1
|
Ellenbroek BD, Kahler JP, Evers SR, Pomplun SJ. Synthetic Peptides: Promising Modalities for the Targeting of Disease-Related Nucleic Acids. Angew Chem Int Ed Engl 2024; 63:e202401704. [PMID: 38456368 DOI: 10.1002/anie.202401704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 03/09/2024]
Abstract
DNA and RNA play pivotal roles in life processes by storing and transferring genetic information, modulating gene expression, and contributing to essential cellular machinery such as ribosomes. Dysregulation and mutations in nucleic acid-related processes are implicated in numerous diseases. Despite the critical impact on health of nucleic acid mutations or dysregulation, therapeutic compounds addressing these biomolecules remain limited. Peptides have emerged as a promising class of molecules for biomedical research, offering potential solutions for challenging drug targets. This review focuses on the use of synthetic peptides to target disease-related nucleic acids. We discuss examples of peptides targeting double-stranded DNA, including the clinical candidate Omomyc, and compounds designed for regulatory G-quadruplexes. Further, we provide insights into both library-based screenings and the rational design of peptides to target regulatory human RNA scaffolds and viral RNAs, emphasizing the potential of peptides in addressing nucleic acid-related diseases.
Collapse
Affiliation(s)
| | | | - Sophie R Evers
- Leiden University, 2333 CC, Leiden, The Netherlands
- Present address, Department of Chemistry, University of Zurich, Wintherthurerstrasse 190, 8057, Zurich, Switzerland
| | | |
Collapse
|
2
|
Ramamourthy G, Park J, Seo C, J. Vogel H, Park Y. Antifungal and Antibiofilm Activities and the Mechanism of Action of Repeating Lysine-Tryptophan Peptides against Candida albicans. Microorganisms 2020; 8:E758. [PMID: 32443520 PMCID: PMC7285485 DOI: 10.3390/microorganisms8050758] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/06/2020] [Accepted: 05/16/2020] [Indexed: 11/29/2022] Open
Abstract
The rapid increase in the emergence of antifungal-resistant Candida albicans strains is becoming a serious health concern. Because antimicrobial peptides (AMPs) may provide a potential alternative to conventional antifungal agents, we have synthesized a series of peptides with a varying number of lysine and tryptophan repeats (KWn-NH2). The antifungal activity of these peptides increased with peptide length, but only the longest KW5 peptide displayed cytotoxicity towards a human keratinocyte cell line. The KW4 and KW5 peptides exhibited strong antifungal activity against C. albicans, even under conditions of high-salt and acidic pH, or the addition of fungal cell wall components. Moreover, KW4 inhibited biofilm formation by a fluconazole-resistant C. albicans strain. Circular dichroism and fluorescence spectroscopy indicated that fungal liposomes could interact with the longer peptides but that they did not release the fluorescent dye calcein. Subsequently, fluorescence assays with different dyes revealed that KW4 did not disrupt the membrane integrity of intact fungal cells. Scanning electron microscopy showed no changes in fungal morphology, while laser-scanning confocal microscopy indicated that KW4 can localize into the cytosol of C. albicans. Gel retardation assays revealed that KW4 can bind to fungal RNA as a potential intracellular target. Taken together, our data indicate that KW4 can inhibit cellular functions by binding to RNA and DNA after it has been translocated into the cell, resulting in the eradication of C. albicans.
Collapse
Affiliation(s)
- Gopal Ramamourthy
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada; (G.R.); (H.J.V.)
- Department of Biomedical Science and BK21-Plus Research Team for Bioactive Control Technology, Chosun University, Gwangju 61452, Korea
| | - Jonggwan Park
- Department of Bioinformatics, Kongju National University, Kongju 38065, Korea; (J.P.); (C.S.)
| | - Changho Seo
- Department of Bioinformatics, Kongju National University, Kongju 38065, Korea; (J.P.); (C.S.)
| | - Hans J. Vogel
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada; (G.R.); (H.J.V.)
| | - Yoonkyung Park
- Department of Biomedical Science and BK21-Plus Research Team for Bioactive Control Technology, Chosun University, Gwangju 61452, Korea
- Research Center for Proteineous Materials, Chosun University, Gwangju 61452, Korea
| |
Collapse
|
3
|
Peralta AN, Dai Y, Sherpa C, Le Grice SFJ, Santos WL. Molecular recognition of HIV-1 RNAs with branched peptides. Methods Enzymol 2019; 623:373-400. [PMID: 31239054 DOI: 10.1016/bs.mie.2019.04.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Targeting RNA offers the potential in many diseases of a therapeutic treatment. Due to its large surface area and ability to adopt different conformations, targeting RNA has proven challenging. Medium-sized branched peptides are of the size to competitively bind RNA while remaining cell permeable, stable in vivo, and non-toxic. Additionally, the ease in generating a large library followed by high-throughput screening provides a way to suggest a scaffold with high diversity that is capable of targeting the structure and sequence of RNA. The ability to select various types of amino acid modifications in the branched peptide allows for variable structures and interactions of the branched peptide but can result in too large a task if not approached properly. In this chapter, we discuss a strategy to selectively recognize RNAs of interest through high throughput screening of branched peptides, validation of hits and biophysical characterization, leading by example with our experience in targeting HIV-1 RNAs with branched peptides.
Collapse
Affiliation(s)
- Ashley N Peralta
- Department of Chemistry and Center for Drug Discovery, Virginia Tech, Blacksburg, VA, United States
| | - Yumin Dai
- Department of Chemistry and Center for Drug Discovery, Virginia Tech, Blacksburg, VA, United States
| | - Chringma Sherpa
- Basic Research Laboratory, National Cancer Institute, Frederick, MD, United States
| | - Stuart F J Le Grice
- Basic Research Laboratory, National Cancer Institute, Frederick, MD, United States
| | - Webster L Santos
- Department of Chemistry and Center for Drug Discovery, Virginia Tech, Blacksburg, VA, United States.
| |
Collapse
|
4
|
Recent advances in the identification of Tat-mediated transactivation inhibitors: progressing toward a functional cure of HIV. Future Med Chem 2016; 8:421-42. [PMID: 26933891 DOI: 10.4155/fmc.16.3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The current anti-HIV combination therapy does not eradicate the virus that persists mainly in quiescent infected CD4(+) T cells as a latent integrated provirus that resumes after therapy interruption. The Tat-mediated transactivation (TMT) is a critical step in the HIV replication cycle that could give the opportunity to reduce the size of latent reservoirs. More than two decades of research led to the identification of various TMT inhibitors. While none of them met the criteria to reach the market, the search for a suitable TMT inhibitor is still actively pursued. Really promising compounds, including one in a Phase III clinical trial, have been recently identified, thus warranting an update.
Collapse
|
5
|
Wynn JE, Santos WL. HIV-1 drug discovery: targeting folded RNA structures with branched peptides. Org Biomol Chem 2015; 13:5848-58. [PMID: 25958855 PMCID: PMC4511164 DOI: 10.1039/c5ob00589b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Human immunodeficiency virus type 1 (HIV-1) is an RNA virus that is prone to high rates of mutation. While the disease is managed with current antiretroviral therapies, drugs with a new mode of action are needed. A strategy towards this goal is aimed at targeting the native three-dimensional fold of conserved RNA structures. This perspective highlights medium-sized peptides and peptidomimetics used to target two conserved RNA structures of HIV-1. In particular, branched peptides have the capacity to bind in a multivalent fashion, utilizing a large surface area to achieve the necessary affinity and selectivity toward the target RNA.
Collapse
Affiliation(s)
- Jessica E Wynn
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, USA.
| | | |
Collapse
|
6
|
Hyun S, Han A, Jo MH, Hohng S, Yu J. Dicer Nuclease-Promoted Production of Let7a-1 MicroRNA Is Enhanced in the Presence of Tryptophan-Containing Amphiphilic Peptides. Chembiochem 2014; 15:1651-9. [DOI: 10.1002/cbic.201402126] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Indexed: 11/07/2022]
|
7
|
Kumar S, Maiti S. The effect of N-acetylation and N-methylation of lysine residue of Tat peptide on its interaction with HIV-1 TAR RNA. PLoS One 2013; 8:e77595. [PMID: 24147034 PMCID: PMC3798303 DOI: 10.1371/journal.pone.0077595] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 09/06/2013] [Indexed: 12/25/2022] Open
Abstract
Post-translational modification (PTM) of RNA binding proteins (RBPs) play a very important role in determining their binding to cognate RNAs and therefore regulate the downstream effects. Lysine can undergo various PTMs and thereby contribute to the regulation of different cellular processes. It can be reversibly acetylated and methylated using a pool of respective enzymes, to act as a switch for controlling the binding efficiency of RBPs. Here we have delineated the thermodynamic and kinetic effects of N-acetylation and N-monomethylation of lysine on interaction between HIV-1 TAR RNA and its cognate binder Tat peptide ( a model system). Our results indicate that acetylation of lysine 50 (K50), leads to eight- fold reduction in binding affinity, originating exclusively from entropy changes whereas, lysine 51 (K51) acetylation resulted only in three fold decrease with large enthalpy-entropy compensation. The measurement of kinetic parameters indicated major change (4.5 fold) in dissociation rate in case of K50 acetylation however, K51 acetylation showed similar effect on both association and dissociation rates. In contrast, lysine methylation did not affect the binding affinity of Tat peptide to TAR RNA at K50, nonetheless three fold enhancement in binding affinity was observed at K51 position. In spite of large enthalpy-entropy compensation, lysine methylation seems to have more pronounced position specific effect on the kinetic parameters. In case of K50 methylation, simultaneous increase was observed in the rate of association and dissociation leaving binding affinity unaffected. The increased binding affinity for methylated Tat at K51 stems from faster association rate with slightly slower dissociation rate.
Collapse
Affiliation(s)
- Santosh Kumar
- Proteomics and Structural Biology Unit, CSIR-Institute of Genomics and Integrative Biology, CSIR, Delhi, India
| | - Souvik Maiti
- Proteomics and Structural Biology Unit, CSIR-Institute of Genomics and Integrative Biology, CSIR, Delhi, India
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, CSIR, Pune, India
| |
Collapse
|
8
|
Pai J, Yoon T, Kim ND, Lee IS, Yu J, Shin I. High-throughput profiling of peptide-RNA interactions using peptide microarrays. J Am Chem Soc 2012; 134:19287-96. [PMID: 23110629 DOI: 10.1021/ja309760g] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A rapid and quantitative method to evaluate binding properties of hairpin RNAs to peptides using peptide microarrays has been developed. The microarray technology was shown to be a powerful tool for high-throughput analysis of RNA-peptide interactions by its application to profiling interactions between 111 peptides and six hairpin RNAs. The peptide microarrays were also employed to measure hundreds of dissociation constants (K(d)) of RNA-peptide complexes. Our results reveal that both hydrophobic and hydrophilic faces of amphiphilic peptides are likely involved in interactions with RNAs. Furthermore, these results also show that most of the tested peptides bind hairpin RNAs with submicromolar K(d) values. One of the peptides identified by using this method was found to have good inhibitory activity against TAR-Tat interactions in cells. Because of their great applicability to evaluation of nearly all types of RNA-peptide interactions, peptide microarrays are expected to serve as robust tools for rapid assessment of peptide-RNA interactions and development of peptide ligands against RNA targets.
Collapse
Affiliation(s)
- Jaeyoung Pai
- National Creative Research Center for Biofunctional Molecules, Department of Chemistry, Yonsei University, Seoul 120-749, Korea
| | | | | | | | | | | |
Collapse
|
9
|
Yang P, Xu QZ, Jin SY, Zhao Y, Lu Y, Xu XW, Yu SH. Synthesis of Fe3O4@Phenol Formaldehyde Resin Core-Shell Nanospheres Loaded with Au Nanoparticles as Magnetic FRET Nanoprobes for Detection of Thiols in Living Cells. Chemistry 2011; 18:1154-60. [DOI: 10.1002/chem.201102188] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2011] [Indexed: 11/09/2022]
|
10
|
Wang M, Zhang P, Zong W, Xu Q, Liu R. The charge ratio between O and N on amide bonds: a new approach to the mobile proton model. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2011; 79:1915-1919. [PMID: 21689971 DOI: 10.1016/j.saa.2011.05.088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 05/24/2011] [Accepted: 05/25/2011] [Indexed: 05/30/2023]
Abstract
The influence of charge distribution on the cleavage of the peptides was investigated by fragmentation efficiency curves and quantum chemical calculations in order to clarify the fragmentation mechanism in this paper. The peptide Arg-Gly-Asp-Cys (RGDC) was oxidized to change the charge distribution, but its main sequence was retained. Under this study, it was illustrated that the fragmentation of the peptide RGDC became easier with each addition of an O atom to the Cys hydrosulfide group and the relative charge ratios between O and N (QO/QN) in the amide bonds had much to do with the cleavage of the peptide RGDC. For each amide bond, the situations coincided with overall conclusion: the increase of the QO/QN values results in a higher fragmentation efficiency and vice versa. The methods which combined fragmentation efficiency curves with the charge distribution of peptides provided a way to refine the mobile proton model for peptide fragmentation and to probe the discrepant fragmentation of peptides in peptide/protein identification.
Collapse
Affiliation(s)
- Meijie Wang
- Shandong Key Laboratory of Water Pollution Control and Resource 4 Reuse, School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 27# Shanda South Road, Jinan 250100, PR China
| | | | | | | | | |
Collapse
|
11
|
Han A, Lee KH, Hyun S, Lee NJ, Lee SJ, Hwang H, Yu J. Methylation-mediated control of aurora kinase B and Haspin with epigenetically modified histone H3 N-terminal peptides. Bioorg Med Chem 2011; 19:2373-7. [DOI: 10.1016/j.bmc.2011.02.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Revised: 02/08/2011] [Accepted: 02/09/2011] [Indexed: 11/26/2022]
|
12
|
Sun F, Liu R, Zong W, Tian Y, Wang M, Zhang P. A Unique Approach to the Mobile Proton Model: Influence of Charge Distribution on Peptide Fragmentation. J Phys Chem B 2010; 114:6350-3. [DOI: 10.1021/jp911772q] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Feng Sun
- School of Environmental Science and Engineering, Shandong University, 27 Shanda South Road, Jinan 250100, P. R. China
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, 27 Shanda South Road, Jinan 250100, P. R. China
| | - Wansong Zong
- School of Environmental Science and Engineering, Shandong University, 27 Shanda South Road, Jinan 250100, P. R. China
| | - Yanmin Tian
- School of Environmental Science and Engineering, Shandong University, 27 Shanda South Road, Jinan 250100, P. R. China
| | - Meijie Wang
- School of Environmental Science and Engineering, Shandong University, 27 Shanda South Road, Jinan 250100, P. R. China
| | - Pengjun Zhang
- School of Environmental Science and Engineering, Shandong University, 27 Shanda South Road, Jinan 250100, P. R. China
| |
Collapse
|
13
|
Hyun S, Na J, Lee SJ, Park S, Yu J. RNA Grooves Can Accommodate Disulfide-Bridged Bundles of α-Helical Peptides. Chembiochem 2010; 11:767-70. [DOI: 10.1002/cbic.201000072] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
14
|
Lee SJ, Hyun S, Kieft JS, Yu J. An approach to the construction of tailor-made amphiphilic peptides that strongly and selectively bind to hairpin RNA targets. J Am Chem Soc 2009; 131:2224-30. [PMID: 19199621 DOI: 10.1021/ja807609m] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The hairpin RNA motif is one of the most frequently observed secondary structures and is often targeted by therapeutic agents. An amphiphilic peptide with seven lysine and eight leucine residues and its derivatives were designed for use as ligands against RNA hairpin motifs. We hypothesized that variations in both the hydrophobic leucine-rich and hydrophilic lysine-rich spheres of these amphiphilic peptides would create extra attractive interactions with hairpin RNA targets. A series of alanine-scanned peptides were probed to identify the most influential lysine residues in the hydrophilic sphere. The binding affinities of these modified peptides with several hairpins, such as RRE, TAR from HIV, a short hairpin from IRES of HCV, and a hairpin from the 16S A-site stem from rRNA, were determined. Since the hairpin from IRES of HCV was the most susceptible to the initial series of alanine-scanned peptides, studies investigating how further variations in the peptides effect binding employed the IRES hairpin. Next, the important Lys residues were substituted by shorter chain amines, such as ornithine, to place the peptide deeper into the hairpin groove. In a few cases, a 70-fold improved binding was observed for peptides that contained the specifically located shorter amine side chains. To further explore changes in binding affinities brought about by alterations in the hydrophobic sphere, tryptophan residues were introduced in place of leucine. A few peptides with tryptophan in specific positions also displayed 70-fold improved binding affinities. Finally, double mutant peptides incorporating both specifically located shorter amine side chains in the hydrophilic region and tryptophan residues in the hydrophobic region were synthesized. The binding affinities of peptides containing the simple double modification were observed to be 80 times lower, and their binding specificities were increased 40-fold. The results of this effort provide important information about strategies that can be used to prepare peptides that both strongly and selectively target hairpin RNAs. Specifically, the findings indicate that tailor-made amphiphilic peptide ligands against certain hairpin RNAs can be obtained if the RNA target possesses a deep groove in which both the hydrophobic and hydrophilic spheres of the peptide interact.
Collapse
Affiliation(s)
- Su Jin Lee
- Department of Chemistry and Education, Seoul National University, Seoul 151-748, Korea
| | | | | | | |
Collapse
|
15
|
Hyun S, Han A, Yu J. Photocrosslinking of RNA and photoMet-containing amphiphilic alpha-helical peptides. Chembiochem 2009; 10:987-9. [PMID: 19308928 DOI: 10.1002/cbic.200900100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Discovering RNA-protein interactions: A library of photoMet-containing peptides was synthesized by using an Arg- and Leu-rich alpha-helical amphiphilic peptide. Irradiation of mixtures of these peptides and Rev-responsive element (RRE) hairpin RNA promoted formation of covalent adducts. Analysis of one adduct showed that U26 in the bulged stem is responsible for covalent bond formation with the carbene intermediate. This strategy can provide important structural information about RNA-peptide interactions.
Collapse
Affiliation(s)
- Soonsil Hyun
- Department of Chemistry and Education, Seoul National University, Korea
| | | | | |
Collapse
|
16
|
Hyun S, Jeong S, Yu J. Effects of asymmetric arginine dimethylation on RNA-binding peptides. Chembiochem 2009; 9:2790-2. [PMID: 18924194 DOI: 10.1002/cbic.200800544] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Soonsil Hyun
- Department of Chemistry and Education, Seoul National University, Seoul 151-742, Korea
| | | | | |
Collapse
|
17
|
Cline LL, Waters ML. Design of a β-hairpin peptide-intercalator conjugate for simultaneous recognition of single stranded and double stranded regions of RNA. Org Biomol Chem 2009; 7:4622-30. [DOI: 10.1039/b913024a] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Scheinost J, Wang H, Boldt G, Offer J, Wentworth P. Cholesterolseco-Sterol-Induced Aggregation of Methylated Amyloid-β Peptides—Insights into Aldehyde-Initiated Fibrillization of Amyloid-β. Angew Chem Int Ed Engl 2008. [DOI: 10.1002/ange.200705922] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
19
|
Scheinost J, Wang H, Boldt G, Offer J, Wentworth P. Cholesterolseco-Sterol-Induced Aggregation of Methylated Amyloid-β PeptidesâInsights into Aldehyde-Initiated Fibrillization of Amyloid-β. Angew Chem Int Ed Engl 2008; 47:3919-22. [DOI: 10.1002/anie.200705922] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
20
|
Fujimoto K, Kajino M, Inouye M. Development of a series of cross-linking agents that effectively stabilize alpha-helical structures in various short peptides. Chemistry 2008; 14:857-63. [PMID: 17969217 DOI: 10.1002/chem.200700843] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A series of cross-linking agents of varying rigidity and length were designed to stabilize helical structures in short peptides and were then synthesized. The sequences of the short peptides employed in this study each include two X residues (X=Dap, Dab, Orn, and Lys) at the i/i+4, i/i+7, or i/i+11 positions to provide the sites for cross-linking. These peptides were subjected to reaction with the synthesized cross-linking agents, and the helical content of the resulting cross-linked peptides were analyzed in detail by circular dichroism. For each of the peptide classes we found combinations with the cross-linking agents suitable for the construction of stable helical structures up to >95 % helicity at 5 degrees C. Our method could also be applied to biologically related sequences seen in native proteins such as Rev.
Collapse
Affiliation(s)
- Kazuhisa Fujimoto
- Graduate School of Pharmaceutical Sciences, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan.
| | | | | |
Collapse
|
21
|
Lee Y, Hyun S, Kim H, Yu J. Amphiphilic Helical Peptides Containing Two Acridine Moieties Display Picomolar Affinity toward HIV-1 RRE and TAR. Angew Chem Int Ed Engl 2008; 47:134-7. [DOI: 10.1002/anie.200703090] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
22
|
Lee Y, Hyun S, Kim H, Yu J. Amphiphilic Helical Peptides Containing Two Acridine Moieties Display Picomolar Affinity toward HIV-1 RRE and TAR. Angew Chem Int Ed Engl 2008. [DOI: 10.1002/ange.200703090] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|