1
|
Mohanty P, Sarang S, Rout S, Biswal HS. Thio and Seleno Derivatives of Angelicin as Efficient Triplet Harvesting Photosensitizers: Implications in Photodynamic Therapy. Chemphyschem 2024; 25:e202400636. [PMID: 39229811 PMCID: PMC11648829 DOI: 10.1002/cphc.202400636] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/04/2024] [Accepted: 09/04/2024] [Indexed: 09/05/2024]
Abstract
Photodynamic therapy (PDT) is widely accepted in medical practice for its targeted induction of apoptosis in cancerous cells. Angelicin (Ang) has traditionally been known for its efficacy in cancer treatment and its capability to enter a photoexcited triplet state. This study has comprehensively assessed the effects of substituting individual chalcogen atoms at three specific positions in Angelicin, with the objective of facilitating access to this elusive triplet state to enhance its role as a photosensitizer in PDT. The study scrutinizes various enhancements and factors that are crucial for efficient triplet harvesting. The decrease in singlet-triplet energy gap (ΔEST) and increased spin-orbit coupling (SOC) values present numerous viable pathways for intersystem crossing (ISC), leading to the triplet manifold. The lifetime of ISC, thus, decreases from 10-5 s-1 in Ang to 10-8 s-1 in thioangelicin (TAng) and finally to 10-9 s-1 in selenoangelicin (SeAng). Additionally, this study investigates the two-photon absorption properties of thio and seleno-substituted Angelicin for their potentialities as non-UV photosensitizers. The interplay between electron-withdrawing and electron-donating substitutions in these derivatives significantly enhances the two-photon absorption cross-sections (σ) to as high as 49.3 GM while shifting the absorption wavelengths towards the infrared region enabling them as efficient PDT photosensitizers.
Collapse
Affiliation(s)
- Pranay Mohanty
- School of Chemical SciencesNational Institute of Science Education and Research (NISER)PO-Bhimpur-Padanpur Via-Jatni, District-KhurdaPIN-752050BhubaneswarIndia
- Homi Bhabha National InstituteTraining School Complex, Anushakti NagarMumbai400094India.
| | - S. Sarang
- School of Chemical SciencesNational Institute of Science Education and Research (NISER)PO-Bhimpur-Padanpur Via-Jatni, District-KhurdaPIN-752050BhubaneswarIndia
- Homi Bhabha National InstituteTraining School Complex, Anushakti NagarMumbai400094India.
| | - Saiprakash Rout
- School of Chemical SciencesNational Institute of Science Education and Research (NISER)PO-Bhimpur-Padanpur Via-Jatni, District-KhurdaPIN-752050BhubaneswarIndia
- Homi Bhabha National InstituteTraining School Complex, Anushakti NagarMumbai400094India.
| | - Himansu S. Biswal
- School of Chemical SciencesNational Institute of Science Education and Research (NISER)PO-Bhimpur-Padanpur Via-Jatni, District-KhurdaPIN-752050BhubaneswarIndia
- Homi Bhabha National InstituteTraining School Complex, Anushakti NagarMumbai400094India.
| |
Collapse
|
2
|
Bregnhøj M, Thorning F, Ogilby PR. Singlet Oxygen Photophysics: From Liquid Solvents to Mammalian Cells. Chem Rev 2024; 124:9949-10051. [PMID: 39106038 DOI: 10.1021/acs.chemrev.4c00105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Molecular oxygen, O2, has long provided a cornerstone for studies in chemistry, physics, and biology. Although the triplet ground state, O2(X3Σg-), has garnered much attention, the lowest excited electronic state, O2(a1Δg), commonly called singlet oxygen, has attracted appreciable interest, principally because of its unique chemical reactivity in systems ranging from the Earth's atmosphere to biological cells. Because O2(a1Δg) can be produced and deactivated in processes that involve light, the photophysics of O2(a1Δg) are equally important. Moreover, pathways for O2(a1Δg) deactivation that regenerate O2(X3Σg-), which address fundamental principles unto themselves, kinetically compete with the chemical reactions of O2(a1Δg) and, thus, have practical significance. Due to technological advances (e.g., lasers, optical detectors, microscopes), data acquired in the past ∼20 years have increased our understanding of O2(a1Δg) photophysics appreciably and facilitated both spatial and temporal control over the behavior of O2(a1Δg). One goal of this Review is to summarize recent developments that have broad ramifications, focusing on systems in which oxygen forms a contact complex with an organic molecule M (e.g., a liquid solvent). An important concept is the role played by the M+•O2-• charge-transfer state in both the formation and deactivation of O2(a1Δg).
Collapse
Affiliation(s)
- Mikkel Bregnhøj
- Department of Chemistry, Aarhus University, 140 Langelandsgade, Aarhus 8000, Denmark
| | - Frederik Thorning
- Department of Chemistry, Aarhus University, 140 Langelandsgade, Aarhus 8000, Denmark
| | - Peter R Ogilby
- Department of Chemistry, Aarhus University, 140 Langelandsgade, Aarhus 8000, Denmark
| |
Collapse
|
3
|
Cui X, Yuan H, Chen X, Meng Q, Zhang C. Newly Designed Quasi-intrinsic Photosensitizers for Fluorescence Image-Guided Two-Photon Photodynamic Therapy with Type I/II Photoreactions. J Med Chem 2024; 67:8902-8912. [PMID: 38815214 DOI: 10.1021/acs.jmedchem.4c00191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
In this work, a set of quasi-intrinsic photosensitizers are theoretically proposed based on the 2-amino-8-(1'-β-d-2'-deoxyribofuranosyl)-imidazo[1,2-α]-1,3,5-triazin-4(8H)-one (P), which could pair with the 6-amino-5-nitro-3-(1'-β-d-2'-deoxyribofuranosyl)-2(1H)-pyridone (Z) and keep the essential structural characters of nucleic acid. It is revealed that the ring expansion and electron-donating/electron-withdrawing substitution bring enhanced two-photon absorption and bright photoluminescence of these monomers, thereby facilitating the selective excitation and tumor localization through fluorescence imaging. However, instead of undergoing radiative transition (S1 → S0), the base pairing induced fluorescence quenching and rapid intersystem crossing (S1 → Tn) are observed and characterized by the reduced singlet-triplet energy gaps and large spin-orbit coupling values. To ensure the phototherapeutic properties of the considered base pairs in long-lived T1 state, we examined the vertical electron affinity as well as vertical ionization potential for production of superoxide anions via Type I photoreaction, and their required T1 energy (0.98 eV) to generate singlet oxygen 1O2 via Type II mechanism.
Collapse
Affiliation(s)
- Xixi Cui
- School of Physics and Electronics, Shandong Normal University, Jinan 250358, P. R. China
| | - Hongxiu Yuan
- School of Physics and Electronics, Shandong Normal University, Jinan 250358, P. R. China
| | - Xiaolin Chen
- School of Physics and Electronics, Shandong Normal University, Jinan 250358, P. R. China
| | - Qingtian Meng
- School of Physics and Electronics, Shandong Normal University, Jinan 250358, P. R. China
| | - Changzhe Zhang
- School of Physics and Electronics, Shandong Normal University, Jinan 250358, P. R. China
| |
Collapse
|
4
|
Han C, Kundu BK, Liang Y, Sun Y. Near-Infrared Light-Driven Photocatalysis with an Emphasis on Two-Photon Excitation: Concepts, Materials, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307759. [PMID: 37703435 DOI: 10.1002/adma.202307759] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/01/2023] [Indexed: 09/15/2023]
Abstract
Efficient utilization of sunlight in photocatalysis is widely recognized as a promising solution for addressing the growing energy demand and environmental issues resulting from fossil fuel consumption. Recently, there have been significant developments in various near-infrared (NIR) light-harvesting systems for artificial photosynthesis and photocatalytic environmental remediation. This review provides an overview of the most recent advancements in the utilization of NIR light through the creation of novel nanostructured materials and molecular photosensitizers, as well as modulating strategies to enhance the photocatalytic processes. A special focus is given to the emerging two-photon excitation NIR photocatalysis. The unique features and limitations of different systems are critically evaluated. In particular, it highlights the advantages of utilizing NIR light and two-photon excitation compared to UV-visible irradiation and one-photon excitation. Ongoing challenges and potential solutions for the future exploration of NIR light-responsive materials are also discussed.
Collapse
Affiliation(s)
- Chuang Han
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, Hubei, 430074, China
| | - Bidyut Kumar Kundu
- Department of Chemistry, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Yujun Liang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, Hubei, 430074, China
| | - Yujie Sun
- Department of Chemistry, University of Cincinnati, Cincinnati, OH, 45221, USA
| |
Collapse
|
5
|
Gonzalez Lopez EJ, Santamarina SC, Alvarez MG, Heredia DA, Durantini EN. Porphycenes as broad-spectrum antimicrobial photosensitizers. Potentiation with potassium iodide. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2022.114288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Dai X, Chen Y. Computational Biomaterials: Computational Simulations for Biomedicine. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2204798. [PMID: 35916024 DOI: 10.1002/adma.202204798] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/23/2022] [Indexed: 05/14/2023]
Abstract
With the flourishing development of material simulation methods (quantum chemistry methods, molecular dynamics, Monte Carlo, phase field, etc.), extensive adoption of computing technologies (high-throughput, artificial intelligence, machine learning, etc.), and the invention of high-performance computing equipment, computational simulation tools have sparked the fundamental mechanism-level explorations to predict the diverse physicochemical properties and biological effects of biomaterials and investigate their enormous application potential for disease prevention, diagnostics, and therapeutics. Herein, the term "computational biomaterials" is proposed and the computational methods currently used to explore the inherent properties of biomaterials, such as optical, magnetic, electronic, and acoustic properties, and the elucidation of corresponding biological behaviors/effects in the biomedical field are summarized/discussed. The theoretical calculation of the physiochemical properties/biological performance of biomaterials applied in disease diagnosis, drug delivery, disease therapeutics, and specific paradigms such as biomimetic biomaterials is discussed. Additionally, the biosafety evaluation applications of theoretical simulations of biomaterials are presented. Finally, the challenges and future prospects of such computational simulations for biomaterials development are clarified. It is anticipated that these simulations would offer various methodologies for facilitating the development and future clinical translations/utilization of versatile biomaterials.
Collapse
Affiliation(s)
- Xinyue Dai
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
- School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| |
Collapse
|
7
|
Jena S, Tulsiyan KD, Kumari A, Das R, Biswal HS. Thiolumazines as Heavy-Atom-Free Photosensitizers for Applications in Daylight Photodynamic Therapy: Insights from Ultrafast Excited-State Dynamics. J Phys Chem B 2022; 126:6083-6094. [PMID: 35938784 DOI: 10.1021/acs.jpcb.2c03489] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Finding appropriate photosensitizers (PSs) for daylight photodynamic therapy (dPDT) applications is extremely challenging, even though heavy-atom-free photosensitizers (HAFPSs) such as thiocarbonyl-modified nucleobases have shown a ray of hope. Few attempts have been made to find alternative natural products for dPDT applications. Pteridine heterocycles consisting of a pyrazine ring and a pyrimidine ring, such as lumazine, which exhibit many structural similarities to the alloxazine ring of the flavin molecule, could be an option for HAFPSs. The photophysical and quantum mechanical studies of the thio-modified lumazines revealed that sequential thiomodifications in lumazine result in a bathochromic shift. Additionally, higher tissue penetration depths were observed for thiolumazines. The fluorescence quenching in the case of thiomodified lumazines was explained using triplet state formation, whereas the contribution from the photoinduced electron transfer process cannot be ignored. It was also noticed that a strong one-photon absorption influenced the two-photon absorption (TPA) process, leading to a self-focusing effect in the visible spectral region. The higher tissue penetration and larger TPA cross section are the hallmark characteristics of the thiolumazines to be considered as potential HAFPSs for dPDT applications.
Collapse
Affiliation(s)
- Subhrakant Jena
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), PO- Bhimpur-Padanpur, Via-Jatni, District- Khurda, PIN - 752050, Bhubaneswar, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Kiran Devi Tulsiyan
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), PO- Bhimpur-Padanpur, Via-Jatni, District- Khurda, PIN - 752050, Bhubaneswar, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Anupa Kumari
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India.,School of Physical Sciences, National Institute of Science Education and Research (NISER), PO- Bhimpur-Padanpur, Via-Jatni, District- Khurda, PIN - 752050, Bhubaneswar, India
| | - Ritwick Das
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India.,School of Physical Sciences, National Institute of Science Education and Research (NISER), PO- Bhimpur-Padanpur, Via-Jatni, District- Khurda, PIN - 752050, Bhubaneswar, India
| | - Himansu S Biswal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), PO- Bhimpur-Padanpur, Via-Jatni, District- Khurda, PIN - 752050, Bhubaneswar, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| |
Collapse
|
8
|
Xu Z, Lu X, Zhu Y, Xiong C, Li B, Li S, Zhang Q, Tian X, Li D, Tian Y. Prolongation excitation wavelength of two-photon active photosensitizer for near-infrared light-induced in vitro photodynamic therapy. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Determination of two-photon absorption in nucleobase analogues: a QR-DFT perspective. Photochem Photobiol Sci 2022; 21:529-543. [PMID: 35179700 DOI: 10.1007/s43630-022-00182-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 01/27/2022] [Indexed: 10/19/2022]
Abstract
With the prevalence of fluorescence spectroscopy in biological systems, and the benefits of two-photon absorption techniques, presented here is an assessment of the two-photon accessibility of modern fluorescent nucleobase analogues utilising quadratic response DFT. Due to the complex environment experienced by these nucleobases, the two-photon spectra of each analogue has been assessed in the presence of both [Formula: see text]-stacked and hydrogen-bonding interactions involving the canonical nucleobases. Findings suggest that the [Formula: see text]-stacking environment provides a more significant effect on the spectra of the analogues studies than a hydrogen-bonding environment; analogue structures presenting high two-photon cross-section values for one or more states coincide with polycyclic extensions to preserved canonical base structure, as observed in the qA family of analogues, while analogue structures more closely resembling the structure of the base in question present a much more muted spectra in comparison. Results from this investigation have also allowed for the derivation of a number of design rules for the development of potential, two-photon specific, analogues for future use in both imaging and potential photochemical activation.
Collapse
|
10
|
Sahoo S, Panda PK. In-Core N4-Coordination of Palladium(II) in Dinaphthoporphycene: Synthesis, Structure, and Photophysical Studies. Inorg Chem 2022; 61:2707-2712. [PMID: 35107282 DOI: 10.1021/acs.inorgchem.1c03629] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dinaphthoporphycene (DNP) has emerged as a versatile ligand undergoing large out-of-plane distortion to form a cis-bimetallic complex with Pd(II) using Pd(OAc)2 and out-of-plane monometallic complexes with Pd(acac)2 and PtCl2(PhCN)2. Herein, we are finally able to synthesize the in-core complex with Pd(II) using PdCl2(PhCN)2 or PdCl2. The crystal structure shows the palladium ion resides slightly above the N4-core, with the Pd(II) dimensionally dissenting with the typical square planarity displayed by the reported in-core DNP complexes with Ni(II) and Cu(II) ions. The deformed complex displays a blue shift in the absorption spectra compared to DNP and its metallo-derivatives. PdDNP exhibits a moderate singlet oxygen generation ability (18%).
Collapse
Affiliation(s)
- Sameeta Sahoo
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India
| | - Pradeepta K Panda
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India
| |
Collapse
|
11
|
Nagamaiah J, Dutta A, Pati NN, Sahoo S, Soman R, Panda PK. 3,6,13,16-Tetrapropylporphycene: Rational Synthesis, Complexation, and Halogenation. J Org Chem 2022; 87:2721-2729. [DOI: 10.1021/acs.joc.1c02652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Arnab Dutta
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India
| | | | - Sameeta Sahoo
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India
| | - Rahul Soman
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India
| | | |
Collapse
|
12
|
Gierlich P, Mucha SG, Robbins E, Gomes‐da‐Silva LC, Matczyszyn K, Senge MO. One‐Photon and Two‐Photon Photophysical Properties of Tetrafunctionalized 5,10,15,20‐tetrakis(
m‐
hydroxyphenyl)chlorin (
Temoporfin
) Derivatives as Potential Two‐Photon‐Induced Photodynamic Therapy Agents. CHEMPHOTOCHEM 2022. [DOI: 10.1002/cptc.202100249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Piotr Gierlich
- Medicinal Chemistry, Trinity Translational Medicine Institute Trinity Centre for Health Sciences Trinity College Dublin The University of Dublin St James's Hospital Dublin 8 Ireland
- CQC, Coimbra Chemistry Center Department of Chemistry University of Coimbra 3000-435 Coimbra Portugal
| | - Sebastian G. Mucha
- Laboratoire Charles Coulomb (L2C), UMR5221 University of Montpellier CNRS 34095 Montpellier France
| | - Emma Robbins
- Advanced Materials Engineering and Modelling Group Faculty of Chemistry Wroclaw University of Science and Technology Wyb. Wyspianskiego 27 50-370 Wroclaw Poland
- Faculté des Sciences et Techniques Université de Limoges, PEIRENE, EA 7500 123 Avenue Albert Thomas, CEDEX 87060 Limoges France
| | - Lígia C. Gomes‐da‐Silva
- CQC, Coimbra Chemistry Center Department of Chemistry University of Coimbra 3000-435 Coimbra Portugal
| | - Katarzyna Matczyszyn
- Advanced Materials Engineering and Modelling Group Faculty of Chemistry Wroclaw University of Science and Technology Wyb. Wyspianskiego 27 50-370 Wroclaw Poland
| | - Mathias O. Senge
- Institute for Advanced Study (TUM-IAS) Technical University of Munich Lichtenbergstrasse 2a 85748 Garching Germany
| |
Collapse
|
13
|
Jodukathula N, Dutta A, Sahoo SS, Sahoo S, Panda P. 3,6,13,16-Tetraalkylporphycenes: Synthesis and Exploration of Effect of Alkyl Groups on Structure, Photophysical Properties, and Basicity. NEW J CHEM 2022. [DOI: 10.1039/d2nj01550a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two new 3,6,13,16-tetraalkylporphycenes were synthesized following rational approach. The reason behind lower yield of the desired β,β'-bipyrroles was unraveled. The σ-donating effect of alkyl-substituents was more profound than reported positional...
Collapse
|
14
|
|
15
|
Robbins E, Leroy-Lhez S, Villandier N, Samoć M, Matczyszyn K. Prospects for More Efficient Multi-Photon Absorption Photosensitizers Exhibiting Both Reactive Oxygen Species Generation and Luminescence. Molecules 2021; 26:molecules26206323. [PMID: 34684904 PMCID: PMC8541311 DOI: 10.3390/molecules26206323] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 01/10/2023] Open
Abstract
The use of two-photon absorption (TPA) for such applications as microscopy, imaging, and photodynamic therapy (PDT) offers several advantages over the usual one-photon excitation. This creates a need for photosensitizers that exhibit both strong two-photon absorption and the highly efficient generation of reactive oxygen species (ROS), as well as, ideally, bright luminescence. This review focuses on different strategies utilized to improve the TPA properties of various multi-photon absorbing species that have the required photophysical properties. Along with well-known families of photosensitizers, including porphyrins, we also describe other promising organic and organometallic structures and more complex systems involving organic and inorganic nanoparticles. We concentrate on the published studies that provide two-photon absorption cross-section values and the singlet oxygen (or other ROS) and luminescence quantum yields, which are crucial for potential use within PDT and diagnostics. We hope that this review will aid in the design and modification of novel TPA photosensitizers, which can help in exploiting the features of nonlinear absorption processes.
Collapse
Affiliation(s)
- Emma Robbins
- Laboratoire PEIRENE, Université de Limoges, 123 Avenue Albert Thomas, 87060 Limoges, France; (E.R.); (S.L.-L.); (N.V.)
- Advanced Materials Engineering and Modelling Group, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspianskiego 27, 50-370 Wrocław, Poland;
| | - Stéphanie Leroy-Lhez
- Laboratoire PEIRENE, Université de Limoges, 123 Avenue Albert Thomas, 87060 Limoges, France; (E.R.); (S.L.-L.); (N.V.)
| | - Nicolas Villandier
- Laboratoire PEIRENE, Université de Limoges, 123 Avenue Albert Thomas, 87060 Limoges, France; (E.R.); (S.L.-L.); (N.V.)
| | - Marek Samoć
- Advanced Materials Engineering and Modelling Group, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspianskiego 27, 50-370 Wrocław, Poland;
| | - Katarzyna Matczyszyn
- Advanced Materials Engineering and Modelling Group, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspianskiego 27, 50-370 Wrocław, Poland;
- Correspondence:
| |
Collapse
|
16
|
Taniguchi M, Lindsey JS, Bocian DF, Holten D. Comprehensive review of photophysical parameters (ε, Φf, τs) of tetraphenylporphyrin (H2TPP) and zinc tetraphenylporphyrin (ZnTPP) – Critical benchmark molecules in photochemistry and photosynthesis. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2021. [DOI: 10.1016/j.jphotochemrev.2020.100401] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
17
|
Li X, Zhao Y, Zhang T, Xing D. Mitochondria-Specific Agents for Photodynamic Cancer Therapy: A Key Determinant to Boost the Efficacy. Adv Healthc Mater 2021; 10:e2001240. [PMID: 33236531 DOI: 10.1002/adhm.202001240] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 11/02/2020] [Indexed: 02/06/2023]
Abstract
Mitochondria-targeted photodynamic therapy (Mt-PDT), which enables the photogenerated cytotoxic oxygen species with fatal oxidative damage to block mitochondrial functions, has been considered as a promising method to enhance the anticancer effectiveness. Aiming at the challenges of PDT, in the past few decades, numerous mitochondria-targeting molecular agents have been developed to boost the PDT efficacy via directly destroying the mitochondria or activating mitochondria-mediated cell death pathways. Herein, a review for recent advances of Mt-PDT is highlighted including: mitochondrial targeting design principles and strategies, therapeutic performance of mitochondria-targeted agents-mediated PDT as well as the agent-free Mt-PDT. In addition, it puts together the achievements of the combinatory mitochondria-anchoring PDT and other anticancer strategies, demonstrating the advantages provided by Mt-PDT. The existing challenges are discussed and future settlements for the development of mitochondria-specific agents are also forecasted.
Collapse
Affiliation(s)
- Xipeng Li
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science College of Biophotonics South China Normal University Guangzhou 510631 P. R. China
- Guangdong Provincial Key Laboratory of Laser Life Science College of Biophotonics South China Normal University Guangzhou 510631 P. R. China
| | - Yu Zhao
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science College of Biophotonics South China Normal University Guangzhou 510631 P. R. China
- Guangdong Provincial Key Laboratory of Laser Life Science College of Biophotonics South China Normal University Guangzhou 510631 P. R. China
| | - Tao Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science College of Biophotonics South China Normal University Guangzhou 510631 P. R. China
- Guangdong Provincial Key Laboratory of Laser Life Science College of Biophotonics South China Normal University Guangzhou 510631 P. R. China
| | - Da Xing
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science College of Biophotonics South China Normal University Guangzhou 510631 P. R. China
- Guangdong Provincial Key Laboratory of Laser Life Science College of Biophotonics South China Normal University Guangzhou 510631 P. R. China
| |
Collapse
|
18
|
Pascal S, David S, Andraud C, Maury O. Near-infrared dyes for two-photon absorption in the short-wavelength infrared: strategies towards optical power limiting. Chem Soc Rev 2021; 50:6613-6658. [DOI: 10.1039/d0cs01221a] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The recent advances in the field of two-photon absorbing chromophores in the short-wavelength infrared spectral range (SWIR 1100–2500 nm) are summarized, highlighting the development of optical power limiting devices in this spectral range.
Collapse
Affiliation(s)
- Simon Pascal
- Univ. Lyon
- ENS Lyon
- CNRS UMR 5182
- Laboratoire de Chimie
- 69364 Lyon
| | - Sylvain David
- Univ. Lyon
- ENS Lyon
- CNRS UMR 5182
- Laboratoire de Chimie
- 69364 Lyon
| | - Chantal Andraud
- Univ. Lyon
- ENS Lyon
- CNRS UMR 5182
- Laboratoire de Chimie
- 69364 Lyon
| | - Olivier Maury
- Univ. Lyon
- ENS Lyon
- CNRS UMR 5182
- Laboratoire de Chimie
- 69364 Lyon
| |
Collapse
|
19
|
Pan Z, Fan J, Xie Q, Zhang X, Zhang W, Ren Q, Li M, Zheng Q, Lu J, Li D. Novel sulfonamide porphyrin TBPoS-2OH used in photodynamic therapy for malignant melanoma. Biomed Pharmacother 2020; 133:111042. [PMID: 33378950 DOI: 10.1016/j.biopha.2020.111042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/10/2020] [Accepted: 11/15/2020] [Indexed: 12/28/2022] Open
Abstract
The application of photodynamic therapy (PDT) for the treatment of skin diseases has been receiving much attention. Here, we examined the anti-tumor effect of a novel porphyrin-based photosensitizer TBPoS-2OH in the malignant melanoma A375 and B16 cells. TBPoS-2OH has obvious cell photo-cytotoxicity, but it has low cell dark-cytotoxicity. Further research showed that TBPoS-2OH is enriched in lysosomes after being taken up by cells. Subsequently, the apoptotic rates were significantly increased in TBPoS-2OH-treated A375 and B16 cells. The specific mechanism may be that after receiving light stimulation, TBPoS-2OH could effectively increase the level of intracellular reactive oxygen species (ROS), thereby activating mitochondrial apoptosis pathway-related proteins in A375 and B16 cells. We found an increase in the content of cytochrome C in the cytoplasm, and the levels of related proteins, such as cleaved caspase-3, cleaved caspase-9, and cleaved PARP1, were significantly increased in TBPoS-2OH-treated cells. These results indicated that the new compound TBPoS-2OH could be developed and become an alternative drug for the treatment of melanoma. Some reference ideas for the development of new photosensitizers are also provided.
Collapse
Affiliation(s)
- Zhaohai Pan
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, 264003, Yantai, China
| | - Jiaojiao Fan
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, 264003, Yantai, China
| | - Qi Xie
- Jiangsu College of Nursing, 9 Science and Technology Avenue, Huaian, 223005, Jiangsu, China
| | - Xin Zhang
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, 264003, Yantai, China
| | - Wen Zhang
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, 264003, Yantai, China
| | - Qing Ren
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Minjing Li
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, 264003, Yantai, China
| | - Qiusheng Zheng
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, 264003, Yantai, China; Key Laboratory of Xinjiang Endemic Phytomedicine Resources of Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, 832002, Xinjiang, China
| | - Jun Lu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Defang Li
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, 264003, Yantai, China.
| |
Collapse
|
20
|
Yin X, Luo LL, Li H, Lai XY, Wang X, Liu YT. Theoretical insights on type I/II photoreactions of potential Zn(II) polypyridyl photosensitizers for two-photon photodynamic therapy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 242:118771. [PMID: 32795953 DOI: 10.1016/j.saa.2020.118771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/19/2020] [Accepted: 07/19/2020] [Indexed: 06/11/2023]
Abstract
Large two-photon absorption cross-sections are vital to photosensitizers (PSs) in TP-PDT, which can be used to develop in-depth treatment for diseased cells and minimize the harm to surrounding cells. Here, we conduct a study about photophysical properties of one Ru(II) polypyridyl complex and two designed Zn(II) polypyridyl complexes by means of DFT and TD-DFT methods. The main results are as follows: firstly, the two-photon absorption spectrum of two designed complexes Zn-OMe and Zn-OCOOCH3 are all within the phototherapeutic window (550-900 nm). Secondly, large SOC values and small energy gaps ΔES-T of these complexes guarantee the efficiency of ISC process. Thirdly, their T1 energy is greater than that required for generating 1O2 (0.98 eV) via Type II photoreaction. In addition, the calculated results of vertical electron affinities (VEA) and vertical ionization potentials (VIP) show that these complexes are able to form superoxide ions O2(-) via Type I photoreaction. Specifically, both of two designed Zn-centric complexes have larger TPA cross-sections than that of Ru-centric complex. In a word, we are pleased to report two potential photosensitizers with excellent performance and reasonable price for Type I/II photoreactions. We expect our study will offer some theoretical guidance and help in TP-PDT.
Collapse
Affiliation(s)
- Xue Yin
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Li-Long Luo
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Hui Li
- Lanzhou University of Technology, State key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou 730050, China
| | - Xiao-Yong Lai
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Xin Wang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Ying-Tao Liu
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China.
| |
Collapse
|
21
|
Malcomson T, Paterson MJ. Theoretical determination of two-photon absorption in biologically relevant pterin derivatives. Photochem Photobiol Sci 2020; 19:1538-1547. [PMID: 33029609 DOI: 10.1039/d0pp00255k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Given the prevalence of fluorescence spectroscopy in biological systems, and the prevalence of pterin derivatives throughout biological systems, presented here is an assessment of the two-photon absorption spectroscopy as it applies to a range of the most commonly studied pterin derivatives. QR-CAMB3LYP//ccpVTZ calculations suggest that the use of two-photon spectroscopic methods would enable a more capable differentiation between closely related derivatives in comparison to the one-photon spectra, which show minimal qualitative deviation. Study of short tail derivatives shows that, in most cases, two-photon accessible states solely involve the π* LUMO as the particle orbital, with biopterin, neopterin, and 6-(hydroxymethyl)pterin presenting exceptional potential for targetting. Investigation of derivatives in which the tail contains an aromatic ring resulted in the observation of a series of two-photon accessible states involving charge transfer from the tail to the pterin moiety, the cross sections of which are highly dependent on the adoption of a planar geometry. The observation of these states presents a novel method for tracking the substitution of biologically important molecules such as folic acid and 5-methenyltetrahydrofolylpolyglutamate.
Collapse
Affiliation(s)
- Thomas Malcomson
- Department of Chemistry, Lancaster University, Lancaster, LA1 4YB, UK.
| | - Martin J Paterson
- School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK.
| |
Collapse
|
22
|
Karges J, Chao H, Gasser G. Critical discussion of the applications of metal complexes for 2-photon photodynamic therapy. J Biol Inorg Chem 2020; 25:1035-1050. [DOI: 10.1007/s00775-020-01829-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/18/2020] [Indexed: 12/12/2022]
|
23
|
Rana A, Sathish Kumar B, Panda PK. 3,6,13,16-Tetrasubstituted Porphycene: The Missing Link in Porphycene Chemistry. Org Lett 2020; 22:7175-7180. [PMID: 32852214 DOI: 10.1021/acs.orglett.0c02494] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have introduced the first 3,6,13,16-tetrasubstituted porphycene as its tetramethoxy analogue. This substitution pattern is one of the most general patterns yet missing in this isomeric porphyrin chemistry. This porphycene exhibits intense fluorescence along with the ability to coordinate with divalent metal ions; in particular, it forms the first stable Zn(II) complex among the tetrasubstituted porphycenes. Notably, the molecular structure of Zn1•Py displays supramolecular chirality.
Collapse
|
24
|
Ashokkumar P, Adarsh N, Klymchenko AS. Ratiometric Nanoparticle Probe Based on FRET-Amplified Phosphorescence for Oxygen Sensing with Minimal Phototoxicity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2002494. [PMID: 32583632 DOI: 10.1002/smll.202002494] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Indexed: 06/11/2023]
Abstract
Luminescent oxygen probes enable direct imaging of hypoxic conditions in cells and tissues, which are associated with a variety of diseases, including cancer. Here, a nanoparticle probe that addresses key challenges in the field is developed, it: i) strongly amplifies room temperature phosphorescence of encapsulated oxygen-sensitive dyes; ii) provides ratiometric response to oxygen; and iii) solves the fundamental problem of phototoxicity of phosphorescent sensors. The nanoprobe is based on 40 nm polymeric nanoparticles, encapsulating ≈2000 blue-emitting cyanine dyes with fluorinated tetraphenylborate counterions, which are as bright as 70 quantum dots (QD525). It functions as a light-harvesting nanoantenna that undergoes efficient Förster resonance energy transfer to ≈20 phosphorescent oxygen-sensitive platinum octaethylporphyrin (PtOEP) acceptor dyes. The obtained nanoprobe emits stable blue fluorescence and oxygen-sensitive red phosphorescence, providing ratiometric response to dissolved oxygen. The light harvesting leads to ≈60-fold phosphorescence amplification and makes the single nanoprobe particle as bright as ≈1200 PtOEP dyes. This high brightness enables oxygen detection at a single-particle level and in cells at ultra-low nanoprobe concentration with no sign of phototoxicity, in contrast to PtOEP dye. The developed nanoprobe is successfully applied to the imaging of a microfluidics-generated oxygen gradient in cancer cells. It constitutes a promising tool for bioimaging of hypoxia.
Collapse
Affiliation(s)
- Pichandi Ashokkumar
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, Strasbourg, CS, 60024, France
- Department of Bioelectronics and Biosensors, Alagappa University, Karaikudi, 630003, India
| | - Nagappanpillai Adarsh
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, Strasbourg, CS, 60024, France
| | - Andrey S Klymchenko
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, Strasbourg, CS, 60024, France
| |
Collapse
|
25
|
Pati NN, Sahoo S, Sahoo SS, Banerjee D, Rao SV, Panda PK. Chromatographically separable ruffled non-planar isomeric octaalkylporphycenes: consequences of unsymmetrical substitution upon structure and photophysical properties. NEW J CHEM 2020. [DOI: 10.1039/d0nj01744b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two symmetry reduction induced unsymmetrical porphyrins (2.0.2.0) were synthesized and characterized with distinct structural, optoelectronic and nonlinear optical properties.
Collapse
Affiliation(s)
| | - Sameeta Sahoo
- School of Chemistry
- University of Hyderabad
- Hyderabad-500046
- India
| | - Sipra S. Sahoo
- School of Chemistry
- University of Hyderabad
- Hyderabad-500046
- India
| | - Dipanjan Banerjee
- Advanced Centre of Research in High Energy Materials (ACRHEM)
- University of Hyderabad
- Hyderabad-500046
- India
| | - S. Venugopal Rao
- Advanced Centre of Research in High Energy Materials (ACRHEM)
- University of Hyderabad
- Hyderabad-500046
- India
| | | |
Collapse
|
26
|
Li S, Shen X, Xu QH, Cao Y. Gold nanorod enhanced conjugated polymer/photosensitizer composite nanoparticles for simultaneous two-photon excitation fluorescence imaging and photodynamic therapy. NANOSCALE 2019; 11:19551-19560. [PMID: 31578535 DOI: 10.1039/c9nr05488j] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Two-photon photodynamic therapy (2P-PDT) is a novel minimal invasive cancer treatment method with advantages of deep penetration and intrinsic three-dimensionally localized activation to precisely target cancerous tissues. However, the therapeutic efficacy of 2P-PDT is limited by small two-photon absorption cross sections of conventional organic photosensitizers. In addition, traditional photosensitizers generally exhibit weak emission and lack imaging modality. In this work, conjugated polymers and gold nanorods (Au NRs) were integrated to fabricate nano-sized photosensitizers to improve the performance of molecular photosensitizers for 2P-PDT. A molecular photosensitizer, tetraphenylporphyrin, was encapsulated into the conjugated polymer PFV to form conjugated polymer nanoparticles (CPNs), which were then covalently linked to silica coated Au NRs. In these integrated nanoparticles, the two-photon optical properties of tetraphenylporphyrin were first enhanced by fluorescence resonance energy transfer from PFV, then further enhanced by Au NRs through plasmon resonance. A silica shell was utilized as the spacer between Au NRs and CPNs to optimize the enhancement effects. Through the combined enhancement effects of energy transfer and plasmon resonance, two-photon excitation fluorescence and two-photon induced singlet oxygen generation of tetraphenylporphyrin were enhanced by up to 980- and 792-fold, respectively, at a silica spacer thickness of 9 nm. The application of these nanoparticles as photosensitizers for simultaneous two-photon imaging and 2P-PDT treatment have been demonstrated on HeLa cancer cells with high brightness and significantly enhanced cancer cell killing efficiency. These nanoparticles can act as promising nano-photosensitizers for 2P-PDT with simultaneous imaging modality.
Collapse
Affiliation(s)
- Shuang Li
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China
| | - Xiaoqin Shen
- National University of Singapore (Suzhou) Research Institute, Suzhou 215123, China.
| | - Qing-Hua Xu
- National University of Singapore (Suzhou) Research Institute, Suzhou 215123, China. and Department of Chemistry, National University of Singapore, 117543, Singapore
| | - Yong Cao
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
27
|
Zhao J, Duan L, Wang A, Fei J, Li J. Insight into the efficiency of oxygen introduced photodynamic therapy (PDT) and deep PDT against cancers with various assembled nanocarriers. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 12:e1583. [PMID: 31566931 DOI: 10.1002/wnan.1583] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/18/2019] [Accepted: 07/24/2019] [Indexed: 12/14/2022]
Abstract
Photodynamic therapy (PDT) has been used in the treatment of cancers and other benign diseases for several years in clinic. However, the hypoxia of tumors and the penetration limitation of excitation light to tissues can dramatically reduce the efficacy of PDT to cancers. To overcome these drawbacks, various assembled nanocarriers such as nanoparticles, nanocapsules, nanocrystals, and so on were introduced. The assembled nanocarriers have the ability of loading photosensitizers, delivering O2 into tumors, generating O2 in situ in tumors, as well as turning near-infrared (NIR) light, X-rays, and chemical energy into ultraviolet or visible light. Therefore, it is easy for the nanocarriers to improve the hypoxia microenvironment or increase the treatment depth of cancers, which will improve the efficiency of PDT to some degree. In recent years, a number of investigations were focused on these subjects. We will summarize the advances of nanocarriers in PDT, especially in O2 introduction PDT and deep PDT. The perspectives, challenges, and potential in translation of PDT will also be discussed. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Biology-Inspired Nanomaterials > Lipid-Based Structures Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Jie Zhao
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab for Colloid, Interface, and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Li Duan
- Northwest Institute of Nuclear Technology, Xi'an, Shanxi, China
| | - Anhe Wang
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Jinbo Fei
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab for Colloid, Interface, and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab for Colloid, Interface, and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
28
|
Yin Y, Sarma T, Wang F, Yuan N, Duan Z, Sessler JL, Zhang Z. Air-Stable N, N'-Dihydroporphycene: A Quinoxaline-Fused Tetrapyrrolic Macrocycle That Detects Fluoride Anion via Deprotonation. Org Lett 2019; 21:1849-1852. [PMID: 30810325 DOI: 10.1021/acs.orglett.9b00445] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An air-stable N, N'-dihydroporphycene, the two-electron reduced form of porphycene, possessing two quinoxaline moieties fused at meso positions, was prepared and characterized. Nuclear magnetic resonance (NMR) and ultraviolet-visible light (UV-vis) spectroscopic studies and single-crystal X-ray diffraction analyses support its formulation as a nonaromatic species. Upon treatment with tetrabutylammonium fluoride (TBAF) in chloroform, a color change is produced that is consistent with deprotonation. Selective detection of this anion is readily achieved.
Collapse
Affiliation(s)
- Ying Yin
- Center for Supramolecular Chemistry and Catalysis , Shanghai University , 99 Shangda Road , Shanghai 200444 , China.,College of Chemistry & Material Science , South-Central University for Nationality , Wuhan , Hubei 430074 , China
| | - Tridib Sarma
- Center for Supramolecular Chemistry and Catalysis , Shanghai University , 99 Shangda Road , Shanghai 200444 , China
| | - Fei Wang
- Center for Supramolecular Chemistry and Catalysis , Shanghai University , 99 Shangda Road , Shanghai 200444 , China
| | - Ningning Yuan
- Center for Supramolecular Chemistry and Catalysis , Shanghai University , 99 Shangda Road , Shanghai 200444 , China.,College of Chemistry & Material Science , South-Central University for Nationality , Wuhan , Hubei 430074 , China
| | - Zhiming Duan
- Center for Supramolecular Chemistry and Catalysis , Shanghai University , 99 Shangda Road , Shanghai 200444 , China
| | - Jonathan L Sessler
- Center for Supramolecular Chemistry and Catalysis , Shanghai University , 99 Shangda Road , Shanghai 200444 , China
| | - Zhan Zhang
- Center for Supramolecular Chemistry and Catalysis , Shanghai University , 99 Shangda Road , Shanghai 200444 , China.,College of Chemistry & Material Science , South-Central University for Nationality , Wuhan , Hubei 430074 , China
| |
Collapse
|
29
|
Hu J, Wei P, Seeberger PH, Yin J. Mannose-Functionalized Nanoscaffolds for Targeted Delivery in Biomedical Applications. Chem Asian J 2018; 13:3448-3459. [PMID: 30251341 DOI: 10.1002/asia.201801088] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/18/2018] [Indexed: 12/27/2022]
Abstract
Targeted drug delivery by nanomaterials has been extensively investigated as an effective strategy to surmount obstacles in the conventional treatment of cancer and infectious diseases, such as systemic toxicity, low drug efficacy, and drug resistance. Mannose-binding C-type lectins, which primarily include mannose receptor (MR, CD206) and dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN), are highly expressed on various cancer cells, endothelial cells, macrophages, and dendritic cells (DCs), which make them attractive targets for therapeutic effect. Mannosylated nanomaterials hold great potential in cancer and infection treatment on account of their direct therapeutic effect on targeted cells, modulation of the tumor microenvironment, and stimulation of immune response through antigen presentation. This review presents the recent advances in mannose-based targeted delivery nanoplatforms incorporated with different therapies in the biomedical field.
Collapse
Affiliation(s)
- Jing Hu
- Wuxi School of Medicine, Jiangnan University, Lihu Avenue1800, Wuxi, 214122, China
| | - Peng Wei
- Department Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue1800, Wuxi, 214122, China
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Jian Yin
- Department Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue1800, Wuxi, 214122, China
| |
Collapse
|
30
|
Muniz-Miranda F, Pedone A, Muniz-Miranda M. Spectroscopic and DFT investigation on the photo-chemical properties of a push-pull chromophore: 4-Dimethylamino-4'-nitrostilbene. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 190:33-39. [PMID: 28892719 DOI: 10.1016/j.saa.2017.08.072] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 08/15/2017] [Accepted: 08/31/2017] [Indexed: 06/07/2023]
Abstract
4-Dimethylamino-4'-nitrostilbene (DANS), a π-conjugated push-pull molecule, has been investigated by means of a combined spectroscopic and computational approach. When the Raman excitation is close to the visible electronic transition of DANS, vibrational bands not belonging to DANS appear in the spectra, increasing with the laser power. These bands are observed at room temperature in the solid phase, but not at low temperature or in solution, and we interpret them as due to a thermally-activated photoreaction occurring under laser irradiation in the visible spectral region. Density-functional calculations correctly reproducing the electronic and vibrational spectra of DANS, describe the charge-transfer process, indicate that an azo-derivative is the product of the photoreaction of DANS and provide a reasonable interpretation of this process.
Collapse
Affiliation(s)
- Francesco Muniz-Miranda
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Modena e Reggio Emilia (UniMORE), Via Campi 103, 41125 Modena, Italy.
| | - Alfonso Pedone
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Modena e Reggio Emilia (UniMORE), Via Campi 103, 41125 Modena, Italy
| | - Maurizio Muniz-Miranda
- Dipartimento di Chimica "Ugo Schiff", Università degli Studi di Firenze (UniFI), Via Lastruccia 3, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
31
|
Anguera G, Brewster JT, Sánchez-García D, Sessler JL. Functionalized 2,2'-Bipyrroles: Building Blocks for Pyrrolic Macrocycles. MACROHETEROCYCLES 2018; 11:227-245. [PMID: 31763627 PMCID: PMC6874110 DOI: 10.6060/mhc180483s] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Functionalized N-unsubstituted 2,2'-bipyrroles are basic building blocks for the preparation of pyrrolic macrocycles and natural products, such as prodigiosines. The aim of this review is to provide a description of the most important methodologies used to prepare 2,2'-bipyrroles and their central role as building blocks for the synthesis of porphyrinoids and property-defining structural elements therein.
Collapse
Affiliation(s)
- Gonzalo Anguera
- Department of Chemistry the University of Texas at Austin, A5300 Austin, 78712-1224 Texas, United States
- Grup d’Enginyeria de Materials (GEM4T), Institut Químic de Sarrià, Universitat Ramon Llull, 08017 Barcelona, Spain
| | - James T. Brewster
- Department of Chemistry the University of Texas at Austin, A5300 Austin, 78712-1224 Texas, United States
| | - David Sánchez-García
- Grup d’Enginyeria de Materials (GEM4T), Institut Químic de Sarrià, Universitat Ramon Llull, 08017 Barcelona, Spain
| | - Jonathan L. Sessler
- Department of Chemistry the University of Texas at Austin, A5300 Austin, 78712-1224 Texas, United States
| |
Collapse
|
32
|
Kusuzaki K, Matsubara T, Murata H, Logozzi M, Iessi E, Di Raimo R, Carta F, Supuran CT, Fais S. Natural extracellular nanovesicles and photodynamic molecules: is there a future for drug delivery? J Enzyme Inhib Med Chem 2017; 32:908-916. [PMID: 28708430 PMCID: PMC6010042 DOI: 10.1080/14756366.2017.1335310] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 05/19/2017] [Accepted: 05/23/2017] [Indexed: 12/12/2022] Open
Abstract
Photodynamic molecules represent an alternative approach for cancer therapy for their property (i) to be photo-reactive; (ii) to be not-toxic for target cells in absence of light; (iii) to accumulate specifically into tumour tissues; (iv) to be activable by a light beam only at the tumour site and (v) to exert cytotoxic activity against tumour cells. However, to date their clinical use is limited by the side effects elicited by systemic administration. Extracellular vesicles are endogenous nanosized-carriers that have been recently introduced as a natural delivery system for therapeutic molecules. We have recently shown the ability of human exosomes to deliver photodynamic molecules. Therefore, this review focussed on extracellular vesicles as a novel strategy for the delivery of photodynamic molecules at cancer sites. This completely new approach may enhance the delivery and decrease the toxicity of photodynamic molecules, therefore, represent the future for photodynamic therapy for cancer treatment.
Collapse
Affiliation(s)
| | - Takao Matsubara
- Department of Orthopaedic Surgery, Mie University Graduate School of MedicineTsuMieJapan
| | - Hiroaki Murata
- Department of Orthopaedic Surgery, Matsushita Memorial HospitalOsakaJapan
| | - Mariantonia Logozzi
- Department of Oncology and Molecular Medicine, National Institute of HealthRomeItaly
| | - Elisabetta Iessi
- Department of Oncology and Molecular Medicine, National Institute of HealthRomeItaly
| | - Rossella Di Raimo
- Department of Oncology and Molecular Medicine, National Institute of HealthRomeItaly
| | - Fabrizio Carta
- Dipartimento Neurofarba, Sezione di ScienzeFarmaceutiche e Nutraceutiche, Università degli Studi di FirenzeSesto Fiorentino, FlorenceItaly
| | - Claudiu T. Supuran
- Dipartimento Neurofarba, Sezione di ScienzeFarmaceutiche e Nutraceutiche, Università degli Studi di FirenzeSesto Fiorentino, FlorenceItaly
| | - Stefano Fais
- Department of Oncology and Molecular Medicine, National Institute of HealthRomeItaly
| |
Collapse
|
33
|
Peyghami S, Sharifi S, Rakhshanizadeh F, Alizadeh K. Nonlinear optical properties of Rose Bengal: Effect of environment. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.09.058] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
34
|
Fan W, Yung B, Huang P, Chen X. Nanotechnology for Multimodal Synergistic Cancer Therapy. Chem Rev 2017; 117:13566-13638. [DOI: 10.1021/acs.chemrev.7b00258] [Citation(s) in RCA: 1221] [Impact Index Per Article: 152.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Wenpei Fan
- Guangdong
Key Laboratory for Biomedical Measurements and Ultrasound Imaging,
School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
- Key
Laboratory of Optoelectronic Devices and Systems of Ministry of Education
and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Laboratory
of Molecular Imaging and Nanomedicine, National Institute of Biomedical
Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Bryant Yung
- Laboratory
of Molecular Imaging and Nanomedicine, National Institute of Biomedical
Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Peng Huang
- Guangdong
Key Laboratory for Biomedical Measurements and Ultrasound Imaging,
School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Xiaoyuan Chen
- Laboratory
of Molecular Imaging and Nanomedicine, National Institute of Biomedical
Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
35
|
Kuzuhara D, Sakaguchi M, Furukawa W, Okabe T, Aratani N, Yamada H. Synthesis, Characterization and Protonation Behavior of Quinoxaline-Fused Porphycenes. Molecules 2017; 22:E908. [PMID: 28561796 PMCID: PMC6152776 DOI: 10.3390/molecules22060908] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 05/15/2017] [Accepted: 05/24/2017] [Indexed: 11/17/2022] Open
Abstract
9,10-Quinoxaline-fused porphycenes 1a-H₂ and 1b-H₂ were synthesized by intramolecular McMurry coupling. As a result of the annulation of the quinoxaline moiety on the porphycene skeleton, 1a-H₂ and 1b-H₂ display absorption and fluorescence in the near infra-red (NIR) region. Additionally, the quinoxaline moieties of 1a-H₂ and 1b-H₂ act as electron-withdrawing groups, introducing lower reduction potentials than for pristine porphycene. The protonation occurred at the nitrogen atoms in the cavity of freebase porphycenes and at the quinoxaline moieties for their nickel complexes to give diprotonic species.
Collapse
Affiliation(s)
- Daiki Kuzuhara
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma 630-0192, Japan.
| | - Mika Sakaguchi
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma 630-0192, Japan.
| | - Wataru Furukawa
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma 630-0192, Japan.
| | - Takuya Okabe
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma 630-0192, Japan.
| | - Naoki Aratani
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma 630-0192, Japan.
| | - Hiroko Yamada
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma 630-0192, Japan.
| |
Collapse
|
36
|
Abstract
Phosphorescence is a phenomenon of delayed luminescence that corresponds to the radiative decay of the molecular triplet state. As a general property of molecules, phosphorescence represents a cornerstone problem of chemical physics due to the spin prohibition of the underlying triplet-singlet emission and because its analysis embraces a deep knowledge of electronic molecular structure. Phosphorescence is the simplest physical process which provides an example of spin-forbidden transformation with a characteristic spin selectivity and magnetic field dependence, being the model also for more complicated chemical reactions and for spin catalysis applications. The bridging of the spin prohibition in phosphorescence is commonly analyzed by perturbation theory, which considers the intensity borrowing from spin-allowed electronic transitions. In this review, we highlight the basic theoretical principles and computational aspects for the estimation of various phosphorescence parameters, like intensity, radiative rate constant, lifetime, polarization, zero-field splitting, and spin sublevel population. Qualitative aspects of the phosphorescence phenomenon are discussed in terms of concepts like structure-activity relationships, donor-acceptor interactions, vibronic activity, and the role of spin-orbit coupling under charge-transfer perturbations. We illustrate the theory and principles of computational phosphorescence by highlighting studies of classical examples like molecular nitrogen and oxygen, benzene, naphthalene and their azaderivatives, porphyrins, as well as by reviewing current research on systems like electrophosphorescent transition metal complexes, nucleobases, and amino acids. We furthermore discuss modern studies of phosphorescence that cover topics of applied relevance, like the design of novel photofunctional materials for organic light-emitting diodes (OLEDs), photovoltaic cells, chemical sensors, and bioimaging.
Collapse
Affiliation(s)
- Gleb Baryshnikov
- Division of Theoretical Chemistry and Biology, Royal Institute of Technology , SE-106 91 Stockholm, Sweden.,Bohdan Khmelnytsky National University , 18031 Cherkasy, Ukraine
| | - Boris Minaev
- Division of Theoretical Chemistry and Biology, Royal Institute of Technology , SE-106 91 Stockholm, Sweden.,Bohdan Khmelnytsky National University , 18031 Cherkasy, Ukraine
| | - Hans Ågren
- Division of Theoretical Chemistry and Biology, Royal Institute of Technology , SE-106 91 Stockholm, Sweden.,Institute of Nanotechnology, Spectroscopy and Quantum Chemistry, Siberian Federal University , Svobodny pr. 79, 660041 Krasnoyarsk, Russia
| |
Collapse
|
37
|
Pati NN, Kumar BS, Chandra B, Panda PK. Unsymmetrical Bipyrrole-Derived β-Tetraalkylporphycenes and C-H···Br-C Interaction Induced 2D Arrays of the 2:1 Supramolecular Sandwich Complex of Their cis
-/trans
-Dibromo Isomers. European J Org Chem 2017. [DOI: 10.1002/ejoc.201601584] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Narendra N. Pati
- School of Chemistry; University of Hyderabad; 500046 Hyderabad India
| | - B. Sathish Kumar
- School of Chemistry; University of Hyderabad; 500046 Hyderabad India
| | - Brijesh Chandra
- School of Chemistry; University of Hyderabad; 500046 Hyderabad India
| | | |
Collapse
|
38
|
Pati NN, Kumar BS, Panda PK. β-Hexaalkylporphycenes: Positional Effect of Alkyl Groups toward Design and Control of Structural and Photophysical Properties in Isomeric Hexaethylporphycenes. Org Lett 2017; 19:134-137. [PMID: 28009516 DOI: 10.1021/acs.orglett.6b03428] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Two novel β-hexaalkylated porphycenes, i.e., 2,3,7,12,13,17- (HOT) and 2,3,6,12,13,16-hexaethylporphycenes (HIT) were introduced for the first time in porphycene chemistry. These were synthesized through McMurry coupling reactions of new isomeric unsymmetrically substituted triethylbipyrrole dialdehydes. The positional effects of alkyl groups could be manifested through significant alteration in structure of porphycene cores and, as a consequence their photophysical properties, not noticed in β-octaethylporphycene. HOT displays significant fluorescence accompanied by reasonable singlet oxygen generation ability.
Collapse
Affiliation(s)
- Narendra N Pati
- School of Chemistry, University of Hyderabad , Hyderabad 500046, India
| | - B Sathish Kumar
- School of Chemistry, University of Hyderabad , Hyderabad 500046, India
| | - Pradeepta K Panda
- School of Chemistry, University of Hyderabad , Hyderabad 500046, India
| |
Collapse
|
39
|
Liu H, Wang L, Wu Y, Liao Q. Luminescence emission-modulated based on specific two-photon compound of triazole-conjugated pyrene derivative. RSC Adv 2017. [DOI: 10.1039/c7ra02406a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
A two-photon absorption compound based on triazole-conjugated pyrene derivative was synthesized, and its tunable emission was investigated.
Collapse
Affiliation(s)
- Huiying Liu
- School of Materials Science and Engineering
- Beijing Institute of Fashion Technology
- Beijing 100029
- P. R. China
| | - Lei Wang
- Beijing National Laboratory for Molecular Science (BNLMS)
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Yishi Wu
- Beijing National Laboratory for Molecular Science (BNLMS)
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- P. R. China
| | - Qing Liao
- Beijing Key Laboratory for Optical Materials and Photonic Devices
- Department of Chemistry
- Capital Normal University
- Beijing
- P. R. China
| |
Collapse
|
40
|
Zeng L, Kuang S, Li G, Jin C, Ji L, Chao H. A GSH-activatable ruthenium(ii)-azo photosensitizer for two-photon photodynamic therapy. Chem Commun (Camb) 2017; 53:1977-1980. [DOI: 10.1039/c6cc10330h] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first dinuclear ruthenium(ii)-azo complex was developed as a glutathione (GSH)-activatable photosensitizer for use in two-photon photodynamic therapy upon irradiation in the NIR region.
Collapse
Affiliation(s)
- Leli Zeng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| | - Shi Kuang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| | - Guanying Li
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| | - Chengzhi Jin
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| | - Liangnian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| |
Collapse
|
41
|
Ono T, Koga D, Yoza K, Hisaeda Y. The first synthesis of meso-dicycloalkylporphycenes: ring strain effects on structural and optical properties of isomeric porphyrins. Chem Commun (Camb) 2017; 53:12258-12261. [DOI: 10.1039/c7cc07170a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Two novel meso-dicycloalkylporphycenes were synthesized for the first time, which showed remarkable ring-strain-induced switching of their fluorescence behaviors in the solution phase.
Collapse
Affiliation(s)
- Toshikazu Ono
- Department of Chemistry and Biochemistry
- Graduate School of Engineering
- Kyushu University
- Fukuoka 819-0395
- Japan
| | - Daiki Koga
- Department of Chemistry and Biochemistry
- Graduate School of Engineering
- Kyushu University
- Fukuoka 819-0395
- Japan
| | - Kenji Yoza
- Japan Bruker AXS K.K
- Yokohama 221-0022
- Japan
| | - Yoshio Hisaeda
- Department of Chemistry and Biochemistry
- Graduate School of Engineering
- Kyushu University
- Fukuoka 819-0395
- Japan
| |
Collapse
|
42
|
The Effect of the Substituent Position on the Two-Photon Absorption Performances of Dibenzylideneacetone-Based Isomers. MATERIALS 2016; 9:ma9121026. [PMID: 28774146 PMCID: PMC5457006 DOI: 10.3390/ma9121026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/06/2016] [Accepted: 12/14/2016] [Indexed: 11/22/2022]
Abstract
The two-photon absorption and optical limiting properties of two dibenzylideneacetone derivatives with different substituent positions have been theoretically investigated by solving the coupled rate equations-field intensity equation in the nanosecond time domain using an iterative predictor-corrector finite-difference time-domain method. The calculations show that the electronic structure, the transition dipole moment, the energy gap between the highest occupied orbital (HOMO) and the lowest unoccupied orbital (LUMO), and the pumping rate for the two molecules are quite different due to the different position of chlorine atoms. Importantly, two-photon absorption and optical limiting properties of the molecules depend crucially on the substituent positions of the terminal group, indicating that subtle manipulation on the molecule can affect the nonlinear optical properties of the medium.
Collapse
|
43
|
Mallidi S, Anbil S, Bulin AL, Obaid G, Ichikawa M, Hasan T. Beyond the Barriers of Light Penetration: Strategies, Perspectives and Possibilities for Photodynamic Therapy. Theranostics 2016; 6:2458-2487. [PMID: 27877247 PMCID: PMC5118607 DOI: 10.7150/thno.16183] [Citation(s) in RCA: 268] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 09/01/2016] [Indexed: 12/20/2022] Open
Abstract
Photodynamic therapy (PDT) is a photochemistry based treatment modality that involves the generation of cytotoxic species through the interactions of a photosensitizer molecule with light irradiation of an appropriate wavelength. PDT is an approved therapeutic modality for several cancers globally and in several cases has proved to be effective where traditional treatments have failed. The key parameters that determine PDT efficacy are 1. the photosensitizer (nature of the molecules, selectivity, and macroscopic and microscopic localization etc.), 2. light application (wavelength, fluence, fluence rate, irradiation regimes etc.) and 3. the microenvironment (vascularity, hypoxic regions, stromal tissue density, molecular heterogeneity etc.). Over the years, several groups aimed to monitor and manipulate the components of these critical parameters to improve the effectiveness of PDT treatments. However, PDT is still misconstrued to be a surface treatment primarily due to the limited depths of light penetration. In this review, we present the recent advances, strategies and perspectives in PDT approaches, particularly in cancer treatment, that focus on increasing the 'damage zone' beyond the reach of light in the body. This is enabled by a spectrum of approaches that range from innovative photosensitizer excitation strategies, increased specificity of phototoxicity, and biomodulatory approaches that amplify the biotherapeutic effects induced by photodynamic action. Along with the increasing depth of understanding of the underlying physical, chemical and physiological mechanisms, it is anticipated that with the convergence of these strategies, the clinical utility of PDT will be expanded to a powerful modality in the armamentarium for the management of cancer.
Collapse
Affiliation(s)
- Srivalleesha Mallidi
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114
| | - Sriram Anbil
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114
- Howard Hughes Medical Institute, Chevy Chase, MD, 20815
- The University of Texas School of Medicine at San Antonio, San Antonio, TX 78229
| | - Anne-Laure Bulin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114
| | - Girgis Obaid
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114
| | - Megumi Ichikawa
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114
| | - Tayyaba Hasan
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114
| |
Collapse
|
44
|
Wang FQ, Zhao K, Zhu MY, Wang CK. Dimerization and Isomerism Effects on Two-Photon Absorption of Tetraphenylethene Derivatives and Molecular Design for Two-Photon Absorption Materials. J Phys Chem B 2016; 120:9708-15. [DOI: 10.1021/acs.jpcb.6b05761] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Fu-Qing Wang
- Shandong
Province Key Laboratory
of Medical Physics and Image Processing Technology, School of Physics
and Electronics, Shandong Normal University, 250014 Jinan, Shandong, China
| | - Ke Zhao
- Shandong
Province Key Laboratory
of Medical Physics and Image Processing Technology, School of Physics
and Electronics, Shandong Normal University, 250014 Jinan, Shandong, China
| | - Mei-Yu Zhu
- Shandong
Province Key Laboratory
of Medical Physics and Image Processing Technology, School of Physics
and Electronics, Shandong Normal University, 250014 Jinan, Shandong, China
| | - Chuan-Kui Wang
- Shandong
Province Key Laboratory
of Medical Physics and Image Processing Technology, School of Physics
and Electronics, Shandong Normal University, 250014 Jinan, Shandong, China
| |
Collapse
|
45
|
Abstract
Tautomerization in porphycenes, constitutional isomers of porphyrins, is strongly entangled with spectral and photophysical parameters. The intramolecular double hydrogen transfer occurring in the ground and electronically excited states leads to uncommon spectroscopic characteristics, such as depolarized emission, viscosity-dependent radiationless depopulation, and vibrational-mode-specific tunneling splittings. This review starts with documentation of the electronic spectra of porphycenes: Absorption and magnetic circular dichroism are discussed, together with their analysis based on the perimeter model. Next, photophysical characteristics are presented, setting the stage for the final part, which discusses the developments in research on tautomerism. Porphycenes have been studied in different experimental regimes: molecules in condensed phases, isolated in supersonic jets and helium nanodroplets, and, recently also on the level of single molecules investigated by optical and scanning probe microscopies. Because of the rich and detailed information obtained from these diverse investigations, porphycenes emerge as very good models for studying the complex, multidimensional phenomena involved in the process of intramolecular double hydrogen transfer.
Collapse
Affiliation(s)
- Jacek Waluk
- Institute of Physical Chemistry, Polish Academy of Sciences , 01-224 Warsaw, Kasprzaka 44/52, Poland.,Faculty of Mathematics and Science, Cardinal Stefan Wyszyński University , Dewajtis 5, 01-815 Warsaw, Poland
| |
Collapse
|
46
|
Isozaki T, Oba H, Ikoma T, Suzuki T. Simultaneous Two-Photon Absorption to Gerade Excited Singlet States of Diphenylacetylene and Diphenylbutadiyne Using Optical-Probing Photoacoustic Spectroscopy. J Phys Chem A 2016; 120:6137-45. [PMID: 27410388 DOI: 10.1021/acs.jpca.6b02929] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Simultaneous two-photon absorption to one-photon forbidden electronically excited states of diphenylacetylene (DPA) and diphenylbutadiyne (DPB) was investigated by means of highly sensitive optical-probing photoacoustic spectroscopy. The incident laser power dependencies on photoacoustic signal intensity indicate that the signals are dominated by the two-photon absorption regime. Two-photon absorption is responsible for transitions to gerade excited states based on the selection rule. The two-photon absorption bands observed in the heat action spectra were assigned with the aid of quantum chemical calculations. The relative magnitude of the two-photon absorption cross sections of DPA and DPB was estimated, and the larger two-photon absorption cross section of DPB was related to the resonance effect with the red-shifted one-photon allowed 1(1)B1u ← 1(1)Ag transition of DPB.
Collapse
Affiliation(s)
- Tasuku Isozaki
- Department of Chemistry and Biological Science, Aoyama Gakuin University , 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan
| | - Hikari Oba
- Department of Chemistry and Biological Science, Aoyama Gakuin University , 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan
| | - Tadaaki Ikoma
- Graduate School of Science and Technology, Niigata University , 2-8050 Ikarashi, Nishi-ku, Niigata 950-2181, Japan.,CREST, Japan Science and Technology Agency , 4-1-8 Honcho, Kawaguchi 332-0012, Japan.,Center for Instrumental Analysis, Niigata University , 2-8050 Ikarashi, Nishi-ku, Niigata 950-2181, Japan
| | - Tadashi Suzuki
- Department of Chemistry and Biological Science, Aoyama Gakuin University , 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan
| |
Collapse
|
47
|
Westberg M, Bregnhøj M, Blázquez-Castro A, Breitenbach T, Etzerodt M, Ogilby PR. Control of singlet oxygen production in experiments performed on single mammalian cells. J Photochem Photobiol A Chem 2016. [DOI: 10.1016/j.jphotochem.2016.01.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
48
|
McMicken B, Thomas RJ, Brancaleon L. Partial Unfolding of Tubulin Heterodimers Induced by Two-Photon Excitation of Bound meso-Tetrakis(sulfonatophenyl)porphyrin. J Phys Chem B 2016; 120:3653-65. [PMID: 27035156 DOI: 10.1021/acs.jpcb.6b02055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The water-soluble porphyrin meso-tetrakis(p-sulfonatophenyl)porphyrin (TSPP) can be noncovalently bound to tubulin and used as a photosensitizer, which upon irradiation triggers photochemical reactions that lead to conformational changes of the protein. These conformational changes in turn inhibit tubulin's primary function of polymerizing into microtubules. We explored the possibility of using two-photon excitation of the bound porphyrin to induce photosensitized protein unfolding. Although TSPP has a relatively low cross section (∼30 GM) our results did find that two-photon excitation of the ligand causes partial unfolding of the tubulin host and the inhibition of the in vitro formation of microtubules. Conversely, irradiating tubulin alone caused no such effects despite the large irradiance per pulse (97-190 GW/cm(2)). The conformational changes were characterized using spectroscopic studies and provide a promising protocol for the future application of non-native photosensitization of proteins.
Collapse
Affiliation(s)
- Brady McMicken
- The University of Texas at San Antonio , Department of Physics and Astronomy, One UTSA Circle, San Antonio, Texas 78249, United States.,Human Effectiveness Directorate, Bioeffects Division, Optical Radiation Bioeffects Branch, 711th Human Performance Wing, Joint Base San Antonio , JBSA Fort Sam Houston, Texas 78234, United States
| | - Robert J Thomas
- Human Effectiveness Directorate, Bioeffects Division, Optical Radiation Bioeffects Branch, 711th Human Performance Wing, Joint Base San Antonio , JBSA Fort Sam Houston, Texas 78234, United States
| | - Lorenzo Brancaleon
- The University of Texas at San Antonio , Department of Physics and Astronomy, One UTSA Circle, San Antonio, Texas 78249, United States
| |
Collapse
|
49
|
Kundi V, Thankachan PP. Packing of Large Two- and Three-Photon Activity Into Smallest Possible Unsymmetrical Fluorene Chromophores. J Phys Chem A 2016; 120:2757-70. [DOI: 10.1021/acs.jpca.6b02364] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Varun Kundi
- Theoretical Chemistry Lab,
Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Pompozhi Protasis Thankachan
- Theoretical Chemistry Lab,
Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| |
Collapse
|
50
|
Kamada K, Namikawa T, Senatore S, Matthews C, Lenne PF, Maury O, Andraud C, Ponce-Vargas M, Le Guennic B, Jacquemin D, Agbo P, An DD, Gauny SS, Liu X, Abergel RJ, Fages F, D'Aléo A. Boron Difluoride Curcuminoid Fluorophores with Enhanced Two-Photon Excited Fluorescence Emission and Versatile Living-Cell Imaging Properties. Chemistry 2016; 22:5219-32. [DOI: 10.1002/chem.201504903] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Indexed: 12/16/2022]
Affiliation(s)
- Kenji Kamada
- IFMRI; National Institute of Advanced Industrial Science and Technology, Ikeda; Osaka 563-8577 Japan
- Department of Chemistry; School of Science and Technology; Kwansei Gakuin University, Sanda; Hyogo 669-1337 Japan
| | - Tomotaka Namikawa
- Department of Chemistry; School of Science and Technology; Kwansei Gakuin University, Sanda; Hyogo 669-1337 Japan
| | - Sébastien Senatore
- Aix Marseille Université, CNRS; Institutde Biologie du Développement de Marseille, UMR7288; 13288 Marseille 9 France
| | - Cédric Matthews
- Aix Marseille Université, CNRS; Institutde Biologie du Développement de Marseille, UMR7288; 13288 Marseille 9 France
| | - Pierre-François Lenne
- Aix Marseille Université, CNRS; Institutde Biologie du Développement de Marseille, UMR7288; 13288 Marseille 9 France
| | - Olivier Maury
- Université Lyon 1; ENS Lyon, CNRS, UMR 5182, 69364; Lyon France
| | - Chantal Andraud
- Université Lyon 1; ENS Lyon, CNRS, UMR 5182, 69364; Lyon France
| | - Miguel Ponce-Vargas
- Institut des Sciences Chimiques de Rennes, UMR 6226 CNRS; Université de Rennes 1; 263 Avenue du Général Leclerc 35042 Rennes Cedex France
| | - Boris Le Guennic
- Institut des Sciences Chimiques de Rennes, UMR 6226 CNRS; Université de Rennes 1; 263 Avenue du Général Leclerc 35042 Rennes Cedex France
| | - Denis Jacquemin
- Laboratoire CEISAM, UMR CNRS 6230; Université de Nantes; 2 Rue de la Houssinière, BP 92208 44322 Nantes Cedex 3 France
- Institut Universitaire de France; 1 Rue Descartes 75005 Paris Cedex 05 France
| | - Peter Agbo
- Chemical Sciences Division; Lawrence Berkeley National Laboratory; Berkeley CA 94720 USA
| | - Dahlia D. An
- Chemical Sciences Division; Lawrence Berkeley National Laboratory; Berkeley CA 94720 USA
| | - Stacey S. Gauny
- Chemical Sciences Division; Lawrence Berkeley National Laboratory; Berkeley CA 94720 USA
| | - Xin Liu
- Chemical Sciences Division; Lawrence Berkeley National Laboratory; Berkeley CA 94720 USA
| | - Rebecca J. Abergel
- Chemical Sciences Division; Lawrence Berkeley National Laboratory; Berkeley CA 94720 USA
| | - Frédéric Fages
- Aix Marseille Université, CNRS, CINaM UMR 7325, Campus de Luminy; Case 913 13288 Marseille France
| | - Anthony D'Aléo
- Aix Marseille Université, CNRS, CINaM UMR 7325, Campus de Luminy; Case 913 13288 Marseille France
| |
Collapse
|