1
|
Paul S, Verma S, Chen YC. Peptide Dendrimer-Based Antibacterial Agents: Synthesis and Applications. ACS Infect Dis 2024; 10:1034-1055. [PMID: 38428037 PMCID: PMC11019562 DOI: 10.1021/acsinfecdis.3c00624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 03/03/2024]
Abstract
Pathogenic bacteria cause the deaths of millions of people every year. With the development of antibiotics, hundreds and thousands of people's lives have been saved. Nevertheless, bacteria can develop resistance to antibiotics, rendering them insensitive to antibiotics over time. Peptides containing specific amino acids can be used as antibacterial agents; however, they can be easily degraded by proteases in vivo. To address these issues, branched peptide dendrimers are now being considered as good antibacterial agents due to their high efficacy, resistance to protease degradation, and low cytotoxicity. The ease with which peptide dendrimers can be synthesized and modified makes them accessible for use in various biological and nonbiological fields. That is, peptide dendrimers hold a promising future as antibacterial agents with prolonged efficacy without bacterial resistance development. Their in vivo stability and multivalence allow them to effectively target multi-drug-resistant strains and prevent biofilm formation. Thus, it is interesting to have an overview of the development and applications of peptide dendrimers in antibacterial research, including the possibility of employing machine learning approaches for the design of AMPs and dendrimers. This review summarizes the synthesis and applications of peptide dendrimers as antibacterial agents. The challenges and perspectives of using peptide dendrimers as the antibacterial agents are also discussed.
Collapse
Affiliation(s)
- Suchita Paul
- Institute
of Semiconductor Technology, National Yang
Ming Chiao Tung University, Hsinchu 300, Taiwan
- Department
of Chemistry, Indian Institute of Technology
Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Sandeep Verma
- Department
of Chemistry, Indian Institute of Technology
Kanpur, Kanpur 208016, Uttar Pradesh, India
- Gangwal
School of Medical Sciences and Technology, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Yu-Chie Chen
- Institute
of Semiconductor Technology, National Yang
Ming Chiao Tung University, Hsinchu 300, Taiwan
- Department
of Applied Chemistry, National Yang Ming
Chiao Tung University, Hsinchu 300, Taiwan
| |
Collapse
|
2
|
Yuan DQ, Tominaga T, Fukuda K, Koga K, Fukudome M. Three-in-one: Miniature Models of Natural Acyl-transfer Systems Enable Vector-selective Reaction on the Primary Side of Cyclodextrins. Chemistry 2021; 28:e202103940. [PMID: 34889479 DOI: 10.1002/chem.202103940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Indexed: 11/09/2022]
Abstract
Miniature models of acyl-transfer systems in cells, which were composed by replacing the protein, coenzyme and substrate with CD, functional group, and CD, respectively, and combining them all together in one, displayed definite role-sharing and exact cooperation of the functional groups and hydrophobic cavity, and thus enabled the regio-specific reaction.
Collapse
Affiliation(s)
- De-Qi Yuan
- Kobe Gakuin University, Faculty of Pharmaceutical Sciences, 1-1-3 Minatojima, Chuoku, 650-0056, Kobe, JAPAN
| | - Tatsuro Tominaga
- Kobe Gakuin University, Graduate School of Pharmaceutical Sciences, JAPAN
| | - Koki Fukuda
- Kobe Gakuin University, Graduate School of Pharmaceutical Sciences, JAPAN
| | - Kazutaka Koga
- Daiichi University of Pharmacy: Daiichi Yakka Daigaku, Faculty of Pharmacy, JAPAN
| | - Makoto Fukudome
- Kobe Gakuin University: Kobe Gakuin Daigaku, Faculty of Pharmaceutical Sciences, JAPAN
| |
Collapse
|
3
|
Shavykin OV, Neelov IM, Borisov OV, Darinskii AA, Leermakers FAM. SCF Theory of Uniformly Charged Dendrimers: Impact of Asymmetry of Branching, Generation Number, and Salt Concentration. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00429] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- O. V. Shavykin
- St. Petersburg National Research University of Information Technologies, Mechanics and Optics (ITMO University), Kronverkskiy pr. 49, St. Petersburg 197101, Russia
| | - I. M. Neelov
- St. Petersburg National Research University of Information Technologies, Mechanics and Optics (ITMO University), Kronverkskiy pr. 49, St. Petersburg 197101, Russia
| | - O. V. Borisov
- St. Petersburg National Research University of Information Technologies, Mechanics and Optics (ITMO University), Kronverkskiy pr. 49, St. Petersburg 197101, Russia
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoi Prospect 31, V.O., St. Petersburg 199004, Russia
- Institut des Sciences Analytiques et de Physico-Chimie pour l’Environnement et les Matériaux/UMR 5254, Pau 64053, France
| | - A. A. Darinskii
- St. Petersburg National Research University of Information Technologies, Mechanics and Optics (ITMO University), Kronverkskiy pr. 49, St. Petersburg 197101, Russia
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoi Prospect 31, V.O., St. Petersburg 199004, Russia
| | - F. A. M. Leermakers
- Physical Chemistry and Soft Matter, Wageningen University, Wageningen 6703 HB, The Netherlands
| |
Collapse
|
4
|
Mikhtaniuk SE, Bezrodnyi VV, Shavykin OV, Neelov IM, Sheveleva NN, Penkova AV, Markelov DA. Comparison of Structure and Local Dynamics of Two Peptide Dendrimers with the Same Backbone but with Different Side Groups in Their Spacers. Polymers (Basel) 2020; 12:E1657. [PMID: 32722466 PMCID: PMC7464546 DOI: 10.3390/polym12081657] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/19/2020] [Accepted: 07/20/2020] [Indexed: 01/13/2023] Open
Abstract
In this paper, we perform computer simulation of two lysine-based dendrimers with Lys-2Lys and Lys-2Gly repeating units. These dendrimers were recently studied experimentally by NMR (Sci. Reports, 2018, 8, 8916) and tested as carriers for gene delivery (Bioorg. Chem., 2020, 95, 103504). Simulation was performed by molecular dynamics method in a wide range of temperatures. We have shown that the Lys-2Lys dendrimer has a larger size but smaller fluctuations as well as lower internal density in comparison with the Lys-2Gly dendrimer. The Lys-2Lys dendrimer has larger charge but counterions form more ion pairs with its NH 3 + groups and reduce the bare charge and zeta potential of the first dendrimer more strongly. It was demonstrated that these differences between dendrimers are due to the lower flexibility and the larger charge (+2) of each 2Lys spacers in comparison with 2Gly ones. The terminal CH 2 groups in both dendrimers move faster than the inner CH 2 groups. The calculated temperature dependencies of the spin-lattice relaxation times of these groups for both dendrimers are in a good agreement with the experimental results obtained by NMR.
Collapse
Affiliation(s)
- Sofia E. Mikhtaniuk
- St. Petersburg National Research University of Information Technologies, Mechanics and Optics (ITMO University), Kronverkskiy pr. 49, 197101 St. Petersburg, Russia; (S.E.M.); (V.V.B.); (O.V.S.); (I.M.N.)
| | - Valeriy V. Bezrodnyi
- St. Petersburg National Research University of Information Technologies, Mechanics and Optics (ITMO University), Kronverkskiy pr. 49, 197101 St. Petersburg, Russia; (S.E.M.); (V.V.B.); (O.V.S.); (I.M.N.)
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia; (N.N.S.); (A.V.P.)
| | - Oleg V. Shavykin
- St. Petersburg National Research University of Information Technologies, Mechanics and Optics (ITMO University), Kronverkskiy pr. 49, 197101 St. Petersburg, Russia; (S.E.M.); (V.V.B.); (O.V.S.); (I.M.N.)
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia; (N.N.S.); (A.V.P.)
| | - Igor M. Neelov
- St. Petersburg National Research University of Information Technologies, Mechanics and Optics (ITMO University), Kronverkskiy pr. 49, 197101 St. Petersburg, Russia; (S.E.M.); (V.V.B.); (O.V.S.); (I.M.N.)
| | - Nadezhda N. Sheveleva
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia; (N.N.S.); (A.V.P.)
| | - Anastasia V. Penkova
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia; (N.N.S.); (A.V.P.)
| | - Denis A. Markelov
- St. Petersburg State University, 7/9 Universitetskaya nab., 199034 St. Petersburg, Russia; (N.N.S.); (A.V.P.)
| |
Collapse
|
5
|
Sapra R, Verma RP, Maurya GP, Dhawan S, Babu J, Haridas V. Designer Peptide and Protein Dendrimers: A Cross-Sectional Analysis. Chem Rev 2019; 119:11391-11441. [PMID: 31556597 DOI: 10.1021/acs.chemrev.9b00153] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Dendrimers have attracted immense interest in science and technology due to their unique chemical structure that offers a myriad of opportunities for researchers. Dendritic design allows us to present peptides in a branched three-dimensional fashion that eventually leads to a globular shape, thus mimicking globular proteins. Peptide dendrimers, unlike other classes of dendrimers, have immense applications in biomedical research due to their biological origin. The diversity of potential building blocks and innumerable possibilities for design, along with the fact that the area is relatively underexplored, make peptide dendrimers sought-after candidates for various applications. This review summarizes the stepwise evolution of peptidic dendrimers along with their multifaceted applications in various fields. Further, the introduction of biomacromolecules such as proteins to a dendritic scaffold, resulting in complex macromolecules with discrete molecular weights, is an altogether new addition to the area of organic chemistry. The synthesis of highly complex and fully folded biomacromolecules on a dendritic scaffold requires expertise in synthetic organic chemistry and biology. Presently, there are only a handful of examples of protein dendrimers; we believe that these limited examples will fuel further research in this area.
Collapse
Affiliation(s)
- Rachit Sapra
- Department of Chemistry , Indian Institute of Technology Delhi , Hauz Khas , New Delhi 110016 , India
| | - Ram P Verma
- Department of Chemistry , Indian Institute of Technology Delhi , Hauz Khas , New Delhi 110016 , India
| | - Govind P Maurya
- Department of Chemistry , Indian Institute of Technology Delhi , Hauz Khas , New Delhi 110016 , India
| | - Sameer Dhawan
- Department of Chemistry , Indian Institute of Technology Delhi , Hauz Khas , New Delhi 110016 , India
| | - Jisha Babu
- Department of Chemistry , Indian Institute of Technology Delhi , Hauz Khas , New Delhi 110016 , India
| | - V Haridas
- Department of Chemistry , Indian Institute of Technology Delhi , Hauz Khas , New Delhi 110016 , India
| |
Collapse
|
6
|
Tabatabaei Mirakabad FS, Khoramgah MS, Keshavarz F K, Tabarzad M, Ranjbari J. Peptide dendrimers as valuable biomaterials in medical sciences. Life Sci 2019; 233:116754. [PMID: 31415768 DOI: 10.1016/j.lfs.2019.116754] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/31/2019] [Accepted: 08/11/2019] [Indexed: 01/01/2023]
Abstract
Peptides are oligomers of amino acids, which have been used in a wide range of applications, particularly in medical and pharmaceutical sciences. Linear peptides have been extensively developed in various fields of medicine as therapeutics or targeting agents. The branched structure of peptide dendrimers with peptide (commonly, poly l‑Lysine) or non-peptide (commonly poly‑amidoamine) core, often exhibits valuable novel features, improves stability and enhances the functionality of peptide in comparison with small linear peptides. The potential applications of Branched and hyper-branched peptidic structures which are known as peptide dendrimers in biomedical sciences have been approved vastly. A peptide dendrimer contains three distinct parts including core, building blocks and branching units or surface functional groups. These structures provide a lot of opportunities in the pharmaceutical field, particularly for novel drug development. In this review, a brief summary of different biomedical applications of peptide dendrimers is presented, and peptide dendrimers as active pharmaceutical ingredients and drug delivery carriers are discussed. Applications of peptide dendrimers in vaccines and diagnostic tools are also presented, in brief. Generally, peptide dendrimers are promising biomaterials with high evolution rate for clinical and non-clinical applications in medicine.
Collapse
Affiliation(s)
| | - Maryam Sadat Khoramgah
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kamyar Keshavarz F
- School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Tabarzad
- Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Javad Ranjbari
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Nothling MD, Xiao Z, Bhaskaran A, Blyth MT, Bennett CW, Coote ML, Connal LA. Synthetic Catalysts Inspired by Hydrolytic Enzymes. ACS Catal 2018. [DOI: 10.1021/acscatal.8b03326] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Mitchell D. Nothling
- Department of Chemical and Biomolecular Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Zeyun Xiao
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, P. R. China
| | - Ayana Bhaskaran
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Mitchell T. Blyth
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Christopher W. Bennett
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Michelle L. Coote
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Luke A. Connal
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
8
|
Sheveleva NN, Markelov DA, Vovk MA, Mikhailova ME, Tarasenko II, Neelov IM, Lähderanta E. NMR studies of excluded volume interactions in peptide dendrimers. Sci Rep 2018; 8:8916. [PMID: 29891953 PMCID: PMC5995971 DOI: 10.1038/s41598-018-27063-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 05/23/2018] [Indexed: 02/06/2023] Open
Abstract
Peptide dendrimers are good candidates for diverse biomedical applications due to their biocompatibility and low toxicity. The local orientational mobility of groups with different radial localization inside dendrimers is important characteristic for drug and gene delivery, synthesis of nanoparticles, and other specific purposes. In this paper we focus on the validation of two theoretical assumptions for dendrimers: (i) independence of NMR relaxations on excluded volume effects and (ii) similarity of mobilities of side and terminal segments of dendrimers. For this purpose we study 1H NMR spin-lattice relaxation time, T1H, of two similar peptide dendrimers of the second generation, with and without side fragments in their inner segments. Temperature dependences of 1/T1H in the temperature range from 283 to 343 K were measured for inner and terminal groups of the dendrimers dissolved in deuterated water. We have shown that the 1/T1H temperature dependences of inner groups for both dendrimers (with and without side fragments) practically coincide despite different densities of atoms inside these dendrimers. This result confirms the first theoretical assumption. The second assumption is confirmed by the 1/T1H temperature dependences of terminal groups which are similar for both dendrimers.
Collapse
Affiliation(s)
- Nadezhda N Sheveleva
- St. Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg, 199034, Russia
| | - Denis A Markelov
- St. Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg, 199034, Russia.
| | - Mikhail A Vovk
- St. Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg, 199034, Russia
| | - Maria E Mikhailova
- St. Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg, 199034, Russia
| | - Irina I Tarasenko
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoi Prospect 31, V.O., St. Petersburg, 199004, Russia
| | - Igor M Neelov
- St. Petersburg National Research University of Information Technologies, Mechanics and Optics (ITMO University), Kronverkskiy pr. 49, St. Petersburg, 197101, Russia
| | - Erkki Lähderanta
- Laboratory of Physics, Lappeenranta University of Technology, Box 20, 53851, Lappeenranta, Finland
| |
Collapse
|
9
|
Effect of an asymmetry of branching on structural characteristics of dendrimers revealed by Brownian dynamics simulations. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.04.055] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Rothfuss H, Knöfel ND, Roesky PW, Barner-Kowollik C. Single-Chain Nanoparticles as Catalytic Nanoreactors. J Am Chem Soc 2018; 140:5875-5881. [DOI: 10.1021/jacs.8b02135] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Hannah Rothfuss
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology (QUT), 2 George Street, QLD 4000, Brisbane, Australia
- Macromolecular Architectures, Institute für Technische Chemie und Polymerchemie, Karlsruhe Institut of Technology (KIT), Engesserstraße 18, 76131 Karlsruhe, Germany
| | - Nicolai D. Knöfel
- Institut für Anorganische Chemie, Karlsruhe Institute of Technology (KIT), Engesserstraße 15, 76131 Karlsruhe, Germany
| | - Peter W. Roesky
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology (QUT), 2 George Street, QLD 4000, Brisbane, Australia
- Institut für Anorganische Chemie, Karlsruhe Institute of Technology (KIT), Engesserstraße 15, 76131 Karlsruhe, Germany
| | - Christopher Barner-Kowollik
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology (QUT), 2 George Street, QLD 4000, Brisbane, Australia
- Macromolecular Architectures, Institute für Technische Chemie und Polymerchemie, Karlsruhe Institut of Technology (KIT), Engesserstraße 18, 76131 Karlsruhe, Germany
| |
Collapse
|
11
|
Martinho N, Silva LC, Florindo HF, Brocchini S, Zloh M, Barata TS. Rational design of novel, fluorescent, tagged glutamic acid dendrimers with different terminal groups and in silico analysis of their properties. Int J Nanomedicine 2017; 12:7053-7073. [PMID: 29026301 PMCID: PMC5626386 DOI: 10.2147/ijn.s135475] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Dendrimers are hyperbranched polymers with a multifunctional architecture that can be tailored for the use in various biomedical applications. Peptide dendrimers are particularly relevant for drug delivery applications due to their versatility and safety profile. The overall lack of knowledge of their three-dimensional structure, conformational behavior and structure-activity relationship has slowed down their development. Fluorophores are often conjugated to dendrimers to study their interaction with biomolecules and provide information about their mechanism of action at the molecular level. However, these probes can change dendrimer surface properties and have a direct impact on their interactions with biomolecules and with lipid membranes. In this study, we have used computer-aided molecular design and molecular dynamics simulations to identify optimal topology of a poly(l-glutamic acid) (PG) backbone dendrimer that allows incorporation of fluorophores in the core with minimal availability for undesired interactions. Extensive all-atom molecular dynamic simulations with the CHARMM force field were carried out for different generations of PG dendrimers with the core modified with a fluorophore (nitrobenzoxadiazole and Oregon Green 488) and various surface groups (glutamic acid, lysine and tryptophan). Analysis of structural and topological features of all designed dendrimers provided information about their size, shape, internal distribution and dynamic behavior. We have found that four generations of a PG dendrimer are needed to ensure minimal exposure of a core-conjugated fluorophore to external environment and absence of undesired interactions regardless of the surface terminal groups. Our findings suggest that NBD-PG-G4 can provide a suitable scaffold to be used for biophysical studies of surface-modified dendrimers to provide a deeper understanding of their intermolecular interactions, mechanisms of action and trafficking in a biological system.
Collapse
Affiliation(s)
- Nuno Martinho
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
- Department of Pharmaceutics, UCL School of Pharmacy, London
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, UK
| | - Liana C Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
- Centro de Química-Física Molecular and IN – Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Helena F Florindo
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | | | - Mire Zloh
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, UK
| | | |
Collapse
|
12
|
|
13
|
Filipe LCS, Campos SRR, Machuqueiro M, Darbre T, Baptista AM. Structuring Peptide Dendrimers through pH Modulation and Substrate Binding. J Phys Chem B 2016; 120:10138-10152. [DOI: 10.1021/acs.jpcb.6b05905] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Luís C. S. Filipe
- Instituto
de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, EAN, 2780-157 Oeiras, Portugal
| | - Sara R. R. Campos
- Instituto
de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, EAN, 2780-157 Oeiras, Portugal
| | - Miguel Machuqueiro
- Centro
de Química e Bioquímica and Departamento de Química
e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Tamis Darbre
- Department
of Chemistry and Biochemistry, University of Bern, Freiestrasse
3, 3012 Bern, Switzerland
| | - António M. Baptista
- Instituto
de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, EAN, 2780-157 Oeiras, Portugal
| |
Collapse
|
14
|
Wang PSP, Schepartz A. β-Peptide bundles: Design. Build. Analyze. Biosynthesize. Chem Commun (Camb) 2016; 52:7420-32. [PMID: 27146019 DOI: 10.1039/c6cc01546h] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Peptides containing β-amino acids are unique non-natural polymers known to assemble into protein-like tertiary and quaternary structures. When composed solely of β-amino acids, the structures formed, defined assemblies of 14-helices called β-peptide bundles, fold cooperatively in water solvent into unique and discrete quaternary assemblies that are highly thermostable, bind complex substrates and metal ion cofactors, and, in certain cases, catalyze chemical reactions. In this Perspective, we recount the design and elaboration of β-peptide bundles and provide an outlook on recent, unexpected discoveries that could influence research on β-peptides and β-peptide bundles (and β-amino acid-containing proteins) for decades to come.
Collapse
Affiliation(s)
- Pam S P Wang
- Department of Chemistry, Yale University, 225 Prospect St., New Haven, CT 06511, USA.
| | | |
Collapse
|
15
|
Eggimann GA, Blattes E, Buschor S, Biswas R, Kammer SM, Darbre T, Reymond JL. Designed cell penetrating peptide dendrimers efficiently internalize cargo into cells. Chem Commun (Camb) 2015; 50:7254-7. [PMID: 24870379 DOI: 10.1039/c4cc02780a] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Redesigning linear cell penetrating peptides (CPPs) into a multi-branched topology with short dipeptide branches gave cell penetrating peptide dendrimers (CPPDs) with higher cell penetration, lower toxicity and hemolysis and higher serum stability than linear CPPs. Their use is demonstrated by delivering a cytotoxic peptide and paclitaxel into cells.
Collapse
Affiliation(s)
- Gabriela A Eggimann
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
16
|
Goren K, Karabline-Kuks J, Shiloni Y, Barak-Kulbak E, Miller SJ, Portnoy M. Multivalency as a key factor for high activity of selective supported organocatalysts for the Baylis-Hillman reaction. Chemistry 2015; 21:1191-7. [PMID: 25376519 DOI: 10.1002/chem.201404560] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Indexed: 11/05/2022]
Abstract
The polystyrene-supported N-alkylimidazole-based dendritic catalysts for the Baylis-Hillman reaction exhibit one of the strongest beneficial effects of multivalent architecture ever reported for an organocatalyst. The yields in the model reaction of methyl vinyl ketone with p-nitrobenzaldehyde are more than tripled when a non-dendritic catalyst is replaced by a second- or third-generation analogue. Moreover, the reaction of the less active substrates will not occur with the non-dendritic catalyst and will proceed to a significant extent only with the analogous catalysts of higher generations. A substantial additional enhancement of the reaction yield could be achieved by increasing the content of water in the reaction solvent. The plausible cause of the dendritic effect is the assistance of the second, nearby imidazole moiety in the presumably rate-determining proton transfer in the intermediate adduct, after the first imidazole unit induced the formation of the new carbon-carbon bond.
Collapse
Affiliation(s)
- Kerem Goren
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel-Aviv 69978 (Israel); Current Address: Teva Pharmaceutical Industries Ltd, P.O.B. 3190, 2 Denmark Street, Petah Tikva (Israel)
| | | | | | | | | | | |
Collapse
|
17
|
Stach M, Siriwardena TN, Köhler T, van Delden C, Darbre T, Reymond JL. Combining topology and sequence design for the discovery of potent antimicrobial peptide dendrimers against multidrug-resistant Pseudomonas aeruginosa. Angew Chem Int Ed Engl 2014; 53:12827-31. [PMID: 25346278 DOI: 10.1002/anie.201409270] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Indexed: 11/07/2022]
Abstract
Multidrug-resistant opportunistic bacteria, such as Pseudomonas aeruginosa, represent a major public health threat. Antimicrobial peptides (AMPs) and related peptidomimetic systems offer an attractive opportunity to control these pathogens. AMP dendrimers (AMPDs) with high activity against multidrug-resistant clinical isolates of P. aeruginosa and Acinetobacter baumannii were now identified by a systematic survey of the peptide sequences within the branches of a distinct type of third-generation peptide dendrimers. Combined topology and peptide sequence design as illustrated here represents a new and general strategy to discover new antimicrobial agents to fight multidrug-resistant bacterial pathogens.
Collapse
Affiliation(s)
- Michaela Stach
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern (Switzerland)
| | | | | | | | | | | |
Collapse
|
18
|
Stach M, Siriwardena TN, Köhler T, van Delden C, Darbre T, Reymond JL. Combining Topology and Sequence Design for the Discovery of Potent Antimicrobial Peptide Dendrimers against Multidrug-ResistantPseudomonas aeruginosa. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201409270] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
19
|
Wang PSP, Nguyen JB, Schepartz A. Design and high-resolution structure of a β³-peptide bundle catalyst. J Am Chem Soc 2014; 136:6810-3. [PMID: 24802883 DOI: 10.1021/ja5013849] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Despite the widespread exploration of α-peptides as catalysts, there are few examples of β-peptides that alter the course of a chemical transformation. Our previous work demonstrated that a special class of β(3)-peptides spontaneously self-assembles in water into discrete protein-like bundles possessing unique quaternary structures and exceptional thermodynamic stability. Here we describe a series of β(3)-peptide bundles capable of both substrate binding and chemical catalysis--ester hydrolysis. A combination of kinetic and high-resolution structural analysis suggests an active site triad composed of residues from at least two strands of the octameric bundle structure.
Collapse
Affiliation(s)
- Pam S P Wang
- Department of Chemistry and ‡Department of Molecular, Cellular and Developmental Biology, Yale University , New Haven, Connecticut 06520-8107, United States
| | | | | |
Collapse
|
20
|
Kreye O, Kugele D, Faust L, Meier MAR. Divergent Dendrimer Synthesis via the Passerini Three-Component Reaction and Olefin Cross-Metathesis. Macromol Rapid Commun 2013; 35:317-22. [DOI: 10.1002/marc.201300779] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 10/31/2013] [Indexed: 11/07/2022]
Affiliation(s)
- Oliver Kreye
- Laboratory of Applied Chemistry; Institute of Organic Chemistry; Karlsruhe Institute of Technology (KIT); Fritz-Haber-Weg 6 76131 Karlsruhe Germany
| | - Dennis Kugele
- Laboratory of Applied Chemistry; Institute of Organic Chemistry; Karlsruhe Institute of Technology (KIT); Fritz-Haber-Weg 6 76131 Karlsruhe Germany
| | - Lorenz Faust
- Laboratory of Applied Chemistry; Institute of Organic Chemistry; Karlsruhe Institute of Technology (KIT); Fritz-Haber-Weg 6 76131 Karlsruhe Germany
| | - Michael A. R. Meier
- Laboratory of Applied Chemistry; Institute of Organic Chemistry; Karlsruhe Institute of Technology (KIT); Fritz-Haber-Weg 6 76131 Karlsruhe Germany
| |
Collapse
|
21
|
Filipe LCS, Machuqueiro M, Darbre T, Baptista AM. Unraveling the Conformational Determinants of Peptide Dendrimers Using Molecular Dynamics Simulations. Macromolecules 2013. [DOI: 10.1021/ma401574b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Luís C. S. Filipe
- Instituto de Tecnologia Química
e Biológica, Universidade Nova de Lisboa, Av. da República,
EAN, 2780-157 Oeiras, Portugal
| | - Miguel Machuqueiro
- Centro de Química e Bioquímica, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, C8, 1749-016 Lisboa, Portugal
| | - Tamis Darbre
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - António M. Baptista
- Instituto de Tecnologia Química
e Biológica, Universidade Nova de Lisboa, Av. da República,
EAN, 2780-157 Oeiras, Portugal
| |
Collapse
|
22
|
Falkovich S, Markelov D, Neelov I, Darinskii A. Are structural properties of dendrimers sensitive to the symmetry of branching? Computer simulation of lysine dendrimers. J Chem Phys 2013; 139:064903. [DOI: 10.1063/1.4817337] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
23
|
Neelov IM, Markelov DA, Falkovich SG, Ilyash MY, Okrugin BM, Darinskii AA. Mathematical simulation of lysine dendrimers: Temperature dependences. POLYMER SCIENCE SERIES C 2013. [DOI: 10.1134/s1811238213050032] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
24
|
Wang X, Zhang Y, Li T, Tian W, Zhang Q, Cheng Y. Generation 9 polyamidoamine dendrimer encapsulated platinum nanoparticle mimics catalase size, shape, and catalytic activity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:5262-70. [PMID: 23544351 DOI: 10.1021/la3046077] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Poly(amidoamine) (PAMAM) encapsulated platinum nanoparticles were synthesized and used as catalase mimics. Acetylated generation 9 (Ac-G9) PAMAM dendrimer with a molecular size around 10 nm was used as a template to synthesize platinum nanoparticles. The feeding molar ratio of Pt(4+) and Ac-G9 is 2048, and the synthesized platinum nanoparticle (Ac-G9/Pt NP) has an average size of 3.3 nm. Ac-G9/Pt NP has a similar molecular size and globular shape with catalase (~11 nm). The catalytic activity of Ac-G9/Pt NP on the decomposition of H2O2 is approaching that of catalase at 37 °C. Ac-G9/Pt NP shows differential response to the changes of pH and temperature compared with catalase, which can be explained by different catalytic mechanisms of Ac-G9/Pt NP and catalase. Ac-G9/Pt NP also shows horseradish peroxidase activity and is able to scavenge free radicals such as di(phenyl)-(2,4,6-trinitrophenyl)iminoazanium (DPPH). Furthermore, Ac-G9/Pt NP shows excellent biocompatibility on different cell lines and can down-regulate H2O2-induced intracellular reactive oxygen species (ROS) in these cells. These results suggest that dendrimers are promising mimics of proteins with different sizes and Ac-G9/Pt NP can be used as an alternative candidate of catalase to decrease oxidation stress in cells.
Collapse
Affiliation(s)
- Xinyu Wang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200062, People's Republic of China
| | | | | | | | | | | |
Collapse
|
25
|
Dong Z, Zhu J, Luo Q, Liu J. Understanding enzyme catalysis by means of supramolecular artificial enzymes. Sci China Chem 2013. [DOI: 10.1007/s11426-013-4871-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Reymond JL, Bergmann M, Darbre T. Glycopeptide dendrimers as Pseudomonas aeruginosa biofilm inhibitors. Chem Soc Rev 2013; 42:4814-22. [PMID: 23370573 DOI: 10.1039/c3cs35504g] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Synthetic glycopeptide dendrimers composed of a branched oligopeptide tree structure appended with glycosidic groups at its multiple N-termini were investigated for binding to the Pseudomonas aeruginosa lectins LecB and LecA. These lectins are partly responsible for the formation of antibiotic resistant biofilms in the human pathogenic bacterium P. aeruginosa, which causes lethal airway infections in immune-compromised and cystic fibrosis patients. Glycopeptide dendrimers with high affinity to the lectins were identified by screening of combinatorial libraries. Several of these dendrimers, in particular the LecB specific glycopeptide dendrimers FD2 and D-FD2 and the LecA specific glycopeptide dendrimers GalAG2 and GalBG2, also efficiently block P. aeruginosa biofilm formation and induce biofilm dispersal in vitro. Structure-activity relationship and structural studies are reviewed, in particular the observation that multivalency is essential to the anti-biofilm effect in these dendrimers.
Collapse
Affiliation(s)
- Jean-Louis Reymond
- Department of Chemistry and Biochemistry, University of Berne, Freistrasse 3, 3012 Berne, Switzerland.
| | | | | |
Collapse
|
27
|
Geotti-Bianchini P, Darbre T, Reymond JL. pH-tuned metal coordination and peroxidase activity of a peptide dendrimer enzyme model with a Fe(II)bipyridine at its core. Org Biomol Chem 2012; 11:344-52. [PMID: 23172354 DOI: 10.1039/c2ob26551f] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Peptide dendrimer BP1 was obtained by double thioether bond formation between 5,5'-bis(bromomethyl)-2,2'-bipyridine and two equivalents of peptide dendrimer N1 (Ac-Glu-Ser)(8)(Dap-Glu-Ala)(4)(Dap-Amb-Tyr)(2)Dap-Cys-Asp-NH(2) (Dap = branching 2,3-diaminopropanoic acid, Amb = 4-aminomethyl-benzoic acid). At pH 4.0 BP1 bound Fe(ii) to form the expected tris-coordinated complex [Fe(II)(BP1)(3)] (K(f) = 2.1 × 10(15) M(-3)). At pH 6.5 a monocoordinated complex [Fe(II)(BP1)] was formed instead (K(f) = 2.1 × 10(5) M(-1)) due to electrostatic repulsion between the polyanionic dendrimer branches, as confirmed by the behavior of three analogues where glutamates were partially or completely replaced by neutral glutamines or positive lysines. [Fe(II)(BP1)] catalyzed the oxidation of o-phenylenediamine with H(2)O(2) with enzyme-like kinetics (k(cat) = 1.0 min(-1), K(M) = 1.5 mM, k(cat)/k(uncat) = 90 000) and multiple turnover, while Fe(2+) or [Fe(bipy)(3)](2+) were inactive. The labile coordination positions allowing coordination to H(2)O(2) and to the substrate are likely responsible for the enhanced peroxidase activity of the metallopeptide dendrimer.
Collapse
Affiliation(s)
- Piero Geotti-Bianchini
- Department of Chemistry and Biochemistry, University of Berne, Freiestrasse 3, CH-3012 Berne, Switzerland
| | | | | |
Collapse
|
28
|
|
29
|
Zaramella D, Scrimin P, Prins LJ. Self-assembly of a catalytic multivalent peptide-nanoparticle complex. J Am Chem Soc 2012; 134:8396-9. [PMID: 22559143 DOI: 10.1021/ja302754h] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Catalytically active peptide-nanoparticle complexes were obtained by assembling small peptide sequences on the surface of cationic self-assembled monolayers on gold nanoparticles. When bound to the surface, the peptides accelerate the transesterification of the p-nitrophenyl ester of N-carboxybenzylphenylalanine by more than 2 orders of magnitude. The gold nanoparticle serves as a multivalent scaffold for bringing the catalyst and substrate into close proximity but also creates a local microenvironment that further enhances the catalysis. The supramolecular nature of the ensemble permits the catalytic activity of the system to be modulated in situ.
Collapse
|
30
|
Abstract
This review gives an overview of the use of dendrimers and dendrons as organocatalysts, i.e. as catalysts in the absence of any metal. A large variety of dendrimeric structures have already been used for such a purpose, varying in size (generation), type and location (core or surface) of the organocatalytic entities, and overall chemical composition. The main types of reactions catalyzed concern bond formation (in particular C-C bonds), bond cleavage (in particular of esters), reductions and oxidations. In many cases, good to excellent enantioselectivities have been observed, in some cases associated with a positive dendritic effect (better properties when the generation of the dendrimer increases). Due to their large size compared to products, the dendrimeric organocatalysts can be often recovered and reused several times.
Collapse
Affiliation(s)
- Anne-Marie Caminade
- Laboratoire de Chimie de Coordination du CNRS, UPR8241, 205 route de Narbonne, BP 44099 Toulouse Cedex 4, France.
| | | | | | | |
Collapse
|
31
|
Lai LL, Hsu SJ, Hsu HC, Wang SW, Cheng KL, Chen CJ, Wang TH, Hsu HF. Formation of Columnar Liquid Crystals on the Basis of Unconventional Triazine-Based Dendrimers by theC3-Symmetric Approach. Chemistry 2012; 18:6542-7. [DOI: 10.1002/chem.201103423] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Indexed: 11/07/2022]
|
32
|
Reymond JL, Darbre T. Peptide and glycopeptide dendrimer apple trees as enzyme models and for biomedical applications. Org Biomol Chem 2012; 10:1483-92. [PMID: 22274649 DOI: 10.1039/c2ob06938e] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Solid phase peptide synthesis (SPPS) provides peptides with a dendritic topology when diamino acids are introduced in the sequences. Peptide dendrimers with one to three amino acids between branches can be prepared with up to 38 amino acids (MW ~ 5,000 Da). Larger peptide dendrimers (MW ~ 30,000) were obtained by a multivalent chloroacetyl cysteine (ClAc) ligation. Structural studies of peptide dendrimers by CD, FT-IR, NMR and molecular dynamics reveal molten globule states containing up to 50% of α-helix. Esterase and aldolase peptide dendrimers displaying dendritic effects and enzyme kinetics (k(cat)/k(uncat) ~ 10(5)) were designed or discovered by screening large combinatorial libraries. Strong ligands for Pseudomonas aeruginosa lectins LecA and LecB able to inhibit biofilm formation were obtained with glycopeptide dendrimers. Efficient ligands for cobalamin, cytotoxic colchicine conjugates and antimicrobial peptide dendrimers were also developed showing the versatility of dendritic peptides. Complementing the multivalency, the amino acid composition of the dendrimers strongly influenced the catalytic or biological activity obtained demonstrating the importance of the "apple tree" configuration for protein-like function in peptide dendrimers.
Collapse
Affiliation(s)
- Jean-Louis Reymond
- Department of Chemistry and Biochemistry, University of Berne, Berne, Switzerland.
| | | |
Collapse
|
33
|
Kehat T, Goren K, Portnoy M. Effects of dendritic interface on enantioselective catalysis by polymer-bound prolines. NEW J CHEM 2012. [DOI: 10.1039/c1nj20471h] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
34
|
|
35
|
Palivan CG, Fischer-Onaca O, Delcea M, Itel F, Meier W. Protein–polymer nanoreactors for medical applications. Chem Soc Rev 2012; 41:2800-23. [DOI: 10.1039/c1cs15240h] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
36
|
Maillard N, Biswas R, Darbre T, Reymond JL. Combinatorial discovery of peptide dendrimer enzyme models hydrolyzing isobutyryl fluorescein. ACS COMBINATORIAL SCIENCE 2011; 13:310-20. [PMID: 21438622 DOI: 10.1021/co200006z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Two 6750-membered one-bead-one-compound peptide dendrimer combinatorial libraries L (X(4))(8)(LysX(3))(4)(LysX(2))(2)LysX(1) (X(1-4) = 14 different amino acids or deletion, Lys = branching lysine residue) and AcL (with N-terminal acetylation) were prepared by split-and-mix solid phase peptide synthesis. Screening toward fluorogenic substrates for esterase and aldolase activities using the in silica off-bead assay (N. Maillard et al., J. Comb. Chem. 2009, 11, 667-675) and bead decoding by amino acid analysis revealed histidine containing sequences active against fluorescein diacetate. Isobutyryl fluorescein, a related hydrophobic fluorogenic substrate, was preferentially hydrolyzed by dendrimers from library AcL containing hydrophobic residues such as AcH3 (AcHis)(8)(LysLeu)(4)(LysVal)(2)LysLysOH, compared to simple oligohistidine peptides as reference catalysts. Polycationic dendrimers from library L with multiple free N-termini such as H8 (His)(8)(LysβAla)(4)(LysThr)(2)LysaProNH(2) (aPro = (2S,4S)-4-aminoproline) showed stronger reactivity toward 8-acetoxypyrene-1,3,6-trisulfonate with partial acylation of N-termini. These experiments highlight the role of noncatalytic amino acids to determine substrate selectivity in peptide dendrimer esterase models.
Collapse
Affiliation(s)
- Noélie Maillard
- Department of Chemistry and Biochemistry, University of Berne, Freiestrasse 3, CH-3012, Berne, Switzerland
| | - Rasomoy Biswas
- Department of Chemistry and Biochemistry, University of Berne, Freiestrasse 3, CH-3012, Berne, Switzerland
| | - Tamis Darbre
- Department of Chemistry and Biochemistry, University of Berne, Freiestrasse 3, CH-3012, Berne, Switzerland
| | - Jean-Louis Reymond
- Department of Chemistry and Biochemistry, University of Berne, Freiestrasse 3, CH-3012, Berne, Switzerland
| |
Collapse
|
37
|
Filipe LCS, Machuqueiro M, Baptista AM. Unfolding the Conformational Behavior of Peptide Dendrimers: Insights from Molecular Dynamics Simulations. J Am Chem Soc 2011; 133:5042-52. [DOI: 10.1021/ja111001v] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Luís C. S. Filipe
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, EAN, 2780-157 Oeiras, Portugal
| | - Miguel Machuqueiro
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, EAN, 2780-157 Oeiras, Portugal
- Centro de Química e Bioquímica, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, C5, 1749-016 Lisboa, Portugal
| | - António M. Baptista
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, EAN, 2780-157 Oeiras, Portugal
| |
Collapse
|
38
|
Haridas V, Sharma YK, Creasey R, Sahu S, Gibson CT, Voelcker NH. Gelation and topochemical polymerization of peptide dendrimers. NEW J CHEM 2011. [DOI: 10.1039/c0nj00544d] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
39
|
Euzen R, Reymond JL. Glycopeptide dendrimers: tuning carbohydrate–lectin interactions with amino acids. ACTA ACUST UNITED AC 2011; 7:411-21. [DOI: 10.1039/c0mb00177e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
40
|
Uhlich NA, Darbre T, Reymond JL. Peptide dendrimer enzyme models for ester hydrolysis and aldolization prepared by convergent thioether ligation. Org Biomol Chem 2011; 9:7071-84. [DOI: 10.1039/c1ob05877k] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
41
|
Johansson EMV, Dubois J, Darbre T, Reymond JL. Glycopeptide dendrimer colchicine conjugates targeting cancer cells. Bioorg Med Chem 2010; 18:6589-97. [PMID: 20674369 DOI: 10.1016/j.bmc.2010.04.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 03/15/2010] [Accepted: 04/07/2010] [Indexed: 02/08/2023]
Abstract
Screening of a 65,536-member one-bead-one-compound (OBOC) combinatorial library of glycopeptide dendrimers of structure ((betaGal)(n)(+1)X(8)X(7)X(6)X(5))(2)DapX(4)X(3)X(2)X(1)(beta-Gal)(m) (betaGal=beta-galactosyl-thiopropionic acid, X(8-1)=variable amino acids, Dap=l-2,3-diaminopropionic acid, n, m=0, or 1 if X(8)=Lys resp. X(1)=Lys) for binding of Jurkat cells to the library beads in cell culture, resynthesis and testing lead to the identification of dendrimer J1 (betaGal-Gly-Arg-His-Ala)(2)Dap-Thr-Arg-His-Asp-CysNH(2) and related analogues as delivery vehicles. Cell targeting is evidenced by FACS with fluorescein conjugates such as J1F. The colchicine conjugate J1C is cytotoxic with LD(50)=1.5 microM. The beta-galactoside groups are necessary for activity, as evidenced by the absence of cell-binding and cytotoxicity in the non-galactosylated, acetylated analogue AcJ1F and AcJ1C, respectively. The pentagalactosylated dendrimer J4 betaGal(4)(Lys-Arg-His-Leu)(2)Dap-Thr-Tyr-His-Lys(betaGal)-Cys) selectively labels Jurkat cell as the fluorescein derivative J4F, but its colchicine conjugate J4C lacks cytotoxicity. Tubulin binding assays show that the colchicine dendrimer conjugates do not bind to tubulin, implying intracellular degradation of the dendrimers releasing the active drug.
Collapse
Affiliation(s)
- Emma M V Johansson
- Department of Chemistry and Biochemistry, University of Berne, Freiestrasse 3, CH-3012 Berne, Switzerland
| | | | | | | |
Collapse
|
42
|
Akagawa K, Fujiwara T, Sakamoto S, Kudo K. Efficient Asymmetric α-Oxyamination of Aldehydes by Resin-Supported Peptide Catalyst in Aqueous Media. Org Lett 2010; 12:1804-7. [DOI: 10.1021/ol100415h] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kengo Akagawa
- Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Takuma Fujiwara
- Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Seiji Sakamoto
- Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Kazuaki Kudo
- Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| |
Collapse
|
43
|
Uhlich NA, Natalello A, Kadam RU, Doglia SM, Reymond JL, Darbre T. Structure and Binding of Peptide-Dendrimer Ligands to Vitamin B12. Chembiochem 2010; 11:358-65. [DOI: 10.1002/cbic.200900657] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
44
|
Biswas R, Maillard N, Kofoed J, Reymond JL. Comparing dendritic with linear esterase peptides by screening SPOT arrays for catalysis. Chem Commun (Camb) 2010; 46:8746-8. [DOI: 10.1039/c0cc02700f] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
45
|
He BJ, Yin CQ, Li SR, Bai ZW. Synthesis of dendrimer-type chiral stationary phases based on the selector of (1S,2R)-(+)-2-Amino-1,2-diphenylethanol derivate and their enantioseparation evaluation by HPLC. Chirality 2010; 22:69-76. [DOI: 10.1002/chir.20708] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
46
|
Uhlich NA, Sommer P, Bühr C, Schürch S, Reymond JL, Darbre T. Remote control of bipyridine-metal coordination within a peptide dendrimer. Chem Commun (Camb) 2009:6237-9. [PMID: 19826680 DOI: 10.1039/b912291e] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The metal coordinating ability of a bipyridine ligand at the core of a peptide dendrimer was found to be controlled by the nature of amino acids placed at the dendrimer periphery, with coordination being promoted by anionic residues and inhibited by cationic residues; heterotrimers with mixed charges were preferentially formed.
Collapse
Affiliation(s)
- Nicolas A Uhlich
- Department of Chemistry and Biochemistry, University of Berne, Freiestrasse 3, CH-3012 Berne, Switzerland
| | | | | | | | | | | |
Collapse
|
47
|
van Dongen SFM, de Hoog HPM, Peters RJRW, Nallani M, Nolte RJM, van Hest JCM. Biohybrid Polymer Capsules. Chem Rev 2009; 109:6212-74. [DOI: 10.1021/cr900072y] [Citation(s) in RCA: 357] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Stijn F. M. van Dongen
- Department of Organic Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525AJ Nijmegen, The Netherlands, and Institute of Materials Research & Engineering (IMRE), Research Link 3, Singapore 117602, Singapore
| | - Hans-Peter M. de Hoog
- Department of Organic Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525AJ Nijmegen, The Netherlands, and Institute of Materials Research & Engineering (IMRE), Research Link 3, Singapore 117602, Singapore
| | - Ruud J. R. W. Peters
- Department of Organic Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525AJ Nijmegen, The Netherlands, and Institute of Materials Research & Engineering (IMRE), Research Link 3, Singapore 117602, Singapore
| | - Madhavan Nallani
- Department of Organic Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525AJ Nijmegen, The Netherlands, and Institute of Materials Research & Engineering (IMRE), Research Link 3, Singapore 117602, Singapore
| | - Roeland J. M. Nolte
- Department of Organic Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525AJ Nijmegen, The Netherlands, and Institute of Materials Research & Engineering (IMRE), Research Link 3, Singapore 117602, Singapore
| | - Jan C. M. van Hest
- Department of Organic Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525AJ Nijmegen, The Netherlands, and Institute of Materials Research & Engineering (IMRE), Research Link 3, Singapore 117602, Singapore
| |
Collapse
|
48
|
|
49
|
Javor S, Reymond JL. Structure-Activity Relationship Studies in Single-Site Esterase Peptide Dendrimers. Isr J Chem 2009. [DOI: 10.1560/ijc.49.1.129] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
50
|
Mitsui K, Parquette JR. Dendritic Amplification of Stereoselectivity of a Prolinamide-Catalyzed Direct Aldol Reaction. Isr J Chem 2009. [DOI: 10.1560/ijc.49.1.119] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|