1
|
Tan H, Thai P, Sengupta U, Deavenport IR, Kucifer CM, Powers DC. Metal-Free Aziridination of Unactivated Olefins via Transient N-Pyridinium Iminoiodinanes. JACS AU 2024; 4:4187-4193. [PMID: 39610755 PMCID: PMC11600189 DOI: 10.1021/jacsau.4c00556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 11/30/2024]
Abstract
We describe a metal-free aziridination of unactivated olefins to generate N-pyridinium aziridines. Subsequent cross-coupling affords N-aryl aziridines, and reductive depyridylation affords N-H aziridines. Kinetics experiments, based on a variable time normalization analysis (VTNA), indicate that aziridination proceeds via a highly electrophilic N-pyridinium iminoiodinane intermediate. These studies expand build-and-couple aziridine synthesis to unactivated olefins and introduce charge-enhanced electrophilicity into the chemistry of iminoiodinanes.
Collapse
Affiliation(s)
- Hao Tan
- Department of Chemistry, Texas
A&M University, College
Station, Texas 77843, United States
| | - Phong Thai
- Department of Chemistry, Texas
A&M University, College
Station, Texas 77843, United States
| | - Uddalak Sengupta
- Department of Chemistry, Texas
A&M University, College
Station, Texas 77843, United States
| | - Isaac R. Deavenport
- Department of Chemistry, Texas
A&M University, College
Station, Texas 77843, United States
| | - Cali M. Kucifer
- Department of Chemistry, Texas
A&M University, College
Station, Texas 77843, United States
| | - David C. Powers
- Department of Chemistry, Texas
A&M University, College
Station, Texas 77843, United States
| |
Collapse
|
2
|
Sahoo S, Harfmann B, Bhatia H, Singh H, Balijapelly S, Choudhury A, Stavropoulos P. A Comparative Study of Cationic Copper(I) Reagents Supported by Bipodal Tetramethylguanidinyl-Containing Ligands as Nitrene-Transfer Catalysts. ACS OMEGA 2024; 9:15697-15708. [PMID: 38585072 PMCID: PMC10993379 DOI: 10.1021/acsomega.4c00909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/02/2024] [Accepted: 03/07/2024] [Indexed: 04/09/2024]
Abstract
The bipodal compounds [(TMG2biphenN-R)CuI-NCMe](PF6) (R = Me, Ar (4-CF3Ph-)) and [(TMG2biphenN-Me)CuI-I] have been synthesized with ligands that feature a diarylmethyl- and triaryl-amine framework and superbasic tetramethylguanidinyl residues (TMG). The cationic Cu(I) sites mediate catalytic nitrene-transfer reactions between the imidoiodinane PhI = NTs (Ts = tosyl) and a panel of styrenes in MeCN, to afford aziridines, demonstrating comparable reactivity profiles. The copper reagents have been further explored to execute C-H amination reactions with a variety of aliphatic and aromatic hydrocarbons and two distinct nitrene sources PhI = NTs and PhI = NTces (Tces = 2,2,2-trichloroethylsulfamate) in benzene/HFIP (10:2 v/v). Good yields have been obtained for sec-benzylic and tert-C-H bonds of various substrates, especially with the more electron-deficient catalyst [(TMG2biphenN-Ar)CuI-NCMe](PF6). In conjunction with earlier studies, the order of reactivity of these bipodal cationic reagents as a function of the metal employed is established as Cu > Fe > Co ≥ Mn. However, as opposed to the base-metal analogues, the bipodal Cu reagents are less reactive than a similar tripodal Cu catalyst. The observed fluorophilicity of the bipodal Cu compounds may provide a deactivation pathway.
Collapse
Affiliation(s)
- Suraj
Kumar Sahoo
- Department
of Chemistry, Missouri University of Science
and Technology, Rolla, Missouri 65409, United States
| | - Brent Harfmann
- Department
of Chemistry, Missouri University of Science
and Technology, Rolla, Missouri 65409, United States
| | - Himanshu Bhatia
- Department
of Chemistry, Missouri University of Science
and Technology, Rolla, Missouri 65409, United States
| | - Harish Singh
- Department
of Chemistry, Missouri University of Science
and Technology, Rolla, Missouri 65409, United States
| | - Srikanth Balijapelly
- Department
of Chemistry, Missouri University of Science
and Technology, Rolla, Missouri 65409, United States
| | - Amitava Choudhury
- Department
of Chemistry, Missouri University of Science
and Technology, Rolla, Missouri 65409, United States
| | - Pericles Stavropoulos
- Department
of Chemistry, Missouri University of Science
and Technology, Rolla, Missouri 65409, United States
| |
Collapse
|
3
|
Kagawa Y, Oohora K, Hayashi T. Intramolecular C-H bond amination catalyzed by myoglobin reconstituted with iron porphycene. J Inorg Biochem 2024; 252:112459. [PMID: 38181613 DOI: 10.1016/j.jinorgbio.2023.112459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/10/2023] [Accepted: 12/16/2023] [Indexed: 01/07/2024]
Abstract
C-H bond amination is an effective way to obtain nitrogen-containing products. In this work, we demonstrate that myoglobin reconstituted with iron porphycene (rMb(FePc)) catalyzes intramolecular C(sp3)-H bond amination of arylsulfonyl azides to yield corresponding sultam analogs. The total turnover number of rMb(FePc) is up to 5.7 × 104 for the C-H bond amination of 2,4,6-triisopropylbenzenesulfonyl azide. Moreover, rMb(FePc) exhibits higher selectivity for the desired C-H bond amination than the competing azide reduction compared to native myoglobin. Kinetic studies reveal that the kcat value of rMb(FePc) is 4-fold higher than that of native myoglobin. Furthermore, H64A, H64V and H64I mutants of rMb(FePc) enhance the turnover number (TON) and enantioselectivity for the C-H bond amination of 2,4,6-triethylbenzenesulfonyl azide. The present findings indicate that iron porphycene is an attractive artificial cofactor for myoglobin toward the C-H bond amination reaction.
Collapse
Affiliation(s)
- Yoshiyuki Kagawa
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Koji Oohora
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan; Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka, 565-0871, Japan.
| | - Takashi Hayashi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
4
|
Shing KP, Qin L, Wu LL, Huang JS, Che CM. Ruthenium(v) terminal arylimido corroles: isolation, spectroscopic characterization and reactivity. Chem Sci 2023; 14:10602-10609. [PMID: 37800003 PMCID: PMC10548528 DOI: 10.1039/d3sc02266h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 08/31/2023] [Indexed: 10/07/2023] Open
Abstract
Terminal Ru(v)-imido species are thought to be as reactive to group transfer reactions as their Ru(v)-oxo homologues, but are less studied. With the electron-rich corrole ligand, relatively stable and isolable Ru(v)-arylimido complexes [Ru(tBu-Cor)(NAr)] (H3(tBu-Cor) = 5,15-diphenyl-10-(p-tert-butylphenyl)corrole, Ar = 2,4,6-Me3C6H2 (Mes), 2,6-(iPr)2C6H3 (Dipp), 2,4,6-(iPr)3C6H2 (Tipp), and 3,5-(CF3)2C6H3 (BTF)) can be prepared from [Ru(tBu-Cor)]2 under strongly reducing conditions. This type of Ru(v)-monoarylimido corrole complex with S = ½ was characterized by high-resolution ESI mass spectrometry, X-band EPR, resonance Raman spectroscopy, magnetic susceptibility, and elemental analysis, together with computational studies. Under heating/light irradiation (xenon lamp) conditions, the complexes [Ru(tBu-Cor)(NAr)] (Ar = Mes, BTF) could undergo aziridination of styrenes and amination of benzylic C(sp3)-H bonds with up to 90% product yields.
Collapse
Affiliation(s)
- Ka-Pan Shing
- State Key Laboratory of Synthetic Chemistry, Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong China
| | - Lin Qin
- State Key Laboratory of Synthetic Chemistry, Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong China
| | - Liang-Liang Wu
- State Key Laboratory of Synthetic Chemistry, Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong China
| | - Jie-Sheng Huang
- State Key Laboratory of Synthetic Chemistry, Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong China
| | - Chi-Ming Che
- State Key Laboratory of Synthetic Chemistry, Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong China
- HKU Shenzhen Institute of Research and Innovation Shenzhen China
| |
Collapse
|
5
|
Kayser AK, Wolczanski PT, Cundari TR, MacMillan SN, Bollmeyer MM. Benzimidazole-diamide (bida) Pincer Chromium Complexes: Structures and Reactivity. Inorg Chem 2023; 62:15450-15464. [PMID: 37707794 DOI: 10.1021/acs.inorgchem.3c01771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Serendipitous discovery of bida (i.e., N1-Ar-N2-((1-Ar-1-benzo[d]imidazol-2-yl)methyl)benzene-1,2-diamide; Ar = 2,6-iPr-C6H3), a potentially redox noninnocent, hemilabile pincer ligand with a methylene group that may facilitate proton/H atom reactivity, prompted its investigation. Chromium was chosen for study due to its multiple stable oxidation states. Disodium salt (bida)Na2(THF)n was prepared by thermal rearrangement of (dadi)Na2(THF)4 (i.e., (N,N'-di-2-(2,6-diisopropylphenylamine)phenylglyoxaldiimine)-Na2(THF)4). Salt metathesis of (bida)Na2(THF)n (generated in situ) with CrCl3(THF)3 or Cl3V═NAr (Ar = 2,6-iPr2C6H3) afforded (bida)CrCl(THF) (1-THF) and (bida)ClV═NAr, respectively. Substitutions provided (bida)CrCl(PMe2Ph) (1-PMe2Ph) and (bida)CrR(THF) (2-R, where R = Me, CH2CMe2Ph (Nph)). Oxidation of 1-THF with ArN3 (Ar = 2,6-iPr2C6H3) or AdN3 (Ad = 1-adamantyl) generated (bida)ClCr═NAr (3═NAr) and (bida)ClCr═NAd (3═NAd) and subsequent alkylation converted these to (bida)R'Cr═NR (R' = Me, R = Ad, Ar, 5═NR; R' = CH2CMe2Ph (Nph), R = Ad, Ar, 6═NR). In contrast, the addition of AdN3 to 2-Nph gave the insertion product (bida)Cr(κ2-N,N-ArN3Nph) (7). Addition of N-chlorosuccinimide to 1-THF produced (bia)CrCl2(THF) (8), where bia is the pincer derived via hydrogen atom loss from bida methylene. A similar HAT afforded (bia)ClCr(CNAr')2 (9, Ar' = 2,6-Me2C6H3) when 3═NAd was exposed to Ar'NC. An empirical equation of charge was applied to each bida species, whose metric parameters are unchanging despite formal oxidation state conversions from Cr(III) to Cr(V). Calculations and Mulliken spin density assessments reveal several situations in which antiferromagnetic (AF) coupling and admixtures of integer ground states (GSs) describe a complicated electronic structure.
Collapse
Affiliation(s)
- Ann K Kayser
- Department of Chemistry and Chemical Biology, Baker Laboratory Cornell University, Ithaca, New York 14853, United States
| | - Peter T Wolczanski
- Department of Chemistry and Chemical Biology, Baker Laboratory Cornell University, Ithaca, New York 14853, United States
| | - Thomas R Cundari
- Department of Chemistry, CASCam University of North Texas Denton, Denton, Texas 76201, United States
| | - Samantha N MacMillan
- Department of Chemistry and Chemical Biology, Baker Laboratory Cornell University, Ithaca, New York 14853, United States
| | | |
Collapse
|
6
|
Sahoo SK, Harfmann B, Ai L, Wang Q, Mohapatra S, Choudhury A, Stavropoulos P. Cationic Divalent Metal Sites (M = Mn, Fe, Co) Operating as Both Nitrene-Transfer Agents and Lewis Acids toward Mediating the Synthesis of Three- and Five-Membered N-Heterocycles. Inorg Chem 2023; 62:10743-10761. [PMID: 37352838 PMCID: PMC11531761 DOI: 10.1021/acs.inorgchem.3c01209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2023]
Abstract
The tripodal compounds [(TMG3trphen)MII-solv](PF6)2 (M = Mn, Fe, Co; solv = MeCN, DMF) and bipodal analogues [(TMG2biphen)MII(NCMe)x](PF6)2 (x = 3 for Mn, Fe; x = 2 for Co) and [(TMG2biphen)MIICl2] have been synthesized with ligands that feature a triaryl- or diarylmethyl-amine framework and superbasic tetramethylguanidinyl residues (TMG). The dicationic M(II) sites mediate catalytic nitrene-transfer reactions between the imidoiodinane PhI═NTs (Ts = tosyl) and a panel of styrenes in MeCN to afford aziridines and low yields of imidazolines (upon MeCN insertion) with an order of productivity that favors the bipodal over the tripodal reagents and a metal preference of Fe > Co ≥ Mn. In CH2Cl2, the more acidic Fe(II) sites favor formation of 2,4-diaryl-N-tosylpyrrolidines by means of an in situ (3 + 2) cycloaddition of the initially generated 2-aryl-N-tosylaziridine with residual styrene. In the presence of ketone, 1,3-oxazolidines can be formed in practicable yields, involving a single-pot cycloaddition reaction of alkene, nitrene, and ketone (2 + 1 + 2). Mechanistic studies indicate that the most productive bipodal Fe(II) site mediates stepwise addition of nitrene to olefins to generate aziridines with good retention of stereochemistry and further enables aziridine ring opening to unmask a 1,3-zwitterion that can undergo cycloaddition with dipolarophiles (MeCN, alkene, ketone) to afford five-membered N-heterocycles.
Collapse
Affiliation(s)
- Suraj Kumar Sahoo
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Brent Harfmann
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Lin Ai
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
- College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Qiuwen Wang
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
- Department of Medicinal Chemistry, BeiGene (Beijing) Company, Limited, Changping District, Beijing 102206, People's Republic of China
| | - Sudip Mohapatra
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
- Department of Chemistry, Kurseong College (affiliated under North Bengal University), Kurseong, Darjeeling, West Bengal PIN-734203, India
| | - Amitava Choudhury
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Pericles Stavropoulos
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| |
Collapse
|
7
|
Yadav I, Osterloh WR, Kadish KM, Sankar M. Synthesis, Spectral, Redox, and Sensing Studies of β-Dicyanovinyl-Appended Corroles and Their Metal Complexes. Inorg Chem 2023; 62:7738-7752. [PMID: 37146287 DOI: 10.1021/acs.inorgchem.3c00341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
A new family of β-dicyanovinyl (DCV)-appended corroles represented as MTPC(MN) (where M = 3H, Cu, Ag, and Co(PPh3) and MN = malononitrile and TPC = 5,10,15-triphenylcorrole) were synthesized starting from the free base mono β-formyl corrole, H3TPC(CHO), and characterized along with their respective MTPC(CHO) and MTPC complexes as to their spectroscopic and electrochemical properties in nonaqueous media. Comparisons between the two series of corroles demonstrate a pronounced substituent effect of the β-DCV group on the physicochemical properties making the MTPC(MN) derivatives substantially easier to reduce and more difficult to oxidize than the formyl or unsubstituted corroles. In addition, the colorimetric and spectral detection of 11 different anions (X) in the form of tetrabutylammonium salts (TBAX, X = PF6-, OAc-, H2PO4-, CN-, HSO4-, NO3-, ClO4-, F-, Cl-, Br-, and I-) were also investigated in nonaqueous media. Of the investigated anions, only CN- was found to induce changes in the UV-vis and 1H NMR spectra of the β-DCV metallocorroles. This data revealed that CuTPC(MN) and AgTPC(MN) act as chemodosimeters for selective cyanide ion detection via a nucleophilic attack at the vinylic carbon of the DCV substituent, while (PPh3)CoTPC(MN) acts as a chemosensor for cyanide ion sensing via axial coordination to the cobalt metal center. A low-limit detection of cyanide ions was observed at 1.69 ppm for CuTPC(MN) and 1.17 ppm for AgTPC(MN) in toluene.
Collapse
Affiliation(s)
- Inderpal Yadav
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - W Ryan Osterloh
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| | - Karl M Kadish
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| | - Muniappan Sankar
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| |
Collapse
|
8
|
Liu Y, Shing KP, Lo VKY, Che CM. Iron- and Ruthenium-Catalyzed C–N Bond Formation Reactions. Reactive Metal Imido/Nitrene Intermediates. ACS Catal 2023. [DOI: 10.1021/acscatal.2c04830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Yungen Liu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, People’s Republic of China
| | - Ka-Pan Shing
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, People’s Republic of China
| | - Vanessa Kar-Yan Lo
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, People’s Republic of China
- HKU Shenzhen Institute of Research and Innovation, Shenzhen 518053, People’s Republic of China
| | - Chi-Ming Che
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, People’s Republic of China
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, People’s Republic of China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Units 1503−1511, 15/F, Building 17W, Hong
Kong Science Park, New Territories, Hong Kong 999077, People’s Republic of China
- HKU Shenzhen Institute of Research and Innovation, Shenzhen 518053, People’s Republic of China
| |
Collapse
|
9
|
Mitchell BS, Chirila A, Kephart JA, Boggiano AC, Krajewski SM, Rogers D, Kaminsky W, Velian A. Metal-Support Interactions in Molecular Single-Site Cluster Catalysts. J Am Chem Soc 2022; 144:18459-18469. [PMID: 36170652 DOI: 10.1021/jacs.2c07033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This study provides atomistic insights into the interface between a single-site catalyst and a transition metal chalcogenide support and reveals that peak catalytic activity occurs when edge/support redox cooperativity is maximized. A molecular platform MCo6Se8(PEt3)4(L)2 (1-M, M = Cr, Mn, Fe, Co, Cu, and Zn) was designed in which the active site (M)/support (Co6Se8) interactions are interrogated by systematically probing the electronic and structural changes that occur as the identity of the metal varies. All 3d transition metal 1-M clusters display remarkable catalytic activity for coupling tosyl azide and tert-butyl isocyanide, with Mn and Co derivatives showing the fastest turnover in the series. Structural, electronic, and magnetic characterization of the clusters was performed using single crystal X-ray diffraction, 1H and 31P nuclear magnetic resonance spectroscopy, electronic absorption spectroscopy, cyclic voltammetry, and computational methods. Distinct metal/support redox regimes can be accessed in 1-M based on the energy of the edge metal's frontier orbitals with respect to those of the cluster support. As the degree of electronic interaction between the edge and the support increases, a cooperative regime is reached wherein the support can deliver electrons to the catalytic site, increasing the reactivity of key metal-nitrenoid intermediates.
Collapse
Affiliation(s)
- Benjamin S Mitchell
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Andrei Chirila
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Jonathan A Kephart
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Andrew C Boggiano
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Sebastian M Krajewski
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Dylan Rogers
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Werner Kaminsky
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Alexandra Velian
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
10
|
Aziridination Reactivity of a Manganese(II) Complex with a Bulky Chelating Bis(Alkoxide) Ligand. Molecules 2022; 27:molecules27185751. [PMID: 36144492 PMCID: PMC9505844 DOI: 10.3390/molecules27185751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 08/30/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
Treatment of Mn(N(SiMe3)2)2(THF)2 with bulky chelating bis(alkoxide) ligand [1,1′:4′,1′′-terphenyl]-2,2′′-diylbis(diphenylmethanol) (H2[O-terphenyl-O]Ph) formed a seesaw manganese(II) complex Mn[O-terphenyl-O]Ph(THF)2, characterized by structural, spectroscopic, magnetic, and analytical methods. The reactivity of Mn[O-terphenyl-O]Ph(THF)2 with various nitrene precursors was investigated. No reaction was observed between Mn[O-terphenyl-O]Ph(THF)2 and aryl azides. In contrast, the treatment of Mn[O-terphenyl-O]Ph(THF)2 with iminoiodinane PhINTs (Ts = p-toluenesulfonyl) was consistent with the formation of a metal-nitrene complex. In the presence of styrene, the reaction led to the formation of aziridine. Combining varying ratios of styrene and PhINTs in different solvents with 10 mol% of Mn[O-terphenyl-O]Ph(THF)2 at room temperature produced 2-phenylaziridine in up to a 79% yield. Exploration of the reactivity of Mn[O-terphenyl-O]Ph(THF)2 with various olefins revealed (1) moderate aziridination yields for p-substituted styrenes, irrespective of the electronic nature of the substituent; (2) moderate yield for 1,1′-disubstituted α-methylstyrene; (3) no aziridination for aliphatic α-olefins; (4) complex product mixtures for the β-substituted styrenes. DFT calculations suggest that iminoiodinane is oxidatively added upon binding to Mn, and the resulting formal imido intermediate has a high-spin Mn(III) center antiferromagnetically coupled to an imidyl radical. This imidyl radical reacts with styrene to form a sextet intermediate that readily reductively eliminates the formation of a sextet Mn(II) aziridine complex.
Collapse
|
11
|
Kephart JA, Mitchell BS, Kaminsky W, Velian A. Multi-active Site Dynamics on a Molecular Cr/Co/Se Cluster Catalyst. J Am Chem Soc 2022; 144:9206-9211. [PMID: 35593888 DOI: 10.1021/jacs.2c00234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This study uncovers the interconnected reactivity of the three catalytically active sites of an atomically precise nanocluster Cr3(py)3Co6Se8L6 (1(py)3, L = Ph2PNTol-, Ph = phenyl, Tol = 4-tolyl). Catalytic and stoichiometric studies into tosyl azide activation and carbodiimide formation enabled the isolation and crystallographic characterization of key catalytically competent metal-imido intermediates, including the tris(imido) cluster 1(NTs)3, the catalytic resting state 1(NTs)3(CNtBu)3, and the site-differentiated mono(imido) cluster 1(NTs)(CNtBu)2. In the stoichiometric regime, nitrene transfer proceeds via a stepwise mechanism, with the three active sites engaging sequentially to produce carbodiimide. Moreover, the chemical state of neighboring active sites was found to regulate the affinity for substrates of an individual Cr-imido edge site, as revealed by comparative structural analysis and CNtBu binding studies.
Collapse
Affiliation(s)
- Jonathan A Kephart
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Benjamin S Mitchell
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Werner Kaminsky
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Alexandra Velian
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
12
|
Theoretical studies on Mn-catalyzed intermolecular allylic C-H aminations of internal olefins: mechanism, chemo- and regioselectivity. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
13
|
Pinarci AA, Daniecki N, TenHoeve TM, Dellosso B, Madiu R, Mejia L, Bektas SE, Moura-Letts G. Synthesis of N-tosylaziridines from substituted alkenes via zirconooxaziridine catalysis. Chem Commun (Camb) 2022; 58:4909-4912. [PMID: 35355045 DOI: 10.1039/d2cc00686c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein we report the zirconooxaziridine promoted aziridination of alkenes using chloramine T as the quantitative source of N. The reaction works with high yields, diastereoselectivities and stereospecificity for a wide variety of substituted alkenes. A potential mechanism involving the formation of a zirconooxaziridine complex as the active catalyst has been proposed and initial mechanistic data would indicate that a highly associative mechanism is the predominant pathway for this transformation.
Collapse
Affiliation(s)
- Ali A Pinarci
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Rd., Glassboro, NJ, USA.
| | - Noah Daniecki
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Rd., Glassboro, NJ, USA.
| | - Tyler M TenHoeve
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Rd., Glassboro, NJ, USA.
| | - Brandon Dellosso
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Rd., Glassboro, NJ, USA.
| | - Rufai Madiu
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Rd., Glassboro, NJ, USA.
| | - Liliana Mejia
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Rd., Glassboro, NJ, USA.
| | - Seda E Bektas
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Rd., Glassboro, NJ, USA.
| | - Gustavo Moura-Letts
- Department of Chemistry and Biochemistry, Rowan University, 201 Mullica Hill Rd., Glassboro, NJ, USA.
| |
Collapse
|
14
|
Chandra D, Yadav AK, Singh V, Tiwari B, Jat JL. Fe(II)‐Catalyzed Synthesis of Unactivated Aziridines (N‐H/N‐Me) from Olefins Using
O
‐Arylsulfonyl Hydroxylamines. ChemistrySelect 2021. [DOI: 10.1002/slct.202102884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Dinesh Chandra
- Department of Chemistry School of Physical and Decision Sciences Babasaheb Bhimrao Ambedkar University (A Central University) Lucknow India
| | - Ajay K. Yadav
- Department of Chemistry School of Physical and Decision Sciences Babasaheb Bhimrao Ambedkar University (A Central University) Lucknow India
| | - Vikram Singh
- Division of Molecular Synthesis and Drug Discovery Centre of Biomedical Research SGPGIMS Campus Raebareli Road Lucknow 226014 India
| | - Bhoopendra Tiwari
- Division of Molecular Synthesis and Drug Discovery Centre of Biomedical Research SGPGIMS Campus Raebareli Road Lucknow 226014 India
| | - Jawahar L. Jat
- Department of Chemistry School of Physical and Decision Sciences Babasaheb Bhimrao Ambedkar University (A Central University) Lucknow India
| |
Collapse
|
15
|
Kalra A, Bagchi V, Paraskevopoulou P, Das P, Ai L, Sanakis Y, Raptopoulos G, Mohapatra S, Choudhury A, Sun Z, Cundari TR, Stavropoulos P. Is the Electrophilicity of the Metal Nitrene the Sole Predictor of Metal-Mediated Nitrene Transfer to Olefins? Secondary Contributing Factors as Revealed by a Library of High-Spin Co(II) Reagents. Organometallics 2021; 40:1974-1996. [PMID: 35095166 PMCID: PMC8797515 DOI: 10.1021/acs.organomet.1c00267] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Recent research has highlighted the key role played by the electron affinity of the active metal-nitrene/imido oxidant as the driving force in nitrene additions to olefins to afford valuable aziridines. The present work showcases a library of Co(II) reagents that, unlike the previously examined Mn(II) and Fe(II) analogues, demonstrate reactivity trends in olefin aziridinations that cannot be solely explained by the electron affinity criterion. A family of Co(II) catalysts (17 members) has been synthesized with the assistance of a trisphenylamido-amine scaffold decorated by various alkyl, aryl, and acyl groups attached to the equatorial amidos. Single-crystal X-ray diffraction analysis, cyclic voltammetry and EPR data reveal that the high-spin Co(II) sites (S = 3/2) feature a minimal [N3N] coordination and span a range of 1.4 V in redox potentials. Surprisingly, the Co(II)-mediated aziridination of styrene demonstrates reactivity patterns that deviate from those anticipated by the relevant electrophilicities of the putative metal nitrenes. The representative L4Co catalyst (-COCMe3 arm) is operating faster than the L8Co analogue (-COCF3 arm), in spite of diminished metal-nitrene electrophilicity. Mechanistic data (Hammett plots, KIE, stereocontrol studies) reveal that although both reagents follow a two-step reactivity path (turnover-limiting metal-nitrene addition to the C b atom of styrene, followed by product-determining ring-closure), the L4Co catalyst is associated with lower energy barriers in both steps. DFT calculations indicate that the putative [L4Co]NTs and [L8Co]NTs species are electronically distinct, inasmuch as the former exhibits a single-electron oxidized ligand arm. In addition, DFT calculations suggest that including London dispersion corrections for L4Co (due to the polarizability of the tert-Bu substituent) can provide significant stabilization of the turnover-limiting transition state. This study highlights how small ligand modifications can generate stereoelectronic variants that in certain cases are even capable of overriding the preponderance of the metal-nitrene electrophilicity as a driving force.
Collapse
Affiliation(s)
- Anshika Kalra
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Vivek Bagchi
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States; Institute of Nano Science and Technology, Mohali, Punjab 160062, India
| | - Patrina Paraskevopoulou
- Inorganic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Athens 15771, Greece
| | - Purak Das
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Lin Ai
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States; College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Yiannis Sanakis
- Institute of Advanced Materials, Physicochemical Processes, Nanotechnology and Microsystems, NCSR "Demokritos", Athens 15310, Greece
| | - Grigorios Raptopoulos
- Inorganic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Athens 15771, Greece
| | - Sudip Mohapatra
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Amitava Choudhury
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Zhicheng Sun
- Department of Chemistry, Center for Advanced Scientific Computing and Modeling (CASCaM), University of North Texas, Denton, Texas 76203, United States
| | - Thomas R Cundari
- Department of Chemistry, Center for Advanced Scientific Computing and Modeling (CASCaM), University of North Texas, Denton, Texas 76203, United States
| | - Pericles Stavropoulos
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| |
Collapse
|
16
|
Kim S, Kim D, Hong SY, Chang S. Tuning Orbital Symmetry of Iridium Nitrenoid Enables Catalytic Diastereo- and Enantioselective Alkene Difunctionalizations. J Am Chem Soc 2021; 143:3993-4004. [DOI: 10.1021/jacs.1c00652] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Suhyeon Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalization, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Dongwook Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalization, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Seung Youn Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalization, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Sukbok Chang
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalization, Institute for Basic Science (IBS), Daejeon 34141, Korea
| |
Collapse
|
17
|
Wolgemuth DK, Elmore SD, Cope JD, Sheridan PE, Stokes SL, Emerson JP. Manganese-catalyzed aziridination of olefins with chloramine-T in water and buffered aqueous solutions. CATAL COMMUN 2021. [DOI: 10.1016/j.catcom.2020.106275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
18
|
Maity AK, Kalb AE, Zeller M, Uyeda C. A Dinickel Catalyzed Cyclopropanation without the Formation of a Metal Carbene Intermediate. Angew Chem Int Ed Engl 2021; 60:1897-1902. [PMID: 33045127 PMCID: PMC8086810 DOI: 10.1002/anie.202011602] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Indexed: 11/09/2022]
Abstract
(NDI)Ni2 catalysts (NDI=naphthyridine-diimine) promote cyclopropanation reactions of 1,3-dienes using (Me3 Si)CHN2 . Mechanistic studies reveal that a metal carbene intermediate is not part of the catalytic cycle. The (NDI)Ni2 (CHSiMe3 ) complex was independently synthesized and found to be unreactive toward dienes. Based on DFT models, we propose an alternative mechanism that begins with a Ni2 -mediated coupling of (Me3 Si)CHN2 and the diene. N2 extrusion followed by radical C-C bond formation generates the cyclopropane product. This model reproduces the experimentally observed regioselectivity and diastereoselectivity of the reaction.
Collapse
Affiliation(s)
- Arnab K. Maity
- Department of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, IN 47907 (USA)
| | - Annah E. Kalb
- Department of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, IN 47907 (USA)
| | - Matthias Zeller
- Department of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, IN 47907 (USA)
| | - Christopher Uyeda
- Department of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, IN 47907 (USA)
| |
Collapse
|
19
|
Varshney A, Kumar A, Yadav S. Catalytic activity of bis p-nitro A2B (oxo)Mn(V) corroles towards oxygen transfer reaction to sulphides. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2020.120013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
20
|
Maity AK, Kalb AE, Zeller M, Uyeda C. A Dinickel Catalyzed Cyclopropanation without the Formation of a Metal Carbene Intermediate. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202011602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Arnab K. Maity
- Department of Chemistry Purdue University 560 Oval Dr. West Lafayette IN 47907 USA
| | - Annah E. Kalb
- Department of Chemistry Purdue University 560 Oval Dr. West Lafayette IN 47907 USA
| | - Matthias Zeller
- Department of Chemistry Purdue University 560 Oval Dr. West Lafayette IN 47907 USA
| | - Christopher Uyeda
- Department of Chemistry Purdue University 560 Oval Dr. West Lafayette IN 47907 USA
| |
Collapse
|
21
|
Baek Y, Das A, Zheng SL, Reibenspies JH, Powers DC, Betley TA. C-H Amination Mediated by Cobalt Organoazide Adducts and the Corresponding Cobalt Nitrenoid Intermediates. J Am Chem Soc 2020; 142:11232-11243. [PMID: 32456423 DOI: 10.1021/jacs.0c04252] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Treatment of (ArL)CoBr (ArL = 5-mesityl-1,9-(2,4,6-Ph3C6H2)dipyrrin) with a stoichiometric amount of 1-azido-4-(tert-butyl)benzene N3(C6H4-p-tBu) furnished the corresponding four-coordinate organoazide-bound complex (ArL)CoBr(N3(C6H4-p-tBu)). Spectroscopic and structural characterization of the complex indicated redox innocent ligation of the organoazide. Slow expulsion of dinitrogen (N2) was observed at room temperature to afford a ligand functionalized product via a [3 + 2] annulation, which can be mediated by a high-valent nitrene intermediate such as a CoIII iminyl (ArL)CoBr(•N(C6H4-p-tBu)) or CoIV imido (ArL)CoBr(N(C6H4-p-tBu)) complex. The presence of the proposed intermediate and its viability as a nitrene group transfer reagent are supported by intermolecular C-H amination and aziridination reactivities. Unlike (ArL)CoBr(N3(C6H4-p-tBu)), a series of alkyl azide-bound CoII analogues expel N2 only above 60 °C, affording paramagnetic intermediates that convert to the corresponding Co-imine complexes via α-H-atom abstraction. The corresponding N2-released structures were observed via single-crystal-to-crystal transformation, suggesting formation of a Co-nitrenoid intermediate in solid-state. Alternatively, the alkyl azide-bound congeners supported by a more sterically accessible dipyrrinato scaffold tBuL (tBuL = 5-mesityl-(1,9-di-tert-butyl)dipyrrin) facilitate intramolecular 1,3-dipolar cycloaddition as well as C-H amination to furnish 1,2,3-dihydrotriazole and substituted pyrrolidine products, respectively. For the C-H amination, we observe that the temperature required for azide activation varies depending on the presence of weak C-H bonds, suggesting that the alkyl azide adducts serve as viable species for C-H amination when the C-H bonds are (1) proximal to the azide moiety and (2) sufficiently weak to be activated.
Collapse
Affiliation(s)
- Yunjung Baek
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Anuvab Das
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Shao-Liang Zheng
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Joseph H Reibenspies
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - David C Powers
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Theodore A Betley
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
22
|
Elkoush T, Mak CL, Paley DW, Campbell MG. Silver(II) and Silver(III) Intermediates in Alkene Aziridination with a Dinuclear Silver(I) Nitrene Transfer Catalyst. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00065] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Tasneem Elkoush
- Department of Chemistry, Barnard College, New York, New York 10027, United States
| | - Choi L. Mak
- Department of Chemistry, Barnard College, New York, New York 10027, United States
| | - Daniel W. Paley
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Michael G. Campbell
- Department of Chemistry, Barnard College, New York, New York 10027, United States
| |
Collapse
|
23
|
Dong Y, Clarke RM, Zheng SL, Betley TA. Synthesis and electronic structure studies of a Cr-imido redox series. Chem Commun (Camb) 2020; 56:3163-3166. [PMID: 32065193 PMCID: PMC7132162 DOI: 10.1039/d0cc00108b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effect of metal identity, d-electron count, and coordination geometry on the electronic structure of a metal-ligand multiple bond (MLMB) is an area of active exploration. Although high oxidation state Cr imidos have been extensively studied, very few reports on low-valent Cr imidos or the interconversion of redox isomers exist. Herein, we report the synthesis and characterization of a family of dipyrrinato Cr imido complexes in oxidation states ranging from CrIII to CrV, showcasing the influence of the weak-field dipyrromethene scaffold on the electronic structure and coordination geometries of these Cr imides.
Collapse
Affiliation(s)
- Yuyang Dong
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, USA.
| | - Ryan M Clarke
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, USA.
| | - Shao-Liang Zheng
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, USA.
| | - Theodore A Betley
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, USA.
| |
Collapse
|
24
|
Krzystek J, Schnegg A, Aliabadi A, Holldack K, Stoian SA, Ozarowski A, Hicks SD, Abu-Omar MM, Thomas KE, Ghosh A, Caulfield KP, Tonzetich ZJ, Telser J. Advanced Paramagnetic Resonance Studies on Manganese and Iron Corroles with a Formal d 4 Electron Count. Inorg Chem 2020; 59:1075-1090. [PMID: 31909979 DOI: 10.1021/acs.inorgchem.9b02635] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Metallocorroles wherein the metal ion is MnIII and formally FeIV are studied here using field- and frequency-domain electron paramagnetic resonance techniques. The MnIII corrole, Mn(tpfc) (tpfc = 5,10,15-tris(pentafluorophenyl)corrole trianion), exhibits the following S = 2 zero-field splitting (zfs) parameters: D = -2.67(1) cm-1, |E| = 0.023(5) cm-1. This result and those for other MnIII tetrapyrroles indicate that when D ≈ - 2.5 ± 0.5 cm-1 for 4- or 5-coordinate and D ≈ - 3.5 ± 0.5 cm-1 for 6-coordinate complexes, the ground state description is [MnIII(Cor3-)]0 or [MnIII(P2-)]+ (Cor = corrole, P = porphyrin). The situation for formally FeIV corroles is more complicated, and it has been shown that for Fe(Cor)X, when X = Ph (phenyl), the ground state is a spin triplet best described by [FeIV(Cor3-)]+, but when X = halide, the ground state corresponds to [FeIII(Cor•2-)]+, wherein an intermediate spin (S = 3/2) FeIII is antiferromagnetically coupled to a corrole radical dianion (S = 1/2) to also give an S = 1 ground state. These two valence isomers can be distinguished by their zfs parameters, as determined here for Fe(tpc)X, X = Ph, Cl (tpc = 5,10,15-triphenylcorrole trianion). The complex with axial phenyl gives D = 21.1(2) cm-1, while that with axial chloride gives D = 14.6(1) cm-1. The D value for Fe(tpc)Ph is in rough agreement with the range of values reported for other FeIV complexes. In contrast, the D value for Fe(tpc)Cl is inconsistent with an FeIV description and represents a different type of iron center. Computational studies corroborate the zfs for the two types of iron corrole complexes. Thus, the zfs of metallocorroles can be diagnostic as to the electronic structure of a formally high oxidation state metallocorrole, and by extension to metalloporphyrins, although such studies have yet to be performed.
Collapse
Affiliation(s)
- J Krzystek
- National High Magnetic Field Laboratory , Florida State University , Tallahassee , Florida 32310 , United States
| | - Alexander Schnegg
- EPR Research Group , Max Planck Institute for Chemical Energy Conversion , Stiftstraße 34-36 , D-45470 Mülheim Ruhr , Germany.,Berlin Joint EPR Laboratory , Helmholtz-Zentrum Berlin , Kekulestraße 5 , D-12489 Berlin , Germany
| | - Azar Aliabadi
- Berlin Joint EPR Laboratory , Helmholtz-Zentrum Berlin , Kekulestraße 5 , D-12489 Berlin , Germany
| | - Karsten Holldack
- Institut für Methoden und Instrumentierung der Forschung mit Synchrotronstrahlung am Elektronenspeicherring BESSY II , Albert-Einstein-Straße 15 , D-12489 Berlin , Germany
| | - Sebastian A Stoian
- Department of Chemistry , University of Idaho , Moscow , Idaho 83844 , United States
| | - Andrew Ozarowski
- National High Magnetic Field Laboratory , Florida State University , Tallahassee , Florida 32310 , United States
| | - Scott D Hicks
- Department of Chemistry , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Mahdi M Abu-Omar
- Departments of Chemistry and Biochemistry , University of California , Santa Barbara , California 93106-9510 , United States
| | - Kolle E Thomas
- Department of Chemistry , UiT-The Arctic University of Norway , N-9037 Tromsø , Norway
| | - Abhik Ghosh
- Department of Chemistry , UiT-The Arctic University of Norway , N-9037 Tromsø , Norway
| | - Kenneth P Caulfield
- Department of Chemistry , University of Texas at San Antonio (UTSA) , One UTSA Circle , San Antonio , Texas 78249 , United States
| | - Zachary J Tonzetich
- Department of Chemistry , University of Texas at San Antonio (UTSA) , One UTSA Circle , San Antonio , Texas 78249 , United States
| | - Joshua Telser
- Department of Biological, Physical, and Health Sciences , Roosevelt University , Chicago , Illinois 60605 , United States
| |
Collapse
|
25
|
Mondal S, Naik PK, Adha JK, Kar S. Synthesis, characterization, and reactivities of high valent metal–corrole (M = Cr, Mn, and Fe) complexes. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.213043] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
26
|
Li XX, Guo M, Qiu B, Cho KB, Sun W, Nam W. High-Spin Mn(V)-Oxo Intermediate in Nonheme Manganese Complex-Catalyzed Alkane Hydroxylation Reaction: Experimental and Theoretical Approach. Inorg Chem 2019; 58:14842-14852. [PMID: 31621303 DOI: 10.1021/acs.inorgchem.9b02543] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Mononuclear nonheme manganese complexes are highly efficient catalysts in the catalytic oxidation of hydrocarbons by hydrogen peroxide in the presence of carboxylic acids. Although high-valent Mn(V)-oxo complexes have been proposed as the active oxidants that afford high regio-, stereo-, and enantioselectivities in the catalytic oxidation reactions, the importance of the spin state (e.g., S = 0 or 1) of the proposed Mn(V)-oxo species is an area that requires further study. In the present study, we have theoretically demonstrated that a mononuclear nonheme Mn(V)-oxo species with an S = 1 ground spin state is the active oxidant that effects the stereo- and enantioselective alkane hydroxylation reaction; it is noted that synthetic octahedral Mn(V)-oxo complexes, characterized spectroscopically and/or structurally, possess an S = 0 spin state and are sluggish oxidants. In an experimental approach, we have investigated the catalytic hydroxylation of alkanes by a mononuclear nonheme Mn(II) complex, [(S-PMB)MnII]2+, and H2O2 in the presence of carboxylic acids; alcohol is the major product with high stereo- and enantioselectivities. A synthetic Mn(IV)-oxo complex, [(S-PMB)MnIV(O)]2+, is inactive in C-H bond activation reactions, ruling out the Mn(IV)-oxo species as an active oxidant. DFT calculations have shown that a Mn(V)-oxo species with an S = 1 spin state, [(S-PMB)MnV(O)(OAc)]2+, is highly reactive and capable of oxygenating the C-H bond via oxygen rebound mechanism; we propose that the triplet spin state of the Mn(V)-oxo species results from the consequence of breaking the equatorial symmetry due to the binding of an equatorial oxygen from an acetate ligand. Thus, the present study reports that, different from the previously reported S = 0 Mn(V)-oxo species, Mn(V)-oxo species with a triplet ground spin state are highly reactive oxidants that are responsible for the regio-, stereo-, and enantioselectivities in the catalytic hydroxylation of alkanes by mononuclear nonheme manganese complexes and terminal oxidants.
Collapse
Affiliation(s)
- Xiao-Xi Li
- Department of Chemistry and Nano Science , Ewha Womans University , Seoul 03760 , Korea
| | - Mian Guo
- Department of Chemistry and Nano Science , Ewha Womans University , Seoul 03760 , Korea
| | - Bin Qiu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, and Suzhou Research Institute of LICP , Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences , Lanzhou 730000 , China
| | - Kyung-Bin Cho
- Department of Chemistry , Jeonbuk National University , Jeonju 54896 , Korea
| | - Wei Sun
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, and Suzhou Research Institute of LICP , Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences , Lanzhou 730000 , China
| | - Wonwoo Nam
- Department of Chemistry and Nano Science , Ewha Womans University , Seoul 03760 , Korea.,State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, and Suzhou Research Institute of LICP , Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences , Lanzhou 730000 , China
| |
Collapse
|
27
|
Ishizuka T, Kogawa T, Makino M, Shiota Y, Ohara K, Kotani H, Nozawa S, Adachi SI, Yamaguchi K, Yoshizawa K, Kojima T. Formation of a Ruthenium(V)-Imido Complex and the Reactivity in Substrate Oxidation in Water through the Nitrogen Non-Rebound Mechanism. Inorg Chem 2019; 58:12815-12824. [PMID: 31553593 DOI: 10.1021/acs.inorgchem.9b01781] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A RuII-NH3 complex, 2, was oxidized through a proton-coupled electron transfer (PCET) mechanism with a CeIV complex in water at pH 2.5 to generate a RuV═NH complex, 5. Complex 5 was characterized with various spectroscopies, and the spin state was determined by the Evans method to be S = 1/2. The reactivity of 5 in substrate C-H oxidation was scrutinized in acidic water, using water-soluble organic substrates such as sodium ethylbenzene-sulfonate (EBS), which gave the corresponding 1-phenylethanol derivative as the product. In the substrate oxidation, complex 5 was converted to the corresponding RuIII-NH3 complex, 3. The formation of 1-phenylethanol derivative from EBS and that of 3 indicate that complex 5 as the oxidant does not perform nitrogen-atom transfer, in sharp contrast to other high-valent metal-imido complexes reported so far. Oxidation of cyclobutanol by 5 afforded only cyclobutanone as the product, indicating that the substrate oxidation by 5 proceeds through a hydride-transfer mechanism. In the kinetic analysis on the C-H oxidation, we observed kinetic isotope effects (KIEs) on the C-H oxidation with use of deuterated substrates and remarkably large solvent KIE (sKIE) in D2O. These positive KIEs indicate that the rate-determining step involves not only cleavage of the C-H bond of the substrate but also proton transfer from water molecules to 5. The unique hydride-transfer mechanism in the substrate oxidation by 5 is probably derived from the fact that the RuIV-NH2 complex (4) formed from 5 by 1e-/1H+ reduction is unstable and quickly disproportionates into 3 and 5.
Collapse
Affiliation(s)
- Tomoya Ishizuka
- Department of Chemistry , University of Tsukuba , 1-1-1 Tennoudai , Tsukuba , Ibaraki 305-8571 , Japan
| | - Taichi Kogawa
- Department of Chemistry , University of Tsukuba , 1-1-1 Tennoudai , Tsukuba , Ibaraki 305-8571 , Japan
| | - Misaki Makino
- Department of Chemistry , University of Tsukuba , 1-1-1 Tennoudai , Tsukuba , Ibaraki 305-8571 , Japan
| | - Yoshihito Shiota
- Institute for Materials Chemistry and Engineering , Kyushu University , Motooka, Nishi-Ku , Fukuoka 819-0395 , Japan
| | - Kazuaki Ohara
- Faculty of Pharmaceutical Sciences at Kagawa Campus , Tokushima Bunri University , 1314-1 Shido , Sanuki , Kagawa 769-2193 , Japan
| | - Hiroaki Kotani
- Department of Chemistry , University of Tsukuba , 1-1-1 Tennoudai , Tsukuba , Ibaraki 305-8571 , Japan
| | - Shunsuke Nozawa
- Photon Factory , Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK) , 1-1 Oho , Tsukuba , Ibaraki 305-0801 , Japan
| | - Shin-Ichi Adachi
- Photon Factory , Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK) , 1-1 Oho , Tsukuba , Ibaraki 305-0801 , Japan
| | - Kentaro Yamaguchi
- Faculty of Pharmaceutical Sciences at Kagawa Campus , Tokushima Bunri University , 1314-1 Shido , Sanuki , Kagawa 769-2193 , Japan
| | - Kazunari Yoshizawa
- Institute for Materials Chemistry and Engineering , Kyushu University , Motooka, Nishi-Ku , Fukuoka 819-0395 , Japan
| | - Takahiko Kojima
- Department of Chemistry , University of Tsukuba , 1-1-1 Tennoudai , Tsukuba , Ibaraki 305-8571 , Japan
| |
Collapse
|
28
|
Chen S, Yao Y, Yang W, Lin Q, Wang L, Li H, Chen D, Tan Y, Yang D. Three-Component Cycloaddition To Synthesize Aziridines and 1,2,3-Triazolines. J Org Chem 2019; 84:11863-11872. [PMID: 31469559 DOI: 10.1021/acs.joc.9b01713] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
An efficient three-component cycloaddition of oxa(aza)bicyclic alkenes/norbornene in the presence of NaN3 and arylsulfonyl chlorides was developed, affording the corresponding aziridine products in good yields (up to 82%) with moderate to good endo/exo selectivities (up to >99:1 endo/exo). Further studies showed that the cycloaddition of oxa(aza)bicyclic alkenes in the presence of NaN3 and chloroalkanes could afford the exo-cycloadduct 1,2,3-triazolines in good to excellent yields (up to 95%). Compared with the existing methodologies, the current protocol demands very simple and mild reaction conditions and is a metal-free catalyzed reaction. In addition, a plausible mechanism for the cycloaddition reaction was also proposed.
Collapse
Affiliation(s)
- Shuqi Chen
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry and Environment , South China Normal University , Guangzhou 510006 , People's Republic of China
| | - Yongqi Yao
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry and Environment , South China Normal University , Guangzhou 510006 , People's Republic of China
| | - Wen Yang
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry and Environment , South China Normal University , Guangzhou 510006 , People's Republic of China
| | - Qifu Lin
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry and Environment , South China Normal University , Guangzhou 510006 , People's Republic of China
| | - Lin Wang
- Analytical and Testing Center , Jinan University , Guangzhou 510632 , People's Republic of China
| | - Huanyong Li
- Analytical and Testing Center , Jinan University , Guangzhou 510632 , People's Republic of China
| | - Donghan Chen
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry and Environment , South China Normal University , Guangzhou 510006 , People's Republic of China
| | - Yun Tan
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry and Environment , South China Normal University , Guangzhou 510006 , People's Republic of China
| | - Dingqiao Yang
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry and Environment , South China Normal University , Guangzhou 510006 , People's Republic of China
| |
Collapse
|
29
|
Shi H, Xie J, Lam WWY, Man WL, Mak CK, Yiu SM, Lee HK, Lau TC. Generation and Reactivity of a One-Electron-Oxidized Manganese(V) Imido Complex with a Tetraamido Macrocyclic Ligand. Chemistry 2019; 25:12895-12899. [PMID: 31325369 DOI: 10.1002/chem.201902405] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/13/2019] [Indexed: 11/11/2022]
Abstract
The synthesis and X-ray structure of a new manganese(V) mesitylimido complex with a tetraamido macrocyclic ligand (TAML), [MnV (TAML)(N-Mes)]- (1), are reported. Compound 1 is oxidized by [(p-BrC6 H4 )3 N]+. [SbCl6 ]- and the resulting MnVI species readily undergoes H-atom transfer and nitrene transfer reactions.
Collapse
Affiliation(s)
- Huatian Shi
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, P. R. China
| | - Jianhui Xie
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - William W Y Lam
- Department of Food and Health Sciences, Technological and Higher Education Institute of Hong Kong, Tsing Yi Road, Hong Kong SAR, P. R. China
| | - Wai-Lun Man
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, P. R. China
| | - Chi-Keung Mak
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, P. R. China
| | - Shek-Man Yiu
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, P. R. China
| | - Hung Kay Lee
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, P. R. China
| | - Tai-Chu Lau
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, P. R. China
| |
Collapse
|
30
|
Affiliation(s)
- Xiao Jiang
- Department of Chemistry, Joint Laboratory of SCUT and Bawei CorporationSouth China University of Technology Guangzhou China
| | - Rui‐Xue Liu
- Department of Chemistry, Joint Laboratory of SCUT and Bawei CorporationSouth China University of Technology Guangzhou China
| | - Hai‐Yang Liu
- Department of Chemistry, Joint Laboratory of SCUT and Bawei CorporationSouth China University of Technology Guangzhou China
| | - Chi K. Chang
- Department of ChemistryMichigan State University East Lansing Michigan
| |
Collapse
|
31
|
Isbill SB, Chandrachud PP, Kern JL, Jenkins DM, Roy S. Elucidation of the Reaction Mechanism of C 2 + N 1 Aziridination from Tetracarbene Iron Catalysts. ACS Catal 2019; 9:6223-6233. [PMID: 31534826 DOI: 10.1021/acscatal.9b01306] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A combined computational and experimental study was undertaken to elucidate the mechanism of catalytic C2 + N1 aziridination supported by tetracarbene iron complexes. Three specific aspects of the catalytic cycle were addressed. First, how do organic azides react with different iron catalysts and why are alkyl azides ineffective for some catalysts? Computation of the catalytic pathway using density functional theory (DFT) revealed that an alkyl azide needs to overcome a higher activation barrier than an aryl azide to form an iron imide, and the activation barrier with the first-generation catalyst is higher than the activation barrier with the second-generation variant. Second, does the aziridination from the imide complex proceed through an open-chain radical intermediate that can change stereochemistry or, instead, via an azametallacyclobutane intermediate that retains stereochemistry? DFT calculations show that the formation of aziridine proceeds via the open-chain radical intermediate, which qualitatively explains the formation of both aziridine diastereomers as seen in experiments. Third, how can the formation of the side product, a metallotetrazene, be prevented, which would improve the yield of aziridine at lower alkene loading? DFT and experimental results demonstrate that sterically bulky organic azides prohibit formation of the metallotetrazene and, thus, allow lower alkene loading for effective catalysis. These multiple insights of different aspects of the catalytic cycle are critical for developing improved catalysts for C2 + N1 aziridination.
Collapse
Affiliation(s)
- Sara B. Isbill
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Preeti P. Chandrachud
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Jesse L. Kern
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - David M. Jenkins
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Sharani Roy
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
32
|
Hong SY, Chang S. Stereodefined Access to Lactams via Olefin Difunctionalization: Iridium Nitrenoids as a Motif of LUMO-Controlled Dipoles. J Am Chem Soc 2019; 141:10399-10408. [DOI: 10.1021/jacs.9b04317] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Seung Youn Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science, Daejeon 34141, Korea
| | - Sukbok Chang
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science, Daejeon 34141, Korea
| |
Collapse
|
33
|
Vaddypally S, Tomlinson W, O’Sullivan OT, Ding R, Van Vliet MM, Wayland BB, Hooper JP, Zdilla MJ. Activation of C–H, N–H, and O–H Bonds via Proton-Coupled Electron Transfer to a Mn(III) Complex of Redox-Noninnocent Octaazacyclotetradecadiene, a Catenated-Nitrogen Macrocyclic Ligand. J Am Chem Soc 2019; 141:5699-5709. [DOI: 10.1021/jacs.8b10250] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shivaiah Vaddypally
- Department of Chemistry, Temple University, 1901 North 13th Street, Philadelphia, Pennsylvania 19122, United States
| | - Warren Tomlinson
- Department of Physics, Naval Postgraduate School, 833 Dyer Road, Monterey, California 93943, United States
| | - Owen T. O’Sullivan
- Department of Chemistry, Temple University, 1901 North 13th Street, Philadelphia, Pennsylvania 19122, United States
| | - Ran Ding
- Department of Chemistry, Temple University, 1901 North 13th Street, Philadelphia, Pennsylvania 19122, United States
| | - Megan M. Van Vliet
- Department of Chemistry, Temple University, 1901 North 13th Street, Philadelphia, Pennsylvania 19122, United States
| | - Bradford B. Wayland
- Department of Chemistry, Temple University, 1901 North 13th Street, Philadelphia, Pennsylvania 19122, United States
| | - Joseph P. Hooper
- Department of Physics, Naval Postgraduate School, 833 Dyer Road, Monterey, California 93943, United States
| | - Michael J. Zdilla
- Department of Chemistry, Temple University, 1901 North 13th Street, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
34
|
Shan W, Desbois N, Pacquelet S, Stéphane Brandès, Rousselin Y, Conradie J, Ghosh A, Gros CP, Kadish KM. Ligand Noninnocence in Cobalt Dipyrrin-Bisphenols: Spectroscopic, Electrochemical, and Theoretical Insights Indicating an Emerging Analogy with Corroles. Inorg Chem 2019; 58:7677-7689. [PMID: 30653313 DOI: 10.1021/acs.inorgchem.8b03006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Three cobalt dipyrrin-bisphenol (DPPCo) complexes with different meso-aryl groups (pentafluorophenyl, phenyl, and mesityl) were synthesized and characterized based on their electrochemistry and spectroscopic properties in nonaqueous media. Each DPPCo undergoes multiple oxidations and reductions with the potentials, reversibility, and number of processes depending on the specific solution conditions, the specific macrocyclic substituents, and the type and number of axially coordinated ligands on the central cobalt ion. Theoretical calculations of the compounds with different coordination numbers are given in the current study in order to elucidate the cobalt-ion oxidation state and the innocence or noninnocence of the macrocyclic ligand as a function of the changes in the solvent properties and degree of axial coordination. Electron paramagnetic resonance spectra of the compounds are obtained to experimentally assess the electron spin state. An X-ray structure of the six-coordinate complex is also presented. The investigated chemical properties of DPPCo compounds under different solution conditions are compared to those of cobalt corroles, where the macrocycle and metal ion also possess formal 3- and 3+ oxidation states in their air-stable forms.
Collapse
Affiliation(s)
- Wenqian Shan
- Department of Chemistry , University of Houston , Houston , Texas 77204-5003 , United States
| | - Nicolas Desbois
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB) , UMR CNRS 6302, Université de Bourgogne-Franche-Comté , 9 avenue Alain Savary , B.P. 47870, 21078 Dijon, Cedex , France
| | - Sandrine Pacquelet
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB) , UMR CNRS 6302, Université de Bourgogne-Franche-Comté , 9 avenue Alain Savary , B.P. 47870, 21078 Dijon, Cedex , France
| | - Stéphane Brandès
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB) , UMR CNRS 6302, Université de Bourgogne-Franche-Comté , 9 avenue Alain Savary , B.P. 47870, 21078 Dijon, Cedex , France
| | - Yoann Rousselin
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB) , UMR CNRS 6302, Université de Bourgogne-Franche-Comté , 9 avenue Alain Savary , B.P. 47870, 21078 Dijon, Cedex , France
| | - Jeanet Conradie
- Department of Chemistry , University of the Free State , Bloemfontein 9300 , Republic of South Africa
| | - Abhik Ghosh
- Department of Chemistry , UiT-The Arctic University of Norway , Tromsø N-9037 , Norway
| | - Claude P Gros
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB) , UMR CNRS 6302, Université de Bourgogne-Franche-Comté , 9 avenue Alain Savary , B.P. 47870, 21078 Dijon, Cedex , France
| | - Karl M Kadish
- Department of Chemistry , University of Houston , Houston , Texas 77204-5003 , United States
| |
Collapse
|
35
|
Mishra R, Basumatary B, Singhal R, Sharma GD, Sankar J. Corrole-BODIPY Dyad as Small-Molecule Donor for Bulk Heterojunction Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2018; 10:31462-31471. [PMID: 30136584 DOI: 10.1021/acsami.8b08519] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Dyes based on charge-transfer (CT) characteristics are attractive candidates for organic photovoltaics due to their intense and broad absorption window. In these molecular frameworks, electron-rich donors and electron-deficient acceptors are covalently linked to achieve an effective CT process. Corrole, a tetrapyrrolic congener of porphyrin, is an excellent example of an electron-rich molecule with a large molar extinction coefficient. BODIPY, on the other hand, is a well-known electron-deficient bypyrrolic boron difluoride complex with intense absorption complementary to the corrole. A combination of these two structural motifs should result in a dyad having a wide absorption window, which will be suitable for organic photovoltaics. Herein, a corrole derivative has been envisaged as an efficient donor for solution-processed bulk heterojunction solar cells with PC71BM as an acceptor for the first time. The current molecule exhibits broad absorption in the visible range in solution as well as in thin films, with a high molar extinction coefficient and a low band gap of 1.79 eV. Frontier molecular orbital energy levels were found to be complementary to those of the well-known acceptor PC71BM. The optimized devices based on Cor-BODIPY:PC71BM showed a high power conversion efficiency (PCE) of 6.6% with Jsc = 11.46 mA/cm2, Voc = 0.90 V, and FF = 0.61. A remarkable value of incident photon-to-current conversion efficiency (IPCE) of 61% has also been observed.
Collapse
Affiliation(s)
- Ruchika Mishra
- Department of Chemistry , Indian Institute of Science Education and Research (IISER) Bhopal , Bhopal Bypass Road , Bhauri, Bhopal 462066 , Madhya Pradesh , India
| | - Biju Basumatary
- Department of Chemistry , Indian Institute of Science Education and Research (IISER) Bhopal , Bhopal Bypass Road , Bhauri, Bhopal 462066 , Madhya Pradesh , India
| | - Rahul Singhal
- Department of Physics , Malviya National Institute of Technology , Jaipur 302017 , Rajasthan , India
| | - Ganesh D Sharma
- Department of Physics , The LNM Institute of Information Technology (A Deemed University) , Jamdoli, Jaipur 302031 , Rajasthan , India
| | - Jeyaraman Sankar
- Department of Chemistry , Indian Institute of Science Education and Research (IISER) Bhopal , Bhopal Bypass Road , Bhauri, Bhopal 462066 , Madhya Pradesh , India
| |
Collapse
|
36
|
Bagchi V, Kalra A, Das P, Paraskevopoulou P, Gorla S, Ai L, Wang Q, Mohapatra S, Choudhury A, Sun Z, Cundari TR, Stavropoulos P. Comparative Nitrene-Transfer Chemistry to Olefinic Substrates Mediated by a Library of Anionic Mn(II) Triphenylamido-Amine Reagents and M(II) Congeners (M = Fe, Co, Ni) Favoring Aromatic over Aliphatic Alkenes. ACS Catal 2018. [DOI: 10.1021/acscatal.8b01941] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Vivek Bagchi
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Anshika Kalra
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Purak Das
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Patrina Paraskevopoulou
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
- Laboratory of Inorganic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou 15771, Athens, Greece
| | - Saidulu Gorla
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Lin Ai
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
- College of Chemistry, Beijing Normal University, Beijing 100875, People’s Republic of China
| | - Qiuwen Wang
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Sudip Mohapatra
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Amitava Choudhury
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Zhicheng Sun
- Department of Chemistry, Center for Advanced Scientific Computing and Modeling (CASCaM), University of North Texas, Denton, Texas 76203, United States
| | - Thomas R. Cundari
- Department of Chemistry, Center for Advanced Scientific Computing and Modeling (CASCaM), University of North Texas, Denton, Texas 76203, United States
| | - Pericles Stavropoulos
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| |
Collapse
|
37
|
Garai A, Sobottka S, Schepper R, Sinha W, Bauer M, Sarkar B, Kar S. Chromium Complexes with Oxido and Corrolato Ligands: Metal-Based Redox Processes versus Ligand Non-Innocence. Chemistry 2018; 24:12613-12622. [PMID: 29882607 DOI: 10.1002/chem.201801452] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/06/2018] [Indexed: 11/09/2022]
Abstract
Metal- versus ligand-centered redox processes and the effects of substituents on the ligands on the spectroscopic properties of the metal complexes are at the heart of research on metal complexes with non-innocent ligands. This work presents three examples of chromium complexes that contain both oxido and corrolato ligands, with the substituents on the corrolato ligands being different in the three cases. Combined X-ray crystallographic, electrochemical, UV/Vis/NIR/EPR spectroelectrochemical, and EXAFS/XANES measurements, together with DFT calculations, have been used to probe the complexes in three different redox forms. This combined approach makes it possible to address questions related to chromium- versus corrolato-centered redox processes, and the accessibility (or not) of CrIV , CrV , and CrVI in these complexes, as well as their spin states. To the best of our knowledge, these are the first EXAFS/XANES investigations on Cr-corrolato complexes in different redox forms, and hence these data should set benchmarks for future investigations on such complexes by this method.
Collapse
Affiliation(s)
- Antara Garai
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, Khordha, 752050, India
| | - Sebastian Sobottka
- Institut für Chemie und Biochemie, Anorganische Chemie, Freie Universität Berlin, Fabeckstraße 34-36, 14195, Berlin, Germany
| | - Rahel Schepper
- Universität Paderborn, Naturwissenschaftliche Fakultät, Department Chemie, Warburger Straße 100, 33098, Paderborn, Germany
| | - Woormileela Sinha
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, Khordha, 752050, India
| | - Matthias Bauer
- Universität Paderborn, Naturwissenschaftliche Fakultät, Department Chemie, Warburger Straße 100, 33098, Paderborn, Germany
| | - Biprajit Sarkar
- Institut für Chemie und Biochemie, Anorganische Chemie, Freie Universität Berlin, Fabeckstraße 34-36, 14195, Berlin, Germany
| | - Sanjib Kar
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, Khordha, 752050, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400094, India
| |
Collapse
|
38
|
Hua YG, Yang QQ, Yang Y, Wang MJ, Chu WC, Bai PY, Cui DY, Zhang E, Liu HM. Metal-free synthesis of 1,2-amino alcohols by one-pot olefin aziridination and acid ring-opening. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
39
|
Hill EA, Kelty ML, Filatov AS, Anderson JS. Isolable iodosylarene and iodoxyarene adducts of Co and their O-atom transfer and C-H activation reactivity. Chem Sci 2018; 9:4493-4499. [PMID: 29896391 PMCID: PMC5958341 DOI: 10.1039/c8sc01167b] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 04/19/2018] [Indexed: 01/04/2023] Open
Abstract
We report an unusual series of discrete iodosyl- and iodoxyarene adducts of Co(ii) including detailed studies of their O-transfer reactivity and mechanism.
We report an unusual series of discrete iodosyl- and iodoxyarene adducts of Co. The formation of these adducts was confirmed by a suite of techniques including single crystal X-ray diffraction. The reactivity of these adducts with O-atom acceptors and an H-atom donor has been investigated with particular focus on elucidating mechanistic details. Detailed kinetic analysis allows for discrimination between proposed oxo and adduct mediated mechanisms. In particular, these reactions have been interrogated by competition experiments with isotopically labelled mixtures which shows that all of the studied adducts display a large KIE. These studies suggest different mechanisms may be relevant depending on subtle substituent changes in the adduct complexes. Reactivity data are consistent with the involvement of a transient oxo complex in one case, while the two other systems appear to react with substrates directly as iodosyl- or iodoxyarene adducts. These results support that reactivity typically ascribed to metal-oxo complexes, such as O-atom transfer and C–H activation, can also be mediated by discrete transition metal iodosyl- or iodoxyarene adducts that are frequent intermediates in the generation of oxo complexes. The influence of additional Lewis acids such as Sc3+ on the reactivity of these systems has also been investigated.
Collapse
Affiliation(s)
- Ethan A Hill
- Department of Chemistry , The University of Chicago , 5735 S. Ellis Ave , Chicago , IL 60637 , USA .
| | - Margaret L Kelty
- Department of Chemistry , The University of Chicago , 5735 S. Ellis Ave , Chicago , IL 60637 , USA .
| | - Alexander S Filatov
- Department of Chemistry , The University of Chicago , 5735 S. Ellis Ave , Chicago , IL 60637 , USA .
| | - John S Anderson
- Department of Chemistry , The University of Chicago , 5735 S. Ellis Ave , Chicago , IL 60637 , USA .
| |
Collapse
|
40
|
Shehata MF, Ayer SK, Roizen JL. Iron(MCP) Complexes Catalyze Aziridination with Olefins As Limiting Reagents. J Org Chem 2018; 83:5072-5081. [DOI: 10.1021/acs.joc.8b00402] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Mina F. Shehata
- Duke University, Department of Chemistry, Box 90346, Durham, North Carolina 27708−0354, United States
| | - Suraj K. Ayer
- Duke University, Department of Chemistry, Box 90346, Durham, North Carolina 27708−0354, United States
| | - Jennifer L. Roizen
- Duke University, Department of Chemistry, Box 90346, Durham, North Carolina 27708−0354, United States
| |
Collapse
|
41
|
Keller CL, Kern JL, Terry BD, Roy S, Jenkins DM. Catalytic aziridination with alcoholic substrates via a chromium tetracarbene catalyst. Chem Commun (Camb) 2018; 54:1429-1432. [PMID: 29299550 PMCID: PMC6136250 DOI: 10.1039/c7cc08928g] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The first examples of aziridination catalysis with a chromium complex are communicated. This tetracarbene chromium complex provides novel catalytic aziridination reactions with protic substrates such as alcohols or amines on the alkene or organic azide and is the most effective catalyst at low alkene loading for aliphatic alkenes to date.
Collapse
Affiliation(s)
- C Luke Keller
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, USA.
| | | | | | | | | |
Collapse
|
42
|
Yu WL, Chen JQ, Wei YL, Wang ZY, Xu PF. Alkene functionalization for the stereospecific synthesis of substituted aziridines by visible-light photoredox catalysis. Chem Commun (Camb) 2018; 54:1948-1951. [DOI: 10.1039/c7cc09151f] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A novel strategy involving visible-light-induced functionalization of alkenes for the stereospecific synthesis of substituted aziridines was developed.
Collapse
Affiliation(s)
- Wan-Lei Yu
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Jian-Qiang Chen
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Yun-Long Wei
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Zhu-Yin Wang
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Peng-Fei Xu
- State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| |
Collapse
|
43
|
van Leest NP, Epping RF, van Vliet KM, Lankelma M, van den Heuvel EJ, Heijtbrink N, Broersen R, de Bruin B. Single-Electron Elementary Steps in Homogeneous Organometallic Catalysis. ADVANCES IN ORGANOMETALLIC CHEMISTRY 2018. [DOI: 10.1016/bs.adomc.2018.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
44
|
Wang L, Agnew DW, Yu X, Figueroa JS, Cohen SM. A Metal–Organic Framework with Exceptional Activity for C−H Bond Amination. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201709420] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Le Wang
- Department of Chemistry and Biochemistry University of California, San Diego La Jolla CA 92093 USA
| | - Douglas W. Agnew
- Department of Chemistry and Biochemistry University of California, San Diego La Jolla CA 92093 USA
| | - Xiao Yu
- Department of Nanoengineering University of California, San Diego La Jolla CA 92093 USA
| | - Joshua S. Figueroa
- Department of Chemistry and Biochemistry University of California, San Diego La Jolla CA 92093 USA
| | - Seth M. Cohen
- Department of Chemistry and Biochemistry University of California, San Diego La Jolla CA 92093 USA
| |
Collapse
|
45
|
Wang L, Agnew DW, Yu X, Figueroa JS, Cohen SM. A Metal–Organic Framework with Exceptional Activity for C−H Bond Amination. Angew Chem Int Ed Engl 2017; 57:511-515. [DOI: 10.1002/anie.201709420] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/11/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Le Wang
- Department of Chemistry and Biochemistry University of California, San Diego La Jolla CA 92093 USA
| | - Douglas W. Agnew
- Department of Chemistry and Biochemistry University of California, San Diego La Jolla CA 92093 USA
| | - Xiao Yu
- Department of Nanoengineering University of California, San Diego La Jolla CA 92093 USA
| | - Joshua S. Figueroa
- Department of Chemistry and Biochemistry University of California, San Diego La Jolla CA 92093 USA
| | - Seth M. Cohen
- Department of Chemistry and Biochemistry University of California, San Diego La Jolla CA 92093 USA
| |
Collapse
|
46
|
Yadav O, Varshney A, Kumar A. Manganese(III) mediated synthesis of A2B Mn(III) corroles: A new general and green synthetic approach and characterization. INORG CHEM COMMUN 2017. [DOI: 10.1016/j.inoche.2017.10.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
47
|
McNicholas BJ, Blumenfeld C, Kramer WW, Grubbs RH, Winkler JR, Gray HB. Electrochemistry in ionic liquids: Case study of a manganese corrole. RUSS J ELECTROCHEM+ 2017. [DOI: 10.1134/s1023193517100068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
48
|
Yadav P, Sankar M, Ke X, Cong L, Kadish KM. Highly reducible π-extended copper corroles. Dalton Trans 2017; 46:10014-10022. [PMID: 28726883 DOI: 10.1039/c7dt01814b] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Di- and octa-phenylethynyl (PE) substituted π-extended copper corroles were synthesized and characterized as to their structural, electrochemical and spectroscopic properties. The addition of two or eight PE groups to the β-pyrrole positions of the corrole results in dramatic red shifts in the electronic absorption spectra and new reductions which are not seen for the parent compound lacking PE substituents. CuCor(PE)8 is reduced in four reversible one-electron transfer steps to give derivatives of [CuCor(PE)8]n- where n = 1, 2, 3 or 4. Variable temperature 1H NMR and EPR measurements were carried out and suggest that the octa- and di-PE substituted Cu-corroles can both be described as an antiferromagnetically coupled CuII corrole cation radical which is in equilibrium with a triplet state, possibly due to a lower singlet-triplet energy gap as compared to 1 and 2 at room temperature. The EPR spectra of one-electron oxidized and one electron reduced species exhibited the characteristics of Cu(ii) corroles. The products generated in the first two reductions of each π-extended corrole were characterized by thin-layer spectroelectrochemistry, thus providing new insights into how UV-vis spectra of highly reduced corroles vary as a function of the number of PE groups and overall charge on the molecule. The singly reduced and singly oxidized copper corroles were also chemically generated in CH3CN and shown to have UV-visible spectra almost identical to the spectra obtained by electroreduction or electrooxidation in PhCN or THF containing 0.1 M tetrabutylammonium perchlorate.
Collapse
Affiliation(s)
- Pinky Yadav
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee-247667, India.
| | | | | | | | | |
Collapse
|
49
|
Patra B, Patra SK, Mukherjee P, Maurya YK, Sinha W, Kar S. Grignard Reagent Mediated Demetallation of Silver Corrole Complexes. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201601549] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Bratati Patra
- School of Chemical Sciences; National Institute of Science Education and Research (NISER); 752050 Bhubaneswar Khordha India
- Training School Complex; Homi Bhabha National Institute; Anushakti Nagar 400094 Mumbai India
| | - Sajal Kumar Patra
- School of Chemical Sciences; National Institute of Science Education and Research (NISER); 752050 Bhubaneswar Khordha India
- Training School Complex; Homi Bhabha National Institute; Anushakti Nagar 400094 Mumbai India
| | - Payel Mukherjee
- School of Chemical Sciences; National Institute of Science Education and Research (NISER); 752050 Bhubaneswar Khordha India
- Training School Complex; Homi Bhabha National Institute; Anushakti Nagar 400094 Mumbai India
| | - Yogesh Kumar Maurya
- School of Chemical Sciences; National Institute of Science Education and Research (NISER); 752050 Bhubaneswar Khordha India
- Training School Complex; Homi Bhabha National Institute; Anushakti Nagar 400094 Mumbai India
| | - Woormileela Sinha
- School of Chemical Sciences; National Institute of Science Education and Research (NISER); 752050 Bhubaneswar Khordha India
- Training School Complex; Homi Bhabha National Institute; Anushakti Nagar 400094 Mumbai India
| | - Sanjib Kar
- School of Chemical Sciences; National Institute of Science Education and Research (NISER); 752050 Bhubaneswar Khordha India
- Training School Complex; Homi Bhabha National Institute; Anushakti Nagar 400094 Mumbai India
| |
Collapse
|
50
|
Ghosh A. Electronic Structure of Corrole Derivatives: Insights from Molecular Structures, Spectroscopy, Electrochemistry, and Quantum Chemical Calculations. Chem Rev 2017; 117:3798-3881. [PMID: 28191934 DOI: 10.1021/acs.chemrev.6b00590] [Citation(s) in RCA: 218] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Presented herein is a comprehensive account of the electronic structure of corrole derivatives. Our knowledge in this area derives from a broad range of methods, including UV-vis-NIR absorption and MCD spectroscopies, single-crystal X-ray structure determination, vibrational spectroscopy, NMR and EPR spectroscopies, electrochemistry, X-ray absorption spectroscopy, and quantum chemical calculations, the latter including both density functional theory and ab initio multiconfigurational methods. The review is organized according to the Periodic Table, describing free-base and main-group element corrole derivatives, then transition-metal corroles, and finally f-block element corroles. Like porphyrins, corrole derivatives with a redox-inactive coordinated atom follow the Gouterman four-orbital model. A key difference from porphyrins is the much wider prevalence of noninnocent electronic structures as well as full-fledged corrole•2- radicals among corrole derivatives. The most common orbital pathways mediating ligand noninnocence in transition-metal corroles are the metal(dz2)-corrole("a2u") interaction (most commonly observed in Mn and Fe corroles) and the metal(dx2-y2)-corrole(a2u) interaction in coinage metal corroles. Less commonly encountered is the metal(dπ)-corrole("a1u") interaction, a unique feature of formal d5 metallocorroles. Corrole derivatives exhibit a rich array of optical properties, including substituent-sensitive Soret maxima indicative of ligand noninnocence, strong fluorescence in the case of lighter main-group element complexes, and room-temperature near-IR phosphorescence in the case of several 5d metal complexes. The review concludes with an attempt at identifying gaps in our current knowledge and potential future directions of electronic-structural research on corrole derivatives.
Collapse
Affiliation(s)
- Abhik Ghosh
- Department of Chemistry and Center for Theoretical and Computational Chemistry, UiT-The Arctic University of Norway , 9037 Tromsø, Norway
| |
Collapse
|