1
|
Huang Y, Chang M, Gao X, Fang J, Ding W, Liu J, Shen B, Zhang X. NRhFluors: Quantitative Revealing the Interaction between Protein Homeostasis and Mitochondria Dysfunction via Fluorescence Lifetime Imaging. ACS CENTRAL SCIENCE 2024; 10:842-851. [PMID: 38680572 PMCID: PMC11046461 DOI: 10.1021/acscentsci.3c01532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/28/2024] [Accepted: 03/04/2024] [Indexed: 05/01/2024]
Abstract
Degenerative diseases are closely related to the changes of protein conformation beyond the steady state. The development of feasible tools for quantitative detection of changes in the cellular environment is crucial for investigating the process of protein conformational variations. Here, we have developed a near-infrared AIE probe based on the rhodamine fluorophore, which exhibits dual responses of fluorescence intensity and lifetime to local viscosity changes. Notably, computational analysis reveals that NRhFluors fluorescence activation is due to inhibition of the RACI mechanism in viscous environment. In the chemical regulation of rhodamine fluorophores, we found that variations of electron density distribution can effectively regulate CI states and achieve fluorescence sensitivity of NRhFluors. In addition, combined with the AggTag method, the lifetime of probe A9-Halo exhibits a positive correlation with viscosity changes. This analytical capacity allows us to quantitatively monitor protein conformational changes using fluorescence lifetime imaging (FLIM) and demonstrate that mitochondrial dysfunction leads to reduced protein expression in HEK293 cells. In summary, this work developed a set of near-infrared AIE probes activated by the RACI mechanism, which can quantitatively detect cell viscosity and protein aggregation formation, providing a versatile tool for exploring disease-related biological processes and therapeutic approaches.
Collapse
Affiliation(s)
- Yubo Huang
- School
of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Meiyi Chang
- School
of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Xiaochen Gao
- School
of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Jiabao Fang
- School
of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Wenjing Ding
- School
of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Jiachen Liu
- School
of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Baoxing Shen
- School
of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Xin Zhang
- Department
of Chemistry and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang China
- Westlake
Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou 310024, Zhejiang China
| |
Collapse
|
2
|
Szczepankiewicz O, Linse B, Meisl G, Thulin E, Frohm B, Frigerio CS, Colvin MT, Jacavone AC, Griffin RG, Knowles T, Walsh DM, Linse S. N-Terminal Extensions Retard Aβ42 Fibril Formation but Allow Cross-Seeding and Coaggregation with Aβ42. J Am Chem Soc 2015; 137:14673-85. [PMID: 26535489 PMCID: PMC5412961 DOI: 10.1021/jacs.5b07849] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Amyloid β-protein (Aβ) sequence length variants with varying aggregation propensity coexist in vivo, where coaggregation and cross-catalysis phenomena may affect the aggregation process. Until recently, naturally occurring amyloid β-protein (Aβ) variants were believed to begin at or after the canonical β-secretase cleavage site within the amyloid β-protein precursor. However, N-terminally extended forms of Aβ (NTE-Aβ) were recently discovered and may contribute to Alzheimer's disease. Here, we have used thioflavin T fluorescence to study the aggregation kinetics of Aβ42 variants with N-terminal extensions of 5-40 residues, and transmission electron microscopy to analyze the end states. We find that all variants form amyloid fibrils of similar morphology as Aβ42, but the half-time of aggregation (t1/2) increases exponentially with extension length. Monte Carlo simulations of model peptides suggest that the retardation is due to an underlying general physicochemical effect involving reduced frequency of productive molecular encounters. Indeed, global kinetic analyses reveal that NTE-Aβ42s form fibrils via the same mechanism as Aβ42, but all microscopic rate constants (primary and secondary nucleation, elongation) are reduced for the N-terminally extended variants. Still, Aβ42 and NTE-Aβ42 coaggregate to form mixed fibrils and fibrils of either Aβ42 or NTE-Aβ42 catalyze aggregation of all monomers. NTE-Aβ42 monomers display reduced aggregation rate with all kinds of seeds implying that extended termini interfere with the ability of monomers to nucleate or elongate. Cross-seeding or coaggregation may therefore represent an important contribution in the in vivo formation of assemblies believed to be important in disease.
Collapse
Affiliation(s)
- Olga Szczepankiewicz
- Department of Biochemistry and Structural Biology, Lund University, P O Box 124, 221 00 Lund, Sweden
| | - Björn Linse
- Department of Biochemistry and Structural Biology, Lund University, P O Box 124, 221 00 Lund, Sweden
| | - Georg Meisl
- Department of Chemistry, Cambridge University, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Eva Thulin
- Department of Biochemistry and Structural Biology, Lund University, P O Box 124, 221 00 Lund, Sweden
| | - Birgitta Frohm
- Department of Biochemistry and Structural Biology, Lund University, P O Box 124, 221 00 Lund, Sweden
| | - Carlo Sala Frigerio
- Laboratory for Neurodegenerative Research, Conway Institute of Biomedical and Biomolecular Research, University College Dublin, Belfield, Dublin 4, Republic of Ireland
| | - Michael T. Colvin
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Angela C. Jacavone
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Robert G. Griffin
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Tuomas Knowles
- Department of Chemistry, Cambridge University, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Dominic M. Walsh
- Laboratory for Neurodegenerative Research, Conway Institute of Biomedical and Biomolecular Research, University College Dublin, Belfield, Dublin 4, Republic of Ireland
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Sara Linse
- Department of Biochemistry and Structural Biology, Lund University, P O Box 124, 221 00 Lund, Sweden
| |
Collapse
|
3
|
Direct single-molecule observation of calcium-dependent misfolding in human neuronal calcium sensor-1. Proc Natl Acad Sci U S A 2014; 111:13069-74. [PMID: 25157171 DOI: 10.1073/pnas.1401065111] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Neurodegenerative disorders are strongly linked to protein misfolding, and crucial to their explication is a detailed understanding of the underlying structural rearrangements and pathways that govern the formation of misfolded states. Here we use single-molecule optical tweezers to monitor misfolding reactions of the human neuronal calcium sensor-1, a multispecific EF-hand protein involved in neurotransmitter release and linked to severe neurological diseases. We directly observed two misfolding trajectories leading to distinct kinetically trapped misfolded conformations. Both trajectories originate from an on-pathway intermediate state and compete with native folding in a calcium-dependent manner. The relative probability of the different trajectories could be affected by modulating the relaxation rate of applied force, demonstrating an unprecedented real-time control over the free-energy landscape of a protein. Constant-force experiments in combination with hidden Markov analysis revealed the free-energy landscape of the misfolding transitions under both physiological and pathological calcium concentrations. Remarkably for a calcium sensor, we found that higher calcium concentrations increased the lifetimes of the misfolded conformations, slowing productive folding to the native state. We propose a rugged, multidimensional energy landscape for neuronal calcium sensor-1 and speculate on a direct link between protein misfolding and calcium dysregulation that could play a role in neurodegeneration.
Collapse
|
4
|
Sharma D, Sahoo S, Mishra BK. Molecular modeling in dioxane methanol interaction. J Mol Model 2014; 20:2408. [PMID: 25123712 DOI: 10.1007/s00894-014-2408-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 07/29/2014] [Indexed: 10/24/2022]
Abstract
Molecular interaction between dioxane and methanol involves certain polar and nonpolar bonding to form a one to one complex. Interatomic distances between hydrogen and oxygen within 3 Å have been considered as hydrogen bonding. Optimizations of the structures of dioxane-methanol complexes were carried out considering any spatial orientation of a methanol molecule around a chair/boat/twisted-boat conformation of dioxane. From 45 different orientations of dioxane and water, 23 different structures with different local minima were obtained and the structural characteristics like interatomic distances, bond angles, dihedral angles, dipole moment of each complex were discussed. The most stable structure, i.e., with minimum heat of formation is found to have a chair form dioxane, one O-H…O, and two C-H…O hydrogen bonds. In general, the O-H…O hydrogen bonds have an average distance of 1.8 Å while C-H…O bonds have 2.6 Å. The binding energy of the dioxane-methanol complex is found to be a linear function of number of O-H…O and C-H…O bonds, and hydrogen bond length.
Collapse
Affiliation(s)
- Dipti Sharma
- Centre of Studies in Surface Science and Technology School of Chemistry, Sambalpur University, Jyoti Vihar, 768019, India
| | | | | |
Collapse
|
5
|
Song M, Zeng L, Yuan S, Yin J, Wang H, Jiang G. Study of cytotoxic effects of single-walled carbon nanotubes functionalized with different chemical groups on human MCF7 cells. CHEMOSPHERE 2013; 92:576-582. [PMID: 23648328 DOI: 10.1016/j.chemosphere.2013.03.058] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 03/06/2013] [Accepted: 03/22/2013] [Indexed: 06/02/2023]
Abstract
Functionalization is an important technique to increase the solubility and biocompatibility of single-wall carbon nanotubes (SWCNTs). In this study, we investigated the cytotoxicity of four types of SWCNTs functionalized with hydroxyl, amino, carboxyl and polyethyleneglycol on MCF7 cells. These functionalized SWCNTs (f-SWCNTs) have insignificant effects on mitochondrial activity and ROS production in MCF7 cells at all test concentrations. However, explicit results revealed that all the tested f-SWCNTs could cause changes of cell morphology, induce cell membrane damage, decrease cell adhesion, and increase cell apoptosis. Therefore, this study shows the potential side effects of f-SWCNTs accompanying with the increase of dispersibility and stability in environment or serum (to prevent their aggregation), and highlights the need for further research to examine the potential toxicity of f-SWCNTs before they are used in the environmental and biomedical fields.
Collapse
Affiliation(s)
- Maoyong Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | |
Collapse
|
6
|
Slavov N, Carey J, Linse S. Calmodulin transduces Ca2+ oscillations into differential regulation of its target proteins. ACS Chem Neurosci 2013; 4:601-12. [PMID: 23384199 DOI: 10.1021/cn300218d] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Diverse physiological processes are regulated differentially by Ca(2+) oscillations through the common regulatory hub calmodulin. The capacity of calmodulin to combine specificity with promiscuity remains to be resolved. Here we propose a mechanism based on the molecular properties of calmodulin, its two domains with separate Ca(2+) binding affinities, and target exchange rates that depend on both target identity and Ca(2+) occupancy. The binding dynamics among Ca(2+), Mg(2+), calmodulin, and its targets were modeled with mass-action differential equations based on experimentally determined protein concentrations and rate constants. The model predicts that the activation of calcineurin and nitric oxide synthase depends nonmonotonically on Ca(2+)-oscillation frequency. Preferential activation reaches a maximum at a target-specific frequency. Differential activation arises from the accumulation of inactive calmodulin-target intermediate complexes between Ca(2+) transients. Their accumulation provides the system with hysteresis and favors activation of some targets at the expense of others. The generality of this result was tested by simulating 60 000 networks with two, four, or eight targets with concentrations and rate constants from experimentally determined ranges. Most networks exhibit differential activation that increases in magnitude with the number of targets. Moreover, differential activation increases with decreasing calmodulin concentration due to competition among targets. The results rationalize calmodulin signaling in terms of the network topology and the molecular properties of calmodulin.
Collapse
Affiliation(s)
| | | | - Sara Linse
- Department of Biochemistry and Structural Biology, Lund University, Lund, Sweden
| |
Collapse
|
7
|
Lane TJ, Pande VS. A simple model predicts experimental folding rates and a hub-like topology. J Phys Chem B 2012; 116:6764-74. [PMID: 22452581 PMCID: PMC3376171 DOI: 10.1021/jp212332c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A simple model is presented that describes general features of protein folding, in good agreement with experimental results and detailed all-atom simulations. Starting from microscopic physics, and with no free parameters, this model predicts that protein folding occurs remarkably quickly because native-like states are kinetic hubs. A hub-like network arises naturally out of microscopic physical concerns, specifically the kinetic longevity of native contacts during a search of globular conformations. The model predicts folding times scaling as τ(f) ~ e(ξN) in the number of residues, but because the model shows ξ is small, the folding times are much faster than Levinthal's approximation. Importantly, the folding time scale is found to be small due to the topology and structure of the network. We show explicitly how our model agrees with generic experimental features of the folding process, including the scaling of τ(f) with N, two-state thermodynamics, a sharp peak in C(V), and native-state fluctuations.
Collapse
Affiliation(s)
- Thomas J Lane
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | | |
Collapse
|
8
|
Linse B, Linse S. Monte Carlo simulations of protein amyloid formation reveal origin of sigmoidal aggregation kinetics. MOLECULAR BIOSYSTEMS 2011; 7:2296-303. [PMID: 21589952 DOI: 10.1039/c0mb00321b] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Severe conditions and lack of cure for many amyloid diseases make it highly desired to understand the underlying principles of formation of fibrillar aggregates (amyloid). Here, amyloid formation from peptides was studied using Monte Carlo simulations. Systems of 20, 50, 100, 200 or 500 hexapeptides were simulated. Association kinetics were modeled equal for fibrillar and other (inter- and intra-peptide) contacts and assumed to be faster the lower the effective contact order, which represents the distance in space. Attempts to form contacts were thus accepted with higher probability the lower the effective contact order, whereby formation of new contacts next to preexisting ones is favored by shorter physical separation. Kinetic discrimination was invoked by using two different life-times for formed contacts. Contacts within amyloid fibrils were assumed to have on average longer life-time than other contacts. We find that the model produces fibrillation kinetics with a distinct lag phase, and that the fibrillar contacts need to dissociate on average 5-20 times slower than all other contacts for the fibrillar structure to dominate at equilibrium. Analysis of the species distribution along the aggregation process shows that no other intermediate is ever more populated than the dimer. Instead of a single nucleation event there is a concomitant increase in average aggregate size over the whole system, and the occurrence of multiple parallel processes makes the process more reproducible the larger the simulated system. The sigmoidal shape of the aggregation curves arises from cooperativity among multiple interactions within each pair of peptides in a fibril. A governing factor is the increasing probability as the aggregation process proceeds of neighboring reinforcing contacts. The results explain the very strong bias towards cross β-sheet fibrils in which the possibilities for cooperativity among interactions involving neighboring residues and the repetitive use of optimal side-chain interactions are explored at maximum.
Collapse
Affiliation(s)
- Björn Linse
- Lund University, Chemical Centre, Department of Biochemistry, P O Box 124, SE-221 00 Lund, Sweden
| | | |
Collapse
|
9
|
Protein GB1 folding and assembly from structural elements. Int J Mol Sci 2009; 10:1552-1566. [PMID: 19468325 PMCID: PMC2680633 DOI: 10.3390/ijms10041552] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Revised: 03/20/2009] [Accepted: 03/31/2009] [Indexed: 11/17/2022] Open
Abstract
Folding of the Protein G B1 domain (PGB1) shifts with increasing salt concentration from a cooperative assembly of inherently unstructured subdomains to an assembly of partly pre-folded structures. The salt-dependence of pre-folding contributes to the stability minimum observed at physiological salt conditions. Our conclusions are based on a study in which the reconstitution of PGB1 from two fragments was studied as a function of salt concentrations and temperature using circular dichroism spectroscopy. Salt was found to induce an increase in β-hairpin structure for the C-terminal fragment (residues 41 – 56), whereas no major salt effect on structure was observed for the isolated N-terminal fragment (residues 1 – 41). In line with the increasing evidence on the interrelation between fragment complementation and stability of the corresponding intact protein, we also find that salt effects on reconstitution can be predicted from salt dependence of the stability of the intact protein. Our data show that our variant (which has the mutations T2Q, N8D, N37D and reconstitutes in a manner similar to the wild type) displays the lowest equilibrium association constant around physiological salt concentration, with higher affinity observed both at lower and higher salt concentration. This corroborates the salt effects on the stability towards denaturation of the intact protein, for which the stability at physiological salt is lower compared to both lower and higher salt concentrations. Hence we conclude that reconstitution reports on molecular factors that govern the native states of proteins.
Collapse
|
10
|
Abstract
Experimental studies show that many proteins fold along sequential pathways defined by folding intermediates. An intermediate may not always be a single population of molecules but may consist of subpopulations that differ in their average structure. These subpopulations are likely to fold via independent pathways. Parallel folding and unfolding pathways appear to arise because of structural heterogeneity. For some proteins, the folding pathways can effectively switch either because different subpopulations of an intermediate get populated under different folding conditions, or because intermediates on otherwise hidden pathways get stabilized, leading to their utilization becoming discernible, or because mutations stabilize different substructures. Therefore, the same protein may fold via different pathways in different folding conditions. Multiple folding pathways make folding robust, and evolution is likely to have selected for this robustness to ensure that a protein will fold under the varying conditions prevalent in different cellular contexts.
Collapse
Affiliation(s)
- Jayant B Udgaonkar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India.
| |
Collapse
|