1
|
Chen Y, Li Y, Gao J, Yu Q, Zhang Y, Zhang J. Perspectives and challenges in developing small molecules targeting purine nucleoside phosphorylase. Eur J Med Chem 2024; 271:116437. [PMID: 38701712 DOI: 10.1016/j.ejmech.2024.116437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/05/2024]
Abstract
As a cytosolic enzyme involved in the purine salvage pathway metabolism, purine nucleoside phosphorylase (PNP) plays an important role in a variety of cellular functions but also in immune system, including cell growth, apoptosis and cancer development and progression. Based on its T-cell targeting profile, PNP is a potential target for the treatment of some malignant T-cell proliferative cancers including lymphoma and leukemia, and some specific immunological diseases. Numerous small-molecule PNP inhibitors have been developed so far. However, only Peldesine, Forodesine and Ulodesine have entered clinical trials and exhibited some potential for the treatment of T-cell leukemia and gout. The most recent direction in PNP inhibitor development has been focused on PNP small-molecule inhibitors with better potency, selectivity, and pharmacokinetic property. In this perspective, considering the structure, biological functions, and disease relevance of PNP, we highlight the recent research progress in PNP small-molecule inhibitor development and discuss prospective strategies for designing additional PNP therapeutic agents.
Collapse
Affiliation(s)
- Yangyang Chen
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yang Li
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jing Gao
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Quanwei Yu
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Yiwen Zhang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Jifa Zhang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
2
|
Glockzin K, Kostomiris D, Minnow YVT, Suthagar K, Clinch K, Gai S, Buckler JN, Schramm VL, Tyler PC, Meek TD, Katzfuss A. Kinetic Characterization and Inhibition of Trypanosoma cruzi Hypoxanthine–Guanine Phosphoribosyltransferases. Biochemistry 2022; 61:2088-2105. [PMID: 36193631 PMCID: PMC9536471 DOI: 10.1021/acs.biochem.2c00312] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
![]()
Chagas disease, caused by the parasitic protozoan Trypanosoma cruzi, affects over 8 million people
worldwide. Current antiparasitic treatments for Chagas disease are
ineffective in treating advanced, chronic stages of the disease, and
are noted for their toxicity. Like most parasitic protozoa, T. cruzi is unable to synthesize purines de novo, and relies on the salvage of preformed purines
from the host. Hypoxanthine–guanine phosphoribosyltransferases
(HGPRTs) are enzymes that are critical for the salvage of preformed
purines, catalyzing the formation of inosine monophosphate (IMP) and
guanosine monophosphate (GMP) from the nucleobases hypoxanthine and
guanine, respectively. Due to the central role of HGPRTs in purine
salvage, these enzymes are promising targets for the development of
new treatment methods for Chagas disease. In this study, we characterized
two gene products in the T. cruzi CL
Brener strain that encodes enzymes with functionally identical HGPRT
activities in vitro: TcA (TcCLB.509693.70) and TcC
(TcCLB.506457.30). The TcC isozyme was kinetically characterized to
reveal mechanistic details on catalysis, including identification
of the rate-limiting step(s) of catalysis. Furthermore, we identified
and characterized inhibitors of T. cruzi HGPRTs originally developed as transition-state analogue inhibitors
(TSAIs) of Plasmodium falciparum hypoxanthine–guanine–xanthine
phosphoribosyltransferase (PfHGXPRT), where the most
potent compound bound to T. cruzi HGPRT
with low nanomolar affinity. Our results validated the repurposing
of TSAIs to serve as selective inhibitors for orthologous molecular
targets, where primary and secondary structures as well as putatively
common chemical mechanisms are conserved.
Collapse
Affiliation(s)
- Kayla Glockzin
- Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Boulevard, College Station, Texas 77843-2128, United States
| | - Demetrios Kostomiris
- Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Boulevard, College Station, Texas 77843-2128, United States
| | - Yacoba V. T. Minnow
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461-1602, United States
| | - Kajitha Suthagar
- Ferrier Research Institute, Victoria University of Wellington, Gracefield Research Centre, 69 Gracefield Road, Gracefield, Lower Hutt 5010, New Zealand
| | - Keith Clinch
- Ferrier Research Institute, Victoria University of Wellington, Gracefield Research Centre, 69 Gracefield Road, Gracefield, Lower Hutt 5010, New Zealand
| | - Sinan Gai
- Ferrier Research Institute, Victoria University of Wellington, Gracefield Research Centre, 69 Gracefield Road, Gracefield, Lower Hutt 5010, New Zealand
| | - Joshua N. Buckler
- Ferrier Research Institute, Victoria University of Wellington, Gracefield Research Centre, 69 Gracefield Road, Gracefield, Lower Hutt 5010, New Zealand
| | - Vern L. Schramm
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461-1602, United States
| | - Peter C. Tyler
- Ferrier Research Institute, Victoria University of Wellington, Gracefield Research Centre, 69 Gracefield Road, Gracefield, Lower Hutt 5010, New Zealand
| | - Thomas D. Meek
- Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Boulevard, College Station, Texas 77843-2128, United States
| | - Ardala Katzfuss
- Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Boulevard, College Station, Texas 77843-2128, United States
| |
Collapse
|
3
|
Rabuffetti M, Rinaldi F, Lo Bianco A, Speranza G, Ubiali D, de Moraes MC, Rodrigues Pereira da Silva LC, Massolini G, Calleri E, Lavecchia A. Discovery of a Novel Inhibitor of Human Purine Nucleoside Phosphorylase by a Simple Hydrophilic Interaction Liquid Chromatography Enzymatic Assay. ChemMedChem 2021; 16:1325-1334. [PMID: 33405358 DOI: 10.1002/cmdc.202000874] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Indexed: 11/10/2022]
Abstract
Human purine nucleoside phosphorylase (HsPNP) belongs to the purine salvage pathway of nucleic acids. Genetic deficiency of this enzyme triggers apoptosis of activated T-cells due to the accumulation of deoxyguanosine triphosphate (dGTP). Therefore, potential chemotherapeutic applications of human PNP inhibitors include the treatment of T-cell leukemia, autoimmune diseases and transplant tissue rejection. In this report, we present the discovery of novel HsPNP inhibitors by coupling experimental and computational tools. A simple, inexpensive, direct and non-radioactive enzymatic assay coupled to hydrophilic interaction liquid chromatography and UV detection (LC-UV using HILIC as elution mode) was developed for screening HsPNP inhibitors. Enzymatic activity was assessed by monitoring the phosphorolysis of inosine (Ino) to hypoxanthine (Hpx) by LC-UV. A small library of 6- and 8-substituted nucleosides was synthesized and screened. The inhibition potency of the most promising compound, 8-aminoinosine (4), was quantified through Ki and IC50 determinations. The effect of HsPNP inhibition was also evaluated in vitro through the study of cytotoxicity on human T-cell leukemia cells (CCRF-CEM). Docking studies were also carried out for the most potent compound, allowing further insights into the inhibitor interaction at the HsPNP active site. This study provides both new tools and a new lead for developing novel HsPNP inhibitors.
Collapse
Affiliation(s)
- Marco Rabuffetti
- Department of Chemistry, University of Milan, Via Golgi 21, 20133, Milan, Italy
| | - Francesca Rinaldi
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Alessandra Lo Bianco
- Department of Pharmacy, "Drug Discovery" Laboratory, University of Napoli Federico II, Via D. Montesano 49, 80131, Napoli, Italy
| | - Giovanna Speranza
- Department of Chemistry, University of Milan, Via Golgi 21, 20133, Milan, Italy
| | - Daniela Ubiali
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Marcela Cristina de Moraes
- Departamento de Química Orgânica, Instituto de Química, Universidade Federal Fluminense, Niterói, RJ 24210-141, Brazil
| | | | - Gabriella Massolini
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Enrica Calleri
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Antonio Lavecchia
- Department of Pharmacy, "Drug Discovery" Laboratory, University of Napoli Federico II, Via D. Montesano 49, 80131, Napoli, Italy
| |
Collapse
|
4
|
Kumari P, Mishra VS, Narayana C, Khanna A, Chakrabarty A, Sagar R. Design and efficient synthesis of pyrazoline and isoxazole bridged indole C-glycoside hybrids as potential anticancer agents. Sci Rep 2020; 10:6660. [PMID: 32313038 PMCID: PMC7170901 DOI: 10.1038/s41598-020-63377-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/23/2020] [Indexed: 01/26/2023] Open
Abstract
C-glycosides are important class of molecules exhibit diverse biological activities and present as structural motif in many natural products. Two series of new pyrazoline and isoxazole bridged indole C-glycoside molecular hybrids (n = 36) were efficiently synthesized starting from diverse indole 3-carboxaldehydes derived α, β-unsaturated ketone derivatives of β-D-glucosyl-propan-2-one, β-D-galactosyl-propan-2-one and β-D-mannosyl-propan-2-one, reacting with hydrazine hydrate and hydroxyl amine hydrochloride in shorter reaction time (15 min) under microwave assisted condition. Anticancer activity of these newly synthesized pyrazoline and isoxazole bridged indoles C-glycoside hybrids were determined in details through cellular assays against MCF-7, MDA-MB-453 and MDA-MB-231 cancer cell lines. The selected library members displayed low micromolar (IC50 = 0.67–4.67 µM) and selective toxicity against breast cancer cell line (MCF-7). Whereas these compounds were nontoxic towards normal cell line (MCF-10A). Mechanistic studies showed that, active compounds inhibit COX-2 enzyme, which was also supported by molecular docking studies. These findings are expected to provide new leads towards anticancer drug discovery.
Collapse
Affiliation(s)
- Priti Kumari
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University (SNU), NH91, Tehsil-Dadri, Gautam Buddha Nagar, Uttar Pradesh, 201314, India
| | - Vishnu S Mishra
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University (SNU), NH91, Tehsil-Dadri, Gautam Buddha Nagar, Uttar Pradesh, 201314, India
| | - Chintam Narayana
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University (SNU), NH91, Tehsil-Dadri, Gautam Buddha Nagar, Uttar Pradesh, 201314, India
| | - Ashish Khanna
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Anindita Chakrabarty
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University (SNU), NH91, Tehsil-Dadri, Gautam Buddha Nagar, Uttar Pradesh, 201314, India
| | - Ram Sagar
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University (SNU), NH91, Tehsil-Dadri, Gautam Buddha Nagar, Uttar Pradesh, 201314, India. .,Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
5
|
Cheviet T, Lefebvre-Tournier I, Wein S, Peyrottes S. Plasmodium Purine Metabolism and Its Inhibition by Nucleoside and Nucleotide Analogues. J Med Chem 2019; 62:8365-8391. [PMID: 30964283 DOI: 10.1021/acs.jmedchem.9b00182] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Malaria still affects around 200 million people and is responsible for more than 400,000 deaths per year, mostly children in subequatorial areas. This disease is caused by parasites of the Plasmodium genus. Only a few WHO-recommended treatments are available to prevent or cure plasmodial infections, but genetic mutations in the causal parasites have led to onset of resistance against all commercial antimalarial drugs. New drugs and targets are being investigated to cope with this emerging problem, including enzymes belonging to the main metabolic pathways, while nucleoside and nucleotide analogues are also a promising class of potential drugs. This review highlights the main metabolic pathways targeted for the development of potential antiplasmodial therapies based on nucleos(t)ide analogues, as well as the different series of purine-containing nucleoside and nucleotide derivatives designed to inhibit Plasmodium falciparum purine metabolism.
Collapse
Affiliation(s)
- Thomas Cheviet
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 UM-CNRS-ENSCM , Université Montpellier, Equipe Nucléosides & Effecteurs Phosphorylés , Place E. Bataillon, cc 1704 , 34095 Montpellier , France
| | - Isabelle Lefebvre-Tournier
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 UM-CNRS-ENSCM , Université Montpellier, Equipe Nucléosides & Effecteurs Phosphorylés , Place E. Bataillon, cc 1704 , 34095 Montpellier , France
| | - Sharon Wein
- Dynamique des Interactions Membranaires Normales et Pathologiques (DIMNP), UMR 5235 UM-CNRS , Université Montpellier , Place E. Bataillon , 34095 Montpellier , France
| | - Suzanne Peyrottes
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 UM-CNRS-ENSCM , Université Montpellier, Equipe Nucléosides & Effecteurs Phosphorylés , Place E. Bataillon, cc 1704 , 34095 Montpellier , France
| |
Collapse
|
6
|
Roth C, Moroz OV, Ariza A, Skov LK, Ayabe K, Davies GJ, Wilson KS. Structural insight into industrially relevant glucoamylases: flexible positions of starch-binding domains. ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY 2018; 74:463-470. [PMID: 29717717 DOI: 10.1107/s2059798318004989] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 03/27/2018] [Indexed: 11/10/2022]
Abstract
Glucoamylases are one of the most important classes of enzymes in the industrial degradation of starch biomass. They consist of a catalytic domain and a carbohydrate-binding domain (CBM), with the latter being important for the interaction with the polymeric substrate. Whereas the catalytic mechanisms and structures of the individual domains are well known, the spatial arrangement of the domains with respect to each other and its influence on activity are not fully understood. Here, the structures of three industrially used fungal glucoamylases, two of which are full length, have been crystallized and determined. It is shown for the first time that the relative orientation between the CBM and the catalytic domain is flexible, as they can adopt different orientations independently of ligand binding, suggesting a role as an anchor to increase the contact time and the relative concentration of substrate near the active site. The flexibility in the orientations of the two domains presented a considerable challenge for the crystallization of the enzymes.
Collapse
Affiliation(s)
- Christian Roth
- Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5DD, England
| | - Olga V Moroz
- Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5DD, England
| | - Antonio Ariza
- Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5DD, England
| | - Lars K Skov
- Novozymes A/S, Krogshøjvej 36, DK-2880 Bagsværd, Denmark
| | | | - Gideon J Davies
- Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5DD, England
| | - Keith S Wilson
- Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5DD, England
| |
Collapse
|
7
|
Gebre ST, Cameron SA, Li L, Babu YS, Schramm VL. Intracellular rebinding of transition-state analogues provides extended in vivo inhibition lifetimes on human purine nucleoside phosphorylase. J Biol Chem 2017; 292:15907-15915. [PMID: 28794158 DOI: 10.1074/jbc.m117.801779] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/07/2017] [Indexed: 01/16/2023] Open
Abstract
Purine nucleoside phosphorylase (PNP) is part of the human purine salvage pathway. Its deficiency triggers apoptosis of activated T-cells, making it a target for T-cell proliferative disorders. Transition-state analogues of PNP bind with picomolar (pm) dissociation constants. Tight-binding PNP inhibitors show exceptionally long lifetimes on the target enzyme. We solve the mechanism of the target residence time by comparing functional off-rates in vitro and in vivo We report in vitro PNP-inhibitor dissociation rates (t½) from 3 to 31 min for seven Immucillins with dissociation constants of 115 to 6 pm Treatment of human erythrocytes with DADMe-Immucillin-H (DADMe-ImmH, 22 pm) causes complete inhibition of PNP. Loss of [14C]DADMe-ImmH from erythrocytes during multiple washes is slow and biphasic, resulting from inhibitor release and rebinding to PNP catalytic sites. The slow phase gave a t½ of 84 h. Loss of [14C]DADMe-ImmH from erythrocytes in the presence of excess unlabeled DADMe-ImmH increased to a t½ of 1.6 h by preventing rebinding. Thus, in human erythrocytes, rebinding of DADMe-ImmH is 50-fold more likely than diffusional loss of the inhibitor from the erythrocyte. Humans treated with a single oral dose of DADMe-ImmH in phase 1 clinical trials exhibit regain of PNP activity with a t½ of 59 days, corresponding to the erythropoiesis rate in humans. Thus, the PNP catalytic site recapture of DADMe-ImmH is highly favored in vivo We conclude that transition-state analogues with picomolar dissociation constants exhibit long lifetimes on their targets in vivo because the probability of the target enzyme recapturing inhibitor molecules is greater than diffusional loss to the extracellular space.
Collapse
Affiliation(s)
- Sara T Gebre
- From the Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461 and
| | - Scott A Cameron
- From the Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461 and
| | - Lei Li
- From the Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461 and
| | - Y S Babu
- BioCryst Pharmaceuticals, Inc., Birmingham, Alabama 35244
| | - Vern L Schramm
- From the Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461 and
| |
Collapse
|
8
|
Derakhshani-Molayousefi M, Kashefolgheta S, Eilers JE, Lu Y. Computational Replication of the Primary Isotope Dependence of Secondary Kinetic Isotope Effects in Solution Hydride-Transfer Reactions: Supporting the Isotopically Different Tunneling Ready State Conformations. J Phys Chem A 2016; 120:4277-84. [DOI: 10.1021/acs.jpca.6b03571] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Sadra Kashefolgheta
- Department
of Chemistry, Southern Illinois University Edwardsville, Edwardsville, Illinois 62026, United States
- Department of Theory & Bio-systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - James E. Eilers
- Department
of Chemistry, Southern Illinois University Edwardsville, Edwardsville, Illinois 62026, United States
| | - Yun Lu
- Department
of Chemistry, Southern Illinois University Edwardsville, Edwardsville, Illinois 62026, United States
| |
Collapse
|
9
|
Zoi I, Suarez J, Antoniou D, Cameron SA, Schramm VL, Schwartz SD. Modulating Enzyme Catalysis through Mutations Designed to Alter Rapid Protein Dynamics. J Am Chem Soc 2016; 138:3403-9. [PMID: 26927977 PMCID: PMC4794390 DOI: 10.1021/jacs.5b12551] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The relevance of sub-picosecond protein motions to the catalytic event remains a topic of debate. Heavy enzymes (isotopically substituted) provide an experimental tool for bond-vibrational links to enzyme catalysis. A recent transition path sampling study with heavy purine nucleoside phosphorylase (PNP) characterized the experimentally observed mass-dependent slowing of barrier crossing (Antoniou, D.; Ge, X.; Schramm, V. L.; Schwartz, S. D. J. Phys. Chem. Lett. 2012, 3, 3538). Here we computationally identify second-sphere amino acid residues predicted to influence the freedom of the catalytic site vibrational modes linked to heavy enzyme effects in PNP. We mutated heavy and light PNPs to increase the catalytic site vibrational freedom. Enzymatic barrier-crossing rates were converted from mass-dependent to mass-independent as a result of the mutations. The mutagenic uncoupling of femtosecond motions between catalytic site groups and reactants decreased transition state barrier crossing by 2 orders of magnitude, an indication of the femtosecond dynamic contributions to catalysis.
Collapse
Affiliation(s)
- Ioanna Zoi
- Department of Chemistry and Biochemistry, University of Arizona, 1306 East University Blvd, Tucson, Arizona 85721, United States
| | - Javier Suarez
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, New York 10461, United States
| | - Dimitri Antoniou
- Department of Chemistry and Biochemistry, University of Arizona, 1306 East University Blvd, Tucson, Arizona 85721, United States
| | - Scott A. Cameron
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, New York 10461, United States
| | - Vern L. Schramm
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, New York 10461, United States
| | - Steven D. Schwartz
- Department of Chemistry and Biochemistry, University of Arizona, 1306 East University Blvd, Tucson, Arizona 85721, United States
| |
Collapse
|
10
|
Hernández D, Boto A. Nucleoside Analogues: Synthesis and Biological Properties of Azanucleoside Derivatives. European J Org Chem 2014. [DOI: 10.1002/ejoc.201301731] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
11
|
Renck D, Machado P, Souto AA, Rosado LA, Erig T, Campos MM, Farias CB, Roesler R, Timmers LFSM, de Souza ON, Santos DS, Basso LA. Design of novel potent inhibitors of human uridine phosphorylase-1: synthesis, inhibition studies, thermodynamics, and in vitro influence on 5-fluorouracil cytotoxicity. J Med Chem 2013; 56:8892-902. [PMID: 24131420 DOI: 10.1021/jm401389u] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Uridine (Urd) is a promising biochemical modulator to reduce host toxicity caused by 5-fluorouracil (5-FU) without impairing its antitumor activity. Elevated doses of Urd are required to achieve a protective effect against 5-FU toxicity, but exogenous administration of Urd is not well-tolerated. Selective inhibitors of human uridine phosphorylase (hUP) have been proposed as a strategy to increase Urd levels. We describe synthesis and characterization of a new class of ligands that inhibit hUP type 1 (hUP1). The design of ligands was based on a possible SN1 catalytic mechanism and as mimics of the carbocation in the transition state of hUP1. The kinetic and thermodynamic profiles showed that the ligands here presented are the most potent in vitro hUP1 inhibitors developed to date. In addition, a lead compound improved the antiproliferative effects of 5-FU on colon cancer cells, accompanied by a reduction of in vitro 5-FU cytotoxicity in aggressive SW-620 cancer cells.
Collapse
Affiliation(s)
- Daiana Renck
- Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS) , 6681/92-A, TecnoPuc, Av. Ipiranga, 90619-900 Porto Alegre, Rio Grande do Sul, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Barnett CB, Naidoo KJ. PNP diminishes guanosine glycosidic bond strength through restrictive ring pucker as a precursor to phosphorylation. J Phys Chem B 2013; 117:6019-26. [PMID: 23621450 DOI: 10.1021/jp3109013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Purine nucleoside phosphorylase is a transferase that catalyzes the addition of phosphate and removal of a purine base from guanosine and similar nucleosides. Here the interplay between sugar puckering conformation, the enzyme, and the perceived course of the reaction is examined using QM/MM FEARCF dynamics simulations. The enzyme biases the guanosine sugar ring toward a flattened (4)E conformer as a step that is critical to the success of the phosphorylation reaction. The C4' endo conformer allows the nonbonded ring oxygen orbital to align and donate electrons into the antibonding glycosidic bond orbital, thus weakening the bond. This conformational preference is due to sustained and directed noncovalent interactions anchored by the phosphate nucleophile's hydrogen bonds to the sugar C2' and C3' hydroxyls. In so doing, PNP alters the solution sugar ring pucker preferences as part of its catalytic reaction barrier lowering function.
Collapse
Affiliation(s)
- Christopher B Barnett
- Scientific Computing Research Unit and Department of Chemistry, University of Cape Town, Rondebosch 7701, South Africa
| | | |
Collapse
|
13
|
Khalafi-Nezhad A, Divar M, Panahi F. Nucleosides as reagents in multicomponent reactions: one-pot synthesis of heterocyclic nucleoside analogues incorporating pyrimidine-fused rings. Tetrahedron Lett 2013. [DOI: 10.1016/j.tetlet.2012.11.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
14
|
The crystallization and structural analysis of cellulases (and other glycoside hydrolases): strategies and tactics. Methods Enzymol 2012; 510:141-68. [PMID: 22608725 DOI: 10.1016/b978-0-12-415931-0.00008-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The three-dimensional (3-D) structures of cellulases, and other glycoside hydrolases, are a central feature of research in carbohydrate chemistry and biochemistry. 3-D structure is used to inform protein engineering campaigns, both academic and industrial, which are typically used to improve the stability or activity of an enzyme. Examples of classical protein engineering goals include higher thermal stability, reduced metal-ion dependency, detergent and protease resistance, decreased product inhibition, and altered specificity. 3-D structure may also be used to interpret the behavior of enzyme variants that are derived from screening or random mutagenesis approaches, with a view to establishing an iterative design process. In other areas, 3-D structure is used as one of the many tools to probe enzymatic catalysis, typically dovetailing with physical organic chemistry approaches to provide complete reaction mechanisms for enzymes by visualizing catalytic site interactions at different stages of the reaction. Such mechanistic insight is not only fundamentally important, impacting on inhibitor and drug design approaches with ramifications way beyond cellulose hydrolysis, but also provides the framework for the design of enzyme variants to use as biocatalysts for the synthesis of bespoke oligosaccharides. Here we review some of the strategies and tactics that may be applied to the X-ray structure solution of cellulases (and other carbohydrate-active enzymes). The general approach is first to decide why you are doing the work, then to establish correct domain boundaries for truncated constructs (typically the catalytic domain only), and finally to pursue crystallization of pure, homogeneous, and monodisperse protein with appropriate ligand and additive combinations. Cellulase-specific strategies are important for the delineation of domain boundaries, while glycoside hydrolases generally also present challenges and opportunities for the selection and optimization of ligands to both aid crystallization, and also provide structural and mechanistic insight. As the many roles for plant cell wall degrading enzymes increase, so does the need for rapid high-quality structure determination to provide a sound structural foundation for understanding mechanism and specificity, and for future protein engineering strategies.
Collapse
|
15
|
Thompson AJ, Heu T, Shaghasi T, Benyamino R, Jones A, Friis EP, Wilson KS, Davies GJ. Structure of the catalytic core module of theChaetomium thermophilumfamily GH6 cellobiohydrolase Cel6A. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2012; 68:875-82. [DOI: 10.1107/s0907444912016496] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Accepted: 04/16/2012] [Indexed: 11/11/2022]
|
16
|
Barandun LJ, Immekus F, Kohler PC, Tonazzi S, Wagner B, Wendelspiess S, Ritschel T, Heine A, Kansy M, Klebe G, Diederich F. From lin-benzoguanines to lin-benzohypoxanthines as ligands for Zymomonas mobilis tRNA-guanine transglycosylase: replacement of protein-ligand hydrogen bonding by importing water clusters. Chemistry 2012; 18:9246-57. [PMID: 22736391 DOI: 10.1002/chem.201200809] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2012] [Indexed: 11/12/2022]
Abstract
The foodborne illness shigellosis is caused by Shigella bacteria that secrete the highly cytotoxic Shiga toxin, which is also formed by the closely related enterohemorrhagic Escherichia coli (EHEC). It has been shown that tRNA-guanine transglycosylase (TGT) is essential for the pathogenicity of Shigella flexneri. Herein, the molecular recognition properties of a guanine binding pocket in Zymomonas mobilis TGT are investigated with a series of lin-benzohypoxanthine- and lin-benzoguanine-based inhibitors that bear substituents to occupy either the ribose-33 or the ribose-34 pocket. The three inhibitor scaffolds differ by the substituent at C(6) being H, NH(2), or NH-alkyl. These differences lead to major changes in the inhibition constants, pK(a) values, and binding modes. Compared to the lin-benzoguanines, with an exocyclic NH(2) at C(6), the lin-benzohypoxanthines without an exocyclic NH(2) group have a weaker affinity as several ionic protein-ligand hydrogen bonds are lost. X-ray cocrystal structure analysis reveals that a new water cluster is imported into the space vacated by the lacking NH(2) group and by a conformational shift of the side chain of catalytic Asp102. In the presence of an N-alkyl group at C(6) in lin-benzoguanine ligands, this water cluster is largely maintained but replacement of one of the water molecules in the cluster leads to a substantial loss in binding affinity. This study provides new insight into the role of water clusters at enzyme active sites and their challenging substitution by ligand parts, a topic of general interest in contemporary structure-based drug design.
Collapse
Affiliation(s)
- Luzi Jakob Barandun
- Laboratorium für Organische Chemie, ETH Zürich, Hönggerberg, HCI, 8093 Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Hazleton KZ, Ho MC, Cassera MB, Clinch K, Crump DR, Rosario I, Merino EF, Almo SC, Tyler PC, Schramm VL. Acyclic immucillin phosphonates: second-generation inhibitors of Plasmodium falciparum hypoxanthine-guanine-xanthine phosphoribosyltransferase. CHEMISTRY & BIOLOGY 2012; 19:721-30. [PMID: 22726686 PMCID: PMC3397391 DOI: 10.1016/j.chembiol.2012.04.012] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 04/03/2012] [Accepted: 04/06/2012] [Indexed: 01/07/2023]
Abstract
Plasmodium falciparum, the primary cause of deaths from malaria, is a purine auxotroph and relies on hypoxanthine salvage from the host purine pool. Purine starvation as an antimalarial target has been validated by inhibition of purine nucleoside phosphorylase. Hypoxanthine depletion kills Plasmodium falciparum in cell culture and in Aotus monkey infections. Hypoxanthine-guanine-xanthine phosphoribosyltransferase (HGXPRT) from P. falciparum is required for hypoxanthine salvage by forming inosine 5'-monophosphate, a branchpoint for all purine nucleotide synthesis in the parasite. Here, we present a class of HGXPRT inhibitors, the acyclic immucillin phosphonates (AIPs), and cell permeable AIP prodrugs. The AIPs are simple, potent, selective, and biologically stable inhibitors. The AIP prodrugs block proliferation of cultured parasites by inhibiting the incorporation of hypoxanthine into the parasite nucleotide pool and validates HGXPRT as a target in malaria.
Collapse
Affiliation(s)
- Keith Z. Hazleton
- Department of Biochemistry, Albert Einstein College of Medicine, Yeshiva University, Bronx, New York 10461, USA
| | - Meng-Chiao Ho
- Department of Biochemistry, Albert Einstein College of Medicine, Yeshiva University, Bronx, New York 10461, USA
| | - Maria B. Cassera
- Department of Biochemistry, Albert Einstein College of Medicine, Yeshiva University, Bronx, New York 10461, USA
| | - Keith Clinch
- Carbohydrate Chemistry Group, Industrial Research Ltd., 69 Gracefield Road, Lower Hutt 5040, New Zealand
| | - Douglas R. Crump
- Carbohydrate Chemistry Group, Industrial Research Ltd., 69 Gracefield Road, Lower Hutt 5040, New Zealand
| | - Irving Rosario
- Department of Biochemistry, Albert Einstein College of Medicine, Yeshiva University, Bronx, New York 10461, USA
| | - Emilio F. Merino
- Department of Biochemistry, Albert Einstein College of Medicine, Yeshiva University, Bronx, New York 10461, USA
| | - Steve C. Almo
- Department of Biochemistry, Albert Einstein College of Medicine, Yeshiva University, Bronx, New York 10461, USA
| | - Peter C. Tyler
- Carbohydrate Chemistry Group, Industrial Research Ltd., 69 Gracefield Road, Lower Hutt 5040, New Zealand
| | - Vern L. Schramm
- Department of Biochemistry, Albert Einstein College of Medicine, Yeshiva University, Bronx, New York 10461, USA,, phone: 718-430-2814, fax: 718-430-8565
| |
Collapse
|
18
|
Martı́nez-Montero S, Fernández S, Sanghvi YS, Chattopadhyaya J, Ganesan M, Ramesh NG, Gotor V, Ferrero M. Design and Divergent Synthesis of Aza Nucleosides from a Chiral Imino Sugar. J Org Chem 2012; 77:4671-8. [DOI: 10.1021/jo3004452] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Saúl Martı́nez-Montero
- Departamento de Quı́mica Orgánica e Inorgánica
and Instituto Universitario de Biotecnologı́a de Asturias, Universidad de Oviedo, 33006 Oviedo
(Asturias), Spain
- Program of Bioorganic Chemistry, Institute
of Cell and
Molecular Biology, Biomedical Centre, Uppsala University, SE-75123 Uppsala, Sweden
| | - Susana Fernández
- Departamento de Quı́mica Orgánica e Inorgánica
and Instituto Universitario de Biotecnologı́a de Asturias, Universidad de Oviedo, 33006 Oviedo
(Asturias), Spain
| | - Yogesh S. Sanghvi
- Rasayan Inc., 2802 Crystal Ridge Road, Encinitas, California
92024-6615, United
States
| | - Jyoti Chattopadhyaya
- Program of Bioorganic Chemistry, Institute
of Cell and
Molecular Biology, Biomedical Centre, Uppsala University, SE-75123 Uppsala, Sweden
| | - Muthupandian Ganesan
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110016, India
| | - Namakkal G. Ramesh
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110016, India
| | - Vicente Gotor
- Departamento de Quı́mica Orgánica e Inorgánica
and Instituto Universitario de Biotecnologı́a de Asturias, Universidad de Oviedo, 33006 Oviedo
(Asturias), Spain
| | - Miguel Ferrero
- Departamento de Quı́mica Orgánica e Inorgánica
and Instituto Universitario de Biotecnologı́a de Asturias, Universidad de Oviedo, 33006 Oviedo
(Asturias), Spain
| |
Collapse
|
19
|
Breda A, Machado P, Rosado LA, Souto AA, Santos DS, Basso LA. Pyrimidin-2(1H)-ones based inhibitors of Mycobacterium tuberculosis orotate phosphoribosyltransferase. Eur J Med Chem 2012; 54:113-22. [PMID: 22608674 DOI: 10.1016/j.ejmech.2012.04.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 04/20/2012] [Accepted: 04/24/2012] [Indexed: 11/30/2022]
Abstract
Tuberculosis (TB) is an ancient human chronic infectious disease caused mainly by Mycobacterium tuberculosis. The emergence of strains resistant to first and second line anti-TB drugs, associated with the increasing number of TB cases among HIV positive subjects, and the large number of individuals infected with latent bacilli have urged the development of new strategies to treat TB. Enzymes of nucleotide metabolism pathways provide promising molecular targets for the development of drugs, aiming at both active and latent TB. The orotate phosphoribosyltransferase (OPRT) enzyme catalyzes the synthesis of orotidine 5'-monophosphate from 5'-phospho-α-d-ribose 1'-diphosphate and orotic acid, in the de novo pyrimidine synthesis pathway. Based on the kinetic mechanism and molecular properties, here we describe the design, selection and synthesis of substrate analogs with inhibitory activity of M. tuberculosis OPRT (MtOPRT) enzyme. Steady-state kinetic measurements were employed to determine the mode of inhibition of commercially available and chemically derived compounds. The 6-Hydroxy-2-oxo-1,2-dihydropyridine-4-carboxylic acid (6) chemical compound and its derivative, 3-Benzylidene-2,6-dioxo-1,2,3,6-tetrahydropyridine-4-carboxylic acid (13), showed enzyme inhibition constants in the submicromolar range. Isothermal titration calorimetry data indicated that binding of both compounds to MtOPRT have negative enthalpy and favorable Gibbs free energy probably due to their high complementarity to the enzyme's binding pocket. Improvement of compound 13 hydrophobic character by addition of an aromatic ring substituent resulted in entropic optimization, reflected on a thermodynamic discrimination profile characteristic of high affinity ligands. These inhibitors represent lead compounds for further development of MtOPRT inhibitors with increased potency, which may be tested as anti-TB agents.
Collapse
Affiliation(s)
- Ardala Breda
- Instituto Nacional de Ciência e Tecnologia em Tuberculose, Pontifícia Universidade Católica do Rio Grande do Sul, Avenida Ipiranga 6900, Prédio 92A - TECNOPUC, 90619-900 Porto Alegre, Rio Grande do Sul, Brazil.
| | | | | | | | | | | |
Collapse
|
20
|
Wang J, Li Q, Ge Z, Li R. A versatile and convenient route to ketone C-pyranosides and ketone C-furanosides from unprotected sugars. Tetrahedron 2012. [DOI: 10.1016/j.tet.2011.11.029] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
21
|
Schramm VL. Enzymatic transition states, transition-state analogs, dynamics, thermodynamics, and lifetimes. Annu Rev Biochem 2011; 80:703-32. [PMID: 21675920 DOI: 10.1146/annurev-biochem-061809-100742] [Citation(s) in RCA: 157] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Experimental analysis of enzymatic transition-state structures uses kinetic isotope effects (KIEs) to report on bonding and geometry differences between reactants and the transition state. Computational correlation of experimental values with chemical models permits three-dimensional geometric and electrostatic assignment of transition states formed at enzymatic catalytic sites. The combination of experimental and computational access to transition-state information permits (a) the design of transition-state analogs as powerful enzymatic inhibitors, (b) exploration of protein features linked to transition-state structure, (c) analysis of ensemble atomic motions involved in achieving the transition state, (d) transition-state lifetimes, and (e) separation of ground-state (Michaelis complexes) from transition-state effects. Transition-state analogs with picomolar dissociation constants have been achieved for several enzymatic targets. Transition states of closely related isozymes indicate that the protein's dynamic architecture is linked to transition-state structure. Fast dynamic motions in catalytic sites are linked to transition-state generation. Enzymatic transition states have lifetimes of femtoseconds, the lifetime of bond vibrations. Binding isotope effects (BIEs) reveal relative reactant and transition-state analog binding distortion for comparison with actual transition states.
Collapse
Affiliation(s)
- Vern L Schramm
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, USA.
| |
Collapse
|
22
|
Burrows JN, Waterson D. Discovering New Medicines to Control and Eradicate Malaria. TOPICS IN MEDICINAL CHEMISTRY 2011. [DOI: 10.1007/7355_2011_14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
23
|
Exploring new inhibitors of Plasmodium falciparum purine nucleoside phosphorylase. Eur J Med Chem 2010; 45:5140-9. [DOI: 10.1016/j.ejmech.2010.08.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Revised: 08/09/2010] [Accepted: 08/10/2010] [Indexed: 11/21/2022]
|
24
|
Boto A, Hernández D, Hernández R. One-Pot Conversion of Proline Derivatives into Iodinated Iminosugar-Based Nucleosides, Useful Precursors of Highly Functionalized Nucleoside Analogues. European J Org Chem 2010. [DOI: 10.1002/ejoc.201000997] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
25
|
Boto A, Hernández D, Hernández R. One-Pot Synthesis of Azanucleosides from Proline Derivatives - Stereoselectivity in Sequential Processes. European J Org Chem 2010. [DOI: 10.1002/ejoc.201000360] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
26
|
A direct NMR method for the measurement of competitive kinetic isotope effects. Nat Chem Biol 2010; 6:405-7. [DOI: 10.1038/nchembio.352] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Accepted: 02/04/2010] [Indexed: 11/08/2022]
|
27
|
Edwards AA, Tipton JD, Brenowitz MD, Emmett MR, Marshall AG, Evans GB, Tyler PC, Schramm VL. Conformational states of human purine nucleoside phosphorylase at rest, at work, and with transition state analogues. Biochemistry 2010; 49:2058-67. [PMID: 20108972 DOI: 10.1021/bi902041j] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Human purine nucleoside phosphorylase (PNP) is a homotrimer binding tightly to the transition state analogues Immucillin-H (ImmH; K(d) = 56 pM) and DATMe-ImmH-Immucillin-H (DATMe-ImmH; K(d) = 8.6 pM). ImmH binds with a larger entropic penalty than DATMe-ImmH, a chemically more flexible inhibitor. The testable hypothesis is that PNP conformational states are more relaxed (dynamic) with DATMe-ImmH, despite tighter binding than with ImmH. PNP conformations are probed by peptide amide deuterium exchange (HDX) using liquid chromatography high-resolution Fourier transform ion cyclotron resonance mass spectrometry and by sedimentation rates. Catalytically equilibrating Michaelis complexes (PNP.PO(4).inosine <--> PNP.Hx.R-1-P) and inhibited complexes (PNP.PO(4).DATMe-ImmH and PNP.PO(4).ImmH) show protection from HDX at 9, 13, and 15 sites per subunit relative to resting PNP (PNP.PO(4)) in extended incubations. The PNP.PO(4).ImmH complex is more compact (by sedimentation rate) than the other complexes. HDX kinetic analysis of ligand-protected sites corresponds to peptides near the catalytic sites. HDX and sedimentation results establish that PNP protein conformation (dynamic motion) correlates more closely with entropy of binding than with affinity. Catalytically active turnover with saturated substrate sites causes less change in HDX and sedimentation rates than binding of transition state analogues. DATMe-ImmH more closely mimics the transition of human PNP than does ImmH and achieves strong binding interactions at the catalytic site while causing relatively modest alterations of the protein dynamic motion. Transition state analogues causing the most rigid, closed protein conformation are therefore not necessarily the most tightly bound. Close mimics of the transition state are hypothesized to retain enzymatic dynamic motions related to transition state formation.
Collapse
Affiliation(s)
- Achelle A Edwards
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Senthil Kumar R, Karthikeyan K, Phani Kumar B, Muralidharan D, Perumal P. Synthesis of densely functionalised C-glycosides by a tandem oxy Michael addition–Wittig olefination pathway. Carbohydr Res 2010; 345:457-61. [DOI: 10.1016/j.carres.2009.12.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Revised: 11/19/2009] [Accepted: 12/14/2009] [Indexed: 10/20/2022]
|
29
|
Edwards AA, Mason JM, Clinch K, Tyler PC, Evans GB, Schramm VL. Altered enthalpy-entropy compensation in picomolar transition state analogues of human purine nucleoside phosphorylase. Biochemistry 2009; 48:5226-38. [PMID: 19425594 DOI: 10.1021/bi9005896] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Human purine nucleoside phosphorylase (PNP) belongs to the trimeric class of PNPs and is essential for catabolism of deoxyguanosine. Genetic deficiency of PNP in humans causes a specific T-cell immune deficiency, and transition state analogue inhibitors of PNP are in development for treatment of T-cell cancers and autoimmune disorders. Four generations of Immucillins have been developed, each of which contains inhibitors binding with picomolar affinity to human PNP. Full inhibition of PNP occurs upon binding to the first of three subunits, and binding to subsequent sites occurs with negative cooperativity. In contrast, substrate analogue and product bind without cooperativity. Titrations of human PNP using isothermal calorimetry indicate that binding of a structurally rigid first-generation Immucillin (K(d) = 56 pM) is driven by large negative enthalpy values (DeltaH = -21.2 kcal/mol) with a substantial entropic (-TDeltaS) penalty. The tightest-binding inhibitors (K(d) = 5-9 pM) have increased conformational flexibility. Despite their conformational freedom in solution, flexible inhibitors bind with high affinity because of reduced entropic penalties. Entropic penalties are proposed to arise from conformational freezing of the PNP.inhibitor complex with the entropy term dominated by protein dynamics. The conformationally flexible Immucillins reduce the system entropic penalty. Disrupting the ribosyl 5'-hydroxyl interaction of transition state analogues with PNP causes favorable entropy of binding. Tight binding of the 17 Immucillins is characterized by large enthalpic contributions, emphasizing their similarity to the transition state. Via introduction of flexibility into the inhibitor structure, the enthalpy-entropy compensation pattern is altered to permit tighter binding.
Collapse
Affiliation(s)
- Achelle A Edwards
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | |
Collapse
|
30
|
Clinch K, Evans GB, Fröhlich RFG, Furneaux RH, Kelly PM, Legentil L, Murkin AS, Li L, Schramm VL, Tyler PC, Woolhouse AD. Third-generation immucillins: syntheses and bioactivities of acyclic immucillin inhibitors of human purine nucleoside phosphorylase. J Med Chem 2009; 52:1126-43. [PMID: 19170524 DOI: 10.1021/jm801421q] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
ImmH (1) and DADMe-ImmH (2) are potent inhibitors of human purine nucleoside phoshorylase (PNP), developed by us and currently in clinical trials for the treatment of a variety of T-cell related diseases. Compounds 1 and 2 were used as templates for the design and synthesis of a series of acyclic immucillin analogues (8-38) in order to identify simplified alternatives to 1 and 2. SerMe-ImmG (8) and DATMe-ImmG (9) displayed the lowest inhibition constants of 2.1 and 3.4 pM, respectively, vs PNP. It was postulated that the flexible natures of 8 and 9 enabled them to adopt conformations resembling those of 1 and 2 within the active site of PNP and that the positioning of two hydroxyl groups was critical for picomolar activity. SerMe-ImmH (10, K(d) = 5.2 pM) was shown to be orally available in mice with a long biological residence time on blood PNP.
Collapse
Affiliation(s)
- Keith Clinch
- Carbohydrate Chemistry Team, Industrial Research Limited, P.O. Box 31310, Lower Hutt 5040, New Zealand
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Hirschi JS, Takeya T, Hang C, Singleton DA. Transition-state geometry measurements from (13)c isotope effects. The experimental transition state for the epoxidation of alkenes with oxaziridines. J Am Chem Soc 2009; 131:2397-403. [PMID: 19146405 PMCID: PMC2640442 DOI: 10.1021/ja8088636] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We here suggest and evaluate a methodology for the measurement of specific interatomic distances from a combination of theoretical calculations and experimentally measured (13)C kinetic isotope effects. This process takes advantage of a broad diversity of transition structures available for the epoxidation of 2-methyl-2-butene with oxaziridines. From the isotope effects calculated for these transition structures, a theory-independent relationship between the C-O bond distances of the newly forming bonds and the isotope effects is established. Within the precision of the measurement, this relationship in combination with the experimental isotope effects provides a highly accurate picture of the C-O bonds forming at the transition state. The diversity of transition structures also allows an evaluation of the Schramm process for defining transition-state geometries on the basis of calculations at nonstationary points, and the methodology is found to be reasonably accurate.
Collapse
Affiliation(s)
| | | | - Chao Hang
- Department of Chemistry, Texas A&M University, College Station, TX 77842
| | | |
Collapse
|
32
|
Chemical biologists gather in Heidelberg. Nat Chem Biol 2009; 5:66-9. [DOI: 10.1038/nchembio0209-66] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
33
|
Mason JM, Murkin AS, Li L, Schramm VL, Gainsford GJ, Skelton BW. A beta-fluoroamine inhibitor of purine nucleoside phosphorylase. J Med Chem 2008; 51:5880-4. [PMID: 18800772 DOI: 10.1021/jm800792b] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The potent immucillin purine nucleoside phosphorylase (PNP ) inhibitors F-DADMe-ImmH [(3S,4S)-3], and [(3R,4R)-3] are synthesized in seven steps. Cycloaddition to a fluoroalkene and an enzymic resolution are the key features of the construction of the fluoropyrrolidines 11, from which the immucillins are assembled by use of a three-component Mannich reaction. Slow-onset binding constants (Ki(*)) for [(3S,4S)-3] and [(3R,4R)-3] with human PNP are 0.032 and 1.82 nM, respectively. F-DADMe-ImmH [(3S,4S)-3] exhibits oral availability in mice at doses as low as 0.2 mg/kg.
Collapse
Affiliation(s)
- Jennifer M Mason
- Carbohydrate Chemistry Team, Industrial Research Limited, P O Box 31310, Lower Hutt, New Zealand.
| | | | | | | | | | | |
Collapse
|
34
|
Overexpression, purification and characterization of functional calf purine nucleoside phosphorylase (PNP). Protein Expr Purif 2008; 61:122-30. [DOI: 10.1016/j.pep.2008.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Revised: 05/30/2008] [Accepted: 06/02/2008] [Indexed: 11/21/2022]
|
35
|
Luo M, Li L, Schramm VL. Remote Mutations Alter Transition-State Structure of Human Purine Nucleoside Phosphorylase. Biochemistry 2008; 47:2565-76. [DOI: 10.1021/bi702133x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Minkui Luo
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461
| | - Lei Li
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461
| | - Vern L. Schramm
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461
| |
Collapse
|
36
|
Evans GB, Furneaux RH, Greatrex B, Murkin AS, Schramm VL, Tyler PC. Azetidine Based Transition State Analogue Inhibitors ofN-Ribosyl Hydrolases and Phosphorylases. J Med Chem 2008; 51:948-56. [DOI: 10.1021/jm701265n] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
37
|
Amyes TL, Richard JP. Rational design of transition-state analogues as potent enzyme inhibitors with therapeutic applications. ACS Chem Biol 2007; 2:711-4. [PMID: 18030986 DOI: 10.1021/cb700228t] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The structures of the transition states for a variety of enzyme-catalyzed ribosyl group transfer reactions, determined by computational evaluation of multiple tritium and heavy atom kinetic isotope effects on these enzymatic reactions, have been found to show a considerable variation in the extent of bond cleavage at the ribosyl anomeric carbon. The calculated transition-state structures have been used to guide the design of high-affinity transition-state analogue inhibitors for 5'-methylthioadenosine nucleosidases with potential as therapeutic agents.
Collapse
Affiliation(s)
- Tina L. Amyes
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260-3000
| | - John P. Richard
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260-3000
| |
Collapse
|
38
|
Taylor EA, Rinaldo-Matthis A, Li L, Ghanem M, Hazleton KZ, Cassera MB, Almo SC, Schramm VL. Anopheles gambiae purine nucleoside phosphorylase: catalysis, structure, and inhibition. Biochemistry 2007; 46:12405-15. [PMID: 17918964 DOI: 10.1021/bi7010256] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The purine salvage pathway of Anopheles gambiae, a mosquito that transmits malaria, has been identified in genome searches on the basis of sequence homology with characterized enzymes. Purine nucleoside phosphorylase (PNP) is a target for the development of therapeutic agents in humans and purine auxotrophs, including malarial parasites. The PNP from Anopheles gambiae (AgPNP) was expressed in Escherichia coli and compared to the PNPs from Homo sapiens (HsPNP) and Plasmodium falciparum (PfPNP). AgPNP has kcat values of 54 and 41 s-1 for 2'-deoxyinosine and inosine, its preferred substrates, and 1.0 s-1 for guanosine. However, the chemical step is fast for AgPNP at 226 s-1 for guanosine in pre-steady-state studies. 5'-Deaza-1'-aza-2'-deoxy-1'-(9-methylene)-Immucillin-H (DADMe-ImmH) is a transition-state mimic for a 2'-deoxyinosine ribocation with a fully dissociated N-ribosidic bond and is a slow-onset, tight-binding inhibitor with a dissociation constant of 3.5 pM. This is the tightest-binding inhibitor known for any PNP, with a remarkable Km/Ki* of 5.4 x 10(7), and is consistent with enzymatic transition state predictions of enhanced transition-state analogue binding in enzymes with enhanced catalytic efficiency. Deoxyguanosine is a weaker substrate than deoxyinosine, and DADMe-Immucillin-G is less tightly bound than DADMe-ImmH, with a dissociation constant of 23 pM for AgPNP as compared to 7 pM for HsPNP. The crystal structure of AgPNP was determined in complex with DADMe-ImmH and phosphate to a resolution of 2.2 A to reveal the differences in substrate and inhibitor specificity. The distance from the N1' cation to the phosphate O4 anion is shorter in the AgPNP.DADMe-ImmH.PO4 complex than in HsPNP.DADMe-ImmH.SO4, offering one explanation for the stronger inhibitory effect of DADMe-ImmH for AgPNP.
Collapse
Affiliation(s)
- Erika A Taylor
- Department of Biochemistry, Albert Einstein College of Medicine at Yeshiva University, 1300 Morris Park Avenue, Bronx, New York 10461, USA
| | | | | | | | | | | | | | | |
Collapse
|