroscopy. Coord Chem Rev 2012. [DOI: 10.1016/j.ccr.2012.02.004] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
28
|
Preparation of aluminum(III) (bis(amido)pyridine)(thiolate) complexes: unexpected transmetalation mediated by LiAlH(4). Inorganica Chim Acta 2012; 382:19-26. [PMID: 22345823 DOI: 10.1016/j.ica.2011.09.056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Treatment of an unsymmetrical bis(imino)pyridyl-thiolate zinc(II) complex [Zn(II)(LN(3)S)(OTf)] (1) with LiAlH(4) results in the double reduction of the two imino groups in the ligand backbone, and at the same time causes a rare transmetalation reaction to occur. The products formed in this reaction are two novel aluminium(III) bis(amido)pyridyl-thiolate complexes [(R,S/S,R-[Al(III)(LH(2)N(3)S)(THF)] (2a) and [(R,R/S,S-[Al(III)(LH(2)N(3)S)(THF)] (2b), which are diastereomers of each other. These complexes have been characterized by single-crystal X-ray diffraction and (1)H NMR spectroscopy. Single crystal X-ray structure analysis shows that the Al(III) ion is bound in an almost idealized square pyramidal geometry in 2a, while being held in a more distorted square pyramidal geometry in 2b. The major difference between 2a and 2b arises in the orientation of the terminal methyl groups of the ligand backbone in relation to the Al(III)N(3)S plane. These two complexes are crystallized at different temperatures (room temperature vs -35 °C), allowing for their separate isolation. Structural analysis shows that these complexes are reduced by the formal addition of one hydride ion to each imino group, resulting in a deprotonated bis(amido)pyridyl-thiolate ligand. A detailed analysis of metrical parameters rules out the possibility of pure one- or two-electron reduction of the π-conjugated bis(imino)pyridine framework. (1)H NMR spectra reveal a rich pattern in solution indicating that the solution state structures for 2a and 2b match those observed in the solid-state crystal structures, and reveal that both complexes are severely conformationally restricted. Direct organic synthetic methods failed to produce the reduced bis(amino)pyridyl-thiol ligand in pure form, but during the course of these efforts an unusual unsymmetrical aminopyridyl ketone, 1-(6-(1-(2,6-diisopropylphenylamino)ethyl)pyridin-2-yl)ethanone was synthesized in good yield and can be used as a possible precursor for further ligand development.
Collapse
|
29
|
Kumar D, Sastry GN, Goldberg DP, de Visser SP. Mechanism of S-oxygenation by a cysteine dioxygenase model complex. J Phys Chem A 2011; 116:582-91. [PMID: 22091701 DOI: 10.1021/jp208230g] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In this work, we present the first computational study on a biomimetic cysteine dioxygenase model complex, [Fe(II)(LN(3)S)](+), in which LN(3)S is a tetradentate ligand with a bis(imino)pyridyl scaffold and a pendant arylthiolate group. The reaction mechanism of sulfur dioxygenation with O(2) was examined by density functional theory (DFT) methods and compared with results obtained for cysteine dioxygenase. The reaction proceeds via multistate reactivity patterns on competing singlet, triplet, and quintet spin state surfaces. The reaction mechanism is analogous to that found for cysteine dioxygenase enzymes (Kumar, D.; Thiel, W.; de Visser, S. P. J. Am. Chem. Soc. 2011, 133, 3869-3882); hence, the computations indicate that this complex can closely mimic the enzymatic process. The catalytic mechanism starts from an iron(III)-superoxo complex and the attack of the terminal oxygen atom of the superoxo group on the sulfur atom of the ligand. Subsequently, the dioxygen bond breaks to form an iron(IV)-oxo complex with a bound sulfenato group. After reorganization, the second oxygen atom is transferred to the substrate to give a sulfinic acid product. An alternative mechanism involving the direct attack of dioxygen on the sulfur, without involving any iron-oxygen intermediates, was also examined. Importantly, a significant energetic preference for dioxygen coordinating to the iron center prior to attack at sulfur was discovered and serves to elucidate the function of the metal ion in the reaction process. The computational results are in good agreement with experimental observations, and the differences and similarities of the biomimetic complex and the enzymatic cysteine dioxygenase center are highlighted.
Collapse
Affiliation(s)
- Devesh Kumar
- Molecular Modelling Group, Indian Institute of Chemical Technology, Hyderabad 500-607, India.
| | | | | | | |
Collapse
|
30
|
Tano T, Ertem MZ, Yamaguchi S, Kunishita A, Sugimoto H, Fujieda N, Ogura T, Cramer CJ, Itoh S. Reactivity of copper(II)-alkylperoxo complexes. Dalton Trans 2011; 40:10326-36. [PMID: 21808769 DOI: 10.1039/c1dt10656b] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Copper(II) complexes 1a and 1b, supported by tridentate ligand bpa [bis(2-pyridylmethyl)amine] and tetradentate ligand tpa [tris(2-pyridylmethyl)amine], respectively, react with cumene hydroperoxide (CmOOH) in the presence of triethylamine in CH(3)CN to provide the corresponding copper(II) cumylperoxo complexes 2a and 2b, the formation of which has been confirmed by resonance Raman and ESI-MS analyses using (18)O-labeled CmOOH. UV-vis and ESR spectra as well as DFT calculations indicate that 2a has a 5-coordinate square-pyramidal structure involving CmOO(-) at an equatorial position and one solvent molecule at an axial position at low temperature (-90 °C), whereas a 4-coordinate square-planar structure that has lost the axial solvent ligand is predominant at higher temperatures (above 0 °C). Complex 2b, on the other hand, has a typical trigonal bipyramidal structure with the tripodal tetradentate tpa ligand, where the cumylperoxo ligand occupies an axial position. Both cumylperoxo copper(II) complexes 2a and 2b are fairly stable at ambient temperature, but decompose at a higher temperature (60 °C) in CH(3)CN. Detailed product analyses and DFT studies indicate that the self-decomposition involves O-O bond homolytic cleavage of the peroxo moiety; concomitant hydrogen-atom abstraction from the solvent is partially involved. In the presence of 1,4-cyclohexadiene (CHD), the cumylperoxo complexes react smoothly at 30 °C to give benzene as one product. Detailed product analyses and DFT studies indicate that reaction with CHD involves concerted O-O bond homolytic cleavage and hydrogen-atom abstraction from the substrate, with the oxygen atom directly bonded to the copper(II) ion (proximal oxygen) involved in the C-H bond activation step.
Collapse
Affiliation(s)
- Tetsuro Tano
- Department of Material and Life Science, Division of Advanced Science and Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Villar-Acevedo G, Nam E, Fitch S, Benedict J, Freudenthal J, Kaminsky W, Kovacs JA. Influence of thiolate ligands on reductive N-O bond activation. Probing the O2(-) binding site of a biomimetic superoxide reductase analogue and examining the proton-dependent reduction of nitrite. J Am Chem Soc 2011; 133:1419-27. [PMID: 21207999 PMCID: PMC3178331 DOI: 10.1021/ja107551u] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nitric oxide (NO) is frequently used to probe the substrate-binding site of "spectroscopically silent" non-heme Fe(2+) sites of metalloenzymes, such as superoxide reductase (SOR). Herein we use NO to probe the superoxide binding site of our thiolate-ligated biomimetic SOR model [Fe(II)(S(Me(2))N(4)(tren))](+) (1). Like NO-bound trans-cysteinate-ligated SOR (SOR-NO), the rhombic S = 3/2 EPR signal of NO-bound cis-thiolate-ligated [Fe(S(Me(2))N(4)(tren)(NO)](+) (2; g = 4.44, 3.54, 1.97), the isotopically sensitive ν(NO)(ν((15)NO)) stretching frequency (1685(1640) cm(-1)), and the 0.05 Å decrease in Fe-S bond length are shown to be consistent with the oxidative addition of NO to Fe(II) to afford an Fe(III)-NO(-) {FeNO}(7) species containing high-spin (S = 5/2) Fe(III) antiferromagnetically coupled to NO(-) (S = 1). The cis versus trans positioning of the thiolate does not appear to influence these properties. Although it has yet to be crystallographically characterized, SOR-NO is presumed to possess a bent Fe-NO similar to that of 2 (Fe-N-O = 151.7(4)°). The N-O bond is shown to be more activated in 2 relative to N- and O-ligated {FeNO}(7) complexes, and this is attributed to the electron-donating properties of the thiolate ligand. Hydrogen-bonding to the cysteinate sulfur attenuates N-O bond activation in SOR, as shown by its higher ν(NO) frequency (1721 cm(-1)). In contrast, the ν(O-O) frequency of the SOR peroxo intermediate and its analogues is not affected by H-bonds to the cysteinate sulfur or other factors influencing the Fe-SR bond strength; these only influence the ν(Fe-O) frequency. Reactions between 1 and NO(2)(-) are shown to result in the proton-dependent heterolytic cleavage of an N-O bond. The mechanism of this reaction is proposed to involve both Fe(II)-NO(2)(-) and {FeNO}(6) intermediates similar to those implicated in the mechanism of NiR-promoted NO(2)(-) reduction.
Collapse
Affiliation(s)
| | - Elaine Nam
- Department of Chemistry, University of Washington, Seattle, WA 98195
| | - Sarah Fitch
- Department of Chemistry, University of Washington, Seattle, WA 98195
| | | | | | | | - Julie A. Kovacs
- Department of Chemistry, University of Washington, Seattle, WA 98195
| |
Collapse
|
32
|
Stasser J, Namuswe F, Kasper GD, Jiang Y, Krest CM, Green MT, Penner-Hahn J, Goldberg DP. X-ray absorption spectroscopy and reactivity of thiolate-ligated Fe(III)-OOR complexes. Inorg Chem 2011; 49:9178-90. [PMID: 20839847 DOI: 10.1021/ic100670k] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The reaction of a series of thiolate-ligated iron(II) complexes [Fe(II)([15]aneN(4))(SC(6)H(5))]BF(4) (1), [Fe(II)([15]aneN(4))(SC(6)H(4)-p-Cl)]BF(4) (2), and [Fe(II)([15]aneN(4))(SC(6)H(4)-p-NO(2))]BF(4) (3) with alkylhydroperoxides at low temperature (-78 °C or -40 °C) leads to the metastable alkylperoxo-iron(III) species [Fe(III)([15]aneN(4))(SC(6)H(5))(OOtBu)]BF(4) (1a), [Fe(III)([15]aneN(4))(SC(6)H(4)-p-Cl)(OOtBu)]BF(4) (2a), and [Fe(III)([15]aneN(4))(SC(6)H(4)-p-NO(2))(OOtBu)]BF(4) (3a), respectively. X-ray absorption spectroscopy (XAS) studies were conducted on the Fe(III)-OOR complexes and their iron(II) precursors. The edge energy for the iron(II) complexes (∼7118 eV) shifts to higher energy upon oxidation by ROOH, and the resulting edge energies for the Fe(III)-OOR species range from 7121-7125 eV and correlate with the nature of the thiolate donor. Extended X-ray absorption fine structure (EXAFS) analysis of the iron(II) complexes 1-3 in CH(2)Cl(2) show that their solid state structures remain intact in solution. The EXAFS data on 1a-3a confirm their proposed structures as mononuclear, 6-coordinate Fe(III)-OOR complexes with 4N and 1S donors completing the coordination sphere. The Fe-O bond distances obtained from EXAFS for 1a-3a are 1.82-1.85 Å, significantly longer than other low-spin Fe(III)-OOR complexes. The Fe-O distances correlate with the nature of the thiolate donor, in agreement with the previous trends observed for ν(Fe-O) from resonance Raman (RR) spectroscopy, and supported by optimized geometries obtained from density functional theory (DFT) calculations. Reactivity and kinetic studies on 1a- 3a show an important influence of the thiolate donor.
Collapse
Affiliation(s)
- Jay Stasser
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
McDonald AR, Bukowski MR, Farquhar ER, Jackson TA, Koehntop KD, Seo MS, De Hont RF, Stubna A, Halfen JA, Münck E, Nam W, Que L. Sulfur versus iron oxidation in an iron-thiolate model complex. J Am Chem Soc 2010; 132:17118-29. [PMID: 21070030 DOI: 10.1021/ja1045428] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the absence of base, the reaction of [Fe(II)(TMCS)]PF6 (1, TMCS = 1-(2-mercaptoethyl)-4,8,11-trimethyl-1,4,8,11-tetraazacyclotetradecane) with peracid in methanol at -20 °C did not yield the oxoiron(IV) complex (2, [Fe(IV)(O)(TMCS)]PF6), as previously observed in the presence of strong base (KO(t)Bu). Instead, the addition of 1 equiv of peracid resulted in 50% consumption of 1. The addition of a second equivalent of peracid resulted in the complete consumption of 1 and the formation of a new species 3, as monitored by UV-vis, ESI-MS, and Mössbauer spectroscopies. ESI-MS showed 3 to be formulated as [Fe(II)(TMCS) + 2O](+), while EXAFS analysis suggested that 3 was an O-bound iron(II)-sulfinate complex (Fe-O = 1.95 Å, Fe-S = 3.26 Å). The addition of a third equivalent of peracid resulted in the formation of yet another compound, 4, which showed electronic absorption properties typical of an oxoiron(IV) species. Mössbauer spectroscopy confirmed 4 to be a novel iron(IV) compound, different from 2, and EXAFS (Fe═O = 1.64 Å) and resonance Raman (ν(Fe═O) = 831 cm(-1)) showed that indeed an oxoiron(IV) unit had been generated in 4. Furthermore, both infrared and Raman spectroscopy gave indications that 4 contains a metal-bound sulfinate moiety (ν(s)(SO2) ≈ 1000 cm (-1), ν(as)(SO2) ≈ 1150 cm (-1)). Investigations into the reactivity of 1 and 2 toward H(+) and oxygen atom transfer reagents have led to a mechanism for sulfur oxidation in which 2 could form even in the absence of base but is rapidly protonated to yield an oxoiron(IV) species with an uncoordinated thiol moiety that acts as both oxidant and substrate in the conversion of 2 to 3.
Collapse
Affiliation(s)
- Aidan R McDonald
- Department of Chemistry and Center for Metals in Biocatalysis, 207 Pleasant Street SE, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Dey A, Solomon EI. Density Functional Theory Calculations on Fe-O and O-O Cleavage of Ferric Hydroperoxide Species: Role of axial ligand and spin state. Inorganica Chim Acta 2010; 363:2762-2767. [PMID: 21057606 DOI: 10.1016/j.ica.2010.03.059] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Density Functional Theory (DFT) calculations are performed on thiolate bound hydroperoxide complexes. O-O and Fe-O cleavage reaction coordinates, relevant to the active sites of Cytocrome P450 and Superoxide Reductase enzymes, were investigated for both high and low spin states and for cis and trans orientations of the thiolate ligand with respect to the hydroperoxide ligand. The results indicate that the presence of a thiolate ligand produces significant elongation of the Fe-O bond and reduction of Fe-O vibrational frequency. While the fate of the O-O cleavage reaction is not significantly altered, the presence of a thiolate induces a heterolytic Fe-O cleavage irrespective of the spin state and orientation which is very different from results obtained with a trans ammine ligand.
Collapse
Affiliation(s)
- Abhishek Dey
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Kolkata, India, 700032
| | | |
Collapse
|
35
|
Namuswe F, Hayashi T, Jiang Y, Kasper GD, Sarjeant AAN, Moënne-Loccoz P, Goldberg DP. Influence of the nitrogen donors on nonheme iron models of superoxide reductase: high-spin Fe(III)-OOR complexes. J Am Chem Soc 2010; 132:157-67. [PMID: 20000711 DOI: 10.1021/ja904818z] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A new five-coordinate, (N(4)S(thiolate))Fe(II) complex, containing tertiary amine donors, [Fe(II)(Me(4)[15]aneN(4))(SPh)]BPh(4) (2), was synthesized and structurally characterized as a model of the reduced active site of superoxide reductase (SOR). Reaction of 2 with tert-butyl hydroperoxide (tBuOOH) at -78 degrees C led to the generation of the alkylperoxo-iron(III) complex [Fe(III)(Me(4)[15]aneN(4))(SPh)(OOtBu)](+) (2a). The nonthiolate-ligated complex, [Fe(II)(Me(4)[15]aneN(4))(OTf)(2)] (3), was also reacted with tBuOOH and yielded the corresponding alkylperoxo complex [Fe(III)(Me(4)[15]aneN(4))(OTf)(OOtBu)](+) (3a) at an elevated temperature of -23 degrees C. These species were characterized by low-temperature UV-vis, EPR, and resonance Raman spectroscopies. Complexes 2a and 3a exhibit distinctly different spectroscopic signatures than the analogous alkylperoxo complexes [Fe(III)([15]aneN(4))(SAr)(OOR)](+), which contain secondary amine donors. Importantly, alkylation at nitrogen leads to a change from low-spin (S = 1/2) to high-spin (S = 5/2) of the iron(III) center. The resonance Raman data reveal that this change in spin state has a large effect on the nu(Fe-O) and nu(O-O) vibrations, and a comparison between 2a and the nonthiolate-ligated complex 3a shows that axial ligation has an additional significant impact on these vibrations. To our knowledge this study is the first in which the influence of a ligand trans to a peroxo moiety has been evaluated for a structurally equivalent pair of high-spin/low-spin peroxo-iron(III) complexes. The implications of spin state and thiolate ligation are discussed with regard to the functioning of SOR.
Collapse
Affiliation(s)
- Frances Namuswe
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Jiang Y, Telser J, Goldberg DP. Evidence for the formation of a mononuclear ferric–hydroperoxo complex via the reaction of dioxygen with an (N4S(thiolate))iron(ii) complex. Chem Commun (Camb) 2009:6828-30. [DOI: 10.1039/b913945a] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
37
|
Namuswe F, Kasper GD, Sarjeant AAN, Hayashi T, Krest CM, Green MT, Moënne-Loccoz P, Goldberg DP. Rational tuning of the thiolate donor in model complexes of superoxide reductase: direct evidence for a trans influence in Fe(III)-OOR complexes. J Am Chem Soc 2008; 130:14189-200. [PMID: 18837497 DOI: 10.1021/ja8031828] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Iron peroxide species have been identified as important intermediates in a number of nonheme iron as well as heme-containing enzymes, yet there are only a few examples of such species either synthetic or biological that have been well characterized. We describe the synthesis and structural characterization of a new series of five-coordinate (N4S(thiolate))Fe(II) complexes that react with tert-butyl hydroperoxide ((t)BuOOH) or cumenyl hydroperoxide (CmOOH) to give metastable alkylperoxo-iron(III) species (N4S(thiolate)Fe(III)-OOR) at low temperature. These complexes were designed specifically to mimic the nonheme iron active site of superoxide reductase, which contains a five-coordinate iron(II) center bound by one Cys and four His residues in the active form of the protein. The structures of the Fe(II) complexes are analyzed by X-ray crystallography, and their electrochemical properties are assessed by cyclic voltammetry. For the Fe(III)-OOR species, low-temperature UV-vis spectra reveal intense peaks between 500-550 nm that are typical of peroxide to iron(III) ligand-to-metal charge-transfer (LMCT) transitions, and EPR spectroscopy shows that these alkylperoxo species are all low-spin iron(III) complexes. Identification of the vibrational modes of the Fe(III)-OOR unit comes from resonance Raman (RR) spectroscopy, which shows nu(Fe-O) modes between 600-635 cm(-1) and nu(O-O) bands near 800 cm(-1). These Fe-O stretching frequencies are significantly lower than those found in other low-spin Fe(III)-OOR complexes. Trends in the data conclusively show that this weakening of the Fe-O bond arises from a trans influence of the thiolate donor, and density functional theory (DFT) calculations support these findings. These results suggest a role for the cysteine ligand in SOR, and are discussed in light of the recent assessments of the function of the cysteine ligand in this enzyme.
Collapse
Affiliation(s)
- Frances Namuswe
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Brines LM, Shearer J, Fender JK, Schweitzer D, Shoner SC, Barnhart D, Kaminsky W, Lovell S, Kovacs JA. Periodic trends within a series of five-coordinate thiolate-ligated [MII(SMe2N4(tren))]+ (M = Mn, Fe, Co, Ni, Cu, Zn) complexes, including a rare example of a stable CuII-thiolate. Inorg Chem 2007; 46:9267-77. [PMID: 17867686 PMCID: PMC2532082 DOI: 10.1021/ic701433p] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A series of five-coordinate thiolate-ligated complexes [M(II)(tren)N4S(Me2)]+ (M = Mn, Fe, Co, Ni, Cu, Zn; tren = tris(2-aminoethyl)amine) are reported, and their structural, electronic, and magnetic properties are compared. Isolation of dimeric [Ni(II)(SN4(tren)-RS(dang))]2 ("dang"= dangling, uncoordinated thiolate supported by H bonds), using the less bulky [(tren)N4S](1-) ligand, pointed to the need for gem-dimethyls adjacent to the sulfur to sterically prevent dimerization. All of the gem-dimethyl derivatized complexes are monomeric and, with the exception of [Ni(II)(S(Me2)N4(tren)]+, are isostructural and adopt a tetragonally distorted trigonal bipyramidal geometry favored by ligand constraints. The nickel complex uniquely adopts an approximately ideal square pyramidal geometry and resembles the active site of Ni-superoxide dismutase (Ni-SOD). Even in coordinating solvents such as MeCN, only five-coordinate structures are observed. The MII-S thiolate bonds systematically decrease in length across the series (Mn-S > Fe-S > Co-S > Ni-S approximately Cu-S < Zn-S) with exceptions occurring upon the occupation of sigma* orbitals. The copper complex, [Cu(II)(S(Me2)N4(tren)]+, represents a rare example of a stable CuII-thiolate, and models the perturbed "green" copper site of nitrite reductase. In contrast to the intensely colored, low-spin Fe(III)-thiolates, the M(II)-thiolates described herein are colorless to moderately colored and high-spin (in cases where more than one spin-state is possible), reflecting the poorer energy match between the metal d- and sulfur orbitals upon reduction of the metal ion. As the d-orbitals drop in energy proceeding across the across the series M(2+) (M= Mn, Fe, Co, Ni, Cu), the sulfur-to-metal charge-transfer transition moves into the visible region, and the redox potentials cathodically shift. The reduced M(+1) oxidation state is only accessible with copper, and the more oxidized M(+4) oxidation state is only accessible for manganese.
Collapse
Affiliation(s)
- Lisa M. Brines
- The Department of Chemistry, University of Washington: Box 351700 Seattle, WA 98195-1700
| | - Jason Shearer
- The Department of Chemistry, University of Washington: Box 351700 Seattle, WA 98195-1700
| | - Jessica K. Fender
- The Department of Chemistry, University of Washington: Box 351700 Seattle, WA 98195-1700
| | - Dirk Schweitzer
- The Department of Chemistry, University of Washington: Box 351700 Seattle, WA 98195-1700
| | - Steven C. Shoner
- The Department of Chemistry, University of Washington: Box 351700 Seattle, WA 98195-1700
| | | | | | | | - Julie A. Kovacs
- The Department of Chemistry, University of Washington: Box 351700 Seattle, WA 98195-1700
| |
Collapse
|
39
|
Dey A, Jenney FE, Adams MWW, Johnson MK, Hodgson KO, Hedman B, Solomon EI. Sulfur K-edge X-ray absorption spectroscopy and density functional theory calculations on superoxide reductase: role of the axial thiolate in reactivity. J Am Chem Soc 2007; 129:12418-31. [PMID: 17887751 PMCID: PMC2533108 DOI: 10.1021/ja064167p] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Superoxide reductase (SOR) is a non-heme iron enzyme that reduces superoxide to peroxide at a diffusion-controlled rate. Sulfur K-edge X-ray absorption spectroscopy (XAS) is used to investigate the ground-state electronic structure of the resting high-spin and CN- bound low-spin FeIII forms of the 1Fe SOR from Pyrococcus furiosus. A computational model with constrained imidazole rings (necessary for reproducing spin states), H-bonding interaction to the thiolate (necessary for reproducing Fe-S bond covalency of the high-spin and low-spin forms), and H-bonding to the exchangeable axial ligand (necessary to reproduce the ground state of the low-spin form) was developed and then used to investigate the enzymatic reaction mechanism. Reaction of the resting ferrous site with superoxide and protonation leading to a high-spin FeIII-OOH species and its subsequent protonation resulting in H2O2 release is calculated to be the most energetically favorable reaction pathway. Our results suggest that the thiolate acts as a covalent anionic ligand. Replacing the thiolate with a neutral noncovalent ligand makes protonation very endothermic and greatly raises the reduction potential. The covalent nature of the thiolate weakens the FeIII bond to the proximal oxygen of this hydroperoxo species, which raises its pKa by an additional 5 log units relative to the pKa of a primarily anionic ligand, facilitating its protonation. A comparison with cytochrome P450 indicates that the stronger equatorial ligand field from the porphyrin results in a low-spin FeIII-OOH species that would not be capable of efficient H2O2 release due to a spin-crossing barrier associated with formation of a high-spin 5C FeIII product. Additionally, the presence of the dianionic porphyrin pi ring in cytochrome P450 allows O-O heterolysis, forming an FeIV-oxo porphyrin radical species, which is calculated to be extremely unfavorable for the non-heme SOR ligand environment. Finally, the 5C FeIII site that results from the product release at the end of the O2- reduction cycle is calculated to be capable of reacting with a second O2-, resulting in superoxide dismutase (SOD) activity. However, in contrast to FeSOD, the 5C FeIII site of SOR, which is more positively charged, is calculated to have a high affinity for binding a sixth anionic ligand, which would inhibit its SOD activity.
Collapse
Affiliation(s)
- Abhishek Dey
- Department of Chemistry, Stanford University, Stanford, CA 94305
| | - Francis E. Jenney
- Department of Chemistry and Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA 30602
| | - Michael W. W. Adams
- Department of Chemistry and Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA 30602
| | - Michael K. Johnson
- Department of Chemistry and Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA 30602
| | - Keith O. Hodgson
- Department of Chemistry, Stanford University, Stanford, CA 94305
- Stanford Synchrotron Radiation Laboratory, SLAC, Stanford University, Menlo Park, CA 94025
| | - Britt Hedman
- Stanford Synchrotron Radiation Laboratory, SLAC, Stanford University, Menlo Park, CA 94025
| | - Edward I. Solomon
- Department of Chemistry, Stanford University, Stanford, CA 94305
- Stanford Synchrotron Radiation Laboratory, SLAC, Stanford University, Menlo Park, CA 94025
| |
Collapse
|
40
|
Kovacs JA, Brines LM. Understanding how the thiolate sulfur contributes to the function of the non-heme iron enzyme superoxide reductase. Acc Chem Res 2007; 40:501-9. [PMID: 17536780 PMCID: PMC3703784 DOI: 10.1021/ar600059h] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Toxic superoxide radicals, generated via adventitious reduction of dioxygen, have been implicated in a number of disease states. The cysteinate-ligated non-heme iron enzyme superoxide reductase (SOR) degrades superoxide via reduction. Biomimetic analogues which provide insight into why nature utilizes a trans-thiolate to promote SOR function are described. Spectroscopic and/or structural characterization of the first examples of thiolate-ligated Fe (III)-peroxo complexes provides important benchmark parameters for the identification of biological intermediates. Oxidative addition of superoxide is favored by low redox potentials. The trans influence of the thiolate appears to significantly weaken the Fe-O peroxo bond, favoring proton-induced release of H 2O 2 from a high-spin Fe(III)-OOH complex.
Collapse
Affiliation(s)
- Julie A Kovacs
- The Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, USA
| | | |
Collapse
|