1
|
Song KH, Peng M, Wang JJ, Feng LZ, Yin YC, Song YH, Ru XC, Xie YP, Zhang G, Deng Z, Yao HB. Copper-Iodide Hybrid Clusters with Partial Distortion Enable High-Performance Full-Visible-Spectrum White-Light-Emitting Diodes. J Am Chem Soc 2024; 146:34199-34208. [PMID: 39585658 DOI: 10.1021/jacs.4c14545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Phosphor-converted white-light-emitting diodes (pc-WLEDs) have become increasingly prevalent artificial light sources. Currently, multicomponent phosphors are commonly used for pc-WLEDs, but they often suffer from issues of undesirable reabsorption and unstable emission colors. The potential alternative for pc-WLEDs is a single-component white phosphor that covers the broad visible spectrum with desirable low thermal quenching and efficient luminescence, which is still scarce. To address this challenge, we design a unique single-component white phosphor based on Cu4I4(4-(tert-butyl)-2-(diphenylphosphaneyl)pyridine)2 (Cu4I4(NP-tBu)2) hybrid clusters, which exhibits ultrabroad dual emission from 400 to 800 nm and a high photoluminescence quantum yield of 97% under 320 nm light excitation. Based on time-resolved fluorescence spectroscopy and theoretical model analysis of our Cu4I4 series clusters, we hypothesize that the dual emission comes from the coexistence of two triplet states caused by partial cluster distortion under light excitation. The Cu4I4(NP-tBu)2 cluster's high structural stability also endows consistent spectral performance and low thermal quenching up to 240 °C. Thus, the fabricated pc-WLED using Cu4I4(NP-tBu)2 white phosphor exhibits a maximum efficiency of 63.4 lm/W and maintains a high color rendering index of ∼88 during 1000 h of continuous operation. Our results highlight a new strategy of low-cost and high-performance copper-iodide cluster-based single-component white phosphors for high-quality pc-WLEDs.
Collapse
Affiliation(s)
- Kuang-Hui Song
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
- Department of Applied Chemistry, Hefei Science Center of Chinese Academy of Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Min Peng
- College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Jing-Jing Wang
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
- Department of Applied Chemistry, Hefei Science Center of Chinese Academy of Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Li-Zhe Feng
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
- Department of Applied Chemistry, Hefei Science Center of Chinese Academy of Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yi-Chen Yin
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
- Department of Applied Chemistry, Hefei Science Center of Chinese Academy of Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yong-Hui Song
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
- Department of Applied Chemistry, Hefei Science Center of Chinese Academy of Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xue-Chen Ru
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
- Department of Applied Chemistry, Hefei Science Center of Chinese Academy of Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ya-Ping Xie
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
- Department of Applied Chemistry, Hefei Science Center of Chinese Academy of Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Guozhen Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhengtao Deng
- College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Hong-Bin Yao
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
- Department of Applied Chemistry, Hefei Science Center of Chinese Academy of Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
2
|
Tiwari V, Gallagher-Jones M, Hwang H, Duan HG, Kirkland AI, Miller RJD, Jha A. Crystal Lattice-Induced Stress modulates Photoinduced Jahn-Teller Distortion Dynamics. ACS PHYSICAL CHEMISTRY AU 2024; 4:660-668. [PMID: 39634641 PMCID: PMC11613236 DOI: 10.1021/acsphyschemau.4c00047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/15/2024] [Accepted: 09/16/2024] [Indexed: 12/07/2024]
Abstract
Efficient photoredox chemical transformations are essential to the development of novel, cost-effective, and environmentally friendly synthetic methodologies. The concept of the entatic state in bioinorganic catalysis proposes that a preorganized structural configuration can reduce the energy barriers associated with chemical reactions. This concept provides one of the guiding principles to enhance catalytic efficiency by maintaining high-energy conformations close to the reaction's transition state. Copper(I)-based photocatalysts, recognized for their low toxicity and highly negative oxidation potentials, are of particular interest in entasis studies. In this study, we explore the impact of entasis caused by stress induced by the surrounding lattice on the excited state dynamics of a prototypical copper(I)-based photocatalyst in a single crystal form. Using femtosecond broadband transient absorption spectroscopy, we show that triplet state formation from the entactic state is faster (∼3.9 ps) in crystals compared with solution (∼11.3 ps). The observed faster intersystem crossing in crystals hints toward the possible existence of distorted square planar geometry with higher spin-orbit coupling at the minima of the S1 state. We further discuss the influence of entasis on vibrationally coherent photoinduced Jahn-Teller distortions. Our findings reveal the photophysical properties of the copper complex under lattice-induced stress, which can be extended to enhance the broader applicability of the entatic state concept in other transition metal systems. Understanding how environmental stress-induced geometric constraints within crystal lattices affect photochemical behavior opens avenues for designing more efficient photocatalytic systems based on transition metals, potentially enhancing their applicability to sustainable chemical synthesis.
Collapse
Affiliation(s)
- Vandana Tiwari
- Stanford
PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
- Department
of Chemical Science, Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | | | - Hyein Hwang
- European
XFEL, Holzkoppel 4, Schenefeld 22869, Germany
- The
Hamburg Centre for Ultrafast Imaging,Luruper Chaussee 149, Hamburg 22761, Germany
| | - Hong-Guang Duan
- Department
of Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Angus I. Kirkland
- Rosalind
Franklin Institute, Harwell OX11 0QX, Oxfordshire, United Kingdom
- Department
of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, United Kingdom
| | - R. J. Dwayne Miller
- The
Departments of Chemistry and Physics, University
of Toronto, 80 St. George Street, Toronto M5S 3H6, Canada
| | - Ajay Jha
- Rosalind
Franklin Institute, Harwell OX11 0QX, Oxfordshire, United Kingdom
- Department
of Pharmacology, University of Oxford, Oxford OX1 3QT, United Kingdom
| |
Collapse
|
3
|
Castellano FN, Rosko MC. Steric and Electronic Influence of Excited-State Decay in Cu(I) MLCT Chromophores. Acc Chem Res 2024; 57:2872-2886. [PMID: 39259501 DOI: 10.1021/acs.accounts.4c00476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
ConspectusFor the past 11 years, a dedicated effort in our research group focused on fundamentally advancing the photophysical properties of cuprous bis-phenanthroline-based metal-to-ligand charge transfer (MLCT) excited states. We rationalized that, by gaining control over the numerous factors limiting the more widespread use of CuI MLCT photosensitizers, they would be readily adopted in numerous light-activated applications given the earth-abundance of copper and the extensive library of 1,10-phenanthrolines developed over the last century. Significant progress has been achieved by recognizing valuable structure-property concepts developed by other researchers in tandem with detailed ultrafast and conventional time-scale investigations, in-silico-inspired molecular designs to predict spectroscopic properties, and applying novel synthetic methodologies. Ultimately, we achieved a plateau in exerting cooperative steric influence to control CuI MLCT excited state decay. This led to combining sterics with π-conjugation and/or inductive electronic effects to further exert control over molecular photophysical properties. The lessons gleaned from our studies of homoleptic complexes were recently extended to heteroleptic bis(phenanthrolines) featuring enhanced visible light absorption properties and long-lived room-temperature photoluminescence. This Account navigates the reader through our intellectual journey of decision-making, molecular and experimental design, and data interpretation in parallel with appropriate background information related to the quantitative characterization of molecular photophysics using CuI MLCT chromophores as prototypical examples.Initially, CuI MLCT excited states, their energetics, and relevant structural conformation changes implicated in their photophysical decay processes are described. This is followed by a discussion of the literature that motivated our research in this area. This led to our first molecular design in 2013, achieving a 7-fold increase in excited state lifetime relative to the current state-of-the-art. The lifetime and photophysical property enhancement resulted from using 2,9-branched alkyl groups in conjunction with flanking 3,8-methyl substituents, a strategy we adapted from the McMillin group, which was initially described in the late 1990s. Applications of this newly conceived chromophore are presented in solar hydrogen-producing photocatalysis, photochemical upconversion, and photosensitization of [4 + 4] anthracene dimerization of potential interest in thermal storage of solar energy in metastable intermediates. Ultrafast transient absorption and fluorescence upconversion spectroscopic characterization of this and related CuI molecules inform the resultant photophysical properties and vice versa, so the most comprehensive structure-property understanding becomes realized when these experimental tools are collectively utilized to investigate the same series of molecules. Computationally guided structural designs generated newly conceived molecules featuring visible light-harvesting and 2,9-cycloalkane substituted complexes. The latter eventually produced record-setting excited state lifetimes in molecules leveraging both cooperative steric influence and electronic inductive effects. Using photoluminescence data from structurally homologous CuI MLCT excited states collected over 44 years, an energy gap correlation successfully modeled the data spanning a 0.3 eV emission energy range. Finally, a new research direction is revealed detailing structure-photophysical property relationships in heteroleptic CuI phenanthroline chromophores that are photoluminescent at room temperature.
Collapse
Affiliation(s)
- Felix N Castellano
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Michael C Rosko
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| |
Collapse
|
4
|
Singh Z, Chiong JD, Ricardo-Noordberg JF, Kamal S, Majewski MB. Charge separation in a copper(I) donor-chromophore-acceptor assembly for both photoanode and photocathode sensitization. Dalton Trans 2024. [PMID: 39258478 DOI: 10.1039/d4dt01681e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
A copper(I) donor-chromophore-acceptor triad bearing 1,8-napthalenemonoimide as the electron acceptor and triphenylamine as the electron donor was synthesized. Photophysical and electrochemical characterization suggest stepwise photoinduced charge separation upon excitation of the copper(I)-based metal-to-ligand charge transfer (MLCT) transition. Analyses of femtosecond transient absorption data of the triad show that intersystem crossing from the 1MLCT to the 3MLCT state is followed by two electron-transfer steps with time constants of 20 ps and 722 ps yielding a presumed final charge-separated state with a radical cation on the donor and radical anion on the acceptor that has an 18 ns lifetime in acetonitrile. Finally, this triad was anchored onto n-type (ZnO) and p-type (NiO) semiconductor surfaces to construct a photoanode and photocathode respectively. Successful photocurrent generation from both electrodes upon white light illumination confirms the potential utilization of such systems in dye-sensitized photoelectrochemical cells.
Collapse
Affiliation(s)
- Zujhar Singh
- Department of Chemistry and Biochemistry and Centre for NanoScience Research, Concordia University, 7141 Sherbrooke Street West, Montreal, Quebec, H4B 1R6, Canada.
| | - Joseph D Chiong
- Department of Chemistry and Biochemistry and Centre for NanoScience Research, Concordia University, 7141 Sherbrooke Street West, Montreal, Quebec, H4B 1R6, Canada.
| | - Joseph F Ricardo-Noordberg
- Department of Chemistry and Biochemistry and Centre for NanoScience Research, Concordia University, 7141 Sherbrooke Street West, Montreal, Quebec, H4B 1R6, Canada.
| | - Saeid Kamal
- Department of Chemistry and Laboratory for Advanced Spectroscopy and Imaging Research (LASIR), The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Marek B Majewski
- Department of Chemistry and Biochemistry and Centre for NanoScience Research, Concordia University, 7141 Sherbrooke Street West, Montreal, Quebec, H4B 1R6, Canada.
| |
Collapse
|
5
|
Helweh W, Kim P, Mast ZJ, Phelan BT, Weingartz NP, Zong R, Chaudhuri S, Thummel RP, Schatz GC, Chen LX. Effects of Structural Constraints on Excited-State Properties in Dimeric Cu(I) Diimine Complexes. Inorg Chem 2024; 63:14905-14912. [PMID: 39059019 DOI: 10.1021/acs.inorgchem.4c01251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Copper(I) bis-diimine complexes have played important roles in light-activated processes that can lead to their potential applications in photocatalysis and chemical sensing. Their metal-to-ligand charge-transfer (MLCT) excited-state properties are tunable by various structural factors. Dimeric Cu(I) complexes with connecting diimine derivative ligands offer another structural tuning platform for the excited-state properties. Here, we investigate excited-state properties in two covalently connected dimeric Cu(I)'s with varying structural constraints exerted by the number of carbons in the polyethylene bridge (C0 and C4) connecting the two copper(I) diimine moieties. An interesting feature of Cu(I) diimine complexes is their ability to flatten following a photoinduced structural change. Herein, we observe larger structural constraints and more structural rearrangement required upon excitation of the longer bridged complex C4 to achieve a conformation toward a more flattened tetrahedral coordination geometry compared to the shorter bridged C0. Vibrational wavepacket analysis of these complexes further supports the effect of these structural constraints where we observe a more rapid dephasing of the C0 complex, as opposed to the C4 complex, despite similar normal mode vibrations. The experimental results were supplemented by TDDFT calculations. The studies provide insight into using metal-metal interactions through constraints to tune excited-state dynamics and pathways.
Collapse
Affiliation(s)
- Waleed Helweh
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Pyosang Kim
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Zachary J Mast
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Brian T Phelan
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Nicholas P Weingartz
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Ruifa Zong
- Department of Chemistry, 112 Fleming Building, University of Houston, Houston, Texas 77204-5003, United States
| | - Subhajyoti Chaudhuri
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Randolph P Thummel
- Department of Chemistry, 112 Fleming Building, University of Houston, Houston, Texas 77204-5003, United States
| | - George C Schatz
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Lin X Chen
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| |
Collapse
|
6
|
Chen LX, Yano J. Deciphering Photoinduced Catalytic Reaction Mechanisms in Natural and Artificial Photosynthetic Systems on Multiple Temporal and Spatial Scales Using X-ray Probes. Chem Rev 2024; 124:5421-5469. [PMID: 38663009 DOI: 10.1021/acs.chemrev.3c00560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2024]
Abstract
Utilization of renewable energies for catalytically generating value-added chemicals is highly desirable in this era of rising energy demands and climate change impacts. Artificial photosynthetic systems or photocatalysts utilize light to convert abundant CO2, H2O, and O2 to fuels, such as carbohydrates and hydrogen, thus converting light energy to storable chemical resources. The emergence of intense X-ray pulses from synchrotrons, ultrafast X-ray pulses from X-ray free electron lasers, and table-top laser-driven sources over the past decades opens new frontiers in deciphering photoinduced catalytic reaction mechanisms on the multiple temporal and spatial scales. Operando X-ray spectroscopic methods offer a new set of electronic transitions in probing the oxidation states, coordinating geometry, and spin states of the metal catalytic center and photosensitizers with unprecedented energy and time resolution. Operando X-ray scattering methods enable previously elusive reaction steps to be characterized on different length scales and time scales. The methodological progress and their application examples collected in this review will offer a glimpse into the accomplishments and current state in deciphering reaction mechanisms for both natural and synthetic systems. Looking forward, there are still many challenges and opportunities at the frontier of catalytic research that will require further advancement of the characterization techniques.
Collapse
Affiliation(s)
- Lin X Chen
- Chemical Science and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Junko Yano
- Molecular Biophysics & Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
7
|
East NR, Naumann R, Förster C, Ramanan C, Diezemann G, Heinze K. Oxidative two-state photoreactivity of a manganese(IV) complex using near-infrared light. Nat Chem 2024; 16:827-834. [PMID: 38332331 DOI: 10.1038/s41557-024-01446-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 01/11/2024] [Indexed: 02/10/2024]
Abstract
Highly reducing or oxidizing photocatalysts are a fundamental challenge in photochemistry. Only a few transition metal complexes with Earth-abundant metal ions have so far advanced to excited state oxidants. All these photocatalysts require high-energy light for excitation, and their oxidizing power has not been fully exploited due to energy dissipation before reaching the photoactive state. Here we demonstrate that the complex [Mn(dgpy)2]4+, based on Earth-abundant manganese and the tridentate 2,6-diguanidylpyridine ligand (dgpy), evolves to a luminescent doublet ligand-to-metal charge transfer (2LMCT) excited state (1,435 nm, 0.86 eV) with a lifetime of 1.6 ns after excitation with low-energy near-infrared light. This 2LMCT state oxidizes naphthalene to its radical cation. Substrates with extremely high oxidation potentials up to 2.4 V enable the [Mn(dgpy)2]4+ photoreduction via a high-energy quartet 4LMCT excited state with a lifetime of 0.78 ps, proceeding via static quenching by the solvent. This process minimizes free energy losses and harnesses the full photooxidizing power, and thus allows oxidation of nitriles and benzene using Earth-abundant elements and low-energy light.
Collapse
Affiliation(s)
- Nathan R East
- Department of Chemistry, Johannes Gutenberg University, Mainz, Germany
| | - Robert Naumann
- Department of Chemistry, Johannes Gutenberg University, Mainz, Germany
| | - Christoph Förster
- Department of Chemistry, Johannes Gutenberg University, Mainz, Germany
| | - Charusheela Ramanan
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Max-Planck-Institute for Polymer Research, Mainz, Germany
| | - Gregor Diezemann
- Department of Chemistry, Johannes Gutenberg University, Mainz, Germany
| | - Katja Heinze
- Department of Chemistry, Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
8
|
Phelan BT, Xie ZL, Liu X, Li X, Mulfort KL, Chen LX. Photodriven electron-transfer dynamics in a series of heteroleptic Cu(I)-anthraquinone dyads. J Chem Phys 2024; 160:144905. [PMID: 38619061 DOI: 10.1063/5.0188245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/24/2024] [Indexed: 04/16/2024] Open
Abstract
Solar fuels catalysis is a promising route to efficiently harvesting, storing, and utilizing abundant solar energy. To achieve this promise, however, molecular systems must be designed with sustainable components that can balance numerous photophysical and chemical processes. To that end, we report on the structural and photophysical characterization of a series of Cu(I)-anthraquinone-based electron donor-acceptor dyads. The dyads utilized a heteroleptic Cu(I) bis-diimine architecture with a copper(I) bis-phenanthroline chromophore donor and anthraquinone electron acceptor. We characterized the structures of the complexes using x-ray crystallography and density functional theory calculations and the photophysical properties via resonance Raman and optical transient absorption spectroscopy. The calculations and resonance Raman spectroscopy revealed that excitation of the Cu(I) metal-to-ligand charge-transfer (MLCT) transition transfers the electron to a delocalized ligand orbital. The optical transient absorption spectroscopy demonstrated that each dyad formed the oxidized copper-reduced anthraquinone charge-separated state. Unlike most Cu(I) bis-phenanthroline complexes where increasingly bulky substituents on the phenanthroline ligands lead to longer MLCT excited-state lifetimes, here, we observe a decrease in the long-lived charge-separated state lifetime with increasing steric bulk. The charge-separated state lifetimes were best explained in the context of electron-transfer theory rather than with the energy gap law, which is typical for MLCT excited states, despite the complete conjugation between the phenanthroline and anthraquinone moieties.
Collapse
Affiliation(s)
- Brian T Phelan
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Zhu-Lin Xie
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Xiaolin Liu
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | - Xiaosong Li
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | - Karen L Mulfort
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Lin X Chen
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| |
Collapse
|
9
|
Bím D, Luedecke KM, Cagan DA, Hadt RG. Light Activation and Photophysics of a Structurally Constrained Nickel(II)-Bipyridine Aryl Halide Complex. Inorg Chem 2024; 63:4120-4131. [PMID: 38376134 PMCID: PMC11000520 DOI: 10.1021/acs.inorgchem.3c03822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Transition-metal photoredox catalysis has transformed organic synthesis by harnessing light to construct complex molecules. Nickel(II)-bipyridine (bpy) aryl halide complexes are a significant class of cross-coupling catalysts that can be activated via direct light excitation. This study investigates the effects of molecular structure on the photophysics of these catalysts by considering an underexplored, structurally constrained Ni(II)-bpy aryl halide complex in which the aryl and bpy ligands are covalently tethered alongside traditional unconstrained complexes. Intriguingly, the tethered complex is photochemically stable but features a reversible Ni(II)-C(aryl) ⇄ [Ni(I)···C(aryl)•] equilibrium upon direct photoexcitation. When an electrophile is introduced during photoirradiation, we demonstrate a preference for photodissociation over recombination, rendering the parent Ni(II) complex a stable source of a reactive Ni(I) intermediate. Here, we characterize the reversible photochemical behavior of the tethered complex by kinetic analyses, quantum chemical calculations, and ultrafast transient absorption spectroscopy. Comparison to the previously characterized Ni(II)-bpy aryl halide complex indicates that the structural constraints considered here dramatically influence the excited state relaxation pathway and provide insight into the characteristics of excited-state Ni(II)-C bond homolysis and aryl radical reassociation dynamics. This study enriches the understanding of molecular structure effects in photoredox catalysis and offers new possibilities for designing customized photoactive catalysts for precise organic synthesis.
Collapse
Affiliation(s)
- Daniel Bím
- Division of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Flemingovo nám. 2, Prague 6 166 10, Czech Republic
| | - Kaitlin M Luedecke
- Division of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States
| | - David A Cagan
- Division of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States
| | - Ryan G Hadt
- Division of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
10
|
Wang D, Hu W, Liu C, Huang J, Zhang X. Electronic Tuning of Photoexcited Dynamics in Heteroleptic Cu(I) Complex Photosensitizers. J Phys Chem Lett 2023; 14:10137-10144. [PMID: 37922426 DOI: 10.1021/acs.jpclett.3c02503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2023]
Abstract
Photoexcited dynamics of heteroleptic Cu(I) complexes as noble-metal-free photosensitizers are closely intertwined with the nature of their ligands. By utilizing ultrafast optical and X-ray transient absorption spectroscopies, we characterized a new set of heteroleptic Cu(I) complexes [Cu(PPh3)2(BPyR)]+ (R = CH3, H, Br to COOCH3), with an increase in the electron-withdrawing ability of the functional group (R). We found that after the transient photooxidation of Cu(I) to Cu(II), the increasing electron-withdrawing ability of R barely affects the internal conversion (IC) (e.g., Jahn-taller (JT) distortion) between singlet MLCT states. However, it does accelerate the dynamics of intersystem crossing (ISC) between singlet and triplet MLCT states and the subsequent decay from the triplet MLCT state to the ground state. The associated lifetime constants are reduced by up to 300%. Our understanding of the photoexcited dynamics in heteroleptic Cu(I) complexes through ligand electronic tuning provides valuable insight into the rational design of efficient Cu(I) complex photosensitizers.
Collapse
Affiliation(s)
- Denan Wang
- Department of Chemistry, Marquette University, Milwaukee, 53201, United States
| | - Wenhui Hu
- Department of Chemistry, Marquette University, Milwaukee, 53201, United States
| | - Cunming Liu
- X-ray Science Division, Argonne National Laboratory, Argonne, Illinois 60349, United States
| | - Jier Huang
- Department of Chemistry, Marquette University, Milwaukee, 53201, United States
- Department of Chemistry and Schiller Institute for Integrated Science and Society, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Xiaoyi Zhang
- X-ray Science Division, Argonne National Laboratory, Argonne, Illinois 60349, United States
| |
Collapse
|
11
|
Kim D, Rosko MC, Dang VQ, Castellano FN, Teets TS. Sterically Encumbered Heteroleptic Copper(I) β-Diketiminate Complexes with Extended Excited-State Lifetimes. Inorg Chem 2023; 62:16759-16769. [PMID: 37782937 DOI: 10.1021/acs.inorgchem.3c02042] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
One of the main challenges in developing effective copper(I) photosensitizers is their short excited-state lifetimes, usually attributed to structural distortion upon light excitation. We have previously introduced copper(I) charge-transfer chromophores of the general formula Cu(N^N)(ArNacNac), where N^N is a conjugated diimine ligand and ArNacNac is a substituted β-diketiminate ligand. These chromophores were promising regarding their tunable redox potentials and intense visible absorption but were ineffective as photosensitizers, presumably due to short excited-state lifetimes. Here, we introduce sterically crowded analogues of these heteroleptic chromophores with bulky alkyl substituents on the N^N and/or ArNacNac ligand. Structural analysis was combined with electrochemical and photophysical characterization, including ultrafast transient absorption (UFTA) spectroscopy to investigate the effects of the alkyl groups on the excited-state lifetimes of the complexes. The molecular structures determined by single-crystal X-ray diffraction display more distortion in the ground state as alkyl substituents are introduced into the phenanthroline or the NacNac ligand, showing smaller τ4 values due to the steric hindrance. UFTA measurements were carried out to determine the excited-state dynamics. Sterically encumbered Cu5 and Cu6 display excited-state lifetimes 15-20 times longer than unsubstituted complex Cu1, likely indicating that the incorporation of bulky alkyl substituents inhibits the pseudo-Jahn-Teller (PJT) flattening distortion in the excited state. This work suggests that the steric properties of these heteroleptic copper(I) charge-transfer chromophores can be readily modified and that the excited-state dynamics are strongly responsive to these modifications.
Collapse
Affiliation(s)
- Dooyoung Kim
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| | - Michael C Rosko
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Vinh Q Dang
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| | - Felix N Castellano
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Thomas S Teets
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| |
Collapse
|
12
|
Katayama T, Choi TK, Khakhulin D, Dohn AO, Milne CJ, Vankó G, Németh Z, Lima FA, Szlachetko J, Sato T, Nozawa S, Adachi SI, Yabashi M, Penfold TJ, Gawelda W, Levi G. Atomic-scale observation of solvent reorganization influencing photoinduced structural dynamics in a copper complex photosensitizer. Chem Sci 2023; 14:2572-2584. [PMID: 36908966 PMCID: PMC9993854 DOI: 10.1039/d2sc06600a] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
Photochemical reactions in solution are governed by a complex interplay between transient intramolecular electronic and nuclear structural changes and accompanying solvent rearrangements. State-of-the-art time-resolved X-ray solution scattering has emerged in the last decade as a powerful technique to observe solute and solvent motions in real time. However, disentangling solute and solvent dynamics and how they mutually influence each other remains challenging. Here, we simultaneously measure femtosecond X-ray emission and scattering to track both the intramolecular and solvation structural dynamics following photoexcitation of a solvated copper photosensitizer. Quantitative analysis assisted by molecular dynamics simulations reveals a two-step ligand flattening strongly coupled to the solvent reorganization, which conventional optical methods could not discern. First, a ballistic flattening triggers coherent motions of surrounding acetonitrile molecules. In turn, the approach of acetonitrile molecules to the copper atom mediates the decay of intramolecular coherent vibrations and induces a further ligand flattening. These direct structural insights reveal that photoinduced solute and solvent motions can be intimately intertwined, explaining how the key initial steps of light harvesting are affected by the solvent on the atomic time and length scale. Ultimately, this work takes a step forward in understanding the microscopic mechanisms of the bidirectional influence between transient solvent reorganization and photoinduced solute structural dynamics.
Collapse
Affiliation(s)
- Tetsuo Katayama
- Japan Synchrotron Radiation Research Institute Kouto 1-1-1, Sayo Hyogo 679-5198 Japan.,RIKEN SPring-8 Center 1-1-1 Kouto, Sayo Hyogo 679-5148 Japan
| | - Tae-Kyu Choi
- XFEL Division, Pohang Accelerator Laboratory Jigok-ro 127-80 Pohang 37673 Republic of Korea
| | | | - Asmus O Dohn
- Science Institute, University of Iceland 107 Reykjavík Iceland .,DTU Physics, Technical University of Denmark Kongens Lyngby Denmark
| | | | - György Vankó
- Wigner Research Centre for Physics, Hungarian Academy of Sciences H-1525 Budapest Hungary
| | - Zoltán Németh
- Wigner Research Centre for Physics, Hungarian Academy of Sciences H-1525 Budapest Hungary
| | | | - Jakub Szlachetko
- SOLARIS National Synchrotron Radiation Centre, Jagiellonian University PL-30392 Kraków Poland
| | - Tokushi Sato
- European XFEL Holzkoppel 4, Schenefeld 22869 Germany
| | - Shunsuke Nozawa
- Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK) 1-1 Oho Tsukuba Ibaraki 305-0801 Japan.,Department of Materials Structure Science, School of High Energy Accelerator Science, The Graduate University for Advanced Studies 1-1 Oho Tsukuba Ibaraki 305-0801 Japan
| | - Shin-Ichi Adachi
- Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK) 1-1 Oho Tsukuba Ibaraki 305-0801 Japan.,Department of Materials Structure Science, School of High Energy Accelerator Science, The Graduate University for Advanced Studies 1-1 Oho Tsukuba Ibaraki 305-0801 Japan
| | - Makina Yabashi
- RIKEN SPring-8 Center 1-1-1 Kouto, Sayo Hyogo 679-5148 Japan
| | - Thomas J Penfold
- Chemistry-School of Natural and Environmental Sciences, Newcastle University Newcastle Upon-Tyne NE1 7RU UK
| | - Wojciech Gawelda
- Departamento de Química, Universidad Autónoma de Madrid, Campus Cantoblanco 28047 Madrid Spain.,IMDEA-Nanociencia, Campus Cantoblanco C/Faraday 9 28049 Madrid Spain.,Faculty of Physics, Adam Mickiewicz University 61-614 Poznań Poland
| | - Gianluca Levi
- Science Institute, University of Iceland 107 Reykjavík Iceland
| |
Collapse
|
13
|
Rosko MC, Espinoza EM, Arteta S, Kromer S, Wheeler JP, Castellano FN. Employing Long-Range Inductive Effects to Modulate Metal-to-Ligand Charge Transfer Photoluminescence in Homoleptic Cu(I) Complexes. Inorg Chem 2023; 62:3248-3259. [PMID: 36749829 DOI: 10.1021/acs.inorgchem.2c04315] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Four Cu(I) bis(phenanthroline) photosensitizers formulated from a new ligand structural motif (Cu1-Cu4) coded according to their 2,9-substituents were synthesized, structurally characterized, and fully evaluated using steady-state and time-resolved absorption and photoluminescence (PL) measurements as well as electrochemistry. The 2,9-disubstituted-3,4,7,8-tetramethyl-1,10-phenanthroline ligands feature the following six-membered ring systems prepared through photochemical synthesis: 4,4-dimethylcyclohexyl (1), tetrahydro-2H-pyran-4-yl (2), tetrahydro-2H-thiopyran-4-yl (3), and 4,4-difluorocyclohexyl (4). Universally, these Cu(I) metal-to-ligand charge transfer (MLCT) chromophores display excited-state lifetimes on the microsecond time scale at room temperature, including the three longest-lived homoleptic cuprous phenanthroline excited states measured to date in de-aerated CH2Cl2, τ = 2.5-4.3 μs. This series of molecules also feature high PL quantum efficiencies (ΦPL = 5.3-12% in CH2Cl2). Temperature-dependent PL lifetime experiments confirmed that all these molecules exhibit reverse intersystem crossing and display thermally activated delayed PL from a 1MLCT excited state lying slightly above the 3MLCT state, 1050-1490 cm-1. Ultrafast and conventional transient absorption measurements confirmed that the PL originates from the MLCT excited state, which remains sterically arrested, preventing an excessive flattening distortion even when dissolved in Lewis basic CH3CN. Combined PL and electrochemical data provided evidence that Cu1-Cu4 are highly potent photoreductants (Eox* = -1.73 to -1.62 V vs Fc+/0 in CH3CN), whose potentials are altered solely based on which heteroatoms or substituents are resident on the 2,9-appended ring derivatives. It is proposed that long-range electronic inductive effects are responsible for the systematic modulation observed in the PL spectra, excited-state lifetimes, and the ground state absorption spectra and redox potentials. Cu1-Cu4 quantitatively follow the energy gap law, correlating well with structurally related cuprous phenanthrolines and are also shown to triplet photosensitize the excited states of 9,10-diphenylanthracene with bimolecular rate constants ranging from 1.61 to 2.82 × 108 M-1 s-1. The ability to tailor both photophysical and electrochemical properties using long-range inductive effects imposed by the 2,9-ring platforms advocates new directions for future MLCT chromophore discovery.
Collapse
Affiliation(s)
- Michael C Rosko
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Eli M Espinoza
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Sarah Arteta
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Sarah Kromer
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Jonathan P Wheeler
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Felix N Castellano
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| |
Collapse
|
14
|
Ripak A, De Kreijger S, Sampaio RN, Vincent CA, Cauët É, Jabin I, Tambar UK, Elias B, Troian-Gautier L. Photosensitized Activation of Diazonium Derivatives for C-B Bond Formation. CHEM CATALYSIS 2023; 3:100490. [PMID: 36936750 PMCID: PMC10022585 DOI: 10.1016/j.checat.2022.100490] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Aryl diazonium salts are ubiquitous building blocks in chemistry, as they are useful radical precursors in organic synthesis as well as for the functionalization of solid materials. They can be reduced electrochemically or through a photo-induced electron transfer reaction. Here we provide a detailed picture of the ground and excited-state reactivity of a series of 9 rare and earth abundant photosensitizers with 13 aryl diazonium salts, which also included 3 macrocyclic calix[4]arene tetradiazonium salts. Nanosecond transient absorption spectroscopy confirmed the occurrence of excited-state electron transfer and was used to quantify cage-escape yields, i.e. the efficiency with which the formed radicals separate and escape the solvent cage. Cage-escape yields were large; increased when the driving force for photo-induced electron transfer increased and also tracked with the C-N2 + bond cleavage propensity, amongst others. A photo-induced borylation reaction was then investigated with all the photosensitizers and proceeded with yields between 9 and 74%.
Collapse
Affiliation(s)
- Alexia Ripak
- Université catholique de Louvain (UCLouvain), Institut de la Matière Condensée et des Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis (MOST), Place Louis Pasteur 1, bte L4.01.02, 1348 Louvain-la-Neuve, Belgium
| | - Simon De Kreijger
- Université catholique de Louvain (UCLouvain), Institut de la Matière Condensée et des Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis (MOST), Place Louis Pasteur 1, bte L4.01.02, 1348 Louvain-la-Neuve, Belgium
| | - Renato N. Sampaio
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599-3290, United States
| | - Cooper A. Vincent
- Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9038, United States
| | - Émilie Cauët
- Spectroscopy, Quantum Chemistry and Atmospheric Remote Sensing (CP 160/09), Université libre de Bruxelles (ULB), 50 av. F. D. Roosevelt, CP160/09, B-1050 Brussels, Belgium
| | - Ivan Jabin
- Laboratoire de Chimie Organique, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50, CP160/06, B-1050 Brussels, Belgium
| | - Uttam K. Tambar
- Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9038, United States
| | - Benjamin Elias
- Université catholique de Louvain (UCLouvain), Institut de la Matière Condensée et des Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis (MOST), Place Louis Pasteur 1, bte L4.01.02, 1348 Louvain-la-Neuve, Belgium
| | - Ludovic Troian-Gautier
- Université catholique de Louvain (UCLouvain), Institut de la Matière Condensée et des Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis (MOST), Place Louis Pasteur 1, bte L4.01.02, 1348 Louvain-la-Neuve, Belgium
- Lead contact
| |
Collapse
|
15
|
Interplay of electronic and geometric structure on Cu phenanthroline, bipyridine and derivative complexes, synthesis, characterization, and reactivity towards oxygen. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Seidler B, Tran JH, Hniopek J, Traber P, Görls H, Gräfe S, Schmitt M, Popp J, Schulz M, Dietzek‐Ivanšić B. Photophysics of Anionic Bis(4H-imidazolato)Cu I Complexes. Chemistry 2022; 28:e202202697. [PMID: 36148551 PMCID: PMC10092831 DOI: 10.1002/chem.202202697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Indexed: 12/29/2022]
Abstract
In this paper, the photophysical behavior of four panchromatically absorbing, homoleptic bis(4H-imidazolato)CuI complexes, with a systematic variation in the electron-withdrawing properties of the imidazolate ligand, were studied by wavelength-dependent time-resolved femtosecond transient absorption spectroscopy. Excitation at 400, 480, and 630 nm populates metal-to-ligand charge transfer, intraligand charge transfer, and mixed-character singlet states. The pump wavelength-dependent transient absorption data were analyzed by a recently established 2D correlation approach. Data analysis revealed that all excitation conditions yield similar excited-state dynamics. Key to the excited-state relaxation is fast, sub-picosecond pseudo-Jahn-Teller distortion, which is accompanied by the relocalization of electron density onto a single ligand from the initially delocalized state at Franck-Condon geometry. Subsequent intersystem crossing to the triplet manifold is followed by a sub-100 ps decay to the ground state. The fast, nonradiative decay is rationalized by the low triplet-state energy as found by DFT calculations, which suggest perspective treatment at the strong coupling limit of the energy gap law.
Collapse
Affiliation(s)
- Bianca Seidler
- Institute of Physical ChemistryFriedrich Schiller University JenaHelmholtzweg 407743JenaGermany
- Leibniz Institute of Photonic Technology Jena (Leibniz-IPHT)Albert-Einstein-Str. 907745JenaGermany
| | - Jens H. Tran
- Institute of Physical ChemistryFriedrich Schiller University JenaHelmholtzweg 407743JenaGermany
| | - Julian Hniopek
- Institute of Physical ChemistryFriedrich Schiller University JenaHelmholtzweg 407743JenaGermany
- Leibniz Institute of Photonic Technology Jena (Leibniz-IPHT)Albert-Einstein-Str. 907745JenaGermany
- Abbe Center of Photonics (ACP)Albert-Einstein-Str. 607745JenaGermany
| | - Philipp Traber
- Institute of Physical ChemistryFriedrich Schiller University JenaHelmholtzweg 407743JenaGermany
| | - Helmar Görls
- Institute of Inorganic and Analytical ChemistryFriedrich Schiller University JenaHumboldtstr. 807743JenaGermany
| | - Stefanie Gräfe
- Institute of Physical ChemistryFriedrich Schiller University JenaHelmholtzweg 407743JenaGermany
- Abbe Center of Photonics (ACP)Albert-Einstein-Str. 607745JenaGermany
| | - Michael Schmitt
- Institute of Physical ChemistryFriedrich Schiller University JenaHelmholtzweg 407743JenaGermany
- Abbe Center of Photonics (ACP)Albert-Einstein-Str. 607745JenaGermany
| | - Jürgen Popp
- Institute of Physical ChemistryFriedrich Schiller University JenaHelmholtzweg 407743JenaGermany
- Leibniz Institute of Photonic Technology Jena (Leibniz-IPHT)Albert-Einstein-Str. 907745JenaGermany
- Abbe Center of Photonics (ACP)Albert-Einstein-Str. 607745JenaGermany
| | - Martin Schulz
- Institute of Physical ChemistryFriedrich Schiller University JenaHelmholtzweg 407743JenaGermany
- Leibniz Institute of Photonic Technology Jena (Leibniz-IPHT)Albert-Einstein-Str. 907745JenaGermany
| | - Benjamin Dietzek‐Ivanšić
- Institute of Physical ChemistryFriedrich Schiller University JenaHelmholtzweg 407743JenaGermany
- Leibniz Institute of Photonic Technology Jena (Leibniz-IPHT)Albert-Einstein-Str. 907745JenaGermany
- Abbe Center of Photonics (ACP)Albert-Einstein-Str. 607745JenaGermany
- Centre for Energy and Environmental Chemistry Jena (CEEC-Jena)Friedrich Schiller University JenaPhilosophenweg 7a07743JenaGermany
| |
Collapse
|
17
|
Antolini C, Spellman CD, Otolski CJ, Doumy G, March AM, Walko DA, Liu C, Zhang X, Young BT, Goodwill JE, Hayes D. Photochemical and Photophysical Dynamics of the Aqueous Ferrate(VI) Ion. J Am Chem Soc 2022; 144:22514-22527. [PMID: 36454056 DOI: 10.1021/jacs.2c08048] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Ferrate(VI) has the potential to play a key role in future water supplies. Its salts have been suggested as "green" alternatives to current advanced oxidation and disinfection methods in water treatment, especially when combined with ultraviolet light to stimulate generation of highly oxidizing Fe(V) and Fe(IV) species. However, the nature of these intermediates, the mechanisms by which they form, and their roles in downstream oxidation reactions remain unclear. Here, we use a combination of optical and X-ray transient absorption spectroscopies to study the formation, interconversion, and relaxation of several excited-state and metastable high-valent iron species following excitation of aqueous potassium ferrate(VI) by ultraviolet and visible light. Branching from the initially populated ligand-to-metal charge transfer state into independent photophysical and photochemical pathways occurs within tens of picoseconds, with the quantum yield for the generation of reactive Fe(V) species determined by relative rates of the competing intersystem crossing and reverse electron transfer processes. Relaxation of the metal-centered states then occurs within 4 ns, while the formation of metastable Fe(V) species occurs in several steps with time constants of 250 ps and 300 ns. Results here improve the mechanistic understanding of the formation and fate of Fe(V) and Fe(IV), which will accelerate the development of novel advanced oxidation processes for water treatment applications.
Collapse
Affiliation(s)
- Cali Antolini
- Department of Chemistry, University of Rhode Island, 45 Upper College Road, Kingston, Rhode Island 02881, United States
| | - Charles D Spellman
- Department of Civil and Environmental Engineering, University of Rhode Island, 45 Upper College Road, Kingston, Rhode Island 02881, United States
| | - Christopher J Otolski
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, Illinois 60439, United States
| | - Gilles Doumy
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, Illinois 60439, United States
| | - Anne Marie March
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, Illinois 60439, United States
| | - Donald A Walko
- X-ray Science Division, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, Illinois 60439, United States
| | - Cunming Liu
- X-ray Science Division, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, Illinois 60439, United States
| | - Xiaoyi Zhang
- X-ray Science Division, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, Illinois 60439, United States
| | - Benjamin T Young
- Department of Physical Sciences, Rhode Island College, 600 Mt Pleasant Avenue, Providence, Rhode Island 02908, United States
| | - Joseph E Goodwill
- Department of Civil and Environmental Engineering, University of Rhode Island, 45 Upper College Road, Kingston, Rhode Island 02881, United States
| | - Dugan Hayes
- Department of Chemistry, University of Rhode Island, 45 Upper College Road, Kingston, Rhode Island 02881, United States
| |
Collapse
|
18
|
Myneni H, Jónsson EÖ, Jónsson H, Dohn AO. Polarizable Force Field for Acetonitrile Based on the Single-Center Multipole Expansion. J Phys Chem B 2022; 126:9339-9348. [PMID: 36343220 DOI: 10.1021/acs.jpcb.2c04255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A polarizable potential function describing the interaction between acetonitrile molecules is introduced. The molecules are described as rigid and linear, with three mass sites corresponding to the CH3 group (methyl, Me), the central carbon atom (C), and the nitrogen atom (N). The electrostatic interaction is represented using a single-center multipole expansion as has been done previously for H2O [Wikfeldt et al., Phys. Chem. Chem. Phys. 15, 16542 (2013)], by including multipole moments from dipole up to and including hexadecapole, as well as anisotropic dipole-dipole, dipole-quadrupole, and quadrupole-quadrupole polarizability tensors. The model is free of point charges. The non-electrostatic part is described in a pair-wise fashion by a Born-Mayer repulsion and damped dispersion attraction. The potential function is parameterized to fit the interaction energy of small (CH3CN)n, n = 2-6, clusters calculated using the PBE0 hybrid functional with an additional atomic many-body dispersion contribution. The parameterized potential function is found to compare well with results of the electronic structure calculations of dissociation curves for different dimer orientations and cohesive properties (the equilibrium volume, cohesive energy, and the bulk modulus) of the α-phase of acetonitrile crystal. The average value of the molecular dipole moment obtained in the α-phase is 5.53 D, corresponding to ca. 40% increase as compared to the dipole moment of an isolated acetonitrile molecule, 3.92 D. The calculated densities of solid and liquid acetonitrile turn out to be 8-10% higher than experimental values. This appears to be caused by an overestimate of the atomic many-body dispersion interaction in the density functional calculations used as input in the parametrization of the potential function.
Collapse
Affiliation(s)
- Hemanadhan Myneni
- Science Institute and Faculty of Physical Sciences, University of Iceland VR-III, 107Reykjavík, Iceland
| | - Elvar Örn Jónsson
- Science Institute and Faculty of Physical Sciences, University of Iceland VR-III, 107Reykjavík, Iceland
| | - Hannes Jónsson
- Science Institute and Faculty of Physical Sciences, University of Iceland VR-III, 107Reykjavík, Iceland
| | - Asmus Ougaard Dohn
- Science Institute and Faculty of Physical Sciences, University of Iceland VR-III, 107Reykjavík, Iceland
| |
Collapse
|
19
|
Potocny AM, Phelan BT, Sprague-Klein EA, Mara MW, Tiede DM, Chen LX, Mulfort KL. Harnessing Intermolecular Interactions to Promote Long-Lived Photoinduced Charge Separation from Copper Phenanthroline Chromophores. Inorg Chem 2022; 61:19119-19133. [DOI: 10.1021/acs.inorgchem.2c02648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Andrea M. Potocny
- Division of Chemical Sciences and Engineering, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois60439, United States
| | - Brian T. Phelan
- Division of Chemical Sciences and Engineering, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois60439, United States
| | - Emily A. Sprague-Klein
- Division of Chemical Sciences and Engineering, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois60439, United States
| | - Michael W. Mara
- Division of Chemical Sciences and Engineering, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois60439, United States
| | - David M. Tiede
- Division of Chemical Sciences and Engineering, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois60439, United States
| | - Lin X. Chen
- Division of Chemical Sciences and Engineering, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois60439, United States
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois60208, United States
| | - Karen L. Mulfort
- Division of Chemical Sciences and Engineering, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois60439, United States
| |
Collapse
|
20
|
Huang D, Ouyang Q, Wu J, Kong Y, Wang B, Lian H, Lin J. Growth of SnX 2 (X = Br, I) Single Crystals with Self-Trapped Exciton Emission. Inorg Chem 2022; 61:17767-17776. [DOI: 10.1021/acs.inorgchem.2c03058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Dayu Huang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun130022, P. R. China
- Key Laboratory of In-Fiber Integrated Optics, Ministry Education of China, and College of Physics and Opotoelectronic Engineering, Harbin Engineering University, Harbin150001, P. R. China
| | - Qiuyun Ouyang
- Key Laboratory of In-Fiber Integrated Optics, Ministry Education of China, and College of Physics and Opotoelectronic Engineering, Harbin Engineering University, Harbin150001, P. R. China
| | - Jinjiang Wu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun130022, P. R. China
| | - Youchao Kong
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR999078, P. R. China
| | - Bo Wang
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao SAR999078, P. R. China
| | - Hongzhou Lian
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun130022, P. R. China
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun130022, P. R. China
| |
Collapse
|
21
|
Towards Optimized Photoluminescent Copper(I) Phenanthroline-Functionalized Complexes: Control of the Photophysics by Symmetry-Breaking and Spin–Orbit Coupling. MATERIALS 2022; 15:ma15155222. [PMID: 35955157 PMCID: PMC9369739 DOI: 10.3390/ma15155222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 11/17/2022]
Abstract
The electronic and structural alterations induced by the functionalization of the 1,10-phenanthroline (phen) ligand in [Cu(I) (phen-R2)2]+ complexes (R=H, CH3, tertio-butyl, alkyl-linkers) and their consequences on the luminescence properties and thermally activated delay fluorescence (TADF) activity are investigated using the density functional theory (DFT) and its time-dependent (TD) extension. It is shown that highly symmetric molecules with several potentially emissive nearly-degenerate conformers are not promising because of low S1/S0 oscillator strengths together with limited or no S1/T1 spin–orbit coupling (SOC). Furthermore, steric hindrance, which prevents the flattening of the complex upon irradiation, is a factor of instability. Alternatively, linking the phenanthroline ligands offers the possibility to block the flattening while maintaining remarkable photophysical properties. We propose here two promising complexes, with appropriate symmetry and enough rigidity to warrant stability in standard solvents. This original study paves the way for the supramolecular design of new emissive devices.
Collapse
|
22
|
Cho B, Swain A, Gautam R, Tomat E, Huxter VM. Time-resolved dynamics of stable open- and closed-shell neutral radical and oxidized tripyrrindione complexes. Phys Chem Chem Phys 2022; 24:15718-15725. [PMID: 35730195 DOI: 10.1039/d2cp00632d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Stable open- and closed-shell Pd(II) and Cu(II) complexes of hexaethyl tripyrrin-1,14-dione (TD1) produce triplet, doublet or singlet states depending on the metal center and the redox state of the ligand. Pd(II) and Cu(II) form neutral TD1 complexes featuring ligand-based radicals, thus resulting in doublet and triplet states, respectively. The reversible one-electron oxidation of the complexes removes an unpaired electron from the ligand, generating singlet and doublet states. The optical properties and time-resolved dynamics of these systems are studied here using steady-state and ultrafast transient absorption (pump-probe) measurements. Fast relaxation with recovery of the ground state in tens of picoseconds is observed for the copper neutral radical and oxidized complexes as well as for the palladium neutral radical complex. Significantly longer timescales are observed for the oxidized palladium complex. The ability to tune the overall spin state of the complexes through their stable open-shell configurations as well as the reversible redox activity of the tripyrrolic systems makes them particularly interesting for catalytic applications as well as exploring magnetism and conductivity properties.
Collapse
Affiliation(s)
- Byungmoon Cho
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona, 85721, USA.
| | - Alicia Swain
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona, 85721, USA.
| | - Ritika Gautam
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona, 85721, USA.
| | - Elisa Tomat
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona, 85721, USA.
| | - Vanessa M Huxter
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona, 85721, USA. .,Department of Physics, The University of Arizona, Tucson, Arizona, 85721, USA
| |
Collapse
|
23
|
Sinha N, Pfund B, Wegeberg C, Prescimone A, Wenger OS. Cobalt(III) Carbene Complex with an Electronic Excited-State Structure Similar to Cyclometalated Iridium(III) Compounds. J Am Chem Soc 2022; 144:9859-9873. [PMID: 35623627 PMCID: PMC9490849 DOI: 10.1021/jacs.2c02592] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
Many organometallic
iridium(III) complexes have photoactive excited
states with mixed metal-to-ligand and intraligand charge transfer
(MLCT/ILCT) character, which form the basis for numerous applications
in photophysics and photochemistry. Cobalt(III) complexes with analogous
MLCT excited-state properties seem to be unknown yet, despite the
fact that iridium(III) and cobalt(III) can adopt identical low-spin
d6 valence electron configurations due to their close chemical
relationship. Using a rigid tridentate chelate ligand (LCNC), in which a central amido π-donor is flanked by two σ-donating
N-heterocyclic carbene subunits, we obtained a robust homoleptic complex
[Co(LCNC)2](PF6), featuring a photoactive
excited state with substantial MLCT character. Compared to the vast
majority of isoelectronic iron(II) complexes, the MLCT state of [Co(LCNC)2](PF6) is long-lived because it
does not deactivate as efficiently into lower-lying metal-centered
excited states; furthermore, it engages directly in photoinduced electron
transfer reactions. The comparison with [Fe(LCNC)2](PF6), as well as structural, electrochemical, and UV–vis
transient absorption studies, provides insight into new ligand design
principles for first-row transition-metal complexes with photophysical
and photochemical properties reminiscent of those known from the platinum
group metals.
Collapse
Affiliation(s)
- Narayan Sinha
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Björn Pfund
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Christina Wegeberg
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Alessandro Prescimone
- Department of Chemistry, University of Basel, BPR 1096, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Oliver S Wenger
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| |
Collapse
|
24
|
Gimeno L, Phelan BT, Sprague-Klein EA, Roisnel T, Blart E, Gourlaouen C, Chen LX, Pellegrin Y. Bulky and Stable Copper(I)-Phenanthroline Complex: Impact of Steric Strain and Symmetry on the Excited-State Properties. Inorg Chem 2022; 61:7296-7307. [PMID: 35507920 PMCID: PMC9116384 DOI: 10.1021/acs.inorgchem.1c03901] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The steric strain around copper(I) in typical [Cu(NNR)2]+ complexes, where NNR is a diimine ligand substituted in α-positions of the nitrogen atoms by R, is known to strongly impact the excited-state properties. Generally speaking, the larger the R, the longer the emission lifetime and the higher the quantum yield. However, the stability of the coordination scaffold can be at stake if the steric strain imposed by R is too large. In this work, we explore a way of fine-tuning the steric strain around Cu(I) to reach a balance between high emission quantum yield and stability in a highly bulky copper(I) complex. Taking stable [Cu(dipp)2]+ and unstable [Cu(dtbp)2]+ (where dipp and dtbp are, respectively, 2,9-diisopropyl-1,10-phenanthroline and 2,9-di-tert-butyl-1,10-phenanthroline) as the boundary of two least and most sterically strained structures, we designed and characterized the nonsymmetrical ligand 2-isopropyl-9-tert-butyl-1,10-phenanthroline (L1) and corresponding complex [Cu(L1)2]+ (Cu1). The key experimental findings are that Cu1 exhibits a rigid tetrahedral geometry in the ground state, close to that of [Cu(dtbp)2]+ and with an intermediate stability between that of [Cu(dipp)2]+ and [Cu(dtbp)2]+. Conversely, the nonsymmetrical nature of ligand L1 leads to a shorter emission lifetime and smaller quantum yield than those of either [Cu(dipp)2]+ or [Cu(dtbp)2]+. This peculiar behavior is rationalized through the in depth analysis of the ultrafast dynamics of the excited state measured with optical transient absorption spectroscopy and theoretical calculations performed on the ground and excited state of Cu1. Our main findings are that the obtained complex is significantly more stable than [Cu(dtbp)2]+ despite the sterically strained coordination sphere. The nonsymmetrical nature of the ligand translates into a strongly distorted structure in the excited state. The distortion can be described as a rocking motion of one ligand, entailing the premature extinction of the excited state via several deactivation channels.
Collapse
Affiliation(s)
- Lea Gimeno
- Université de Nantes, CNRS, CEISAM UMR6230, F-44000 Nantes, France
| | - Brian T Phelan
- Chemical Science and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Emily A Sprague-Klein
- Chemical Science and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Thierry Roisnel
- Université de Rennes CNRS, Institut des Sciences Chimiques de Rennes, UMR6226, F-35000 Rennes, France
| | - Errol Blart
- Université de Nantes, CNRS, CEISAM UMR6230, F-44000 Nantes, France
| | - Christophe Gourlaouen
- Laboratoire de Chimie Quantique Institut de Chimie UMR 7177 CNRS-Université de Strasbourg, 4, Rue Blaise Pascal CS 90032, F-67081 Strasbourg Cedex, France
| | - Lin X Chen
- Chemical Science and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States.,Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Yann Pellegrin
- Université de Nantes, CNRS, CEISAM UMR6230, F-44000 Nantes, France
| |
Collapse
|
25
|
Yang JG, Song XF, Cheng G, Wu S, Feng X, Cui G, To WP, Chang X, Chen Y, Che CM, Yang C, Li K. Conformational Engineering of Two-Coordinate Gold(I) Complexes: Regulation of Excited-State Dynamics for Efficient Delayed Fluorescence. ACS APPLIED MATERIALS & INTERFACES 2022; 14:13539-13549. [PMID: 35286066 DOI: 10.1021/acsami.2c01776] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Carbene-Au-amide (CMA) type complexes, in which the amide and carbene ligands act as an electron donor (D) and acceptor (A), respectively, can exhibit strong delayed fluorescence (DF) from a ligand to ligand charge transfer (LLCT) excited state. Although the coplanar donor-acceptor (D-A) conformation has been suggested to be a crucial factor favoring radiative decay of the charge-transfer excited state, the geometric structural factor underpinning the excited-state mechanism of CMA complexes remains an open question. We herein develop a new class of carbene-Au-carbazolate complexes by introducing large aromatic substituents onto the carbazolate ligand, the presence of which are conceived to restrict the rotation of the Au-N bond and thus confine a twisted D-A conformation in both ground and excited states. A highly twisted D-A orientation is found for the complexes in their crystal structures. Photophysical studies reveal that the twisted conformation induces a decrease in the gap (ΔEST) between the lowest singlet excited state (S1) and the triplet manifold (T1) and thus a faster reverse intersystem crossing (RISC) from T1 to S1 at the expense of oscillator strength for an S1 radiative transition. In comparison with the coplanar analogue, the twisted complexes exhibit comparable or improved DF with quantum yields of up to 94% and short emission lifetimes down to sub-microseconds. The tuning of excited-state dynamics has been well interpreted by density functional theory (DFT) and time-dependent DFT (TDDFT) calculations, which unveil much faster RISC rates for twisted complexes. Solution-processed organic light-emitting diodes (OLEDs) based on the new CMA complexes show promising performances with almost negligible efficiency rolloff at a brightness of 1000 cd m-2. This work implies that neither a coplanar ground-state D-A conformation nor a dynamic rotation of the M-N bond is the key to the realization of efficient DF for CMA complexes.
Collapse
Affiliation(s)
- Jian-Gong Yang
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, People's Republic of China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, People's Republic of China
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials & CAS-HKU Joint Laboratory on New Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Xiu-Fang Song
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, Chemistry College, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Gang Cheng
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials, and Department of Chemistry, The University of Hong Kong Pokfulam Road, Hong Kong 123, People's Republic of China
| | - Siping Wu
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials, and Department of Chemistry, The University of Hong Kong Pokfulam Road, Hong Kong 123, People's Republic of China
| | - Xingyu Feng
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, People's Republic of China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, Chemistry College, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Wai-Pong To
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials, and Department of Chemistry, The University of Hong Kong Pokfulam Road, Hong Kong 123, People's Republic of China
| | - Xiaoyong Chang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
| | - Yong Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials & CAS-HKU Joint Laboratory on New Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Chi-Ming Che
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials, and Department of Chemistry, The University of Hong Kong Pokfulam Road, Hong Kong 123, People's Republic of China
| | - Chuluo Yang
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, People's Republic of China
| | - Kai Li
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, People's Republic of China
| |
Collapse
|
26
|
Ambrosetti A, Umari P, Silvestrelli PL, Elliott J, Tkatchenko A. Optical van-der-Waals forces in molecules: from electronic Bethe-Salpeter calculations to the many-body dispersion model. Nat Commun 2022; 13:813. [PMID: 35145091 PMCID: PMC8831584 DOI: 10.1038/s41467-022-28461-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 01/25/2022] [Indexed: 12/01/2022] Open
Abstract
Molecular forces induced by optical excitations are connected to a wide range of phenomena, from chemical bond dissociation to intricate biological processes that underpin vision. Commonly, the description of optical excitations requires the solution of computationally demanding electronic Bethe-Salpeter equation (BSE). However, when studying non-covalent interactions in large-scale systems, more efficient methods are desirable. Here we introduce an effective approach based on coupled quantum Drude oscillators (cQDO) as represented by the many-body dispersion model. We find that the cQDO Hamiltonian yields semi-quantitative agreement with BSE calculations and that both attractive and repulsive optical van der Waals (vdW) forces can be induced by light. These optical-vdW interactions dominate over vdW dispersion in the long-distance regime, showing a complexity that grows with system size. Evidence of highly non-local forces in the human formaldehyde dehydrogenase 1MC5 protein suggests the ability to selectively activate collective molecular vibrations by photoabsorption, in agreement with recent experiments.
Collapse
Affiliation(s)
- Alberto Ambrosetti
- Dipartimento di Fisica e Astronomia, Università degli Studi di Padova, 35131, Padova, Italy.
| | - Paolo Umari
- Dipartimento di Fisica e Astronomia, Università degli Studi di Padova, 35131, Padova, Italy
| | | | - Joshua Elliott
- School of Chemical Engineering and Analytical Science, University of Manchester, Manchester, UK
| | - Alexandre Tkatchenko
- Department of Physics and Materials Science, University of Luxembourg, L-1511, Luxembourg City, Luxembourg.
| |
Collapse
|
27
|
Shekhovtsov N, Kokina TE, Vinogradova KA, Panarin AY, Rakhmanova MI, Naumov DY, Pervukhina NV, Nikolaenkova EB, Krivopalov VP, Czerwieniec R, Bushuev MB. Near-infrared emitting copper(I) complexes with a pyrazolylpyrimidine ligand: exploring relaxation pathways. Dalton Trans 2022; 51:2898-2911. [DOI: 10.1039/d1dt04325k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mononuclear copper(I) complexes [CuL2]I (1), [CuL2]2[Cu2I4]·2MeCN (2) and [CuL2]PF6 (3) with a new chelating pyrazolylpyrimidine ligand, 2-(3,5-dimethyl-1H-pyrazol-1-yl)-4,6-diphenylpyrimidine (L), were synthesized. In the structures of complex cations [CuL2]+, Cu+ ions coordinate...
Collapse
|
28
|
Jayasekara GK, Antolini C, Smith MA, Jacoby DJ, Escolastico J, Girard N, Young BT, Hayes D. Mechanisms of the Cu(I)-Catalyzed Intermolecular Photocycloaddition Reaction Revealed by Optical and X-ray Transient Absorption Spectroscopies. J Am Chem Soc 2021; 143:19356-19364. [PMID: 34752703 DOI: 10.1021/jacs.1c07282] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The [2 + 2] photocycloaddition provides a simple, single-step route to cyclobutane moieties that would otherwise be disfavored or impossible due to ring strain and/or steric interactions. We have used a combination of optical and X-ray transient absorption spectroscopies to elucidate the mechanism of the Cu(I)-catalyzed intermolecular photocycloaddition reaction using norbornene and cyclohexene as model substrates. We find that for norbornene the reaction proceeds through an initial metal-to-ligand charge transfer (MLCT) state that persists for 18 ns before the metal returns to the monovalent oxidation state. The Cu K-edge spectrum continues to evolve until ∼5 μs and then remains unchanged for the 50 μs duration of the measurement, reflecting product formation and ligand dissociation. We hypothesize that the MLCT transition and reverse electron transfer serve to sensitize the triplet excited state of one of the norbornene ligands, which then dimerizes with the other to give the product. For the case of cyclohexene, however, we do not observe a charge transfer state following photoexcitation and instead find evidence for an increase in the metal-ligand bond strength that persists for several ns before product formation occurs. This is consistent with a mechanism in which ligand photoisomerization is the initial step, which was first proposed by Salomon and Kochi in 1974 to explain the stereoselectivity of the reaction. Our investigation reveals how this photocatalytic reaction may be directed along strikingly disparate trajectories by only very minor changes to the structure of the substrate.
Collapse
Affiliation(s)
- Gethmini K Jayasekara
- Department of Chemistry, University of Rhode Island, 45 Upper College Road, Kingston, Rhode Island 02881, United States
| | - Cali Antolini
- Department of Chemistry, University of Rhode Island, 45 Upper College Road, Kingston, Rhode Island 02881, United States
| | - Melissa A Smith
- Department of Chemistry, University of Rhode Island, 45 Upper College Road, Kingston, Rhode Island 02881, United States
| | - Danielle J Jacoby
- Department of Chemistry, University of Rhode Island, 45 Upper College Road, Kingston, Rhode Island 02881, United States
| | - Jacqueline Escolastico
- Department of Physical Sciences, Rhode Island College, 600 Mt Pleasant Avenue, Providence, Rhode Island 02908, United States
| | - Nathan Girard
- Department of Physical Sciences, Rhode Island College, 600 Mt Pleasant Avenue, Providence, Rhode Island 02908, United States
| | - Benjamin T Young
- Department of Physical Sciences, Rhode Island College, 600 Mt Pleasant Avenue, Providence, Rhode Island 02908, United States
| | - Dugan Hayes
- Department of Chemistry, University of Rhode Island, 45 Upper College Road, Kingston, Rhode Island 02881, United States
| |
Collapse
|
29
|
Wegeberg C, Wenger OS. Luminescent First-Row Transition Metal Complexes. JACS AU 2021; 1:1860-1876. [PMID: 34841405 PMCID: PMC8611671 DOI: 10.1021/jacsau.1c00353] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Indexed: 05/25/2023]
Abstract
Precious and rare elements have traditionally dominated inorganic photophysics and photochemistry, but now we are witnessing a paradigm shift toward cheaper and more abundant metals. Even though emissive complexes based on selected first-row transition metals have long been known, recent conceptual breakthroughs revealed that a much broader range of elements in different oxidation states are useable for this purpose. Coordination compounds of V, Cr, Mn, Fe, Co, Ni, and Cu now show electronically excited states with unexpected reactivity and photoluminescence behavior. Aside from providing a compact survey of the recent conceptual key advances in this dynamic field, our Perspective identifies the main design strategies that enabled the discovery of fundamentally new types of 3d-metal-based luminophores and photosensitizers operating in solution at room temperature.
Collapse
|
30
|
Phelan BT, Mara MW, Chen LX. Excited-state structural dynamics of nickel complexes probed by optical and X-ray transient absorption spectroscopies: insights and implications. Chem Commun (Camb) 2021; 57:11904-11921. [PMID: 34695174 DOI: 10.1039/d1cc03875c] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Excited states of nickel complexes undergo a variety of photochemical processes, such as charge transfer, ligation/deligation, and redox reactions, relevant to solar energy conversion and photocatalysis. The efficiencies of the aforementioned processes are closely coupled to the molecular structures in the ground and excited states. The conventional optical transient absorption spectroscopy has revealed important excited-state pathways and kinetics, but information regarding the metal center, in particular transient structural and electronic properties, remains limited. These deficiencies are addressed by X-ray transient absorption (XTA) spectroscopy, a detailed probe of 3d orbital occupancy, oxidation state and coordination geometry. The examples of excited-state structural dynamics of nickel porphyrin and nickel phthalocyanine have been described from our previous studies with highlights on the unique structural information obtained by XTA spectroscopy. We close by surveying prospective applications of XTA spectroscopy to active areas of Ni-based photocatalysis based on the knowledge gained from our previous studies.
Collapse
Affiliation(s)
- Brian T Phelan
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA.
| | - Michael W Mara
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA. .,Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| | - Lin X Chen
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA. .,Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| |
Collapse
|
31
|
Grupe M, Boden P, Di Martino‐Fumo P, Gui X, Bruschi C, Israil R, Schmitt M, Nieger M, Gerhards M, Klopper W, Riehn C, Bizzarri C, Diller R. Time-Resolved Spectroscopy and Electronic Structure of Mono-and Dinuclear Pyridyl-Triazole/DPEPhos-Based Cu(I) Complexes. Chemistry 2021; 27:15251-15270. [PMID: 34550622 PMCID: PMC8597052 DOI: 10.1002/chem.202102760] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Indexed: 12/20/2022]
Abstract
Chemical and spectroscopic characterization of the mononuclear photosensitizers [(DPEPhos)Cu(I)(MPyrT)]0/+ (CuL, CuLH) and their dinuclear analogues (Cu2 L', Cu2 L'H2 ), backed by (TD)DFT and high-level GW-Bethe-Salpeter equation calculations, exemplifies the complex influence of charge, nuclearity and structural flexibility on UV-induced photophysical pathways. Ultrafast transient absorption and step-scan FTIR spectroscopy reveal flattening distortion in the triplet state of CuLH as controlled by charge, which also appears to have a large impact on the symmetry of the long-lived triplet states in Cu2 L' and Cu2 L'H2 . Time-resolved luminescence spectroscopy (solid state), supported by transient photodissociation spectroscopy (gas phase), confirm a lifetime of some tens of μs for the respective triplet states, as well as the energetics of thermally activated delayed luminescence, both being essential parameters for application of these materials based on earth-abundant copper in photocatalysis and luminescent devices.
Collapse
Affiliation(s)
- Merten Grupe
- Department of PhysicsTU KaiserslauternErwin-Schrödinger-Straße 4667663KaiserslauternGermany
| | - Pit Boden
- Department of ChemistryTU KaiserslauternErwin-Schrödinger-Straße 5267663KaiserslauternGermany
| | - Patrick Di Martino‐Fumo
- Department of ChemistryTU KaiserslauternErwin-Schrödinger-Straße 5267663KaiserslauternGermany
| | - Xin Gui
- Institute of Physical ChemistryKarlsruhe Institute of Technology (KIT)Fritz-Haber-Weg 276131KarlsruheGermany
| | - Cecilia Bruschi
- Institute of Organic Chemistry (IOC)Karlsruhe Institute of Technology (KIT)Fritz-Haber-Weg 676131KarlsruheGermany
| | - Roumany Israil
- Department of ChemistryTU KaiserslauternErwin-Schrödinger-Straße 5267663KaiserslauternGermany
| | - Marcel Schmitt
- Department of ChemistryTU KaiserslauternErwin-Schrödinger-Straße 5267663KaiserslauternGermany
| | - Martin Nieger
- Department of ChemistryUniversity of HelsinkiA.I. Virtasen aukio 100014HelsinkiFinland
| | - Markus Gerhards
- Department of ChemistryTU KaiserslauternErwin-Schrödinger-Straße 5267663KaiserslauternGermany
- Research Center OPTIMASErwin-Schrödinger-Straße 4667663KaiserslauternGermany
| | - Wim Klopper
- Institute of Physical ChemistryKarlsruhe Institute of Technology (KIT)Fritz-Haber-Weg 276131KarlsruheGermany
| | - Christoph Riehn
- Department of ChemistryTU KaiserslauternErwin-Schrödinger-Straße 5267663KaiserslauternGermany
- Research Center OPTIMASErwin-Schrödinger-Straße 4667663KaiserslauternGermany
| | - Claudia Bizzarri
- Institute of Organic Chemistry (IOC)Karlsruhe Institute of Technology (KIT)Fritz-Haber-Weg 676131KarlsruheGermany
| | - Rolf Diller
- Department of PhysicsTU KaiserslauternErwin-Schrödinger-Straße 4667663KaiserslauternGermany
| |
Collapse
|
32
|
Seidler B, Sittig M, Zens C, Tran JH, Müller C, Zhang Y, Schneider KRA, Görls H, Schubert A, Gräfe S, Schulz M, Dietzek B. Modulating the Excited-State Decay Pathways of Cu(I) 4 H-Imidazolate Complexes by Excitation Wavelength and Ligand Backbone. J Phys Chem B 2021; 125:11498-11511. [PMID: 34617757 DOI: 10.1021/acs.jpcb.1c06902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cu(I) 4H-imidazolato complexes are excellent photosensitizers with broad and intense light absorption properties, based on an earth-abundant metal, and hold great promise as photosensitizers in artificial photosynthesis and for accumulation of redox equivalents. In this study, the excited-state relaxation dynamics of three novel heteroleptic Cu(I) 4H-imidazolato complexes with phenyl, tolyl, and mesityl side groups are systematically investigated by femtosecond and nanosecond time-resolved transient absorption spectroscopy and theoretical methods, complemented by steady-state absorption spectroscopy and (spectro)electrochemistry. After photoexcitation into the metal-to-ligand charge transfer (MLCT) and intraligand charge transfer absorption band, fast (0.6-1 ps) intersystem crossing occurs into the triplet MLCT manifold. The triplet-state population relaxes via the geometrical planarization of the N-aryl rings on the Cu(I) 4H-imidazolato complexes. Depending on the initial Franck-Condon state, the remaining small singlet state population relaxes into two geometrically distinct minima geometries with similar energy, S1/2,relax and S3/4,relax. Subsequent ground-state recovery from S1/2,relax and internal conversion from S3/4,relax to S1/2,relax take place on a 100 ps time scale. The internal conversion can be understood as hole transfer from a dyz-orbital to a dxz-orbital, which is accompanied with the structural reorganization of the coordination environment. Generally, the photophysical processes are determined by the steric hindrance of the side groups on the ligands. And the excited singlet-state pathways are dependent on the excitation wavelength.
Collapse
Affiliation(s)
- Bianca Seidler
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany.,Department Functional Interfaces, Leibniz Institute of Photonic Technology Jena (Leibniz-IPHT), Albert-Einstein-Str. 9, 07745 Jena, Germany
| | - Maria Sittig
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany.,Department Functional Interfaces, Leibniz Institute of Photonic Technology Jena (Leibniz-IPHT), Albert-Einstein-Str. 9, 07745 Jena, Germany
| | - Clara Zens
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Jens H Tran
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Carolin Müller
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany.,Department Functional Interfaces, Leibniz Institute of Photonic Technology Jena (Leibniz-IPHT), Albert-Einstein-Str. 9, 07745 Jena, Germany
| | - Ying Zhang
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Kilian R A Schneider
- Department Functional Interfaces, Leibniz Institute of Photonic Technology Jena (Leibniz-IPHT), Albert-Einstein-Str. 9, 07745 Jena, Germany
| | - Helmar Görls
- Institute of Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Humboldtstr. 8, 07743 Jena, Germany
| | - Alexander Schubert
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Stefanie Gräfe
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany.,Fraunhofer Institute for Applied Optics and Precision Engineering (Fraunhofer IOF), Albert-Einstein-Str.7, 07745 Jena, Germany
| | - Martin Schulz
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany.,Department Functional Interfaces, Leibniz Institute of Photonic Technology Jena (Leibniz-IPHT), Albert-Einstein-Str. 9, 07745 Jena, Germany
| | - Benjamin Dietzek
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany.,Department Functional Interfaces, Leibniz Institute of Photonic Technology Jena (Leibniz-IPHT), Albert-Einstein-Str. 9, 07745 Jena, Germany.,Centre for Energy and Environmental Chemistry Jena (CEEC-Jena), Friedrich Schiller University Jena, Philosophenweg 7a, 07743 Jena, Germany
| |
Collapse
|
33
|
Zi X, Liu C, Lu W, Huang J, Zhang J, Zhang B, Du C. Luminescent mono‐and dinuclear copper(I) complexes based on bulky bisphosphino‐substituted benzimidazole derivatives. Z Anorg Allg Chem 2021. [DOI: 10.1002/zaac.202100238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Xiaorui Zi
- College of Chemistry Zhengzhou University Zhengzhou 450001 PR China
| | - Chunmei Liu
- College of Chemistry Zhengzhou University Zhengzhou 450001 PR China
| | - Wen Lu
- College of Chemistry Zhengzhou University Zhengzhou 450001 PR China
| | - Juan Huang
- College of Chemistry Zhengzhou University Zhengzhou 450001 PR China
| | - Jiayuan Zhang
- College of Chemistry Zhengzhou University Zhengzhou 450001 PR China
| | - Bin Zhang
- College of Chemistry Zhengzhou University Zhengzhou 450001 PR China
| | - Chenxia Du
- College of Chemistry Zhengzhou University Zhengzhou 450001 PR China
| |
Collapse
|
34
|
Rosko MC, Wells KA, Hauke CE, Castellano FN. Next Generation Cuprous Phenanthroline MLCT Photosensitizer Featuring Cyclohexyl Substituents. Inorg Chem 2021; 60:8394-8403. [PMID: 34097407 DOI: 10.1021/acs.inorgchem.1c01242] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A new long-lived, visible-light-absorbing homoleptic Cu(I) metal-to-ligand charge transfer (MLCT) photosensitizer, [Cu(dchtmp)2]PF6 (dchtmp = 2,9-dicyclohexyl-3,4,7,8-tetramethyl-1,10-phenanthroline), has been synthesized, structurally characterized, and evaluated in terms of its molecular photophysics, electrochemistry, and electronic structure. Static and time-resolved transient absorption (TA) and photoluminescence (PL) spectroscopy measured on the title compound in CH2Cl2 (τ = 2.6 μs, ΦPL = 5.5%), CH3CN (τ = 1.5 μs, ΦPL = 2.6%), and THF (τ = 2.0 μs, ΦPL = 3.7%) yielded impressive photophysical metrics even when dissolved in Lewis basic solvents. The combined static spectroscopic data along with ultrafast TA experiments revealed that the pseudo-Jahn-Teller distortion and intersystem crossing dynamics in the MLCT excited state displayed characteristics of being sterically arrested throughout its evolution. Electrochemical and static PL data illustrate that [Cu(dchtmp)2]PF6 is a potent photoreductant (-1.77 V vs Fc+/0 in CH3CN) equal to or greater than all previously investigated homoleptic Cu(I) diimine complexes. Although we successfully prepared the cyclopentyl analog dcptmp (2,9-dicyclopentyl-3,4,7,8-tetramethyl-1,10-phenanthroline) using the same C-C radical coupling photochemistry as dchtmp, the corresponding Cu(I) complex could not be isolated due to the steric hindrance presented at the metal center. Ultimately, the successful preparation of [Cu(dchtmp)2]+ represents a major step forward for the design and discovery of novel earth-abundant photosensitizers made possible through a newly conceived ligand synthetic strategy.
Collapse
Affiliation(s)
- Michael C Rosko
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Kaylee A Wells
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Cory E Hauke
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Felix N Castellano
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| |
Collapse
|
35
|
Gourlaouen C, Hamano A, Takano K, Daniel C. Substituent effects on the photophysical properties of 2,9-substituted phenanthroline copper(I) complexes: a theoretical investigation. Chemphyschem 2021; 22:509-515. [PMID: 33241892 DOI: 10.1002/cphc.202000868] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/17/2020] [Indexed: 11/08/2022]
Abstract
The electronic and nuclear structures of a series of [Cu(2,9-(X)2 -phen)2 ]+ copper(I) complexes (phen=1,10-phenanthroline; X=H, F, Cl, Br, I, Me, CN) in their ground and excited states are investigated by means of density functional theory (DFT) and time-dependent (TD-DFT) methods. Subsequent Born-Oppenheimer molecular dynamics is used for exploring the T1 potential energy surface (PES). The T1 and S1 energy profiles, which connect the degenerate minima induced by ligand flattening and Cu-N bond symmetry breaking when exciting the molecule are calculated as well as transition state (TS) structures and related energy barriers. Three nuclear motions drive the photophysics, namely the coordination sphere asymmetric breathing, the well-documented pseudo Jahn-Teller (PJT) distortion and the bending of the phen ligands. This theoretical study reveals the limit of the static picture based on potential energy surfaces minima and transition states for interpreting the luminescent and TADF properties of this class of molecules. Whereas minor asymmetric Cu-N bonds breathing accompanies the metal-to-ligand-charge-transfer re-localization over one or the other phen ligand, the three nuclear movements participate to the flattening of the electronically excited complexes. This leads to negligible energy barriers whatever the ligand X for the first process and significant ligand dependent energy barriers for the formation of the flattened conformers. Born-Oppenheimer (BO) dynamics simulation of the structural evolution on the T1 PES over 11 ps at 300 K confirms the fast backwards and forwards motion of the phenanthroline within 200-300 fs period and corroborates the presence of metastable C2 structures.
Collapse
Affiliation(s)
- Christophe Gourlaouen
- Laboratoire de Chimie Quantique Institute of Chemistry UMR 7177, CNRS/ Strasbourg University, ILB, 4 Rue Blaise Pascal, 67008, Strasbourg Cedex, France
| | - Ai Hamano
- Laboratoire de Chimie Quantique Institute of Chemistry UMR 7177, CNRS/ Strasbourg University, ILB, 4 Rue Blaise Pascal, 67008, Strasbourg Cedex, France.,Department of Chemistry and Biochemistry, Graduate School of Humanities and Sciences, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo, 112-8610, Japan
| | - Keiko Takano
- Department of Chemistry and Biochemistry, Graduate School of Humanities and Sciences, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo, 112-8610, Japan
| | - Chantal Daniel
- Laboratoire de Chimie Quantique Institute of Chemistry UMR 7177, CNRS/ Strasbourg University, ILB, 4 Rue Blaise Pascal, 67008, Strasbourg Cedex, France
| |
Collapse
|
36
|
Abstract
Coordination compounds, characterized by fascinating and tunable electronic properties, are capable of binding easily to proteins, polymers, wires and DNA. Upon irradiation, these molecular systems develop functions finding applications in solar cells, photocatalysis, luminescent and conformational probes, electron transfer triggers and diagnostic or therapeutic tools. The control of these functions is activated by the light wavelength, the metal/ligand cooperation and the environment within the first picoseconds (ps). After a brief summary of the theoretical background, this perspective reviews case studies, from 1st row to 3rd row transition metal complexes, that illustrate how spin-orbit, vibronic coupling and quantum effects drive the photophysics of this class of molecules at the early stage of the photoinduced elementary processes within the fs-ps time scale range.
Collapse
Affiliation(s)
- Chantal Daniel
- Laboratoire de Chimie Quantique, Université de Strasbourg, CNRS UMR7177, Institut Le Bel, 4 Rue Blaise Pascal, 67000 Strasbourg, France.
| |
Collapse
|
37
|
Moitra T, Karak P, Chakraborty S, Ruud K, Chakrabarti S. Behind the scenes of spin-forbidden decay pathways in transition metal complexes. Phys Chem Chem Phys 2021; 23:59-81. [PMID: 33319894 DOI: 10.1039/d0cp05108j] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The interpretation of the ultrafast photophysics of transition metal complexes following photo-absorption is quite involved as the heavy metal center leads to a complicated and entangled singlet-triplet manifold. This opens up multiple pathways for deactivation, often with competitive rates. As a result, intersystem crossing (ISC) and phosphorescence are commonly observed in transition metal complexes. A detailed understanding of such an excited-state structure and dynamics calls for state-of-the-art experimental and theoretical methodologies. In this review, we delve into the inability of non-relativistic quantum theory to describe spin-forbidden transitions, which can be overcome by taking into account spin-orbit coupling, whose importance grows with increasing atomic number. We present the quantum chemical theory of phosphorescence and ISC together with illustrative examples. Finally, a few applications are highlighted, bridging the gap between theoretical studies and experimental applications, such as photofunctional materials.
Collapse
Affiliation(s)
- Torsha Moitra
- DTU Chemistry, Technical University of Denmark, Kemitorvet Bldg 207, DK-2800 Kongens Lyngby, Denmark
| | | | | | | | | |
Collapse
|
38
|
Eberhart MS, Phelan BT, Niklas J, Sprague-Klein EA, Kaphan DM, Gosztola DJ, Chen LX, Tiede DM, Poluektov OG, Mulfort KL. Surface immobilized copper(I) diimine photosensitizers as molecular probes for elucidating the effects of confinement at interfaces for solar energy conversion. Chem Commun (Camb) 2020; 56:12130-12133. [PMID: 32960199 DOI: 10.1039/d0cc05972b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Heteroleptic copper(i) bis(phenanthroline) complexes with surface anchoring carboxylate groups have been synthesized and immobilized on nanoporous metal oxide substrates. The species investigated are responsive to the external environment and this work provides a new strategy to control charge transfer processes for efficient solar energy conversion.
Collapse
Affiliation(s)
- Michael S Eberhart
- Division of Chemical Sciences and Engineering, Argonne National Laboratory, Lemont, IL 60439, USA.
| | - Brian T Phelan
- Division of Chemical Sciences and Engineering, Argonne National Laboratory, Lemont, IL 60439, USA.
| | - Jens Niklas
- Division of Chemical Sciences and Engineering, Argonne National Laboratory, Lemont, IL 60439, USA.
| | - Emily A Sprague-Klein
- Division of Chemical Sciences and Engineering, Argonne National Laboratory, Lemont, IL 60439, USA.
| | - David M Kaphan
- Division of Chemical Sciences and Engineering, Argonne National Laboratory, Lemont, IL 60439, USA.
| | - David J Gosztola
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Lin X Chen
- Division of Chemical Sciences and Engineering, Argonne National Laboratory, Lemont, IL 60439, USA. and Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - David M Tiede
- Division of Chemical Sciences and Engineering, Argonne National Laboratory, Lemont, IL 60439, USA.
| | - Oleg G Poluektov
- Division of Chemical Sciences and Engineering, Argonne National Laboratory, Lemont, IL 60439, USA.
| | - Karen L Mulfort
- Division of Chemical Sciences and Engineering, Argonne National Laboratory, Lemont, IL 60439, USA.
| |
Collapse
|
39
|
Grupe M, Bäppler F, Theiß M, Busch JM, Dietrich F, Volz D, Gerhards M, Bräse S, Diller R. Real-time observation of molecular flattening and intersystem crossing in [(DPEPhos)Cu(i)(PyrTet)] via ultrafast UV/Vis- and mid-IR spectroscopy on solution and solid samples. Phys Chem Chem Phys 2020; 22:14187-14200. [PMID: 32609106 DOI: 10.1039/c9cp05749h] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The primary photo-induced processes in the mononuclear, heteroleptic Cu(i) complex [(DPEPhos)Cu(PyrTet)] (1), relevant for OLED applications, were investigated in various solvents and in solid state samples via femtosecond (fs) time resolved UV/Vis and fs time resolved mid-IR transient absorption spectroscopy (TA) with MLCT excitation around 340 nm. UV/Vis fs-TA on 1 in solution reveals (i) a severe blue-shift of excited state absorption on the time scale of a few picoseconds (τ2) that is not observed in solids, and (ii), on the time scale of several tens of picoseconds (τ3), a process with very similar dynamics in all samples. Mid-IR fs-TA in solution indicates structural changes with τ2. Transient absorption anisotropy experiments temporally resolve a viscosity-dependent change of the excited state transition dipole moment orientation with τ2, as quantitatively predicted for the relaxed S1-state via TD-DFT. The results strongly suggest flattening distortion (FD) and structural rearrangement of the PyrTet-moiety to occur on the time scale of τ2 in liquid phase, and to be suppressed in solid phase. Moreover, intersystem crossing (ISC) is assigned to the process described by τ3, in line with its direct observation via time-resolved luminescence spectroscopy on 1 by Bergmann et al. (Sci. Adv., 2016, 2, e1500889). Overall, the use of structure-sensitive methods and the direct comparison of different preparations of 1 (i.e. solution vs. solid state), are a unique basis for a clear assignment of spectro-temporal characteristics to fundamental deactivation processes such as FD and ISC.
Collapse
Affiliation(s)
- Merten Grupe
- Physics Department, TU Kaiserslautern, Erwin-Schrödinger-Straße 46, 67663 Kaiserslautern, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Fayad R, Engl S, Danilov EO, Hauke CE, Reiser O, Castellano FN. Direct Evidence of Visible Light-Induced Homolysis in Chlorobis(2,9-dimethyl-1,10-phenanthroline)copper(II). J Phys Chem Lett 2020; 11:5345-5349. [PMID: 32539422 DOI: 10.1021/acs.jpclett.0c01601] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Developments in the field of photoredox catalysis that leveraged the long-lived excited states of Ir(III) and Ru(II) photosensitizers to enable radical coupling processes paved the way for explorations of synthetic transformations that would otherwise remain unrealized. While first row transition metal photocatalysts have not been as extensively investigated, valuable synthetic transformations covering broad scopes of olefin functionalization have been recently reported featuring photoactivated chlorobis(phenanthroline) Cu(II) complexes. In this study, the photochemical processes underpinning the catalytic activity of [Cu(dmp)2Cl]Cl (dmp = 2,9-dimethyl-1,10-phenanthroline) were studied. The combined results from static spectroscopic measurements and conventional photochemistry, ultrafast transient absorption, and electron paramagnetic resonance spin trapping experiments strongly support blue light (λex = 427 or 470 nm)-induced Cu-Cl homolytic bond cleavage in [Cu(dmp)2Cl]+ occurring in <100 fs. On the basis of electronic structure calculations, this bond-breaking photochemistry corresponds to the Cl → Cu(II) ligand-to-metal charge transfer transition, unmasking a Cu(I) species [Cu(dmp)2]+ and a Cl atom, thereby serving as a departure point for both Cu(I)- or Cu(II)-based photoredox transformations. No net photochemistry was observed through direct excitation of the ligand-field transitions in the red (λex = 785 or 800 nm), and all combined experiments indicated no evidence of Cu-Cl bond cleavage under these conditions. The underlying visible light-induced homolysis of a metal-ligand bond yielding a one-electron-reduced photosensitizer and a radical species may form the basis for novel transformations initiated by photoinduced homolysis featuring in situ-formed metal-substrate adducts utilizing first row transition metal complexes.
Collapse
Affiliation(s)
- Remi Fayad
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Sebastian Engl
- Institute of Organic Chemistry, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - Evgeny O Danilov
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Cory E Hauke
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Oliver Reiser
- Institute of Organic Chemistry, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - Felix N Castellano
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| |
Collapse
|
41
|
Lazorski MS, Schapiro I, Gaddie RS, Lehnig AP, Atanasov M, Neese F, Steiner UE, Elliott CM. Spin-chemical effects on intramolecular photoinduced charge transfer reactions in bisphenanthroline copper(i)-viologen dyad assemblies. Chem Sci 2020; 11:5511-5525. [PMID: 32874494 PMCID: PMC7448374 DOI: 10.1039/d0sc00830c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 05/11/2020] [Indexed: 11/21/2022] Open
Abstract
Two covalently linked donor-acceptor copper phenanthroline complexes (C-A dyads) of interest for solar energy conversion/storage schemes, [Cu(i)(Rphen(OMV)2 4+)2]9+ = RC+A4 8+ with RC+ = [Cu(i)Rphen2]+ involving 2,9-methyl (R = Me) or 2,9-phenyl (R = Ph)-phenanthroline ligands that are 5,6-disubstituted by 4-(n-butoxy) linked methylviologen electron acceptor groups (A2+ = OMV2+), have been synthesized and investigated via quantum chemical calculations and nanosecond laser flash spectroscopy in 1,2-difluorobenzene/methanol (dfb/MeOH) mixtures. Upon photoexcitation, charge transfer (CT) states RC2+A+A3 6+ are formed in less than one ns and decay by charge recombination on a time scale of 6-45 ns. The CT lifetime of RC2+A+A3 6+ has a strong dependence on MeOH solvent fraction when R = Me, but is unaffected if R = Ph. This solvent effect is due to coordination of MeOH solvent in MeC+A4 8+ (i.e. exciplex formation) allowed by conformational flattening of the ligand sphere, which cannot occur in PhC+A4 8+ having bulkier Phphen ligand framework. Interestingly, the decay time of the CT state increases for both species at low magnetic fields with a maximum increase of ca. 30% at ca. 150 mT, then decreases as the field is increased up to 1500 mT, the highest field investigated. This magnetic field effect (MFE) is due to magnetic modulation of the spin dynamics interconverting 3CT and 1CT states. A quantitative modeling according to the radical pair mechanism involving ab initio multireference calculations of the complexes revealed that the spin process is dominated by the effect of Cu hyperfine coupling. The external magnetic field suppresses the hyperfine coupling induced spin state mixing thereby lengthening the CT decay time. This effect is counteracted by the field dependent processes of T0-S mixing through the Δg-mechanism and by a local mode spin-orbit mechanism. Further, the maximum MFE is limited by a finite rate of direct recombination of 3CT states and the spin-rotational mechanism of spin relaxation. This study provides a first comprehensive characterization of Cu(ii)-complex spin chemistry and highlights how spin chemistry can be used to manipulate solar energy harvesting and storage materials.
Collapse
Affiliation(s)
- Megan S Lazorski
- Department of Chemistry , Colorado State University , Fort Collins , CO 80523 , USA .
| | - Igor Schapiro
- Max Planck Institute for Chemical Energy Conversion , D-45470 Mülheim an der Ruhr , Germany
| | - Ross S Gaddie
- Department of Chemistry , Colorado State University , Fort Collins , CO 80523 , USA .
| | - Ammon P Lehnig
- Department of Chemistry , Colorado State University , Fort Collins , CO 80523 , USA .
| | - Mihail Atanasov
- Max Planck Institute for Chemical Energy Conversion , D-45470 Mülheim an der Ruhr , Germany
| | - Frank Neese
- Max Planck Institute for Chemical Energy Conversion , D-45470 Mülheim an der Ruhr , Germany
| | - Ulrich E Steiner
- Department of Chemistry , University of Konstanz , Universitätsstraße 14 , Konstanz , 78457 , Germany
| | - C Michael Elliott
- Department of Chemistry , Colorado State University , Fort Collins , CO 80523 , USA .
| |
Collapse
|
42
|
Brandl T, Kerzig C, Le Pleux L, Prescimone A, Wenger OS, Mayor M. Improved Photostability of a Cu I Complex by Macrocyclization of the Phenanthroline Ligands. Chemistry 2020; 26:3119-3128. [PMID: 31794079 PMCID: PMC7079024 DOI: 10.1002/chem.201904754] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/30/2019] [Indexed: 11/12/2022]
Abstract
The development of molecular materials for conversion of solar energy into electricity and fuels is one of the most active research areas, in which the light absorber plays a key role. While copper(I)‐bis(diimine) complexes [CuI(L)2]+ are considered as potent substitutes for [RuII(bpy)3]2+, they exhibit limited structural integrity as ligand loss by substitution can occur. In this article, we present a new concept to stabilize copper bis(phenanthroline) complexes by macrocyclization of the ligands which are preorganized around the CuI ion. Using oxidative Hay acetylene homocoupling conditions, several CuI complexes with varying bridge length were prepared and analyzed. Absorption and emission properties are assessed; rewardingly, the envisioned approach was successful since the flexible 1,4‐butadiyl‐bridged complex does show enhanced MLCT absorption and emission, as well as improved photostability upon irradiation with a blue LED compared to a reference complex.
Collapse
Affiliation(s)
- Thomas Brandl
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| | - Christoph Kerzig
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| | - Loïc Le Pleux
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| | - Alessandro Prescimone
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| | - Oliver S Wenger
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| | - Marcel Mayor
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland.,Karlsruhe Institute of Technology (KIT), P.O. Box 3640, 76021, Karlsruhe, Germany.,Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|
43
|
Cerfontaine S, Wehlin SAM, Elias B, Troian-Gautier L. Photostable Polynuclear Ruthenium(II) Photosensitizers Competent for Dehalogenation Photoredox Catalysis at 590 nm. J Am Chem Soc 2020; 142:5549-5555. [DOI: 10.1021/jacs.0c01503] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Simon Cerfontaine
- Université catholique de Louvain (UCLouvain), Institut de la Matière Condensée et des Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis (MOST), Place Louis Pasteur 1, bte L4.01.02, 1348 Louvain-la-Neuve, Belgium
| | - Sara A. M. Wehlin
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Benjamin Elias
- Université catholique de Louvain (UCLouvain), Institut de la Matière Condensée et des Nanosciences (IMCN), Molecular Chemistry, Materials and Catalysis (MOST), Place Louis Pasteur 1, bte L4.01.02, 1348 Louvain-la-Neuve, Belgium
| | - Ludovic Troian-Gautier
- Laboratoire de Chimie Organique, Université libre de Bruxelles (ULB), CP 160/06, 50 avenue F.D. Roosevelt, 1050 Brussels, Belgium
| |
Collapse
|
44
|
Livshits MY, Reeves BJ, DeWeerd NJ, Strauss SH, Boltalina OV, Rack JJ. Trifluoromethylated Phenanthroline Ligands Reduce Excited-State Distortion in Homoleptic Copper(I) Complexes. Inorg Chem 2020; 59:2781-2790. [PMID: 32049510 DOI: 10.1021/acs.inorgchem.9b03146] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report the synthesis and excited-state dynamics for a series of homoleptic copper(I) trifluoromethylated phenanthroline complexes with two, three, and four trifluoromethyl functional groups. Our analysis of the steady-state absorbance and emission, transient-absorption spectroscopy, and electronic-structure-theory calculations results enable in-depth analysis of the pseudo-Jahn-Teller distortion inhibition from increased steric hindrance of the trifluoromethyl functional group relative to the prototypical dimethyl phenanthroline complex. Surprisingly, our results demonstrate that the greatest degree of pseudo-Jahn-Teller distortion inhibition is achieved with trifluoromethylation of only the 2 and 9 positions by an unusual combination of steric hindrance and stabilization of a nondistorted 1MLCT manifold observed by transient kinetic lifetimes and optimized excited-state structures. The intersystem-crossing (ISC) lifetime for the 2,9-bis(trifluoromethyl)-1,10-phenanthroline Cu(I) complex is 69 ps, while the triplet excited-state lifetime and emission quantum yield are 106 ns and 4 × 10-3, respectively. Further trifluoromethylation of the phenanthroline yields a greater σ bond inductive withdrawing force on the phenanthroline nitrogens, ultimately resulting in weaker coordination to the copper. Last, the surprising success of the 2,9-bis(trifluoromethyl)-1,10-phenanthroline Cu(I) complex by adjusting both ligand sterics and electronic properties outlines a new strategy for developing long-lived Cu(I) charge-transfer complexes.
Collapse
Affiliation(s)
- Maksim Y Livshits
- Department of Chemistry and Chemical Biology, The University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Brian J Reeves
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Nicholas J DeWeerd
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Steven H Strauss
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Olga V Boltalina
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Jeffrey J Rack
- Department of Chemistry and Chemical Biology, The University of New Mexico, Albuquerque, New Mexico 87131, United States
| |
Collapse
|
45
|
Levi G, Biasin E, Dohn AO, Jónsson H. On the interplay of solvent and conformational effects in simulated excited-state dynamics of a copper phenanthroline photosensitizer. Phys Chem Chem Phys 2020; 22:748-757. [DOI: 10.1039/c9cp06086c] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
QM/MM direct dynamics simulations in acetonitrile reveal the interplay between solvent and conformational effects in the photoinduced ultrafast flattening of a copper photosensitizer.
Collapse
Affiliation(s)
- Gianluca Levi
- Science Institute and Faculty of Physical Sciences
- University of Iceland
- Iceland
| | - Elisa Biasin
- PULSE Institute
- SLAC National Accelerator Laboratory
- Menlo Park
- California 94025
- USA
| | - Asmus O. Dohn
- Science Institute and Faculty of Physical Sciences
- University of Iceland
- Iceland
| | - Hannes Jónsson
- Science Institute and Faculty of Physical Sciences
- University of Iceland
- Iceland
| |
Collapse
|
46
|
Stroscio GD, Ribson RD, Hadt RG. Quantifying Entatic States in Photophysical Processes: Applications to Copper Photosensitizers. Inorg Chem 2019; 58:16800-16817. [DOI: 10.1021/acs.inorgchem.9b02976] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Gautam D. Stroscio
- Division of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States
| | - Ryan D. Ribson
- Division of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States
| | - Ryan G. Hadt
- Division of Chemistry and Chemical Engineering, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
47
|
Katayama T, Northey T, Gawelda W, Milne CJ, Vankó G, Lima FA, Bohinc R, Németh Z, Nozawa S, Sato T, Khakhulin D, Szlachetko J, Togashi T, Owada S, Adachi SI, Bressler C, Yabashi M, Penfold TJ. Tracking multiple components of a nuclear wavepacket in photoexcited Cu(I)-phenanthroline complex using ultrafast X-ray spectroscopy. Nat Commun 2019; 10:3606. [PMID: 31399565 PMCID: PMC6689108 DOI: 10.1038/s41467-019-11499-w] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 07/18/2019] [Indexed: 11/09/2022] Open
Abstract
Disentangling the strong interplay between electronic and nuclear degrees of freedom is essential to achieve a full understanding of excited state processes during ultrafast nonadiabatic chemical reactions. However, the complexity of multi-dimensional potential energy surfaces means that this remains challenging. The energy flow during vibrational and electronic relaxation processes can be explored with structural sensitivity by probing a nuclear wavepacket using femtosecond time-resolved X-ray Absorption Near Edge Structure (TR-XANES). However, it remains unknown to what level of detail vibrational motions are observable in this X-ray technique. Herein we track the wavepacket dynamics of a prototypical [Cu(2,9-dimethyl-1,10-phenanthroline)2]+ complex using TR-XANES. We demonstrate that sensitivity to individual wavepacket components can be modulated by the probe energy and that the bond length change associated with molecular breathing mode can be tracked with a sub-Angstrom resolution beyond optical-domain observables. Importantly, our results reveal how state-of-the-art TR-XANES provides deeper insights of ultrafast nonadiabatic chemical reactions.
Collapse
Affiliation(s)
- Tetsuo Katayama
- Japan Synchrotron Radiation Research Institute, Kouto 1-1-1, Sayo, Hyogo, 679-5198, Japan. .,RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo, 679-5148, Japan.
| | - Thomas Northey
- Chemistry-School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon-Tyne, NE1 7RU, UK
| | - Wojciech Gawelda
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany.,Faculty of Physics, Adam Mickiewicz University, 61-614, Poznań, Poland
| | | | - György Vankó
- Wigner Research Centre for Physics, Hungarian Academy of Sciences, 1525, Budapest, Hungary
| | | | - Rok Bohinc
- SwissFEL, Paul Scherrer Institut, 5232, Villigen-PSI, Switzerland
| | - Zoltán Németh
- Wigner Research Centre for Physics, Hungarian Academy of Sciences, 1525, Budapest, Hungary
| | - Shunsuke Nozawa
- Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki, 305-0801, Japan.,Department of Materials Structure Science, School of High Energy Accelerator Science, The Graduate University for Advanced Studies, 1-1 Oho, Tsukuba, Ibaraki, 305-0801, Japan
| | - Tokushi Sato
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany.,Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607, Hamburg, Germany
| | | | - Jakub Szlachetko
- Institute of Nuclear Physics, Polish Academy of Sciences, 31-342, Kraków, Poland
| | - Tadashi Togashi
- Japan Synchrotron Radiation Research Institute, Kouto 1-1-1, Sayo, Hyogo, 679-5198, Japan.,RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo, 679-5148, Japan
| | - Shigeki Owada
- Japan Synchrotron Radiation Research Institute, Kouto 1-1-1, Sayo, Hyogo, 679-5198, Japan.,RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo, 679-5148, Japan
| | - Shin-Ichi Adachi
- Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki, 305-0801, Japan.,Department of Materials Structure Science, School of High Energy Accelerator Science, The Graduate University for Advanced Studies, 1-1 Oho, Tsukuba, Ibaraki, 305-0801, Japan
| | - Christian Bressler
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany.,Centre for Ultrafast Imaging CUI, University of Hamburg, 22761, Hamburg, Germany
| | - Makina Yabashi
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo, 679-5148, Japan
| | - Thomas J Penfold
- Chemistry-School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon-Tyne, NE1 7RU, UK.
| |
Collapse
|
48
|
Filonenko GA, Sun D, Weber M, Müller C, Pidko EA. Multicolor Organometallic Mechanophores for Polymer Imaging Driven by Exciplex Level Interactions. J Am Chem Soc 2019; 141:9687-9692. [PMID: 31145603 PMCID: PMC6588268 DOI: 10.1021/jacs.9b04121] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Indexed: 12/12/2022]
Abstract
Photoluminescent compounds can undergo various structural changes upon interaction with light. When these changes manifest themselves in the excited state, the resulting emitters can obtain a sensory function. In this work, we designed coordination compounds that can vary their emission color in response to thermal and mechanical stimuli. When embedded in a polymer matrix, Cu-NHC sensors act as mechanophores, and their color-based response can readily describe mechanical stress and phase transition phenomena. A strong practical advantage of new mechanophores over previous generations of organometallic stress sensors stems from their reliance on emission color variations that are easy to detect. In a broad context, our work implies that emission color variations that we often view as thermally governed can also be triggered mechanically and used to generate sensory information.
Collapse
Affiliation(s)
- Georgy A. Filonenko
- Inorganic
Systems Engineering Group, Department of Chemical Engineering, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Dapeng Sun
- Inorganic
Systems Engineering Group, Department of Chemical Engineering, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Manuela Weber
- Institut
für Chemie und Biochemie, Freie Universität
Berlin, D-14195 Berlin, Germany
| | - Christian Müller
- Institut
für Chemie und Biochemie, Freie Universität
Berlin, D-14195 Berlin, Germany
| | - Evgeny A. Pidko
- Inorganic
Systems Engineering Group, Department of Chemical Engineering, Delft University of Technology, 2629 HZ Delft, The Netherlands
- TheoMAT
Group, Chemistry and Biology Cluster, ITMO
University, Lomonosova
9, St. Petersburg 191002, Russia
| |
Collapse
|
49
|
Brown-Xu S, Fumanal M, Gourlaouen C, Gimeno L, Quatela A, Thobie-Gautier C, Blart E, Planchat A, Riobé F, Monnereau C, Chen LX, Daniel C, Pellegrin Y. Intriguing Effects of Halogen Substitution on the Photophysical Properties of 2,9-(Bis)halo-Substituted Phenanthrolinecopper(I) Complexes. Inorg Chem 2019; 58:7730-7745. [DOI: 10.1021/acs.inorgchem.9b00042] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Samantha Brown-Xu
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Maria Fumanal
- Laboratoire de Chimie Quantique Institut de Chimie, UMR 7177, CNRS, Université de Strasbourg, 4 rue Blaise Pascal, CS 90032, F-67081 Strasbourg Cedex, France
| | - Christophe Gourlaouen
- Laboratoire de Chimie Quantique Institut de Chimie, UMR 7177, CNRS, Université de Strasbourg, 4 rue Blaise Pascal, CS 90032, F-67081 Strasbourg Cedex, France
| | - Lea Gimeno
- Chimie Et Interdisciplinarité: Synthèse, Analyse, Modélisation (CEISAM), UMR 6230, CNRS, Université UNAM, 2 rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France
| | - Alessia Quatela
- Horiba France SAS, Avenue de la Vauve, Passage Jobin Yvon CS 45002, 91120 Palaiseau, France
| | - Christine Thobie-Gautier
- Chimie Et Interdisciplinarité: Synthèse, Analyse, Modélisation (CEISAM), UMR 6230, CNRS, Université UNAM, 2 rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France
| | - Errol Blart
- Chimie Et Interdisciplinarité: Synthèse, Analyse, Modélisation (CEISAM), UMR 6230, CNRS, Université UNAM, 2 rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France
| | - Aurélien Planchat
- Chimie Et Interdisciplinarité: Synthèse, Analyse, Modélisation (CEISAM), UMR 6230, CNRS, Université UNAM, 2 rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France
| | - François Riobé
- Laboratoire de Chimie, ENS de Lyon, UMR 5182, CNRS, Université de Lyon, F69342 Lyon, France
| | - Cyrille Monnereau
- Laboratoire de Chimie, ENS de Lyon, UMR 5182, CNRS, Université de Lyon, F69342 Lyon, France
| | - Lin X. Chen
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Chantal Daniel
- Laboratoire de Chimie Quantique Institut de Chimie, UMR 7177, CNRS, Université de Strasbourg, 4 rue Blaise Pascal, CS 90032, F-67081 Strasbourg Cedex, France
| | - Yann Pellegrin
- Chimie Et Interdisciplinarité: Synthèse, Analyse, Modélisation (CEISAM), UMR 6230, CNRS, Université UNAM, 2 rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France
| |
Collapse
|
50
|
Flores DM, Schmidt VA. Intermolecular 2 + 2 Carbonyl–Olefin Photocycloadditions Enabled by Cu(I)–Norbornene MLCT. J Am Chem Soc 2019; 141:8741-8745. [DOI: 10.1021/jacs.9b03775] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Daniel M. Flores
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Valerie A. Schmidt
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|