1
|
Szabó P, Lendvay G. Theoretical dynamics studies of the CH 3 + HBr → CH 4 + Br reaction: effects of isotope substitution and vibrational excitation of CH 3. Phys Chem Chem Phys 2024; 26:10530-10537. [PMID: 38512242 DOI: 10.1039/d3cp05610d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
The rate coefficient for two deuterium substituted isotopologues of reaction CH3 + HBr → CH4 + Br has been determined using the quasiclassical trajectory (QCT) method. We used the analytical potential energy surface (PES) fitted to high-level ab initio points in earlier work. The PES exhibits a pre-reaction van der Waals complex and a submerged potential barrier. The rate coefficients of the deuterated isotopologue reactions, similarly to the pure-protium isotopologue, show significant deviation from the Arrhenius law, namely, the activation energy is negative below about 600 K and positive above it: k[CH3 + DBr] = 1.35 × 10-11 exp(- 2472/T) + 5.85 × 10-13 exp(335/T) and k[CD3 + HBr] = 2.73 × 10-11 exp(- 2739/T) + 1.46 × 10-12 exp(363/T). The CH3 + DBr reaction is slower by a factor of 1.8, whereas CD3 + HBr isotopologue is faster by a factor of 1.4 compared to the HBr + CH3 system across a wide temperature range. The isotope effects are interpreted in terms of the properties of various regions of the PES. Quantum state-resolved simulations revealed that the reaction of CH3 with HBr becomes slower when any of the vibrational modes of the methyl radical is excited. This contradicts the assumption that vibrational excitation of methyl radicals enhances its reactivity, which is of historical importance: this assumption was used as an argument against the existence of negative activation energy in a decade-long controversy in the 1980s and 1990s.
Collapse
Affiliation(s)
- Péter Szabó
- Department of Chemistry, KU Leuven, Celestijnenlaan, 200F, Leuven, 3001, Belgium.
- Royal Belgian Institute for Space Aeronomy (BIRA-IASB), Avenue Circulaire 3, Brussels, 1180, Belgium
| | - György Lendvay
- Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Magyar tudósok krt. 2., H-1117 Budapest, Hungary.
- Center for Natural Sciences, Faculty of Engineering, University of Pannonia, Egyetem u. 10, Veszprém, 8200, Hungary
| |
Collapse
|
2
|
Zhang T, Lu Y, Cheng X. State-Specific Dynamic Study of the Exchange and Dissociation Reaction for O(3P) and O2($${}^{3}\Sigma _{g}^{ - }$$) Collision by Quasi-Classical Trajectory. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2022. [DOI: 10.1134/s0036024422040331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Gao D, Xin X, Wang D, Szabó P, Lendvay G. Theoretical dynamics studies of the CH 3 + HBr → CH 4 + Br reaction: integral cross sections, rate constants and microscopic mechanism. Phys Chem Chem Phys 2022; 24:10548-10560. [PMID: 35445671 DOI: 10.1039/d2cp00066k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Quantum and quasi-classical dynamics calculations have been performed for the reaction of HBr with CH3. The accurate ab initio-based potential energy surface function developed earlier for this reaction displays a potential well corresponding to a reactant complex and a submerged potential barrier. The integral cross sections were calculated on this potential energy surface using both a six-degree-of-freedom reduced dimensional quantum dynamics and the quasi-classical trajectory method and very good agreement was found between the two approaches. The cross sections were found to diverge when the collision energy decreases, indicating that the reactant attraction is responsible for the dynamics at low collision energy. The quantum mechanical and the quasi-classical rate constants also agree very well and almost exactly reproduce the experimental results at low temperatures up to 540 K. The negative activation energy observed experimentally is confirmed by the calculations and is a consequence of the long-range attraction between the reactants. From the classical trajectories mechanistic details have been extracted. It is found that at very low collision energy, the reacting system crosses the potential barrier because the forces within the complex guide them, although some 30% is reflected from the product side of the barrier. When the collision energy increases, the system does not follow the most favorable path and the reactants are, with increasing probability, reflected from the repulsive walls of the nonreactive parts of the reactants, providing a picture beyond the decreasing excitation function.
Collapse
Affiliation(s)
- Delu Gao
- College of Physics and Electronics, Shandong Normal University, Jinan 250014, Shandong, China.
| | - Xin Xin
- College of Physics and Electronics, Shandong Normal University, Jinan 250014, Shandong, China.
| | - Dunyou Wang
- College of Physics and Electronics, Shandong Normal University, Jinan 250014, Shandong, China.
| | - Péter Szabó
- Faculté des Sciences, des Technologies et de Médecine, Département Physique et sciences des matériaux, Campus Limpertsberg, Université du Luxembourg 162 A, avenue de la, Faïencerie L-1511, Luxembourg
| | - György Lendvay
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar Tudósok krt. 2, H-1117 Budapest, Hungary. .,Department of General and Inorganic Chemistry, University of Pannonia, Egyetem utca 10, Veszprém, H-8200, Hungary
| |
Collapse
|
4
|
Barbe A, Mikhailenko S, Starikova E, Tyuterev V. High Resolution Infrared Spectroscopy in Support of Ozone Atmospheric Monitoring and Validation of the Potential Energy Function. Molecules 2022; 27:911. [PMID: 35164172 PMCID: PMC8838290 DOI: 10.3390/molecules27030911] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/21/2022] [Accepted: 01/22/2022] [Indexed: 11/16/2022] Open
Abstract
The first part of this review is a brief reminder of general information concerning atmospheric ozone, particularly related to its formation, destruction, observations of its decrease in the stratosphere, and its increase in the troposphere as a result of anthropogenic actions and solutions. A few words are said about the abandonment of the Airbus project Alliance, which was expected to be the substitute of the supersonic Concorde. This project is over due to the theoretical evaluation of the impact of a fleet in the stratosphere and has been replaced by the A380, which is now operating. The largest part is devoted to calculations and observations of the transitions in the infrared range and their applications for the atmosphere based both on effective models (Hamiltonian, symmetry rules, and dipole moments) and ab initio calculations. The complementarities of the two approaches are clearly demonstrated, particularly for the creation of an exhaustive line list consisting of more than 300,000 lines reaching experimental accuracies (from 0.00004 to 0.001 cm-1) for positions and a sub percent for the intensities in the 10 microns region. This contributes to definitively resolving the issue of the observed discrepancies between line intensity data in different spectral regions: between the infrared and ultraviolet ranges, on the one hand, and between 10 and 5 microns on the other hand. The following section is devoted to the application of recent work to improve the knowledge about the behavior of potential function at high energies. A controversial issue related to the shape of the potential function in the transition state range near the dissociation is discussed.
Collapse
Affiliation(s)
- Alain Barbe
- Groupe de Spectrométrie Moléculaire et Atmosphérique, UMR CNRS 7331, Université de Reims, UFR Sciences Exactes et Naturelles, CEDEX02, BP 1039-51687 Reims, France;
| | - Semen Mikhailenko
- Laboratory of Theoretical Spectroscopy, V.E. Zuev Institute of Atmospheric Optics SB RAS, 634055 Tomsk, Russia; (S.M.); (E.S.)
- Climate and Environmental Physics Laboratory, Ural Federal University, 19, Mira av., 620002 Yekaterinburg, Russia
| | - Evgeniya Starikova
- Laboratory of Theoretical Spectroscopy, V.E. Zuev Institute of Atmospheric Optics SB RAS, 634055 Tomsk, Russia; (S.M.); (E.S.)
| | - Vladimir Tyuterev
- Groupe de Spectrométrie Moléculaire et Atmosphérique, UMR CNRS 7331, Université de Reims, UFR Sciences Exactes et Naturelles, CEDEX02, BP 1039-51687 Reims, France;
- Laboratory of Theoretical Spectroscopy, V.E. Zuev Institute of Atmospheric Optics SB RAS, 634055 Tomsk, Russia; (S.M.); (E.S.)
- Laboratory of Quantum Mechanics of Molecules and Radiative Processes, Tomsk State University, 634050 Tomsk, Russia
| |
Collapse
|
5
|
Csorba B, Szabó P, Góger S, Lendvay G. The Role of Zero-Point Vibration and Reactant Attraction in Exothermic Bimolecular Reactions with Submerged Potential Barriers: Theoretical Studies of the R + HBr → RH + Br (R = CH 3, HO) Systems. J Phys Chem A 2021; 125:8386-8396. [PMID: 34543008 PMCID: PMC8488937 DOI: 10.1021/acs.jpca.1c05839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The dynamics of the reactions CH3 + HBr → CH4 + Br and HO + HBr → H2O + Br have been studied using the quasiclassical trajectory method to explore the interplay of the vibrational excitation of the breaking bond and the potential energy surface characterized by a prereaction van der Waals well and a submerged barrier to reaction. The attraction between the reactants is favorable for the reaction, because it brings together the reactants without any energy investment. The reaction can be thought to be controlled by capture. The trajectory calculations indeed provide excitation functions typical to capture: the reaction cross sections diverge when the collision energy is reduced toward zero. Excitation of reactant vibration accelerates both reactions. The barrier on the potential surface is so early that the coupling between the degrees of freedom at the saddle point geometry is negligible. However, the trajectory calculations show that when the breaking bond is stretched at the time of the encounter, an attractive force arises, as if the radical approached a HBr molecule whose bond is partially broken. As a result, the dynamics of the reaction are controlled more by the temporary "dynamical", vibrationally induced than by the "static" van der Waals attraction even when the reactants are in vibrational ground state. The cross sections are shown to drop to very small values when the amplitude of the breaking bond's vibration is artificially reduced, which provides an estimate of the reactivity due to the "static" attraction. Without zero-point vibration these reactions would be very slow, which is a manifestation of a unique quantum effect. Reactions where the reactivity is determined by dynamical factors such as the vibrationally enhanced attraction are found to be beyond the range of applicability of Polanyi's rules.
Collapse
Affiliation(s)
- Benjámin Csorba
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar tudósok krt. 2., H-1117 Budapest, Hungary
| | - Péter Szabó
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar tudósok krt. 2., H-1117 Budapest, Hungary
| | - Szabolcs Góger
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar tudósok krt. 2., H-1117 Budapest, Hungary
| | - György Lendvay
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar tudósok krt. 2., H-1117 Budapest, Hungary.,Center for Natural Sciences, Faculty of Engineering, University of Pannonia, Egyetem u. 10. Veszprém, 8200 Hungary
| |
Collapse
|
6
|
Lendvay G. Mechanism Change in the Dynamics of the O' + O 2 → O'O + O Atom Exchange Reaction at High Collision Energies. J Phys Chem A 2019; 123:10230-10239. [PMID: 31647868 DOI: 10.1021/acs.jpca.9b07393] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The extreme velocity and the large available energy of atoms with hyperthermal kinetic energies can give rise to novel mechanisms and behavior of chemical reactions unseen at thermal conditions. Crossed-molecular-beams experiments combined with isotope labeling on the reaction of hyperthermal O atoms with O2 molecules have provided an example of the arising complexity of such systems. Quasiclassical trajectory (QCT) calculations proved to be instructive in the exploration of the microscopic mechanism of the reactive and inelastic scattering observed, and a new mechanism has been identified: there are reactive collisions in which the potential energy remains repulsive during the entire encounter ("direct" reactions in which, in a sense, no complex is formed). In this work, the effect of the magnitude of the collision energy on this mechanism is explored. At hyperthermal collision energies, the reaction is characterized by a unique impact parameter window favorable for reaction through complex formation, while the direct collisions take place exclusively at small impact parameters. In direct reactive collisions, contributing as much as 12% to the reaction cross section, first the existing bond is broken, and the new bond is formed afterward. This kind of collision is unique to extremely high collision energies. Analysis of various correlations was used to find out the details of the reaction dynamics. The observed phenomena indicate that when the collision energy is extremely high, one can expect deviation from what an extrapolation from the more familiar energy ranges would predict.
Collapse
Affiliation(s)
- György Lendvay
- Institute of Materials and Environmental Chemistry , Research Centre for Natural Sciences , Magyar tudósok krt. 2 , H-1117 Budapest , Hungary
| |
Collapse
|
7
|
Yuen CH, Lapierre D, Gatti F, Kokoouline V, Tyuterev VG. The Role of Ozone Vibrational Resonances in the Isotope Exchange Reaction 16O 16O + 18O → 18O 16O + 16O: The Time-Dependent Picture. J Phys Chem A 2019; 123:7733-7743. [PMID: 31408343 DOI: 10.1021/acs.jpca.9b06139] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We consider the time-dependent dynamics of the isotope exchange reaction in collisions between an oxygen molecule and an oxygen atom: 16O16O + 18O → 16O18O + 16O. A theoretical approach using the multiconfiguration time-dependent Hartree method was employed to model the time evolution of the reaction. Two potential surfaces available in the literature were used in the calculations, and the results obtained with the two surfaces are compared with each other as well as with results of a previous theoretical time-independent approach. A good agreement for the reaction probabilities with the previous theoretical results is found. Comparing the results obtained using two potential energy surfaces allows us to understand the role of the reef/shoulder-like feature in the minimum energy path of the reaction in the isotope exchange process. Also, it was found that the distribution of final products of the reaction is highly anisotropic, which agrees with experimental observations and, at the same time, suggests that the family of approximated statistical approaches, assuming a randomized distribution over final exit channels, is not applicable to this case.
Collapse
Affiliation(s)
- Chi Hong Yuen
- Department of Physics , University of Central Florida , Orlando , Florida 32816 , United States
| | - David Lapierre
- Groupe de Spectrométrie Moléculaire et Atmosphérique, UMR CNRS 7331, UFR Sciences , BP 1039, 51687 Reims Cedex 2 , France
| | - Fabien Gatti
- Institut de Sciences Moléculaires d'Orsay, UMR-CNRS 8214, Université Paris-Sud, Université Paris-Saclay , 91405 Orsay , France
| | - Viatcheslav Kokoouline
- Department of Physics , University of Central Florida , Orlando , Florida 32816 , United States
| | - Vladimir G Tyuterev
- Groupe de Spectrométrie Moléculaire et Atmosphérique, UMR CNRS 7331, UFR Sciences , BP 1039, 51687 Reims Cedex 2 , France.,QUAMER Laboratory , Tomsk State University , 634000 Tomsk , Russia
| |
Collapse
|
8
|
Li XM, Sun ZG. An Exact Propagator for Solving the Triatomic Reactive Schrödinger Equation. CHINESE J CHEM PHYS 2017. [DOI: 10.1063/1674-0068/30/cjcp1711220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Xue-ming Li
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi-gang Sun
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
9
|
|
10
|
Lahankar SA, Zhang J, Minton TK, Guo H, Lendvay G. Dynamics of the O-Atom Exchange Reaction 16O(3P) + 18O18O(3Σg–) → 16O18O(3Σg–) + 18O(3P) at Hyperthermal Energies. J Phys Chem A 2016; 120:5348-59. [DOI: 10.1021/acs.jpca.6b01855] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sridhar A. Lahankar
- Department of Chemistry and
Biochemistry, Montana State University Bozeman, Montana 59717, United States
| | - Jianming Zhang
- Department of Chemistry and
Biochemistry, Montana State University Bozeman, Montana 59717, United States
| | - Timothy K. Minton
- Department of Chemistry and
Biochemistry, Montana State University Bozeman, Montana 59717, United States
| | - Hua Guo
- Department
of Chemistry and
Chemical Biology, University of New Mexico Albuquerque, New Mexico 87131, United States
| | - György Lendvay
- Institute of Materials and
Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, P.O. Box 286, H-1519 Budapest, Hungary
| |
Collapse
|
11
|
Andrienko DA, Boyd ID. Rovibrational energy transfer and dissociation in O2-O collisions. J Chem Phys 2016; 144:104301. [PMID: 26979687 DOI: 10.1063/1.4943114] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A set of state-specific transition rates for each rovibrational level is generated for the O2(X(3)Σ(g)(-))-O(3)P system using the quasi-classical trajectory method at temperatures observed in hypersonic flows. A system of master equations describes the relaxation of the rovibrational ensemble to thermal equilibrium under ideal heat bath conditions at a constant translational temperature. Vibrational and rotational relaxation times, obtained from the average internal energies, exhibit a pattern inherent in a chemically reactive collisional pair. An intrinsic feature of the O3 molecular system with a large attractive potential is a weak temperature dependence of the rovibrational transition rates. For this reason, the quasi-steady vibrational and rotational temperatures experience a maximum at increasing translational temperature. The energy rate coefficients, that characterize the average loss of internal energy due to dissociation, quickly diminish at high temperatures, compared to other molecular systems.
Collapse
Affiliation(s)
- Daniil A Andrienko
- Department of Aerospace Engineering, University of Michigan, 1320 Beal Ave., Ann Arbor, Michigan 48108, USA
| | - Iain D Boyd
- Department of Aerospace Engineering, University of Michigan, 1320 Beal Ave., Ann Arbor, Michigan 48108, USA
| |
Collapse
|
12
|
Rao TR, Guillon G, Mahapatra S, Honvault P. Differential Cross Sections and Product Rovibrational Distributions for 16O + 32O2 and 18O + 36O2 Collisions. J Phys Chem A 2015; 119:11432-9. [DOI: 10.1021/acs.jpca.5b08638] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Grégoire Guillon
- Laboratoire ICB,
UMR 6303, CNRS-Université de Bourgogne Franche-Comté, 21078 Dijon cedex, France
| | - Susanta Mahapatra
- School of Chemistry, University of Hyderabad, Hyderabad 500 046, India
| | - Pascal Honvault
- Laboratoire ICB,
UMR 6303, CNRS-Université de Bourgogne Franche-Comté, 21078 Dijon cedex, France
- UFR Sciences et Techniques, Université de Franche-Comté, 25030 Besançon Cedex, France
| |
Collapse
|
13
|
Garofalo LA, Smith MC, Dagdigian PJ, Kłos J, Alexander MH, Boering KA, Lin JJM. Electronic quenching of O((1)D) by Xe: Oscillations in the product angular distribution and their dependence on collision energy. J Chem Phys 2015; 143:054307. [PMID: 26254653 DOI: 10.1063/1.4927705] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The dynamics of the O((1)D) + Xe electronic quenching reaction was investigated in a crossed beam experiment at four collision energies. Marked large-scale oscillations in the differential cross sections were observed for the inelastic scattering products, O((3)P) and Xe. The shape and relative phases of the oscillatory structure depend strongly on collision energy. Comparison of the experimental results with time-independent scattering calculations shows qualitatively that this behavior is caused by Stueckelberg interferences, for which the quantum phases of the multiple reaction pathways accessible during electronic quenching constructively and destructively interfere.
Collapse
Affiliation(s)
- Lauren A Garofalo
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Mica C Smith
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Paul J Dagdigian
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218-2685, USA
| | - Jacek Kłos
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742-2021, USA
| | - Millard H Alexander
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742-2021, USA
| | - Kristie A Boering
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Jim Jr-Min Lin
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| |
Collapse
|
14
|
Sun Z, Yu D, Xie W, Hou J, Dawes R, Guo H. Kinetic isotope effect of the 16O + 36O2 and 18O + 32O2 isotope exchange reactions: Dominant role of reactive resonances revealed by an accurate time-dependent quantum wavepacket study. J Chem Phys 2015; 142:174312. [DOI: 10.1063/1.4919861] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Zhigang Sun
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China and Center for Advanced Chemical Physics and 2011 Frontier Center for Quantum Science and Technology, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, China
| | - Dequan Yu
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China and Center for Advanced Chemical Physics and 2011 Frontier Center for Quantum Science and Technology, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, China
| | - Wenbo Xie
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China and Center for Advanced Chemical Physics and 2011 Frontier Center for Quantum Science and Technology, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, China
| | - Jiayi Hou
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China and Center for Advanced Chemical Physics and 2011 Frontier Center for Quantum Science and Technology, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, China
| | - Richard Dawes
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, USA
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| |
Collapse
|
15
|
Rao TR, Guillon G, Mahapatra S, Honvault P. Huge Quantum Symmetry Effect in the O + O2 Exchange Reaction. J Phys Chem Lett 2015; 6:633-636. [PMID: 26262478 DOI: 10.1021/jz5026257] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We report extensive, full quantum-mechanical calculations for the (16)O + (16)O(16)O → (16)O(16)O + (16)O collisions, for both inelastic and atom exchange processes, using a time-independent method based on hyperspherical coordinates. The rates obtained in the present study are much larger than the previously reported ones for this system. The discrepancy is attributed to a huge symmetry effect that was missing in the studies so far. This effect differs from the well-known isotope effect. Importance of this quantum effect is further confirmed by comparison with results for the (16)O + (18)O(18)O → (16)O(18)O + (18)O, exchange reaction.
Collapse
Affiliation(s)
- Tammineni Rajagopala Rao
- †Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR CNRS 6303, Université de Bourgogne, 21078 Dijon Cedex, France
| | - Grégoire Guillon
- †Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR CNRS 6303, Université de Bourgogne, 21078 Dijon Cedex, France
| | - Susanta Mahapatra
- ‡School of Chemistry, University of Hyderabad, Hyderabad 500046, India
| | - Pascal Honvault
- †Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR CNRS 6303, Université de Bourgogne, 21078 Dijon Cedex, France
- §UFR Sciences et Techniques, Université de Franche-Comté, 25030 Besançon Cedex, France
| |
Collapse
|
16
|
Xie W, Liu L, Sun Z, Guo H, Dawes R. State-to-state reaction dynamics of 18O+32O2 studied by a time-dependent quantum wavepacket method. J Chem Phys 2015; 142:064308. [DOI: 10.1063/1.4907229] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Wenbo Xie
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical & Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| | - Lan Liu
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical & Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| | - Zhigang Sun
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical & Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Richard Dawes
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, USA
| |
Collapse
|
17
|
Tyuterev VG, Kochanov R, Campargue A, Kassi S, Mondelain D, Barbe A, Starikova E, De Backer MR, Szalay PG, Tashkun S. Does the "reef structure" at the ozone transition state towards the dissociation exist? New insight from calculations and ultrasensitive spectroscopy experiments. PHYSICAL REVIEW LETTERS 2014; 113:143002. [PMID: 25325639 DOI: 10.1103/physrevlett.113.143002] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Indexed: 06/04/2023]
Abstract
Since the discovery of anomalies in ozone isotope enrichment, several fundamental issues in the dynamics linked to the shape of the potential energy surface in the transition state region have been raised. The role of the reeflike structure on the minimum energy path is an intricate question previously discussed in the context of chemical experiments. In this Letter, we bring strong arguments in favor of the absence of a submerged barrier from ultrasensitive laser spectroscopy experiments combined with accurate predictions of highly excited vibrations up to nearly 95% of the dissociation threshold.
Collapse
Affiliation(s)
- Vl G Tyuterev
- GSMA, Université de Reims & CNRS, BP 1039-51687 Reims Cedex 2, France
| | - R Kochanov
- QUAMER, Tomsk State University, Tomsk 634050, Russia and Harvard-Smithsonian Center for Astrophysics Atomic and Molecular Physics, Cambridge, Massachusetts 02138, USA
| | - A Campargue
- LIPhy, Université de Grenoble Alpes & CNRS, F-38000 Grenoble, France
| | - S Kassi
- LIPhy, Université de Grenoble Alpes & CNRS, F-38000 Grenoble, France
| | - D Mondelain
- LIPhy, Université de Grenoble Alpes & CNRS, F-38000 Grenoble, France
| | - A Barbe
- GSMA, Université de Reims & CNRS, BP 1039-51687 Reims Cedex 2, France
| | - E Starikova
- QUAMER, Tomsk State University, Tomsk 634050, Russia and LTS, V.E. Zuev Institute of Atmospheric Optics, Tomsk 634021, Russia
| | - M R De Backer
- GSMA, Université de Reims & CNRS, BP 1039-51687 Reims Cedex 2, France
| | - P G Szalay
- Institute of Chemistry, Eövös Loránd University, Box 32, H-1117 Budapest 112, Hungary
| | - S Tashkun
- QUAMER, Tomsk State University, Tomsk 634050, Russia and LTS, V.E. Zuev Institute of Atmospheric Optics, Tomsk 634021, Russia
| |
Collapse
|
18
|
Li Y, Sun Z, Jiang B, Xie D, Dawes R, Guo H. Communication: Rigorous quantum dynamics of O + O2 exchange reactions on an ab initio potential energy surface substantiate the negative temperature dependence of rate coefficients. J Chem Phys 2014; 141:081102. [DOI: 10.1063/1.4894069] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
19
|
Van Wyngarden AL, Mar KA, Quach J, Nguyen APQ, Wiegel AA, Lin SY, Lendvay G, Guo H, Lin JJ, Lee YT, Boering KA. The non-statistical dynamics of the 18O + 32O2 isotope exchange reaction at two energies. J Chem Phys 2014; 141:064311. [DOI: 10.1063/1.4892346] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
| | - Kathleen A. Mar
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Jim Quach
- Department of Mathematics, San José State University, San Jose, California 95192, USA
| | - Anh P. Q. Nguyen
- Department of Mathematics, San José State University, San Jose, California 95192, USA
| | - Aaron A. Wiegel
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Shi-Ying Lin
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
- School of Physics, Shandong University, Jinan 250100, China
| | - Gyorgy Lendvay
- Institute for Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, P.O.B. 286, Budapest H-1519, Hungary
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Jim J. Lin
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Yuan T. Lee
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Kristie A. Boering
- Department of Chemistry, University of California, Berkeley, California 94720, USA
- Department of Earth and Planetary Science, University of California, Berkeley, California 94720, USA
| |
Collapse
|
20
|
Dawes R, Lolur P, Li A, Jiang B, Guo H. Communication: An accurate global potential energy surface for the ground electronic state of ozone. J Chem Phys 2013; 139:201103. [DOI: 10.1063/1.4837175] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
21
|
Thiemens MH. Introduction to chemistry and applications in nature of mass independent isotope effects special feature. Proc Natl Acad Sci U S A 2013; 110:17631-7. [PMID: 24167299 PMCID: PMC3816458 DOI: 10.1073/pnas.1312926110] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Stable isotope ratio variations are regulated by physical and chemical laws. These rules depend on a relation with mass differences between isotopes. New classes of isotope variation effects that deviate from mass dependent laws, termed mass independent isotope effects, were discovered in 1983 and have a wide range of applications in basic chemistry and nature. In this special edition, new applications of these effects to physical chemistry, solar system origin models, terrestrial atmospheric and biogenic evolution, polar paleo climatology, snowball earth geology, and present day atmospheric sciences are presented.
Collapse
Affiliation(s)
- Mark H. Thiemens
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, CA 92093-0356
| |
Collapse
|
22
|
Hu X, Xie C, Xie D, Guo H. State-to-state quantum dynamics of the N(4S) + CH(X2Π) → CN(X2Σ+,A2Π) + H(2S) reactions. J Chem Phys 2013; 139:124313. [PMID: 24089773 DOI: 10.1063/1.4822003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The reactions between N((4)S) and CH(X(2)Π) lead to H((2)S) plus CN in its two lowest electronic states (X(2)Σ(+) and A(2)Π), which are responsible for the interstellar CN formation. Accurate quantum dynamics of these reactions are investigated on new global potential energy surfaces of the two lowest-lying triplet states of HCN (1(3)A' and 1(3)A") fitted to more than 37,000 points at the internally contracted multi-reference configuration interaction level with the Davidson correction. The pathways for these highly exothermic and barrierless reactions feature both the HCN and HNC wells. Long-lived resonances supported by these wells manifest in reaction probabilities as numerous oscillations, particularly for low J partial waves. The 1(3)A" state is found to be more reactive than the 1(3)A' state, due apparently to its more attractive nature in the entrance channel. The CN products in both electronic states are highly excited in both vibrational and rotational degrees of freedom. The near forward-backward symmetric differential cross sections are consistent with a complex-forming mechanism.
Collapse
Affiliation(s)
- Xixi Hu
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | | | | | | |
Collapse
|
23
|
Yeung LY, Young ED, Schauble EA. Measurements of18O18O and17O18O in the atmosphere and the role of isotope-exchange reactions. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2012jd017992] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
24
|
Ivanov MV, Babikov D. Efficient quantum-classical method for computing thermal rate constant of recombination: Application to ozone formation. J Chem Phys 2012; 136:184304. [DOI: 10.1063/1.4711760] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
25
|
|
26
|
Yeung LY, Okumura M, Zhang J, Minton TK, Paci JT, Karton A, Martin JML, Camden JP, Schatz GC. O(3P) + CO2 Collisions at Hyperthermal Energies: Dynamics of Nonreactive Scattering, Oxygen Isotope Exchange, and Oxygen-Atom Abstraction. J Phys Chem A 2011; 116:64-84. [DOI: 10.1021/jp2080379] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Laurence Y. Yeung
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Mitchio Okumura
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Jianming Zhang
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Timothy K. Minton
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Jeffrey T. Paci
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8W 3V6, Canada, and Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Amir Karton
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, IL-76100, Israel
| | - Jan M. L. Martin
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, IL-76100, Israel
| | - Jon P. Camden
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - George C. Schatz
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
27
|
Dawes R, Lolur P, Ma J, Guo H. Communication: Highly accurate ozone formation potential and implications for kinetics. J Chem Phys 2011; 135:081102. [DOI: 10.1063/1.3632055] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
28
|
Ghaderi N, Marcus RA. Bimolecular Recombination Reactions: Low Pressure Rates in Terms of Time-Dependent Survival Probabilities, Total J Phase Space Sampling of Trajectories, and Comparison with RRKM Theory. J Phys Chem B 2011; 115:5625-33. [DOI: 10.1021/jp111833m] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- N. Ghaderi
- Noyes Laboratory of Chemical Physics, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| | - R. A. Marcus
- Noyes Laboratory of Chemical Physics, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| |
Collapse
|
29
|
Balucani N, Zhang F, Kaiser RI. Elementary Reactions of Boron Atoms with Hydrocarbons—Toward the Formation of Organo-Boron Compounds. Chem Rev 2010; 110:5107-27. [DOI: 10.1021/cr900404k] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Nadia Balucani
- Dipartimento di Chimica, Università degli Studi di Perugia, 06123 Perugia, Italy
| | - Fangtong Zhang
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822
| | - Ralf I. Kaiser
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822
| |
Collapse
|
30
|
Sun Z, Liu L, Lin SY, Schinke R, Guo H, Zhang DH. State-to-state quantum dynamics of O + O2 isotope exchange reactions reveals nonstatistical behavior at atmospheric conditions. Proc Natl Acad Sci U S A 2010; 107:555-8. [PMID: 20080718 PMCID: PMC2818940 DOI: 10.1073/pnas.0911356107] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The O + O(2) exchange reaction is a prerequisite for the formation of ozone in Earth's atmosphere. We report here state-to-state differential and integral cross sections for several O + O(2) isotope-exchange reactions obtained by dynamically exact quantum scattering calculations at collision energies relevant to atmospheric conditions. These reactions are shown to be highly nonstatistical, evidenced by dominant forward scattering and deviation of the integral cross section from the statistical limit. Mechanistic analyses revealed that the nonstatistical channel is facilitated by short-lived osculating resonances. The theoretical results provided an in-depth interpretation of a recent molecular beam experiment of the exchange reaction and shed light on the initial step of ozone recombination.
Collapse
Affiliation(s)
- Zhigang Sun
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Lan Liu
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Shi Ying Lin
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM 87131; and
| | - Reinhard Schinke
- Max–Planck–Institut für Dynamik und Selbstorganisation, D-37073 Göttingen, Germany
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM 87131; and
| | - Dong H. Zhang
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
31
|
Kaiser RI, Maksyutenko P, Ennis C, Zhang F, Gu X, Krishtal SP, Mebel AM, Kostko O, Ahmed M. Untangling the chemical evolution of Titan's atmosphere and surface–from homogeneous to heterogeneous chemistry. Faraday Discuss 2010; 147:429-78; discussion 527-52. [DOI: 10.1039/c003599h] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
32
|
Li Z, Xie D, Sun Z, Zhang DH, Lin SY, Guo H. NH(X3Σ)+H/D(S2)→H(S2)+NH/ND(X3Σ) exchange reactions: State-to-state quantum scattering and applicability of statistical model. J Chem Phys 2009; 131:124313. [DOI: 10.1063/1.3241134] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
33
|
Yeung LY, Okumura M, Paci JT, Schatz GC, Zhang J, Minton TK. Hyperthermal O-Atom Exchange Reaction O2 + CO2 through a CO4 Intermediate. J Am Chem Soc 2009; 131:13940-2. [DOI: 10.1021/ja903944k] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Laurence Y. Yeung
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, Department of Chemistry, University of Victoria, Victoria, British Columbia V8W 3V6, Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, and Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717
| | - Mitchio Okumura
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, Department of Chemistry, University of Victoria, Victoria, British Columbia V8W 3V6, Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, and Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717
| | - Jeffrey T. Paci
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, Department of Chemistry, University of Victoria, Victoria, British Columbia V8W 3V6, Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, and Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717
| | - George C. Schatz
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, Department of Chemistry, University of Victoria, Victoria, British Columbia V8W 3V6, Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, and Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717
| | - Jianming Zhang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, Department of Chemistry, University of Victoria, Victoria, British Columbia V8W 3V6, Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, and Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717
| | - Timothy K. Minton
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, Department of Chemistry, University of Victoria, Victoria, British Columbia V8W 3V6, Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, and Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717
| |
Collapse
|
34
|
Jiang L, Babikov D. A reduced dimensionality model of ozone: Semiclassical treatment of van der Waals states. Chem Phys Lett 2009. [DOI: 10.1016/j.cplett.2009.04.082] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
35
|
Sun Z, Lee SY, Guo H, Zhang DH. Comparison of second-order split operator and Chebyshev propagator in wave packet based state-to-state reactive scattering calculations. J Chem Phys 2009; 130:174102. [DOI: 10.1063/1.3126363] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
36
|
Dayou F, Larrégaray P, Bonnet L, Rayez JC, Arenas PN, González-Lezana T. A comparative study of the Si+O(2)-->SiO+O reaction dynamics from quasiclassical trajectory and statistical based methods. J Chem Phys 2008; 128:174307. [PMID: 18465922 DOI: 10.1063/1.2913156] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The dynamics of the singlet channel of the Si+O(2)-->SiO+O reaction is investigated by means of quasiclassical trajectory (QCT) calculations and two statistical based methods, the statistical quantum method (SQM) and a semiclassical version of phase space theory (PST). The dynamics calculations have been performed on the ground (1)A(') potential energy surface of Dayou and Spielfiedel [J. Chem. Phys. 119, 4237 (2003)] for a wide range of collision energies (E(c)=5-400 meV) and initial O(2) rotational states (j=1-13). The overall dynamics is found to be highly sensitive to the selected initial conditions of the reaction, the increase in either the collisional energy or the O(2) rotational excitation giving rise to a continuous transition from a direct abstraction mechanism to an indirect insertion mechanism. The product state properties associated with a given collision energy of 135 meV and low rotational excitation of O(2) are found to be consistent with the inverted SiO vibrational state distribution observed in a recent experiment. The SQM and PST statistical approaches, especially designed to deal with complex-forming reactions, provide an accurate description of the QCT total integral cross sections and opacity functions for all cases studied. The ability of such statistical treatments in providing reliable product state properties for a reaction dominated by a competition between abstraction and insertion pathways is carefully examined, and it is shown that a valuable information can be extracted over a wide range of selected initial conditions.
Collapse
Affiliation(s)
- Fabrice Dayou
- Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique, UMR 8112 du CNRS, Observatoire de Paris-Meudon, 5 Place Jules Janssen, 92195 Meudon Cedex, France.
| | | | | | | | | | | |
Collapse
|