1
|
Wani NA, Gazit E, Ramamoorthy A. Interplay between Antimicrobial Peptides and Amyloid Proteins in Host Defense and Disease Modulation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:25355-25366. [PMID: 39564995 DOI: 10.1021/acs.langmuir.4c03123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
The biological properties of antimicrobial peptides (AMPs) and amyloid proteins and their cross-talks have gained increasing attention due to their potential implications in both host defense mechanisms and amyloid-related diseases. However, complex interactions, molecular mechanisms, and physiological applications are not fully understood. The interplay between antimicrobial peptides and amyloid proteins is crucial for uncovering new insights into immune defense and disease mechanisms, bridging critical gaps in understanding infectious and neurodegenerative diseases. This review provides an overview of the cross-talk between AMPs and amyloids, highlighting their intricate interplay, mechanisms of action, and potential therapeutic implications. The dual roles of AMPs, which not only serve as key components of the innate immune system, combating microbial infections, but also exhibit modulatory effects on amyloid formation and toxicity, are discussed. The diverse mechanisms employed by AMPs to modulate amyloid aggregation, fibril formation, and toxicity are also discussed. Additionally, we explore emerging evidence suggesting that amyloid proteins may possess antimicrobial properties, adding a new dimension to the intricate relationship between AMPs and amyloids. This review underscores the importance of understanding the cross-talk between AMPs and amyloids to better understand the molecular processes underlying infectious diseases and amyloid-related disorders and to aid in the development of therapeutic avenues to treat them.
Collapse
Affiliation(s)
- Naiem Ahmad Wani
- Department Chemical and Biomedical Engineering, Florida State University, Tallahassee, Florida 32310, United States
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| | - Ehud Gazit
- Department of Materials Science and Engineering, Tel Aviv University, 6997801 Tel Aviv, Israel
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Ayyalusamy Ramamoorthy
- Department Chemical and Biomedical Engineering, Florida State University, Tallahassee, Florida 32310, United States
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida 32304, United States
| |
Collapse
|
2
|
Middleton DA. NMR studies of amyloid interactions. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2024; 144-145:63-96. [PMID: 39645351 DOI: 10.1016/j.pnmrs.2024.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 12/09/2024]
Abstract
Amyloid fibrils are insoluble, fibrous nanostructures that accumulate extracellularly in biological tissue during the progression of several human disorders, including Alzheimer's disease (AD) and type 2 diabetes. Fibrils are assembled from protein monomers via the transient formation of soluble, cytotoxic oligomers, and have a common molecular architecture consisting of a spinal core of hydrogen-bonded protein β-strands. For the past 25 years, NMR spectroscopy has been at the forefront of research into the structure and assembly mechanisms of amyloid aggregates. Until the recent boom in fibril structure analysis by cryo-electron microscopy, solid-state NMR was unrivalled in its ability to provide atomic-level models of amyloid fibril architecture. Solution-state NMR has also provided complementary information on the early stages in the amyloid assembly mechanism. Now, both NMR modalities are proving to be valuable in unravelling the complex interactions between amyloid species and a diverse range of physiological metal ions, molecules and surfaces that influence the assembly pathway, kinetics, morphology and clearance in vivo. Here, an overview is presented of the main applications of solid-state and solution-state NMR for studying the interactions between amyloid proteins and biomembranes, glycosaminoglycan polysaccharides, metal ions, polyphenols, synthetic therapeutics and diagnostics. Key NMR methodology is reviewed along with examples of how to overcome the challenges of detecting interactions with aggregating proteins. The review heralds this new role for NMR in providing a comprehensive and pathologically-relevant view of the interactions between protein and non-protein components of amyloid. Coverage of both solid- and solution-state NMR methods and applications herein will be informative and valuable to the broad communities that are interested in amyloid proteins.
Collapse
Affiliation(s)
- David A Middleton
- Department of Chemistry, Lancaster University, Lancaster LA1 4YB, United Kingdom.
| |
Collapse
|
3
|
Bergasa-Caceres F, Rabitz HA. A Perspective on Interdicting in Protein Misfolding for Therapeutic Drug Design: Modulating the Formation of Nonlocal Contacts in α-Synuclein as a Strategy against Parkinson's Disease. J Phys Chem B 2024; 128:6439-6448. [PMID: 38940731 PMCID: PMC11247489 DOI: 10.1021/acs.jpcb.3c07519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/29/2024]
Abstract
In recent work we proposed that interdiction in the earliest contact-formation events along the folding pathway of key viral proteins could provide a novel avenue for therapeutic drug design. In this Perspective we explore the potential applicability of the protein folding interdiction strategy in the realm of neurodegenerative diseases with a specific focus on synucleinopathies. In order to fulfill this goal we review the interdiction proposal and its practical challenges, and we present new results concerning design strategies for possible peptide drugs that could be useful in preventing α-synuclein aggregation.
Collapse
Affiliation(s)
| | - Herschel A. Rabitz
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
4
|
Galkin M, Priss A, Kyriukha Y, Shvadchak V. Navigating α-Synuclein Aggregation Inhibition: Methods, Mechanisms, and Molecular Targets. CHEM REC 2024; 24:e202300282. [PMID: 37919046 DOI: 10.1002/tcr.202300282] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/08/2023] [Indexed: 11/04/2023]
Abstract
Parkinson's disease is a yet incurable, age-related neurodegenerative disorder characterized by the aggregation of small neuronal protein α-synuclein into amyloid fibrils. Inhibition of this process is a prospective strategy for developing a disease-modifying treatment. We overview here small molecule, peptide, and protein inhibitors of α-synuclein fibrillization reported to date. Special attention was paid to the specificity of inhibitors and critical analysis of their action mechanisms. Namely, the importance of oxidation of polyphenols and cross-linking of α-synuclein into inhibitory dimers was highlighted. We also compared strategies of targeting monomeric, oligomeric, and fibrillar α-synuclein species, thoroughly discussed the strong and weak sides of different approaches to testing the inhibitors.
Collapse
Affiliation(s)
- Maksym Galkin
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Anastasiia Priss
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Yevhenii Kyriukha
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, Missouri, 63110, United States
| | - Volodymyr Shvadchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| |
Collapse
|
5
|
Allen SG, Meade RM, White Stenner LL, Mason JM. Peptide-based approaches to directly target alpha-synuclein in Parkinson's disease. Mol Neurodegener 2023; 18:80. [PMID: 37940962 PMCID: PMC10633918 DOI: 10.1186/s13024-023-00675-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/27/2023] [Indexed: 11/10/2023] Open
Abstract
Peptides and their mimetics are increasingly recognised as drug-like molecules, particularly for intracellular protein-protein interactions too large for inhibition by small molecules, and inaccessible to larger biologics. In the past two decades, evidence associating the misfolding and aggregation of alpha-synuclein strongly implicates this protein in disease onset and progression of Parkinson's disease and related synucleinopathies. The subsequent formation of toxic, intracellular, Lewy body deposits, in which alpha-synuclein is a major component, is a key diagnostic hallmark of the disease. To reach their therapeutic site of action, peptides must both cross the blood-brain barrier and enter dopaminergic neurons to prevent the formation of these intracellular inclusions. In this review, we describe and summarise the current efforts made in the development of peptides and their mimetics to directly engage with alpha-synuclein with the intention of modulating aggregation, and importantly, toxicity. This is a rapidly expanding field with great socioeconomic impact; these molecules harbour significant promise as therapeutics, or as early biomarkers during prodromal disease stages, or both. As these are age-dependent conditions, an increasing global life expectancy means disease prevalence is rising. No current treatments exist to either prevent or slow disease progression. It is therefore crucial that drugs are developed for these conditions before health care and social care capacities become overrun.
Collapse
Affiliation(s)
- Scott G Allen
- Department of Life Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Richard M Meade
- Department of Life Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Lucy L White Stenner
- Department of Life Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Jody M Mason
- Department of Life Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| |
Collapse
|
6
|
Jahan I, Ahmad A, Deep S. Effect of flavonoids on the destabilization of α-synuclein fibrils and their conversion to amorphous aggregate: A molecular dynamics simulation and experimental study. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2023; 1871:140951. [PMID: 37574034 DOI: 10.1016/j.bbapap.2023.140951] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/15/2023]
Abstract
The second most prevalent neurodegenerative disease, Parkinson's disease (PD), is caused by the accumulation and deposition of fibrillar aggregates of the α-Syn into the Lewy bodies. To create a potent pharmacological candidate to destabilize the preformed α-Syn fibril, it is important to understand the precise molecular mechanism underlying the destabilization of the α-Syn fibril. Through molecular dynamics simulations and experiments, we have examined the molecular mechanisms causing the destabilization and suppression of a newly discovered α-Syn fibril with a Greek-key-like shape and an aggregation prone state (APS) of α-Syn in the presence and absence of various Flvs. According to MD simulation and experimental evidence, morin, quercetin, and myricetin are the Flvs, most capable of destabilizing the fibrils and converting them into amorphous aggregates. Compared to galangin and kaempferol, they have more hydroxyl groups and form more hydrogen bonds with fibrils.The processes by which morin and myricetin prevent new fibril production from APS and destabilize the fibrils are different. According to linear interaction energy analysis, van der Waals interaction predominates with morin, and electrostatic interaction dominates with myricetin. Our MD simulation and experimental findings provide mechanistic insights into how Flvs destabilize α-Syn fibrils and change their morphology, opening the door to developing structure-based drugs for treating Parkinson's disease.
Collapse
Affiliation(s)
- Ishrat Jahan
- Department of Chemistry, Indian Institute of Technology Delhi, Delhi 110016, India
| | - Aziz Ahmad
- Department of Chemistry, Indian Institute of Technology Delhi, Delhi 110016, India
| | - Shashank Deep
- Department of Chemistry, Indian Institute of Technology Delhi, Delhi 110016, India.
| |
Collapse
|
7
|
Martins GF, Nascimento C, Galamba N. Mechanistic Insights into Polyphenols' Aggregation Inhibition of α-Synuclein and Related Peptides. ACS Chem Neurosci 2023; 14:1905-1920. [PMID: 37125909 DOI: 10.1021/acschemneuro.3c00162] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
While several polyphenols were found to either inhibit or modulate the aggregation of proteins implicated in neurodegenerative diseases, such as Parkinson's disease (PD), discrepant action mechanisms have been reported. This, in addition to some polyphenols' pan-assay interference compounds' reputation, casts some doubts concerning their therapeutic relevance. Here, we studied, through molecular dynamics and enhanced sampling methods, the aggregation of 11-mer peptides from the non-amyloid-β component, an aggregation-prone domain of α-synuclein (α-syn) implicated in PD and other synucleinopathies, in neat water and aqueous solutions of resveratrol (RSV) and gallic acid (GA). Further, simulations of the complete protein were carried out in aqueous urea, RSV, and GA solutions. Our results show that peptide aggregation is not disrupted by either phenolic compound. Thus, instead, intrusion of RSV and GA in the inter-peptide region induces a peptide-peptide re-orientation, favoring terminal interactions that manifest in the formation of barrierless solvent-separated configurations. Moreover, although the (poly)phenols induce a pronounced peptide dewetting at high concentrations, β-sheet-rich regions, a hallmark of α-syn aggregation, are not disrupted. Thus, our results indicate that, if anything, RSV and GA delay or modulate peptide aggregation at high concentrations via the stabilization of solvent-separated conformations as opposed to aggregation inhibition. Structural analysis of the full protein, however, shows that the (poly)phenols induce more extended conformations of α-syn, similar to urea, possibly also influencing its aggregation propensity. However, opposite to urea, the (poly)phenols reduce α-syn's conformational space, likely due to steric effects and a slowdown of the solvent dynamics. These effects are concentration-dependent and possibly unattainable at therapeutic-relevant concentrations. These results suggest that the aggregation inhibition activity of RSV and GA in vitro should involve, instead, either the non-covalent binding to oligomeric intermediates or the stabilization of the monomer and/or oligomers through the formation of covalent bonds of the respective quinones with α-syn. In addition, the enhanced aggregation tendency of the peptides observed here could be associated with the formation of non-toxic oligomers, reported for some polyphenols.
Collapse
Affiliation(s)
- G F Martins
- BioISI─Biosystems and Integrative Sciences Institute, Faculty of Sciences of the University of Lisbon, C8, Campo Grande, Lisbon 1749-016, Portugal
| | - C Nascimento
- BioISI─Biosystems and Integrative Sciences Institute, Faculty of Sciences of the University of Lisbon, C8, Campo Grande, Lisbon 1749-016, Portugal
| | - N Galamba
- BioISI─Biosystems and Integrative Sciences Institute, Faculty of Sciences of the University of Lisbon, C8, Campo Grande, Lisbon 1749-016, Portugal
| |
Collapse
|
8
|
Mankoo OK, Kaur A, Goyal D, Goyal B. Unravelling the destabilization potential of ellagic acid on α-synuclein fibrils using molecular dynamics simulations. Phys Chem Chem Phys 2023; 25:8128-8143. [PMID: 36877087 DOI: 10.1039/d2cp06006j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
The aberrant deposition of α-synuclein (α-Syn) protein into the intracellular neuronal aggregates termed Lewy bodies and Lewy neurites characterizes the devastating neurodegenerative condition known as Parkinson's disease (PD). The disruption of pre-existing disease-relevant α-Syn fibrils is recognized as a viable therapeutic approach for PD. Ellagic acid (EA), a natural polyphenolic compound, is experimentally proven as a potential candidate that prevents or reverses the α-Syn fibrillization process. However, the detailed inhibitory mechanism of EA against the destabilization of α-Syn fibril remains largely unclear. In this work, the influence of EA on α-Syn fibril and its putative binding mechanism were explored using molecular dynamics (MD) simulations. EA interacted primarily with the non-amyloid-β component (NAC) of α-Syn fibril, disrupting its β-sheet content and thereby increasing the coil content. The E46-K80 salt bridge, critical for the stability of Greek-key-like α-Syn fibril, was disrupted in the presence of EA. The binding free energy analysis using the MM-PBSA method demonstrates the favourable binding of EA to α-Syn fibril (ΔGbinding = -34.62 ± 11.33 kcal mol-1). Interestingly, the binding affinity between chains H and J of the α-Syn fibril was significantly reduced on the incorporation of EA, which highlights the disruptive ability of EA towards α-Syn fibril. The MD simulations provide mechanistic insights into the α-Syn fibril disruption by EA, which gives a valuable direction for the development of potential inhibitors of α-Syn fibrillization and its associated cytotoxicity.
Collapse
Affiliation(s)
- Opinder Kaur Mankoo
- Department of Chemistry, Faculty of Basic and Applied Sciences, Sri Guru Granth Sahib World University, Fatehgarh Sahib 140406, Punjab, India
| | - Anupamjeet Kaur
- Department of Chemistry, Faculty of Basic and Applied Sciences, Sri Guru Granth Sahib World University, Fatehgarh Sahib 140406, Punjab, India
| | - Deepti Goyal
- Department of Chemistry, DAV College, Sector 10, Chandigarh 160011, India.
| | - Bhupesh Goyal
- School of Chemistry & Biochemistry, Thapar Institute of Engineering & Technology, Patiala 147004, Punjab, India.
| |
Collapse
|
9
|
Yang Z, Yao Y, Zhou Y, Li X, Tang Y, Wei G. EGCG attenuates α-synuclein protofibril-membrane interactions and disrupts the protofibril. Int J Biol Macromol 2023; 230:123194. [PMID: 36623616 DOI: 10.1016/j.ijbiomac.2023.123194] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 12/15/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023]
Abstract
The fibrillary aggregates of α-synuclein (α-syn) are closely associated with the etiology of Parkinson's disease (PD). Mounting evidence shows that the interaction of α-syn with biological membranes is a culprit for its aggregation and cytotoxicity. While some small molecules can effectively inhibit α-syn fibrillization in solution, their potential roles in the presence of membrane are rarely studied. Among them, green tea extract epigallocatechin gallate (EGCG) is currently under active investigation. Herein, we investigated the effects of EGCG on α-syn protofibril (an intermediate of α-syn fibril formation) in the presence of a model membrane and on the interactions between α-syn protofibril and the membrane, as well as the underlying mechanisms, by performing microsecond all-atom molecular dynamics simulations. The results show that EGCG has destabilization effects on α-syn protofibril, albeit to a lesser extent than that in solution. Intriguingly, we find that EGCG forms overwhelming H-bonding and cation-π interactions with membrane and thus attenuates protofibril-membrane interactions. Moreover, the decreased protofibril-membrane interactions impede the membrane damage by α-syn protofibril and enable the membrane integrity. These findings provide atomistic understanding towards the attenuation of α-syn protofibril-induced cytotoxicity by EGCG in cellular environment, which is helpful for the development of EGCG-based therapeutic strategies against PD.
Collapse
Affiliation(s)
- Zhongyuan Yang
- State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Department of Physics, Fudan University, Shanghai 200438, People's Republic of China
| | - Yifei Yao
- State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Department of Physics, Fudan University, Shanghai 200438, People's Republic of China
| | - Yun Zhou
- State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Department of Physics, Fudan University, Shanghai 200438, People's Republic of China
| | - Xuhua Li
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Yiming Tang
- State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Department of Physics, Fudan University, Shanghai 200438, People's Republic of China.
| | - Guanghong Wei
- State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Sciences (Ministry of Education), Department of Physics, Fudan University, Shanghai 200438, People's Republic of China.
| |
Collapse
|
10
|
Wang Q, Zhong J, Li K, Wu J, Wang X, Jiang S, Dai J, Cheng Y. Compact Luminol Chemiluminophores for In Vivo Detection and Imaging of β-Sheet Protein Aggregates. Anal Chem 2023; 95:1065-1073. [PMID: 36542087 DOI: 10.1021/acs.analchem.2c03776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Protein aggregation has been found in a wide range of neurodegenerative protein-misfolding diseases. The demand for in vivo technologies to identify protein aggregation is at the leading edge for the pathogenic study, diagnostic development, and therapeutic intervention of these devastating disorders. Herein, we report a series of luminol analogues to construct a facile chemiluminescence (CL)-based approach for in vivo detection and imaging of β-sheet protein aggregates. The synthesized compounds exhibited a distinct chemiluminescent response with long emission wavelengths toward reactive oxygen species under physiological conditions and displayed signal amplification in the presence of β-sheet protein aggregates, including α-synuclein, β-amyloid, and tau. Among them, CyLumi-3 was further evaluated as a chemiluminescent probe in preclinical models. By intravenous administration into the model mice via the tail vein, in vivo CL imaging noninvasively detected the specific CL of the probe targeting the α-synuclein aggregates in the brains of living mice. Based on its structural characteristics, CyLumi-3 can readily interact with α-synuclein aggregates with significantly enhanced fluorescence and can identify α-synuclein aggregates in vivo via distinctive CL amplification, which could pave the way for a more comprehensive understanding of protein aggregation in preclinical studies and would provide new hints for developing small-molecule chemiluminophores for protein aggregates.
Collapse
Affiliation(s)
- Qinyu Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Jing Zhong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Kexin Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Jiajun Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xiaoxue Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Shen Jiang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Jiapei Dai
- Wuhan Institute for Neuroscience and Neuroengineering, South-Central University for Nationalities, Wuhan 430074, China
| | - Yan Cheng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
11
|
Pirhaghi M, Frank SA, Alam P, Nielsen J, Sereikaite V, Gupta A, Strømgaard K, Andreasen M, Sharma D, Saboury AA, Otzen DE. A penetratin-derived peptide reduces the membrane permeabilization and cell toxicity of α-synuclein oligomers. J Biol Chem 2022; 298:102688. [PMID: 36370848 PMCID: PMC9791135 DOI: 10.1016/j.jbc.2022.102688] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/31/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
Parkinson's disease is a neurodegenerative movement disorder associated with the intracellular aggregation of α-synuclein (α-syn). Cytotoxicity is mainly associated with the oligomeric species (αSOs) formed at early stages in α-syn aggregation. Consequently, there is an intense focus on the discovery of novel inhibitors such as peptides to inhibit oligomer formation and toxicity. Here, using peptide arrays, we identified nine peptides with high specificity and affinity for αSOs. Of these, peptides p194, p235, and p249 diverted α-syn aggregation from fibrils to amorphous aggregates with reduced β-structures and increased random coil content. However, they did not reduce αSO cytotoxicity and permeabilization of large anionic unilamellar vesicles. In parallel, we identified a non-self-aggregating peptide (p216), derived from the cell-penetrating peptide penetratin, which showed 12-fold higher binding affinity to αSOs than to α-syn monomers (Kdapp 2.7 and 31.2 μM, respectively). p216 reduced αSOs-induced large anionic unilamellar vesicle membrane permeability at 10-1 to 10-3 mg/ml by almost 100%, was not toxic to SH-SY5Y cells, and reduced αSOs cytotoxicity by about 20%. We conclude that p216 is a promising starting point from which to develop peptides targeting toxic αSOs in Parkinson's disease.
Collapse
Affiliation(s)
- Mitra Pirhaghi
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Aarhus C, Denmark; Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Signe Andrea Frank
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Aarhus C, Denmark
| | - Parvez Alam
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Aarhus C, Denmark; Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Janni Nielsen
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Aarhus C, Denmark
| | - Vita Sereikaite
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen Ø, Denmark
| | - Arpit Gupta
- Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, India
| | - Kristian Strømgaard
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen Ø, Denmark
| | - Maria Andreasen
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Deepak Sharma
- Council of Scientific and Industrial Research-Institute of Microbial Technology, Chandigarh, India; G.N. Ramachandran Protein Centre, Academy of Scientific & Innovative Research, Chennai, India
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| | - Daniel Erik Otzen
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Aarhus C, Denmark.
| |
Collapse
|
12
|
Horsley JR, Jovcevski B, Pukala TL, Abell AD. Designer D-peptides targeting the N-terminal region of α-synuclein to prevent parkinsonian-associated fibrilization and cytotoxicity. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2022; 1870:140826. [PMID: 35926717 DOI: 10.1016/j.bbapap.2022.140826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
The deposition of α-synuclein (αS) aggregates in the gut and the brain is ever present in cases of Parkinson's disease. While the central non-amyloidogenic-component (NAC) region of αS plays a critical role in fibrilization, recent studies have identified a specific sequence from within the N-terminal region (NTR, residues 36-42) as a key modulator of αS fibrilization. Due to the lack of effective therapeutics which specifically target αS aggregates, we have developed a strategy to prevent the aggregation and subsequent toxicity attributed to αS fibrilization utilizing NTR targeting peptides. In this study, L- and D-isoforms of a hexa- (VAQKTV-Aib, 77-82 NAC) and heptapeptide (GVLYVGS-Aib, 36-42 NTR) containing a self-recognition component unique to αS, as well as a C-terminal disruption element, were synthesized to target primary sequence regions of αS that modulate fibrilization. The D-peptide that targets the NTR (NTR-TP-D) was shown by ThT fluorescence assays and TEM to be the most effective at preventing fibril formation and elongation, as well as increasing the abundance of soluble monomeric αS. In addition, NTR-TP-D alters the conformation of destabilised monomers into a less aggregation-prone state and reduces the hydrophobicity of αS fibrils via fibril remodelling. Furthermore, both NTR-TP isoforms alleviate the cytotoxic effects of αS aggregates in both Neuro-2a and Caco-2 cells. Together, this study highlights how targeting the NTR of αS using D-isoform peptide inhibitors may effectively combat the deleterious effects of αS fibrilization and paves the way for future drug design to utilise such an approach to treat Parkinson's disease.
Collapse
Affiliation(s)
- John R Horsley
- Department of Chemistry, School of Physical Sciences, University of Adelaide, Adelaide, SA 5005, Australia; ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), University of Adelaide, Adelaide, SA 5005, Australia.
| | - Blagojce Jovcevski
- Department of Chemistry, School of Physical Sciences, University of Adelaide, Adelaide, SA 5005, Australia; Department of Food Science, School of Agriculture, Food & Wine, University of Adelaide, Adelaide, SA 5005, Australia.
| | - Tara L Pukala
- Department of Chemistry, School of Physical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Andrew D Abell
- Department of Chemistry, School of Physical Sciences, University of Adelaide, Adelaide, SA 5005, Australia; ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP), University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
13
|
Small soluble α-synuclein aggregates are the toxic species in Parkinson's disease. Nat Commun 2022; 13:5512. [PMID: 36127374 PMCID: PMC9489799 DOI: 10.1038/s41467-022-33252-6] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 09/08/2022] [Indexed: 11/08/2022] Open
Abstract
Soluble α-synuclein aggregates varying in size, structure, and morphology have been closely linked to neuronal death in Parkinson's disease. However, the heterogeneity of different co-existing aggregate species makes it hard to isolate and study their individual toxic properties. Here, we show a reliable non-perturbative method to separate a heterogeneous mixture of protein aggregates by size. We find that aggregates of wild-type α-synuclein smaller than 200 nm in length, formed during an in vitro aggregation reaction, cause inflammation and permeabilization of single-liposome membranes and that larger aggregates are less toxic. Studying soluble aggregates extracted from post-mortem human brains also reveals that these aggregates are similar in size and structure to the smaller aggregates formed in aggregation reactions in the test tube. Furthermore, we find that the soluble aggregates present in Parkinson's disease brains are smaller, largely less than 100 nm, and more inflammatory compared to the larger aggregates present in control brains. This study suggests that the small non-fibrillar α-synuclein aggregates are the critical species driving neuroinflammation and disease progression.
Collapse
|
14
|
Majid N, Siddiqi MK, Alam A, Malik S, Ali W, Khan RH. Cholic acid inhibits amyloid fibrillation: Interplay of protonation and deprotonation. Int J Biol Macromol 2022; 221:900-912. [PMID: 36096254 DOI: 10.1016/j.ijbiomac.2022.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/23/2022] [Accepted: 09/04/2022] [Indexed: 11/29/2022]
Abstract
Amyloidopathies are the consequence of misfolding with subsequent aggregation affecting people worldwide. Irrespective of speedy advancement in the field of therapeutics no agent for treating amyloidopathies has been discovered and thus targeting amyloid fibrillation process via repositioning of small molecules can be fruitful. According to previous reports potential amyloid inhibitors possess unique features like, hydrophobicity, aromaticity, charge etc. Herein, we have explored the effect of Cholic acid (CA) on amyloid fibrillation irrespective of the charge (determined by Zetasizer) using four proteins Human Serum Albumin, Bovine Serum Albumin, Human Insulin and Beta-lactoglobulin (HSA, BSA, HI and BLG) employing biophysical, imaging and computational techniques. ThT results revealed that CA in both protonated and deprotonated form is potent to curb HSA, BSA, BLG aggregation ~50% and HI aggregation ~96% in a dose dependent manner (in accord with CD, ANS and Congo red assay). Interestingly, CA treated samples displayed reduced cytotoxicity (Hemolytic assay) with altered morphology (TEM) and mechanism behind inhibition may be the interaction of CA with proteins via hydrophobic interactions and hydrogen bonding (supported by molecular docking results). This study proved CA (irrespective of the pH) a potential inhibitor of amyloidosis thus can be helpful in generalizing and repurposing the related drugs/compounds for their anti-aggregation behavior as an implication towards treating amyloidopathies.
Collapse
Affiliation(s)
- Nabeela Majid
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | | | - Aftab Alam
- Centre for Interdisciplinary Research in Basic Science, Jamia Millia Islamia, New Delhi 110025, India
| | - Sadia Malik
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Wareesha Ali
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
15
|
Yao Y, Tang Y, Zhou Y, Yang Z, Wei G. Baicalein exhibits differential effects and mechanisms towards disruption of α-synuclein fibrils with different polymorphs. Int J Biol Macromol 2022; 220:316-325. [PMID: 35981677 DOI: 10.1016/j.ijbiomac.2022.08.088] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 07/30/2022] [Accepted: 08/11/2022] [Indexed: 11/05/2022]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative diseases with no cure yet and its major hallmark is α-synuclein fibrillary aggregates. The crucial role of α-synuclein aggregation in PD makes it an attractive target for potential disease-modifying therapies. Disaggregation of α-synuclein fibrils is considered as one of the promising therapeutic strategies to treat PD. The wild type (WT) and mutant α-synuclein fibrils exhibit different polymorphs and provide therapeutic targets for PD. Recent experiments reported that a flavonoid baicalein can disrupt WT α-synuclein fibrils. However, the underlying disruptive mechanism remains largely elusive, and whether BAC is capable of disrupting mutant α-synuclein fibrils is also unknown. Herein, we performed microsecond molecular dynamics simulations on cryo-EM-determined WT and two familial PD-associated mutant (E46K and H50Q) α-synuclein fibrils with and without baicalein. We find that baicalein destructs WT fibril by disrupting E46-K80 salt-bridge and β-sheets, and by remodeling the inter-protofilament interface. And baicalein can also damage E46K and H50Q mutant fibrils, but to different extents and via different mechanisms. The E46K fibril disruption is initiated from E61-K80 salt-bridge and N-terminal β-sheet, while the H50Q fibril disruption starts from the inter-protofilament interface and N-terminal β-sheet. These results reveal that disruptive effects and modes of baicalein on α-synuclein fibrils are polymorphism-dependent. This study suggests that baicalein may be a potential drug candidate to disrupt both WT and E46K/H50Q mutant α-synuclein fibrils and alleviate the pathological process of PD.
Collapse
Affiliation(s)
- Yifei Yao
- Department of Physics, State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People's Republic of China
| | - Yiming Tang
- Department of Physics, State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People's Republic of China
| | - Yun Zhou
- Department of Physics, State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People's Republic of China
| | - Zhongyuan Yang
- Department of Physics, State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People's Republic of China
| | - Guanghong Wei
- Department of Physics, State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People's Republic of China.
| |
Collapse
|
16
|
The current state of amyloidosis therapeutics and the potential role of fluorine in their treatment. Biochimie 2022; 202:123-135. [PMID: 35963462 DOI: 10.1016/j.biochi.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 07/22/2022] [Accepted: 08/04/2022] [Indexed: 11/22/2022]
Abstract
Amyloidosis, commonly known as amyloid-associated diseases, is characterized by improperly folded proteins accumulating in tissues and eventually causing organ damage, which is linked to several disorders ranging from neurodegenerative to peripheral diseases. It has an enormous societal and financial impact on the global health sector. Due to the complexity of protein misfolding and intertwined aggregation, there are no effective disease-modifying medications at present, and the condition is likely mis/non-diagnosed half of the time. Nonetheless, over the last two decades, substantial research into aggregation processes has revealed the possibilities of new intervention approaches. On the other hand, fluorine has been a rising star in therapeutic development for numerous neurodegenerative illnesses and other peripheral diseases. In this study, we revised and emphasized the possible significance of fluorine-modified therapeutic molecules and fluorine-modified nanoparticles (NPs) in the modulation of amyloidogenic proteins, including insulin, amyloid beta peptide (Aβ), prion protein (PrP), transthyretin (TTR) and Huntingtin (htt).
Collapse
|
17
|
Vidović M, Rikalovic MG. Alpha-Synuclein Aggregation Pathway in Parkinson's Disease: Current Status and Novel Therapeutic Approaches. Cells 2022; 11:cells11111732. [PMID: 35681426 PMCID: PMC9179656 DOI: 10.3390/cells11111732] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/20/2022] [Accepted: 05/22/2022] [Indexed: 01/27/2023] Open
Abstract
Following Alzheimer’s, Parkinson’s disease (PD) is the second-most common neurodegenerative disorder, sharing an unclear pathophysiology, a multifactorial profile, and massive social costs worldwide. Despite this, no disease-modifying therapy is available. PD is tightly associated with α-synuclein (α-Syn) deposits, which become organised into insoluble, amyloid fibrils. As a typical intrinsically disordered protein, α-Syn adopts a monomeric, random coil conformation in an aqueous solution, while its interaction with lipid membranes drives the transition of the molecule part into an α-helical structure. The central unstructured region of α-Syn is involved in fibril formation by converting to well-defined, β-sheet rich secondary structures. Presently, most therapeutic strategies against PD are focused on designing small molecules, peptides, and peptidomimetics that can directly target α-Syn and its aggregation pathway. Other approaches include gene silencing, cell transplantation, stimulation of intracellular clearance with autophagy promoters, and degradation pathways based on immunotherapy of amyloid fibrils. In the present review, we sum marise the current advances related to α-Syn aggregation/neurotoxicity. These findings present a valuable arsenal for the further development of efficient, nontoxic, and non-invasive therapeutic protocols for disease-modifying therapy that tackles disease onset and progression in the future.
Collapse
Affiliation(s)
- Marija Vidović
- Laboratory for Plant Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia
- Correspondence: ; Tel.: +38-16-4276-3221
| | - Milena G. Rikalovic
- Environment and Sustainable Development, Singidunum Univeristy, Danijelova 32, 11010 Belgrade, Serbia;
| |
Collapse
|
18
|
Sunny LP, Srikanth P, Sunitha AK, Tembulkar N, Abraham JN. Tryptophan-cardanol fluorescent nanoparticles inhibit α-synuclein aggregation and disrupt amyloid fibrils. J Pept Sci 2021; 28:e3374. [PMID: 34651357 DOI: 10.1002/psc.3374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 11/11/2022]
Abstract
Protein misfolding and aggregation play a vital role in several human diseases such as Parkinson's, Alzheimer's, and prion diseases. The development of nanoparticles that modulate aggregation could be potential drug candidates for these neurodegenerative disorders. Parkinson's disease pathogenesis is closely associated with the accumulation of α-synuclein oligomers and fibrils in the substantia nigra of the brain. This report discusses the interactions of novel tryptophan-cardanol nanoparticles with α-synuclein protein monomers and fibrils. These nanoparticles could effectively disrupt α-synuclein fibrils and inhibit fibril formation at low concentrations such as 5 μM. The tryptophan-cardanol nanoparticles inhibit fibril formation from unstructured protein resulting in spherical nanostructures. These nanoparticles could also disassemble amyloid fibrils; the complete disappearance of fibrils was evident after 48 h of incubation with tryptophan-cardanol. The transmission electron microscopy (TEM) micrographs after the incubation did not show any remnants of the peptide aggregates or oligomers. The thioflavin T fluorescence after the disassembly was diminished compared with that of fibrils also supports the inhibitory effect of the nanoparticles. Also, these nanoparticles did not reduce the viability of the SH-SY5Y cells. These findings suggest that the tryptophan-cardanol nanoparticles showed sufficiently high inhibitory activity and may have therapeutic potential for synucleinopathies.
Collapse
Affiliation(s)
- Lisni P Sunny
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Pune, India
| | - Priya Srikanth
- Laboratory of Neural Circuits and Behaviour (LNCB), Department of Biology, Indian Institute of Science Education and Research (IISER), Pune, India
| | | | - Niyoti Tembulkar
- Laboratory of Neural Circuits and Behaviour (LNCB), Department of Biology, Indian Institute of Science Education and Research (IISER), Pune, India
| | - Jancy Nixon Abraham
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Pune, India
| |
Collapse
|
19
|
Phyo P, Zhao X, Templeton AC, Xu W, Cheung JK, Su Y. Understanding molecular mechanisms of biologics drug delivery and stability from NMR spectroscopy. Adv Drug Deliv Rev 2021; 174:1-29. [PMID: 33609600 DOI: 10.1016/j.addr.2021.02.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/20/2021] [Accepted: 02/07/2021] [Indexed: 02/06/2023]
Abstract
Protein therapeutics carry inherent limitations of membrane impermeability and structural instability, despite their predominant role in the modern pharmaceutical market. Effective formulations are needed to overcome physiological and physicochemical barriers, respectively, for improving bioavailability and stability. Knowledge of membrane affinity, cellular internalization, encapsulation, and release of drug-loaded carrier vehicles uncover the structural basis for designing and optimizing biopharmaceuticals with enhanced delivery efficiency and therapeutic efficacy. Understanding stabilizing and destabilizing interactions between protein drugs and formulation excipients provide fundamental mechanisms for ensuring the stability and quality of biological products. This article reviews the molecular studies of biologics using solution and solid-state NMR spectroscopy on structural attributes pivotal to drug delivery and stability. In-depth investigation of the structure-function relationship of drug delivery systems based on cell-penetrating peptides, lipid nanoparticles and polymeric colloidal, and biophysical and biochemical stability of peptide, protein, monoclonal antibody, and vaccine, as the integrative efforts on drug product design, will be elaborated.
Collapse
Affiliation(s)
- Pyae Phyo
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, NJ 07033, United States
| | - Xi Zhao
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, NJ 07033, United States
| | - Allen C Templeton
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, NJ 07033, United States
| | - Wei Xu
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, NJ 07033, United States
| | - Jason K Cheung
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, NJ 07033, United States
| | - Yongchao Su
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, NJ 07033, United States.
| |
Collapse
|
20
|
Rozniakowski K, Galecki K, Wietrzyk J, Filip-Psurska B, Fraczyk J, Kaminski ZJ, Kolesinska B. N-Methylated Analogs of hIAPP Fragments 18-22, 23-27, 33-37 Inhibit Aggregation of the Amyloidogenic Core of the Hormone. Chem Biodivers 2020; 18:e2000842. [PMID: 33331666 DOI: 10.1002/cbdv.202000842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 11/20/2020] [Indexed: 11/11/2022]
Abstract
Amylin (hIAPP) aggregation leads to the formation of insoluble deposits and is one of the factors in the development of type II diabetes. The aim of this research was to find N-methylated analogs of the aggregating amylin fragments 18-22, 23-27, and 33-37, which would not themselves be susceptible to aggregation and would inhibit the aggregation of the amyloidogenic cores of the hormone. None of the analogs of fragment 18-22 containing one or two N-methylated amino acid residues showed any tendency to aggregate. Only the peptide H-F(N-Me)GA(N-Me) IL-OH (6) derived from the 23-27 hIAPP hot spot did not form fibrous structures. All analogs of the 33-37 amylin fragment were characterized by the ability to form aggregates, despite the presence of N-methylated amino acids in their structures. N-Methylated peptides 1-5 demonstrated inhibitory properties against the aggregation of fragment 18-22. Aggregation of the amyloidogenic core of 23-27 was significantly inhibited by N-methylated peptides 1-3 derived from the (18-22) H-HSSNN-OH fragment and by the H-F(N-Me)GA(N-Me)IL-OH (6) fragment derived from the 23-27 amylin hot spot. Fragment (33-37) H-GSNTY-NH2 was found to be inhibited in the presence of N-methylated peptides 1-3 derived from the 18-22 fragment and by the double methylated peptide H-F(N-Me)GA(N-Me)IL-OH (6). Research on the possibility of using N-methylated analogs of amyloidogenic amylin cores as inhibitors of hormone aggregation is ongoing, with a focus on finding the minimum concentration of N-methylated peptides capable of inhibiting the aggregation of hIAPP hot spots.
Collapse
Affiliation(s)
- Kamil Rozniakowski
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924, Lodz, Poland
| | - Krystian Galecki
- Institute of General Food Chemistry, Faculty of Biotechnology & Food Sciences, Lodz University of Technology, Stefanowskiego 4/10, 90-924, Lodz, Poland
| | - Joanna Wietrzyk
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 12 Rudolfa Weigla St., 53-114, Wroclaw, Poland
| | - Beata Filip-Psurska
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 12 Rudolfa Weigla St., 53-114, Wroclaw, Poland
| | - Justyna Fraczyk
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924, Lodz, Poland
| | - Zbigniew J Kaminski
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924, Lodz, Poland
| | - Beata Kolesinska
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924, Lodz, Poland
| |
Collapse
|
21
|
Yao Y, Tang Y, Wei G. Epigallocatechin Gallate Destabilizes α-Synuclein Fibril by Disrupting the E46-K80 Salt-Bridge and Inter-protofibril Interface. ACS Chem Neurosci 2020; 11:4351-4361. [PMID: 33186020 DOI: 10.1021/acschemneuro.0c00598] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The accumulation and deposition of fibrillar aggregates of α-synuclein (α-syn) into Lewy bodies are the major hallmarks of Parkinson's disease (PD) for which there is no cure yet. Disrupting preformed α-syn fibrils is considered one of the rational therapeutic strategies to combat PD. Experimental studies reported that epigallocatechin gallate (EGCG), a polyphenol extracted from green tea, can disrupt α-syn fibrils into benign amorphous aggregates. However, the molecular mechanism of action is poorly understood. Herein, we performed molecular dynamics simulations on a newly released Greek-key-like α-syn fibril with or without EGCG to investigate the influence of EGCG on α-syn fibril. Our simulations show that EGCG disrupts the local β-sheet structure, E46-K80 salt-bridge crucial for the stabilization of the Greek-key-like structure, and hydrophobic interactions stabilizing the inter-protofibril interface and destabilizes the global structure of the α-syn fibril. Interaction analyses reveal that hydrophobic and hydrogen-bonding interactions between EGCG and α-syn fibrils play important roles in the destabilization of the fibril. We find that the disruption of the E46-K80 salt-bridge closely correlates with the formation of hydrogen-bonds (H-bonds) between EGCG and E46/K80. Our results provide mechanistic insights into the disruption modes of α-syn fibril by EGCG, which may pave the way for designing drug candidates targeting α-syn fibrillization to treat PD.
Collapse
Affiliation(s)
- Yifei Yao
- Department of Physics, State Key Laboratory of Surface Physics, and Collaborative Innovation Center of Advanced Microstructures (Nanjing), Fudan University, Shanghai 200438, People’s Republic of China
| | - Yiming Tang
- Department of Physics, State Key Laboratory of Surface Physics, and Collaborative Innovation Center of Advanced Microstructures (Nanjing), Fudan University, Shanghai 200438, People’s Republic of China
| | - Guanghong Wei
- Department of Physics, State Key Laboratory of Surface Physics, and Collaborative Innovation Center of Advanced Microstructures (Nanjing), Fudan University, Shanghai 200438, People’s Republic of China
| |
Collapse
|
22
|
Paul A, Huber A, Rand D, Gosselet F, Cooper I, Gazit E, Segal D. Naphthoquinone–Dopamine Hybrids Inhibit α‐Synuclein Aggregation, Disrupt Preformed Fibrils, and Attenuate Aggregate‐Induced Toxicity. Chemistry 2020; 26:16486-16496. [DOI: 10.1002/chem.202003374] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Ashim Paul
- Department of Molecular Microbiology and Biotechnology School of Molecular Cell Biology and Biotechnology Tel Aviv University Ramat Aviv Tel Aviv 6997801 Israel
| | - Adi Huber
- Department of Molecular Microbiology and Biotechnology School of Molecular Cell Biology and Biotechnology Tel Aviv University Ramat Aviv Tel Aviv 6997801 Israel
| | - Daniel Rand
- The Joseph Sagol Neuroscience Center Sheba Medical Center, Tel Hashomer Ramat Gan 52621 Israel
| | - Fabien Gosselet
- UR 2465 Blood-brain barrier Laboratory (LBHE) Artois University 62300 Lens France
| | - Itzik Cooper
- The Joseph Sagol Neuroscience Center Sheba Medical Center, Tel Hashomer Ramat Gan 52621 Israel
| | - Ehud Gazit
- Department of Molecular Microbiology and Biotechnology School of Molecular Cell Biology and Biotechnology Tel Aviv University Ramat Aviv Tel Aviv 6997801 Israel
- Department of Materials Science and Engineering Iby and Aladar Fleischman Faculty of Engineering Tel Aviv University Ramat Aviv Tel Aviv 6997801 Israel
| | - Daniel Segal
- Department of Molecular Microbiology and Biotechnology School of Molecular Cell Biology and Biotechnology Tel Aviv University Ramat Aviv Tel Aviv 6997801 Israel
- Sagol Interdisciplinary School of Neuroscience Tel Aviv University Ramat Aviv Tel Aviv 6997801 Israel
| |
Collapse
|
23
|
Torpey JH, Meade RM, Mistry R, Mason JM, Madine J. Insights Into Peptide Inhibition of Alpha-Synuclein Aggregation. Front Neurosci 2020; 14:561462. [PMID: 33177976 PMCID: PMC7594713 DOI: 10.3389/fnins.2020.561462] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 09/21/2020] [Indexed: 12/22/2022] Open
Abstract
α-Synuclein (aSyn) aggregation is an attractive target for therapeutic development for a range of neurodegenerative conditions, collectively termed synucleinopathies. Here, we probe the mechanism of action of a peptide 4554W, (KDGIVNGVKA), previously identified through intracellular library screening, to prevent aSyn aggregation and associated toxicity. We utilize NMR to probe association and identify that 4554W associates with a "partially aggregated" form of aSyn, with enhanced association occurring over time. We also report the ability of 4554W to undergo modification through deamidation of the central asparagine residue, occurring on the same timescale as aSyn aggregation in vitro, with peptide modification enhancing its association with aSyn. Additionally, we report that 4554W can act to reduce fibril formation of five Parkinson's disease associated aSyn mutants. Inhibitory peptide binding to partially aggregated forms of aSyn, as identified here, is particularly attractive from a therapeutic perspective, as it would eliminate the need to administer the therapy at pre-aggregation stages, which are difficult to diagnose. Taken together the data suggest that 4554W could be a suitable candidate for future therapeutic development against wild-type, and most mutant aSyn aggregation.
Collapse
Affiliation(s)
- James H Torpey
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Richard M Meade
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Ravina Mistry
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Jody M Mason
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Jillian Madine
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
24
|
Mitra A, Sarkar N. Sequence and structure-based peptides as potent amyloid inhibitors: A review. Arch Biochem Biophys 2020; 695:108614. [PMID: 33010227 DOI: 10.1016/j.abb.2020.108614] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/27/2020] [Accepted: 09/28/2020] [Indexed: 02/07/2023]
Abstract
Misfolded and natively disordered globular proteins tend to aggregate together in an interwoven fashion to form fibrous, proteinaceous deposits referred to as amyloid fibrils. Formation and deposition of such insoluble fibrils are the characteristic features of a broad group of diseases, known as amyloidosis. Some of these proteins are known to cause several degenerative disorders in humans, such as Amyloid-Beta (Aβ) in Alzheimer's disease (AD), human Islet Amyloid Polypeptide (hIAPP, amylin) in type 2 diabetes, α-synuclein (α-syn) in Parkinson's disease (PD) and so on. The fact that these proteins do not share any significant sequence or structural homology in their native states make therapy quite challenging. However, it is observed that aggregation-prone proteins and peptides tend to adopt a similar type of secondary structure during the formation of fibrils. Rationally designed peptides can be a potent inhibitor that has been shown to disrupt the fibril structure by binding specifically to the amyloidogenic region(s) within a protein. The following review will analyze the inhibitory potency of both sequence-based and structure-based small peptides that have been shown to inhibit amyloidogenesis of proteins such as Aβ, human amylin, and α-synuclein.
Collapse
Affiliation(s)
- Amit Mitra
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, 769008, Odisha, India
| | - Nandini Sarkar
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, 769008, Odisha, India.
| |
Collapse
|
25
|
Diphenyl triazine hybrids inhibit α-synuclein fibrillogenesis: Design, synthesis and in vitro efficacy studies. Eur J Med Chem 2020; 207:112705. [PMID: 32961434 DOI: 10.1016/j.ejmech.2020.112705] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 07/13/2020] [Accepted: 07/28/2020] [Indexed: 02/04/2023]
Abstract
Aggregation of α-synuclein (α-syn) is one of the central hypotheses for Parkinson's disease (PD), therefore, its inhibition and disaggregation is an optimistic approach for the treatment of PD. Here, we report design, synthesis and in-vitro efficacy studies of a series of diphenyl triazine hybrids as potential inhibitors of α-syn fibrillogenesis. From the docking studies, we concluded that compounds A1, A2, A4, A8 and A9 display promising binding affinity with the essential residues of α-syn with binding energy values: -6.0, -7.0, -6.3, -6.6 and -6.7 kcal/mol respectively. The target compounds were synthesized using multistep organic synthesis reactions. Compounds A1, A2 A4, A8 and A9 showed a significant lowering of the α-syn fibril formation during Thioflavin-T assay and fluorescence microscopy. In addition, these compounds A1, A2, A4, A8 and A9 also proved to be good disaggregators in the pre-aggregated form of α-syn. Most of the compounds exhibited no cytotoxicity in mouse embryonic fibroblast (MEF) and human adenocarcinomic alveolar basal epithelial cells (A549) except A2. Overall, diphenyl triazine-based compounds can be further investigated for the treatment of synucleinopathies and for Lewy body dementia in which α-syn is predominantly observed.
Collapse
|
26
|
Inhibition of aggregation and toxicity of α-synuclein in the presence of copper by an N-methylated peptide. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
27
|
Martial B, Raîche-Marcoux G, Lefèvre T, Audet P, Voyer N, Auger M. Structure of a Parkinson’s Disease-Involved α-Synuclein Peptide Is Modulated by Membrane Composition and Physical State. J Phys Chem B 2020; 124:3469-3481. [DOI: 10.1021/acs.jpcb.0c00945] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Benjamin Martial
- Department of Chemistry, Regroupement québécois de recherche sur la fonction, l’ingénierie et les applications des protéines (PROTEO), Centre de recherche sur les matériaux avancés (CERMA), Centre québécois sur les matériaux fonctionnels (CQMF), Université Laval, 1045 avenue de la médecine, Québec, Quebec G1V 0A6, Canada
| | - Gabrielle Raîche-Marcoux
- Department of Chemistry, Regroupement québécois de recherche sur la fonction, l’ingénierie et les applications des protéines (PROTEO), Centre de recherche sur les matériaux avancés (CERMA), Centre québécois sur les matériaux fonctionnels (CQMF), Université Laval, 1045 avenue de la médecine, Québec, Quebec G1V 0A6, Canada
| | - Thierry Lefèvre
- Department of Chemistry, Regroupement québécois de recherche sur la fonction, l’ingénierie et les applications des protéines (PROTEO), Centre de recherche sur les matériaux avancés (CERMA), Centre québécois sur les matériaux fonctionnels (CQMF), Université Laval, 1045 avenue de la médecine, Québec, Quebec G1V 0A6, Canada
| | - Pierre Audet
- Department of Chemistry, Université Laval, 1045 avenue de la médecine, Québec, Quebec G1V 0A6, Canada
| | - Normand Voyer
- Department of Chemistry, Regroupement québécois de recherche sur la fonction, l’ingénierie et les applications des protéines (PROTEO), Université Laval, 1045 avenue de la médecine, Québec, Quebec G1V 0A6, Canada
| | - Michèle Auger
- Department of Chemistry, Regroupement québécois de recherche sur la fonction, l’ingénierie et les applications des protéines (PROTEO), Centre de recherche sur les matériaux avancés (CERMA), Centre québécois sur les matériaux fonctionnels (CQMF), Université Laval, 1045 avenue de la médecine, Québec, Quebec G1V 0A6, Canada
| |
Collapse
|
28
|
Rezaei Kamelabad M, Jahanbin Sardroodi J, Rastkar Ebrahimzadeh A. The Interaction of Curcumin and Rosmarinic Acid with Non‐Amyloid‐Component Domain of Alpha‐Synuclein: A Molecular Dynamics Study. ChemistrySelect 2020. [DOI: 10.1002/slct.201904799] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Mahrokh Rezaei Kamelabad
- Molecular Simulation Lab, Department of ChemistryAzarbaijan Shahid Madani University Tabriz Iran
| | - Jaber Jahanbin Sardroodi
- Molecular Simulation Lab, Department of ChemistryAzarbaijan Shahid Madani University Tabriz Iran
| | | |
Collapse
|
29
|
Kyriukha YA, Afitska K, Kurochka AS, Sachan S, Galkin M, Yushchenko DA, Shvadchak VV. α-Synuclein Dimers as Potent Inhibitors of Fibrillization. J Med Chem 2019; 62:10342-10351. [DOI: 10.1021/acs.jmedchem.9b01400] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yevhenii A. Kyriukha
- Laboratory of Chemical Biology, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nam. 2, 16610 Prague 6, Czech Republic
| | - Kseniia Afitska
- Laboratory of Chemical Biology, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nam. 2, 16610 Prague 6, Czech Republic
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 6, 12843 Prague, Czech Republic
| | - Andrii S. Kurochka
- Laboratory of Chemical Biology, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nam. 2, 16610 Prague 6, Czech Republic
| | - Shubhra Sachan
- Laboratory of Chemical Biology, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nam. 2, 16610 Prague 6, Czech Republic
| | - Maksym Galkin
- Laboratory of Chemical Biology, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nam. 2, 16610 Prague 6, Czech Republic
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 6, 12843 Prague, Czech Republic
| | - Dmytro A. Yushchenko
- Laboratory of Chemical Biology, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nam. 2, 16610 Prague 6, Czech Republic
- Group of Bioconjugation Chemistry, Miltenyi Biotec GmbH, Friedrich-Ebert-Straße 68, D-51429 Bergisch Gladbach, Germany
| | - Volodymyr V. Shvadchak
- Laboratory of Chemical Biology, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nam. 2, 16610 Prague 6, Czech Republic
| |
Collapse
|
30
|
Dong C, Garen CR, Mercier P, Petersen NO, Woodside MT. Characterizing the inhibition of α-synuclein oligomerization by a pharmacological chaperone that prevents prion formation by the protein PrP. Protein Sci 2019; 28:1690-1702. [PMID: 31306510 DOI: 10.1002/pro.3684] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/08/2019] [Accepted: 07/08/2019] [Indexed: 12/17/2022]
Abstract
Aggregation of the disordered protein α-synuclein into amyloid fibrils is a central feature of synucleinopathies, neurodegenerative disorders that include Parkinson's disease. Small, pre-fibrillar oligomers of misfolded α-synuclein are thought to be the key toxic entities, and α-synuclein misfolding can propagate in a prion-like way. We explored whether a compound with anti-prion activity that can bind to unfolded parts of the protein PrP, the cyclic tetrapyrrole Fe-TMPyP, was also active against α-synuclein aggregation. Observing the initial stages of aggregation via fluorescence cross-correlation spectroscopy, we found that Fe-TMPyP inhibited small oligomer formation in a dose-dependent manner. Fe-TMPyP also inhibited the formation of mature amyloid fibrils in vitro, as detected by thioflavin T fluorescence. Isothermal titration calorimetry indicated Fe-TMPyP bound to monomeric α-synuclein with a stoichiometry of 2, and two-dimensional heteronuclear single quantum coherence NMR spectra revealed significant interactions between Fe-TMPyP and the C-terminus of the protein. These results suggest commonalities among aggregation mechanisms for α-synuclein and the prion protein may exist that can be exploited as therapeutic targets.
Collapse
Affiliation(s)
- Chunhua Dong
- Department of Physics, University of Alberta, Edmonton, Alberta, Canada
| | - Craig R Garen
- Department of Physics, University of Alberta, Edmonton, Alberta, Canada
| | - Pascal Mercier
- National High Field Nuclear Magnetic Resonance Centre (NANUC), Edmonton, Alberta, Canada
| | - Nils O Petersen
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
31
|
Paul A, Zhang BD, Mohapatra S, Li G, Li YM, Gazit E, Segal D. Novel Mannitol-Based Small Molecules for Inhibiting Aggregation of α-Synuclein Amyloids in Parkinson's Disease. Front Mol Biosci 2019; 6:16. [PMID: 30968030 PMCID: PMC6438916 DOI: 10.3389/fmolb.2019.00016] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 03/01/2019] [Indexed: 11/16/2022] Open
Abstract
The aggregation of the amyloidogenic protein α-synuclein (α-Syn) into toxic oligomers and mature fibrils is the major pathological hallmark of Parkinson's disease (PD). Small molecules that inhibit α-Syn aggregation thus may be useful therapeutics for PD. Mannitol and naphthoquinone-tryptophan (NQTrp) have been shown in the past to inhibit α-Syn aggregation by different mechanisms. Herein, we tested whether the conjugation of Mannitol and NQTrp may result in enhance efficacy toward α-Syn. The molecules were conjugated either by a click linker or via a PEG linker. The effect of the conjugate molecules on α-Syn aggregation in vitro was monitored using Thioflavin T fluorescence assay, circular dichroism, transmission electron microscopy, and Congo red birefringence assay. One of the conjugate molecules was found to be more effective than the two parent molecules and as effective as a mixture of the two. The conjugate molecules attenuated the disruptive effect of α-Syn on artificial membrane of Large Unilamellar Vesicles as monitored by dye leakage assay. The conjugates were found to be have low cytotoxicity and reduced toxicity of α-Syn toward SH-SY5Y neuroblastoma cells. These novel designed entities can be attractive scaffold for the development of therapeutic agents for PD.
Collapse
Affiliation(s)
- Ashim Paul
- School of Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv, Israel
| | - Bo-Dou Zhang
- Department of Chemistry, Tsinghua University, Beijing, China
| | - Satabdee Mohapatra
- School of Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv, Israel
| | - Gao Li
- Department of Chemistry, Tsinghua University, Beijing, China
| | - Yan-Mei Li
- Department of Chemistry, Tsinghua University, Beijing, China.,Institute of Parkinson Disease, Beijing Institute for Brain Disorders, Beijing, China.,Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China
| | - Ehud Gazit
- School of Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv, Israel
| | - Daniel Segal
- School of Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv, Israel.,Sagol Interdisciplinary School of Neurosciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
32
|
Oliveri V. Toward the discovery and development of effective modulators of α-synuclein amyloid aggregation. Eur J Med Chem 2019; 167:10-36. [PMID: 30743095 DOI: 10.1016/j.ejmech.2019.01.045] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 01/21/2019] [Accepted: 01/21/2019] [Indexed: 12/17/2022]
Abstract
A host of human diseases, including Parkinson's disease and Dementia with Lewy bodies, are suspected to be directly linked to protein aggregation. Amyloid protein aggregates and oligomeric intermediates of α-synuclein are observed in synucleinopathies and considered to be mediators of cellular toxicity. Hence, α-synuclein has seen as one of the leading and most compelling targets and is receiving a great deal of attention from researchers. Nevertheless, there is no neuroprotective approach directed toward Parkinson's disease or other synucleinopathies so far. In this review, we summarize the available data concerning inhibitors of α-synuclein aggregation and their advancing towards clinical use. The compounds are grouped according to their chemical structures, providing respective insights into their mechanism of action, pharmacology, and pharmacokinetics. Overall, shared structure-activity elements are emerging, as well as specific binding modes related to the ability of the modulators to establish hydrophobic and hydrogen bonds interactions with the protein. Some molecules with encouraging in vivo data support the possibility of translation to the clinic.
Collapse
Affiliation(s)
- Valentina Oliveri
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, viale A. Doria 6, 95125, Catania, Italy.
| |
Collapse
|
33
|
Computational insights into the role of α-strand/sheet in aggregation of α-synuclein. Sci Rep 2019; 9:59. [PMID: 30635607 PMCID: PMC6329781 DOI: 10.1038/s41598-018-37276-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 12/05/2018] [Indexed: 01/03/2023] Open
Abstract
The α-synuclein is a major component of amyloid fibrils found in Lewy bodies, the characteristic intracellular proteinaceous deposits which are pathological hallmarks of neurodegenerative diseases such as Parkinson’s disease (PD) and dementia. It is an intrinsically disordered protein that may undergo dramatic structural changes to form amyloid fibrils. Aggregation process from α-synuclein monomers to amyloid fibrils through oligomeric intermediates is considered as the disease-causative toxic mechanism. However, mechanism underlying aggregation is not well-known despite several attempts. To characterize the mechanism, we have explored the effects of pH and temperature on the structural properties of wild-type and mutant α-synuclein using molecular dynamics (MD) simulation technique. MD studies suggested that amyloid fibrils can grow by monomer. Conformational transformation of the natively unfolded protein into partially folded intermediate could be accountable for aggregation and fibrillation. An intermediate α-strand was observed in the hydrophobic non-amyloid-β component (NAC) region of α-synuclein that could proceed to α-sheet and initiate early assembly events. Water network around the intermediate was analyzed to determine its influence on the α-strand structure. Findings of this study provide novel insights into possible mechanism of α-synuclein aggregation and promising neuroprotective strategy that could aid alleviate PD and its symptoms.
Collapse
|
34
|
Hussain R, Zubair H, Pursell S, Shahab M. Neurodegenerative Diseases: Regenerative Mechanisms and Novel Therapeutic Approaches. Brain Sci 2018; 8:E177. [PMID: 30223579 PMCID: PMC6162719 DOI: 10.3390/brainsci8090177] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/03/2018] [Accepted: 09/12/2018] [Indexed: 12/12/2022] Open
Abstract
Regeneration refers to regrowth of tissue in the central nervous system. It includes generation of new neurons, glia, myelin, and synapses, as well as the regaining of essential functions: sensory, motor, emotional and cognitive abilities. Unfortunately, regeneration within the nervous system is very slow compared to other body systems. This relative slowness is attributed to increased vulnerability to irreversible cellular insults and the loss of function due to the very long lifespan of neurons, the stretch of cells and cytoplasm over several dozens of inches throughout the body, insufficiency of the tissue-level waste removal system, and minimal neural cell proliferation/self-renewal capacity. In this context, the current review summarized the most common features of major neurodegenerative disorders; their causes and consequences and proposed novel therapeutic approaches.
Collapse
Affiliation(s)
- Rashad Hussain
- Center for Translational Neuromedicine, University of Rochester, NY 14642, USA.
| | - Hira Zubair
- Department of Animal Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| | - Sarah Pursell
- Center for Translational Neuromedicine, University of Rochester, NY 14642, USA.
| | - Muhammad Shahab
- Department of Animal Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| |
Collapse
|
35
|
Derf A, Mudududdla R, Akintade D, Williams IS, Abdullaha M, Chaudhuri B, Bharate SB. Nonantioxidant Tetramethoxystilbene Abrogates α-Synuclein-Induced Yeast Cell Death but Not That Triggered by the Bax or βA4 Peptide. ACS OMEGA 2018; 3:9513-9532. [PMID: 31459084 PMCID: PMC6645319 DOI: 10.1021/acsomega.8b01154] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 08/02/2018] [Indexed: 06/10/2023]
Abstract
The overexpression of α-synuclein (α-syn) and its aggregation is the hallmark of Parkinson's disease. The α-syn aggregation results in the formation of Lewy bodies that causes neuronal cell death. Therefore, the small molecules that can protect neuronal cells from α-syn toxicity or inhibit the aggregation of α-syn could emerge as anti-Parkinson agents. Herein, a library of methoxy-stilbenes was screened for their ability to restore the cell growth from α-syn toxicity, using a yeast strain that stably expresses two copies of a chromosomally integrated human α-syn gene. Tetramethoxy-stilbene 4s, a nonantioxidant, was the most capable of restoring cell growth. It also rescues the more toxic cells that bear three copies of wild-type or A53T-mutant α-syn, from cell growth block. Its EC50 values for growth restoration of the 2-copy wild-type and the 3-copy mutant α-syn strains are 0.95 and 0.35 μM, respectively. Stilbene 4s mitigates mitochondrial membrane potential loss, negates ROS production, and prevents nuclear DNA-fragmentation, all hallmarks of apoptosis. However, 4s does not rescue cells from the death-inducing effects of Bax and βA4, which suggest that 4s specifically inhibits α-syn-mediated toxicity in the yeast. Our results signify that simultaneous use of multiple yeast-cell-based screens can facilitate revelation of compounds that may have the potential for further investigation as anti-Parkinson's agents.
Collapse
Affiliation(s)
- Asma Derf
- Leicester
School of Pharmacy, De Montfort University, Leicester LE1 7RH, U.K.
- CYP
Design Ltd, Innovation Centre, 49 Oxford Street, Leicester LE1 5XY, U.K.
| | - Ramesh Mudududdla
- Medicinal
Chemistry Division, Indian Institute of
Integrative Medicine (CSIR), Canal Road, Jammu 180001, India
- Academy
of Scientific & Innovative Research, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Damilare Akintade
- Leicester
School of Pharmacy, De Montfort University, Leicester LE1 7RH, U.K.
| | - Ibidapo S. Williams
- Leicester
School of Pharmacy, De Montfort University, Leicester LE1 7RH, U.K.
| | - Mohd Abdullaha
- Medicinal
Chemistry Division, Indian Institute of
Integrative Medicine (CSIR), Canal Road, Jammu 180001, India
- Academy
of Scientific & Innovative Research, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Bhabatosh Chaudhuri
- Leicester
School of Pharmacy, De Montfort University, Leicester LE1 7RH, U.K.
- CYP
Design Ltd, Innovation Centre, 49 Oxford Street, Leicester LE1 5XY, U.K.
| | - Sandip B. Bharate
- Medicinal
Chemistry Division, Indian Institute of
Integrative Medicine (CSIR), Canal Road, Jammu 180001, India
- Academy
of Scientific & Innovative Research, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| |
Collapse
|
36
|
Abstract
The prospect of recreating the complex structural hierarchy of protein folding in synthetic oligomers with backbones that are artificial in covalent structure ("foldamers") has long fascinated chemists. Foldamers offer complex functions from biostable scaffolds and have found widespread applications in fields from biomedical to materials science. Most precedent has focused on isolated secondary structures or their assemblies. In considering the goal of complex protein-like tertiary folding patterns, a key barrier became apparent. How does one design a backbone with covalent connectivity and a sequence of side-chain functional groups that will support defined intramolecular packing of multiple artificial secondary structures? Two developments were key to overcoming this challenge. First was the recognition of the power of blending α-amino acid residues with monomers differing in backbone connectivity to create "heterogeneous-backbone" foldamers. Second was the finding that replacing some of the natural α-residues in a biological sequence with artificial-backbone variants can result in a mimic that retains both the fold and function of the native sequence and, in some cases, gains advantageous characteristics. Taken together, these precedents lead to a view of a protein as chemical entity having two orthogonal sequences: a sequence of side-chain functional groups and a separate sequence of backbone units displaying those functional groups. In this Account, we describe our lab's work over the last ∼10 years to leverage the above concept of protein sequence duality in order to develop design principles for constructing heterogeneous-backbone foldamers that adopt complex protein-like tertiary folds. Fundamental to the approach is the utilization of a variety of artificial building blocks (e.g., d-α-residues, Cα-Me-α-residues, N-Me-α-residues, β-residues, γ-residues, δ-residues, polymer segments) in concert, replacing a fraction of α-residues in a given prototype sequence. We provide an overview of the state-of-the-art in terms of design principles for choosing substitutions based on consideration of local secondary structure and retention of key side-chain functional groups. We survey high-resolution structures of backbone-modified proteins to illustrate how diverse artificial moieties are accommodated in tertiary fold contexts. We detail efforts to elucidate how backbone alteration impacts folding thermodynamics and describe how such data informs the development of improved design rules. Collectively, a growing body of results by our lab and others spanning multiple protein systems suggests there is a great deal of plasticity with respect to the backbone chemical structures upon which sequence-encoded tertiary folds can manifest. Moreover, these efforts suggest sequence-guided backbone alteration as a broadly applicable strategy for generating foldamers with complex tertiary folding patterns. We conclude by offering some perspective regarding the near future of this field, in terms of unanswered questions, technological needs, and opportunities for new areas of inquiry.
Collapse
Affiliation(s)
- Kelly L. George
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - W. Seth Horne
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
37
|
Jha NN, Ranganathan S, Kumar R, Mehra S, Panigrahi R, Navalkar A, Ghosh D, Kumar A, Padinhateeri R, Maji SK. Complexation of NAC-Derived Peptide Ligands with the C-Terminus of α-Synuclein Accelerates Its Aggregation. Biochemistry 2018; 57:791-804. [DOI: 10.1021/acs.biochem.7b01090] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Narendra Nath Jha
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai 400 076, India
| | | | - Rakesh Kumar
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai 400 076, India
| | - Surabhi Mehra
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai 400 076, India
| | - Rajlaxmi Panigrahi
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai 400 076, India
| | - Ambuja Navalkar
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai 400 076, India
| | - Dhiman Ghosh
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai 400 076, India
| | - Ashutosh Kumar
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai 400 076, India
| | | | - Samir K. Maji
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai 400 076, India
| |
Collapse
|
38
|
Jha NN, Kumar R, Panigrahi R, Navalkar A, Ghosh D, Sahay S, Mondal M, Kumar A, Maji SK. Comparison of α-Synuclein Fibril Inhibition by Four Different Amyloid Inhibitors. ACS Chem Neurosci 2017; 8:2722-2733. [PMID: 28872299 DOI: 10.1021/acschemneuro.7b00261] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Aggregation of α-synuclein (α-Syn) into toxic oligomers and fibrils leads to Parkinson's disease (PD) pathogenesis. Molecules that can inhibit the fibrillization and oligomerization of α-Syn have potential therapeutic value. Here, we studied four selective amyloid inhibitors: dopamine (Dopa), amphotericin-B (Amph), epigallocatechingallate (EGCG), and quinacrinedihydrochloride (Quin) for their effect on oligomerization, fibrillization, and preformed fibrils of α-Syn. The aggregation kinetics of α-Syn using ThT fluorescence and conformational transition by circular dichroism (CD) in the presence and absence of these four compounds suggest that, except Quin, the remaining three molecules inhibit α-Syn aggregation in a concentration dependent manner. Consistent with the aggregation kinetics data, the morphological study of aggregates formed in the presence of these compounds showed corresponding decrease in fibrillar size. The analysis of cell viability using MTT assay showed reduction in toxicity of α-Syn aggregates formed in the presence of these compounds, which also correlates with reduction of exposed hydrophobic surface as studied by ANS binding. Additionally, these inhibitors, except Quin, demonstrated reduction in size as well as the toxicity of oligomeric/fibrillar aggregates of α-Syn. The residue specific interaction to low molecular weight (LMW) species of α-Syn by 2D NMR study revealed that, the region and extent of binding are different for all these molecules. Furthermore, fibril-binding data using SPR suggested that there is no direct relationship between the binding affinity and fibril inhibition by these compounds. The present study suggests that sequence based interaction of small molecules with soluble α-Syn might dictate their inhibition or modulation capacity, which might be helpful in designing modulators of α-Syn aggregation.
Collapse
Affiliation(s)
- Narendra Nath Jha
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai 400 076, India
| | - Rakesh Kumar
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai 400 076, India
| | - Rajlaxmi Panigrahi
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai 400 076, India
| | - Ambuja Navalkar
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai 400 076, India
| | - Dhiman Ghosh
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai 400 076, India
| | - Shruti Sahay
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai 400 076, India
| | - Mritunjoy Mondal
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai 400 076, India
| | - Ashutosh Kumar
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai 400 076, India
| | - Samir. K. Maji
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai 400 076, India
| |
Collapse
|
39
|
Liu X, Zhou S, Shi D, Bai Q, Liu H, Yao X. Influence of EGCG on α-synuclein (αS) aggregation and identification of their possible binding mode: A computational study using molecular dynamics simulation. Chem Biol Drug Des 2017; 91:162-171. [PMID: 28667699 DOI: 10.1111/cbdd.13067] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 04/29/2017] [Accepted: 06/05/2017] [Indexed: 12/21/2022]
Abstract
The accumulation of intrinsically disordered α-synuclein (αS) protein that can form β-sheet-rich fibrils is linked to Parkinson's disease. (-)-Epigallocatechin-3-gallate (EGCG) is the most abundant active component in green tea and can inhibit the fibrillation of αS. The elucidation of this molecular mechanism will be helpful to understand the inhibition mechanism of EGCG to the fibrillation of αS and also to find more potential small molecules that can inhibit the aggregation of αS. In this work, to study the influence of EGCG on the structure of β-sheet-rich fibrils of αS and identification of their possible binding mode, molecular dynamics simulations of pentamer and decamer aggregates of αS in complex with EGCG were performed. The obtained results indicate that EGCG can remodel the αS fibrils and break the initial ordered pattern by reducing the β-sheet content. EGCG can also break the Greek conformation of αS by the disappeared H-bond in the secondary structure of turn. The results from our study can not only reveal the specific interaction between EGCG and β-sheet-rich fibrils of αS, but also provide the useful guidance for the discovery of other potential inhibitors.
Collapse
Affiliation(s)
- Xuewei Liu
- State Key Laboratory of Applied Organic Chemistry, and Department of Chemistry, Lanzhou University, Lanzhou, China
| | - Shuangyan Zhou
- State Key Laboratory of Applied Organic Chemistry, and Department of Chemistry, Lanzhou University, Lanzhou, China.,School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Danfeng Shi
- State Key Laboratory of Applied Organic Chemistry, and Department of Chemistry, Lanzhou University, Lanzhou, China
| | - Qifeng Bai
- State Key Laboratory of Applied Organic Chemistry, and Department of Chemistry, Lanzhou University, Lanzhou, China
| | - Huanxiang Liu
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Xiaojun Yao
- State Key Laboratory of Applied Organic Chemistry, and Department of Chemistry, Lanzhou University, Lanzhou, China
| |
Collapse
|
40
|
Shamsi TN, Athar T, Parveen R, Fatima S. A review on protein misfolding, aggregation and strategies to prevent related ailments. Int J Biol Macromol 2017; 105:993-1000. [PMID: 28743576 DOI: 10.1016/j.ijbiomac.2017.07.116] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 07/13/2017] [Accepted: 07/18/2017] [Indexed: 01/28/2023]
Abstract
This review aims to highlight the fundamental mechanism of protein misfolding leading to protein aggregation and associated diseases. It also aims to anticipate novel therapeutic strategies with which to prevent or treat these highly debilitating conditions linked to these pathologies. The failure of a protein to correctly fold de novo or to remain correctly folded can have profound consequences on a living system especially when the cellular quality control processes fail to eliminate the rogue proteins. The core cause of over 20 different human diseases which have now been designated as 'conformational diseases' including neurodegenerative diseases such as Alzheimer's disease (AD), Huntington's disease (HD) and Parkinson's disease (PD) etc. A comprehensive study on protein misfolding, aggregation, and the outcomes of the effects of cytotoxic aggregates will lead to understand the aggregation-mediated cell toxicity and serves as a foundation for future research in development of promising therapies and drugs. This review has also shed light on the mechanism of protein misfolding which leads to its aggregation and hence the neurodegeneration. From these considerations, one could also envisage the possibility that protein aggregation may be exploited by nature to perform specific physiological functions in differing biological contexts.
Collapse
Affiliation(s)
- Tooba Naz Shamsi
- Department of Biotechnology, Jamia Millia Islamia, New Delhi 110025, India.
| | - Teeba Athar
- Department of Biotechnology, Jamia Millia Islamia, New Delhi 110025, India.
| | - Romana Parveen
- Department of Biotechnology, Jamia Millia Islamia, New Delhi 110025, India.
| | - Sadaf Fatima
- Department of Biotechnology, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
41
|
Giacomelli C, Daniele S, Martini C. Potential biomarkers and novel pharmacological targets in protein aggregation-related neurodegenerative diseases. Biochem Pharmacol 2017; 131:1-15. [PMID: 28159621 DOI: 10.1016/j.bcp.2017.01.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 01/26/2017] [Indexed: 10/20/2022]
Abstract
The aggregation of specific proteins plays a pivotal role in the etiopathogenesis of several neurodegenerative diseases (NDs). β-Amyloid (Aβ) peptide-containing plaques and intraneuronal neurofibrillary tangles composed of hyperphosphorylated protein tau are the two main neuropathological lesions in Alzheimer's disease. Meanwhile, Parkinson's disease is defined by the presence of intraneuronal inclusions (Lewy bodies), in which α-synuclein (α-syn) has been identified as a major protein component. The current literature provides considerable insights into the mechanisms underlying oligomeric-related neurodegeneration, as well as the relationship between protein aggregation and ND, thus facilitating the development of novel putative biomarkers and/or pharmacological targets. Recently, α-syn, tau and Aβ have been shown to interact each other or with other "pathological proteins" to form toxic heteroaggregates. These latest findings are overcoming the concept that each neurodegenerative disease is related to the misfolding of a single specific protein. In this review, potential opportunities and pharmacological approaches targeting α-syn, tau and Aβ and their oligomeric forms are highlighted with examples from recent studies. Protein aggregation as a biomarker of NDs, in both the brain and peripheral fluids, is deeply explored. Finally, the relationship between biomarker establishment and assessment and their use as diagnostics or therapeutic targets are discussed.
Collapse
Affiliation(s)
- Chiara Giacomelli
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Simona Daniele
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Claudia Martini
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy.
| |
Collapse
|
42
|
Sarnowski MP, Kang CW, Elbatrawi YM, Wojtas L, Del Valle JR. Peptide N-Amination Supports β-Sheet Conformations. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201609395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Matthew P. Sarnowski
- Department of Chemistry; University of South Florida; 4202 E. Fowler Avenue Tampa FL 33620 USA
| | - Chang Won Kang
- Department of Chemistry; University of South Florida; 4202 E. Fowler Avenue Tampa FL 33620 USA
| | - Yassin M. Elbatrawi
- Department of Chemistry; University of South Florida; 4202 E. Fowler Avenue Tampa FL 33620 USA
| | - Lukasz Wojtas
- Department of Chemistry; University of South Florida; 4202 E. Fowler Avenue Tampa FL 33620 USA
| | - Juan R. Del Valle
- Department of Chemistry; University of South Florida; 4202 E. Fowler Avenue Tampa FL 33620 USA
| |
Collapse
|
43
|
Sarnowski MP, Kang CW, Elbatrawi YM, Wojtas L, Del Valle JR. Peptide N-Amination Supports β-Sheet Conformations. Angew Chem Int Ed Engl 2017; 56:2083-2086. [DOI: 10.1002/anie.201609395] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 12/12/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Matthew P. Sarnowski
- Department of Chemistry; University of South Florida; 4202 E. Fowler Avenue Tampa FL 33620 USA
| | - Chang Won Kang
- Department of Chemistry; University of South Florida; 4202 E. Fowler Avenue Tampa FL 33620 USA
| | - Yassin M. Elbatrawi
- Department of Chemistry; University of South Florida; 4202 E. Fowler Avenue Tampa FL 33620 USA
| | - Lukasz Wojtas
- Department of Chemistry; University of South Florida; 4202 E. Fowler Avenue Tampa FL 33620 USA
| | - Juan R. Del Valle
- Department of Chemistry; University of South Florida; 4202 E. Fowler Avenue Tampa FL 33620 USA
| |
Collapse
|
44
|
Sivanesam K, Andersen NH. Modulating the Amyloidogenesis of α-Synuclein. Curr Neuropharmacol 2016; 14:226-37. [PMID: 26517049 PMCID: PMC4857621 DOI: 10.2174/1570159x13666151030103153] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 05/13/2015] [Accepted: 05/13/2015] [Indexed: 12/16/2022] Open
Abstract
Alpha-Synuclein is found in the neuronal cells but its native function is not well known. While α -synuclein is an intrinsically disordered protein that adopts a helical conformation upon membrane binding, numerous studies have shown that oligomeric β-forms of this protein are cytotoxic. This response to misfolded species contributes to Parkinson's Disease etiology and symptoms. The resulting amyloid fibrils are an established diagnostic in Parkinson's Disease. In this review, we focus on strategies that have been used to inhibit the amyloidogenesis of α -synuclein either by stabilizing the native state, or by redirecting the pathway to less toxic aggregates. Small molecules such as polyphenols, peptides as well as large proteins have proven effective at protecting cells against the cytotoxicity of α-synuclein. These strategies may lead to the development of therapeutic agents that could prove useful in combating this disease.
Collapse
Affiliation(s)
| | - Niels H Andersen
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
45
|
Kumar V, Sami N, Kashav T, Islam A, Ahmad F, Hassan MI. Protein aggregation and neurodegenerative diseases: From theory to therapy. Eur J Med Chem 2016; 124:1105-1120. [DOI: 10.1016/j.ejmech.2016.07.054] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 07/20/2016] [Accepted: 07/22/2016] [Indexed: 12/23/2022]
|
46
|
Török N, Majláth Z, Szalárdy L, Vécsei L. Investigational α-synuclein aggregation inhibitors: hope for Parkinson’s disease. Expert Opin Investig Drugs 2016; 25:1281-1294. [DOI: 10.1080/13543784.2016.1237501] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Nóra Török
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
- MTA-SZTE Neuroscience Research Group, Szeged, Hungary
| | - Zsófia Majláth
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - Levente Szalárdy
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - László Vécsei
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
- MTA-SZTE Neuroscience Research Group, Szeged, Hungary
| |
Collapse
|
47
|
Funtan S, Evgrafova Z, Adler J, Huster D, Binder WH. Amyloid Beta Aggregation in the Presence of Temperature-Sensitive Polymers. Polymers (Basel) 2016; 8:polym8050178. [PMID: 30979271 PMCID: PMC6432434 DOI: 10.3390/polym8050178] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 04/25/2016] [Accepted: 04/26/2016] [Indexed: 12/20/2022] Open
Abstract
The formation of amyloid fibrils is considered to be one of the main causes for many neurodegenerative diseases, such as Alzheimer’s, Parkinson’s or Huntington’s disease. Current knowledge suggests that amyloid-aggregation represents a nucleation-dependent aggregation process in vitro, where a sigmoidal growth phase follows an induction period. Here, we studied the fibrillation of amyloid β 1-40 (Aβ40) in the presence of thermoresponsive polymers, expected to alter the Aβ40 fibrillation kinetics due to their lower critical solution behavior. To probe the influence of molecular weight and the end groups of the polymer on its lower critical solution temperature (LCST), also considering its concentration dependence in the presence of buffer-salts needed for the aggregation studies of the amyloids, poly(oxazolines) (POx) with LCSTs ranging from 14.2–49.8 °C and poly(methoxy di(ethylene glycol)acrylates) with LCSTs ranging from 34.4–52.7 °C were synthesized. The two different polymers allowed the comparison of the influence of different molecular structures onto the fibrillation process. Mixtures of Aβ40 with these polymers in varying concentrations were studied via time-dependent measurements of the thioflavin T (ThT) fluorescence. The studies revealed that amyloid fibrillation was accelerated in, accompanied by an extension of the lag phase of Aβ40 fibrillation from 18.3 h in the absence to 19.3 h in the presence of the poly(methoxy di(ethylene glycol)acrylate) (3600 g/mol).
Collapse
Affiliation(s)
- Sebastian Funtan
- Faculty of Natural Science II, Martin-Luther University Halle-Wittenberg, Von-Danckelmann-Platz 4, D-06120 Halle (Saale), Germany.
| | - Zhanna Evgrafova
- Faculty of Natural Science II, Martin-Luther University Halle-Wittenberg, Von-Danckelmann-Platz 4, D-06120 Halle (Saale), Germany.
| | - Juliane Adler
- Institute for Medical Physics and Biophysics, Leipzig University, Härtelstraße 16-18, D-04107 Leipzig, Germany.
| | - Daniel Huster
- Institute for Medical Physics and Biophysics, Leipzig University, Härtelstraße 16-18, D-04107 Leipzig, Germany.
| | - Wolfgang H Binder
- Faculty of Natural Science II, Martin-Luther University Halle-Wittenberg, Von-Danckelmann-Platz 4, D-06120 Halle (Saale), Germany.
| |
Collapse
|
48
|
|
49
|
Cheruvara H, Allen-Baume VL, Kad NM, Mason JM. Intracellular screening of a peptide library to derive a potent peptide inhibitor of α-synuclein aggregation. J Biol Chem 2015; 290:7426-35. [PMID: 25616660 DOI: 10.1074/jbc.m114.620484] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Aggregation of α-synuclein (α-syn) into toxic fibrils is a pathogenic hallmark of Parkinson disease (PD). Studies have focused largely on residues 71-82, yet most early-onset mutations are located between residues 46 and 53. A semirationally designed 209,952-member library based entirely on this region was constructed, containing all wild-type residues and changes associated with early-onset PD. Intracellular cell survival screening and growth competition isolated a 10-residue peptide antagonist that potently inhibits α-syn aggregation and associated toxicity at a 1:1 stoichiometry. This was verified using continuous growth measurements and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide cytotoxicity studies. Atomic force microscopy and circular dichroism on the same samples showed a random-coil structure and no oligomers. A new region of α-syn for inhibitor targeting has been highlighted, together with the approach of using a semirational design and intracellular screening. The peptides can then be used as candidates for modification in drugs capable of slowing or even preventing the onset of PD.
Collapse
Affiliation(s)
- Harish Cheruvara
- From the School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ
| | - Victoria L Allen-Baume
- From the School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ
| | - Neil M Kad
- the School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, and
| | - Jody M Mason
- the Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| |
Collapse
|
50
|
Sivanesam K, Byrne A, Bisaglia M, Bubacco L, Andersen N. Binding Interactions of Agents That Alter α-Synuclein Aggregation. RSC Adv 2015; 5:11577-11590. [PMID: 25705374 DOI: 10.1039/c5ra00325c] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Further examination of peptides with well-folded antiparallel β strands as inhibitors of amyloid formation from α-synuclein has resulted in more potent inhibitors. Several of these had multiple Tyr residues and represent a new lead for inhibitor design by small peptides that do not divert α-synuclein to non-amyloid aggregate formation. The most potent inhibitor obtained in this study is a backbone cyclized version of a previously studied β hairpin, designated as WW2, with a cross-strand Trp/Trp cluster. The cyclization was accomplished by adding a d-Pro-l-Pro turn locus across strand termini. At a 2:1 peptide to α-synuclein ratio, cyclo-WW2 displays complete inhibition of β-structure formation. Trp-bearing antiparallel β-sheets held together by a disulphide bond are also potent inhibitors. 15N HSQC spectra of α-synuclein provided new mechanistic details. The time course of 15N HSQC spectral changes observed during β-oligomer formation has revealed which segments of the structure become part of the rigid core of an oligomer at early stages of amyloidogenesis and that the C-terminus remains fully flexible throughout the process. All of the effective peptide inhibitors display binding-associated titration shifts in 15N HSQC spectra of α-synuclein in the C-terminal Q109-E137 segment. Cyclo-WW2, the most potent inhibitor, also displays titration shifts in the G41-T54 span of α-synuclein, an additional binding site. The earliest aggregation event appears to be centered about H50 which is also a binding site for our most potent inhibitor.
Collapse
Affiliation(s)
- K Sivanesam
- Department of Chemistry, University of Washington, Seattle, WA 98195
| | - A Byrne
- Department of Chemistry, University of Washington, Seattle, WA 98195
| | - M Bisaglia
- Department of Biology, University of Padua, 35121 Padova, Italy
| | - L Bubacco
- Department of Biology, University of Padua, 35121 Padova, Italy
| | - N Andersen
- Department of Chemistry, University of Washington, Seattle, WA 98195
| |
Collapse
|